
U S E R ’ S G U I D E

METRIC
Version 1.3

Software Metrics
Processor/Generator

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, photocopying, recording
or otherwise without prior written consent of Software Research, Inc. While every pre-
caution has been taken in the preparation of this document, Software Research, Inc.
assumes no responsibility for errors or omissions. This publication and features
described herein are subject to change without notice.

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TCAT for JAVA/Windows, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight,
and Xvirtual are trademarks or registered trademarks of Software Research, Inc.
Other trademarks are owned by their respective companies. METRIC is a
trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC is a
trademark of Software Research, Inc. and Gimpel Software.

Copyright 2004 by Software Research, Inc

1663 Mission Street, Suite 400

San Francisco, CA 94103

Tel: (415) 861-2800

Toll Free: (800) 942-SOFT

Fax: (415) 861-9801

E-mail: support@soft.com

http://www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface .xiii
Congratulations! . xiii
Audience . xiii
Format of Chapters . iv
Identifying Special Text . xv

CHAPTER 1 Introduction to METRIC. 1
1.1 The Maintenance Problem .1

1.2 The Solution . .2
1.2.1 Developing Metrics .3
1.2.2 Assessing Metric Accuracy .5

Determining Validity 5
Statistical Techniques 6

1.3 METRIC and Software Complexity Measures 8

1.4 Main System Features .9

CHAPTER 2 Quick Start . 11
2.1 Instructions . 11

2.1.1 STEP 1: Setting Up METRIC .12
2.1.2 STEP 2: Invoking METRIC. .13
2.1.3 STEP 3: Selecting a Source Code File .14
2.1.4 STEP 4: Analyzing the Complexity Report. .16
2.1.5 STEP 5: Analyzing Multiple Files .18
2.1.6 STEP 6: Determining the Most Complex Procedures 20
2.1.7 STEP 7: Viewing a Summary Report .22
2.1.8 STEP 8: Viewing an Exception Report. .24
2.1.9 STEP 9: Viewing an Error Report. .26
2.1.10 STEP 10: Using Kiviat Charts to See Complexity 28
2.1.11 STEP 11: Looking at the Type II Chart .30

TABLE OF CONTENTS

iv

2.1.12 STEP 12: Looking at the Type III Chart . 32
2.1.13 STEP 13: Signoff and Cleanup. 34

2.2 Summary . .36

CHAPTER 3 System Introduction . 39
3.1 Overview of METRIC . .39

3.2 How to Use METRIC . .40

3.3 The Complexity Report .41
3.3.1 Fields n1, n2, N1, N2, and N . 43
3.3.2 Software Science Counting Rules . 44
3.3.3 Fields N^ and P/R. 46
3.3.4 Field V. 48
3.3.5 Field E. 49
3.3.6 Field VG1 . 50
3.3.7 Field VG2 . 52
3.3.8 Fields LOC, BLK, CMT, and <;> . 53
3.3.9 Fields SP and VL . 54

3.4 The Summary Report .55
3.4.1 Field B^. 58
3.4.2 Field T^ . 60

3.5 The Exception Report .61

3.6 Accuracy of the Reports .63

3.7 Using Metrics in Software Development64
3.7.1 Producing Less Complex Code . 65
3.7.2 Allocating Testing Resources . 67
3.7.3 Managing Maintenance . 68
3.7.4 Expecting Too Much . 69

CHAPTER 4 System Operation . 71
4.1 Using this Chapter . .71

4.2 User Interface .72
File Selection Box 72
Help Boxes . 74
Message Boxes . 75
Pull-Down Menus 76

4.3 Invoking METRIC .78

4.4 Processing a Source Code File80
4.4.1 Selecting a Language . 81
4.4.2 Writing Reports to a File . 82
4.4.3 Selecting a Source Code File . 84

STATIC User’s Guide

v

4.4.4 Selecting Multiple Source Code File .85

4.5 Looking at the Reports . 86
4.5.1 Looking at a Complexity Report .87
4.5.2 Re-Ordering Procedures/Functions .89
4.5.3 Looking at a Summary Report .91
4.5.4 Looking at an Exception Report .93
4.5.5 Looking at an Error Report. .94
4.5.6 Setting Report Threshold Values .95

4.6 Graphically Viewing Complexity 98
4.6.1 Looking at a Type I Kiviat Chart .99

Setting Type I Chart Parameters101
4.6.2 Looking at a Type II Kiviat Chart .103

Setting Type II Chart Parameters 104
4.6.3 Looking at a Type III Kiviat Chart .107

Setting Type III Chart Parameters 109
4.6.4 Customizing Your Own Kiviat Chart .113

4.7 Exiting METRIC . 114

CHAPTER 5 Helpful Hints. 115
5.1 Measuring Program Complexity 115

5.1.1 Set-Up Suggestions .115
5.1.2 Software Development .116

Using Metrics as a Feedback Tool 116
Using Metrics in the Review Process118
Using Metrics in Estimation119
Metrics in Software Testing121

5.1.3 Software Maintenance .123
Apportioning Duties123
Controlling Entropy124

CHAPTER 6 Graphical User Interface . 125
6.1 About the Main Window . 125

6.2 Main Features of METRIC 126
6.2.1 Display Area .127
6.2.2 File Pull-Down Menu .128
6.2.3 Options Pull-Down Menu .131
6.2.4 Report Pull-Down Window .137
6.2.5 Charts Pull-Down Menu .140
6.2.6 Help Button. .144

TABLE OF CONTENTS

vi

CHAPTER 7 Command Line Activation . 145
7.1 Command Line Usage . 145

7.2 ‘Xmetric’ Command . 146
Options and Parameters: 146

7.3 ‘langmetric’ Command . 147
Options and Parameters 148

7.4 ‘Xkiviat’ − Static Metrics Display System 153
Options and Parameters 154

7.5 Configuration File Processing 156

Appendix A ‘‘C’’ Notes . 171
cmetric . 171
cresword.tab . 171
cnonexe.tab . 172
The Complexity Report 173
The Summary Report 175
The Exception Report 177
The Error Report . 178
Reserved Word/Nonexecutable Word File 180
Miscellaneous Operator/Operand Rules 181
Cyclomatic Complexity 181
Span of Reference 182
Executable Semi-colons 182
Average Variable Name Length 182
Lines of Code . 182
Comments . 182
Creating a Shell Script File 183
Conditional Compilation Directives 184
Comments About METRIC 186

Appendix B ‘‘C++’’ Notes . 187
cppmetric . 187
cppresword.tab . 187
cppnonexe.tab . 188
The Complexity Report 189
The Summary Report 191
The Exception Report 193
The Error Report . 194
C++ Class Report 196
Class Summary . 196
Class Hierarchy . 197
Class Exception Report 197
Counting Rules . 198

STATIC User’s Guide

vii

Reserved Word/Nonexecutable Word Files 198
Miscellaneous Operator/Operand Rules 199
Cyclomatic Complexity 200
Span of Reference 200
Executable Semi-colons 200
Average Variable Name Length 200
Lines of Code . .200
Comments .201
Creating a Shell Script File202
Conditional Compilation Directives203
Comments About METRIC205

Appendix C Ada Notes . 207
adametric . .207
adaresword.tab . .207
Description of the Reports 208
The Complexity Report208
The Summary Report209
The Exception Report 211
The Error Report .211
The Generic Report 212
The Package Exception Report 214
The Package Intermediates Report 215
Counting Rules . .216
Reserved Word File 216
Miscellaneous Operator/Operand Rules 216
Cyclomatic Complexity 217
Span of Reference 217
Executable Semi-colons 217
Average Variable Name Length 218
Lines of Code . .218
Comments .218
Creating a Shell Script File219
Comments About METRIC219

Appendix D FORTRAN Notes . 221
fmetric .221
forreswo.tab .221
Description of the Reports 223
The Complexity Report223
The Summary Report225
The Exception Report 227
The Error Report .228
Counting Rules . .230
Reserved Word File 230
Miscellaneous Operator and Operand Rules231

TABLE OF CONTENTS

viii

Cyclomatic Complexity 231
Span of Reference 232
Executable Carriage Returns 232
Average Variable Name Length 232
Lines of Code . 232
Comments . 232
Creating a Shell Script File 234
Comments About METRIC 235

Index . 237

ix

List of Figures

FIGURE 1 METRIC System Flow Chart 8

FIGURE 2 Setting Up the Display Options (Initial Condition) 12

FIGURE 3 Invoking METRIC 13

FIGURE 4 Selecting a Source Code File 15

FIGURE 5 Analyzing the Complexity Report 17

FIGURE 6 Selecting Multiple Source Code Files 19

FIGURE 7 Controlling Complexity Order 21

FIGURE 8 Analyzing the Summary Report 23

FIGURE 9 Analyzing the Exception Report 25

FIGURE 10 Viewing the Errors Report 27

FIGURE 11 Type I Kiviat Chart 29

FIGURE 12 Type II Kiviat Chart 31

FIGURE 13 Type III Kiviat Chart 33

FIGURE 14 Completing a METRIC Session 35

FIGURE 15 metric.ksv Setup 37

FIGURE 16 Sample Complexity Report 41

FIGURE 17 Flow Graph 51

FIGURE 18 Sample Summary Report 55

FIGURE 19 Sample Exception Report 61

FIGURE 20 Using a File Selection Dialog Box 73

FIGURE 21 Using the Help Dialog Box 75

FIGURE 22 Using a Dialog Box 76

FIGURE 23 Using a Pull-down Menu 77

FIGURE 24 Invoking the Main Window 78

FIGURE 25 Invoking METRIC from STW 79

FIGURE 26 Selecting a Language 81

List of Figures

x

FIGURE 27 Saving Reports to a Common Basename 83

FIGURE 28 Selecting a Source Code File 84

FIGURE 29 Selecting Multiple Source Code Files 85

FIGURE 30 Selecting the Complexity Report 87

FIGURE 31 Complexity Report 88

FIGURE 32 Sort Report By Window 90

FIGURE 33 Re-Ordered Complexity Report 90

FIGURE 34 Selecting the Summary Report 91

FIGURE 35 Summary Report 92

FIGURE 36 Exception Report 93

FIGURE 37 Configuration Options Window 95

FIGURE 38 Type I Kiviat Chart 100

FIGURE 39 Xmetric.I.def Configuration File 101

FIGURE 40 Type I Configuration Window 102

FIGURE 41 Type II Kiviat Chart 104

FIGURE 42 Xmetric.II.def Configuration File 105

FIGURE 43 Type II Configuration Window 106

FIGURE 44 Type III Kiviat Chart 109

FIGURE 45 Xmetric.III.def Configuration File 110

FIGURE 46 Type III Configuration Window 112

FIGURE 47 Exiting METRIC 114

FIGURE 48 Display Area 127

FIGURE 49 Load Single File Selection 128

FIGURE 50 Load Multiple Files Selection 129

FIGURE 51 Setting the Report Files Basename 129

FIGURE 52 File Pull-Down Window Help 130

FIGURE 53 File Pull-Down Menu 130

FIGURE 54 Configuration Options Window 131

FIGURE 55 Type I Configuration Window 133

FIGURE 56 Type II Configuration Window 134

FIGURE 57 Type III Configuration Window 135

FIGURE 58 Select Language Window 136

FIGURE 59 Sort Report By Window 137

FIGURE 60 Report Pull-Down Menu 139

FIGURE 61 Type I Kiviat Chart 140

FIGURE 62 Type II Kiviat Chart 141

METRIC User’s Guide

xi

FIGURE 63 Type III Kiviat Chart 142

FIGURE 64 Type User Kiviat Chart Selection 143

FIGURE 65 Charts Pull-Down Menu 143

FIGURE 66 Help Window for METRIC 144

FIGURE 67 Example Kiviat Diagram 153

FIGURE 68 Complexity Report for ‘‘C’’ 174

FIGURE 69 Summary Report for ‘‘C’’ 176

FIGURE 70 Exception Report for ‘‘C’’ 177

FIGURE 71 Complexity Report for ‘‘C++’’ 190

FIGURE 72 Summary Report for ‘‘C++’’ 192

FIGURE 73 Exception Report for ‘‘C++’’ 193

FIGURE 74 Complexity Report for Ada 209

FIGURE 75 Summary Report for Ada 210

FIGURE 76 Exception Report for Ada 211

FIGURE 77 Generic Report 213

FIGURE 78 Package Exceptions Report 214

FIGURE 79 Package Intermediates Report 215

FIGURE 80 Complexity Report for FORTRAN 224

FIGURE 81 Summary Report for FORTRAN 226

FIGURE 82 Exception Report for FORTRAN 227

METRIC User’s Guide

xii

xiii

Preface
This preface explains how this user’s guide is organized.

Congratulations!

By choosing the TestWorks integrated suite of testing tools, you have
taken the first step in bringing your application to the highest possible
level of quality.

 Software testing and quality assurance, while becoming more important
in today’s competitive marketplace, can dominate your resources and
delay your product release. By automating the testing process, you can
assure the quality of your product without needlessly depleting your
resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TestWorks is the most complete solution available, with full-featured
regression testing, coverage analyzers, and metric tools.

Audience

This manual is intended for software testers who are using Metric tools.
You should be familiar with the X Window System and your workstation.

xiv

Format of Chapters

This manual is organized to aid you after installation has been completed
(See the Installation Instructions if you are trying to install.).

This manual is divided into the following sections:

Chapter 1 INTRODUCTION TO METRIC explains the basic
functions of METRICTM and its role in Quality Assur-
ance/Quality Control.

Chapter 2 QUICK START is a tutorial and shows step-by-step
how to run a basic METRIC TM test session.

Chapter 3 SYSTEM INTRODUCTION is an overview of the
METRICTM system.

Chapter 4 SYSTEM OPERATION covers the basic X Window
System graphical user interface operations of MET-
RICTM.

Chapter 5 HELPFUL HINT offers recommendations and princi-
ples of operation for METRICTM in an automated
testing environment.

Chapter 6 GRAPHICAL USER INTERFACE defines and explains
the content of the Main window that makes up the
METRICTM product.

Chapter 7 COMMAND LINE ACTIVATION disrobes in detail
the various command line switches which perform
tasks very similar to the graphical user interface.

METRIC User’s Guide

xv

Identifying Special Text

This section explains the typographical conventions that are used
throughout this manual.

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for man-
uals, books and chapter titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with spe-
cial meanings may also be set apart with double quo-
tation marks the first time they are used.

courier Indicates system output such as error messages, sys-
tem hints, file output, and CAPBAK/X’s keysave file
language.

Boldface Courier

Indicates any command or data input that you are di-
rected to type. For example, prompts and invocation
commands are in this text. (For instance, stw invokes
TestWorks.)

xvi

1

CHAPTER 1

Introduction to METRIC
This chapter explains the basic functions of METRICTM and its role in Quality Assurance/
Quality Control.

1.1 The Maintenance Problem

In the life cycle of software, much effort and time goes into maintenance.
All changes and enhancements made from the time the product has been
conceived to the time it first delivered involves a great deal of mainte-
nance. During this maintenance period, software can become victim to
complexity. Complexity is a measure of how difficult or how complex a
program may be. If a program is becomes too complex after several
changes, you can lose control over maintenance. This is known as
entropy.

Many managers rely on their programmers’ common sense to know
when entropy is affecting the quality of the code. Today, this kind of ad
hoc maintenance can spell disaster for mid- to large-scale programs.
Many of today’s applications contain dozens of user-selectable functions,
each of which can have several changes made to it before it is shipped.

If the complex parts of a program could be identified in a reliable, quanti-
tative manner, programmers could more easily determine when program
entropy has taken it toll and adjust the overly complex modules accord-
ingly. In other words, if you could identify the most of program that are
most likely to be cause maintenance problems and the measure the
degree of possible entropy, you could more easily maintain those problem
areas.

One such method is the field of software metrics. Software metrics can be
used to develop QA procedures and measure a program’s quality (and its
potential entropy) before it is released. This chapter addresses the field of
software metrics.

CHAPTER 1: Introduction to METRIC

2

1.2 The Solution

The field of software metrics grew out of a need by programmers and
managers to be able to express the characteristics of a piece of software in
quantitative terms. The first ‘‘software metric’’ was simply a count of the
number of lines in a program. This was sufficient when attempting to
express how ‘‘big’’ a program was. However, a simple count of lines of
code turned out to be much too simplistic for many other purposes.

Clearly there are lines of code, and then there are lines of code. For exam-
ple, consider the following two C program segments:

for (j=1;j<21;j++) {a=10;
 for (i=2;i<21;i++) b=10;
 m[i-1]=m[i];d=b+a
 fscanf(MF,"%d",m[20]);b=0;
}a=0;
for (j=1;j<11;j++) {d=+2;
 s=s+m[j]+m[j*2];o=d*2;
}printf("%d",d);
printf("%d",s);printf("%d",0);

It seems clear that the segment on the left has much more going on within
it than the one on the right, yet they are both nine lines long.

Computer Science researchers and practitioners alike searched for an
alternative measure that would distinguish programs which were of sim-
ilar length, but differed in terms of ‘‘how much was going on’’ within
them. This property came to be known as software complexity. A method
of measurement is often called a ‘‘metric’’. Therefore, a measure of soft-
ware complexity is usually known as a software complexity metric.

Intuitively, software complexity can be viewed as ‘‘how much is going
on’’ within the code. Obviously, complexity can have a significant impact
on how hard it is to understand and work with the code. Software com-
plexity metrics allow us to objectively express how complex a piece of
code is. This can help identify the parts of a program which might benefit
from rewriting. Metrics can also help those managing a project assess
how difficult a program will be to work with (and hence how much time
might be required to perform some activity upon it).

It has been shown that a program which is more complex than another is
also likely to have more errors. Project managers can thus use complexity
metrics to gauge how many errors various procedures or programs
within a system might have. This information can then be used to allocate
resources for testing.

METRIC User’s Guide

3

1.2.1 Developing Metrics

As we noticed before, the number of lines of code is not the only program
characteristic contributing to complexity. A number of other such charac-
teristics exist. For example, a program that exhibits excessive decision
making can be hard to follow. Likewise, a program that makes use of
many global variables can be extremely hard to modify because of the
dreaded "ripple effect". The list of characteristics which can contribute to
software complexity goes on and on.

Researchers trying to measure software complexity approach the problem
not by measuring complexity itself but rather by measuring the degree to
which those characteristics thought to lead to complexity exist within a
program. Thus, for example, a classical measure of software complexity is
the number of decision statements in the code.

Unfortunately, it seems at times that every researcher with an interest in
software complexity has his own pet characteristic which he thinks is the
factor that contributes most to software complexity. As a consequence, the
number of measures which were suggested mushroomed as interest
began to grow in this area of research in the late 1970’s and early 1980’s.
Many different complexity metrics were suggested, but soon two major
categories of metrics became recognized: size metrics and control flow
metrics.

Size metrics were developed on the premise that the ‘‘larger’’ the pro-
gram, the more complex it is. Size in this context is not necessarily based
strictly on the number of lines of code in the program. For example, com-
mon size measures are the number of procedures, number of variables, or
number of operators used.

For example, common size measures are the number of procedures, num-
ber of variables, or number of operators used. Control flow metrics
attempt to address the issue of numerous decision points located in the
program. Some popular measures simply count the number of IF state-
ments within the program, while others include a count of all decision
points (i.e., IF , WHILE, FOR, CASE, etc.), others attempt to assess the level
of control flow nesting (i.e., an IF within the scope of another IF) and
yet others attempt to relate the selected measures to graph theory by
viewing the abstract flow of program control as a directed graph.

CHAPTER 1: Introduction to METRIC

4

No consensus has been reached as to which approach is correct. Because
of this, some researchers have developed a special set of metrics referred
to as hybrid complexity metrics. Hybrid metrics take (hopefully) the best
from each category. For example, a popular hybrid measure involves
assessing both the control flow and program size. However, since the
complexity contribution of each of the characteristics often is not equal, it
is not always clear how to combine the measurements of different charac-
teristics.

METRIC User’s Guide

5

1.2.2 Assessing Metric Accuracy

Anyone can say that a given characteristic contributes to software com-
plexity, and therefore measuring the degree to which that characteristic
exists in a program should provide a measure of how complex that pro-
gram is. However, people are generally more comfortable using metrics if
they have some evidence that this is in fact, the case.

Determining Validity

To obtain evidence supporting the validity of a metric, it is useful to be
able to establish two facts:

• Does the characteristic(s) the metric is built around actually con-
tribute to complexity?

• Does the method of measuring the presence of the characteristic
actually reflect how much complexity is being contributed?

Often, researchers will combine these two goals by using a proxy for com-
plexity, and testing to see if that proxy is related to the measurements pro-
vided by the metric in question.

Some activity is chosen that can be objectively measured, and that we are
reasonably sure is impacted by complexity. For example, popular proxies
are time to develop the program being analyzed, the number of program-
ming errors made during development of the program, etc. These are
sometimes referred to as process metrics since they measure aspects of
the programming process. Measures of software characteristics, such as
complexity metrics, are known as product metrics since they measure
aspects of the product.

By using this approach to validating a particular software metric, the
question at hand can be restated as:

Is the product measure of interest correlated with the process metric of interest?

In other words, suppose we look at several different programs. As the
product metric (e.g., number of IF statements) in the different programs
increase, does the corresponding process metric (e.g., number of errors)
increase as well?

CHAPTER 1: Introduction to METRIC

6

Statistical Techniques

If the value of the product metric does increase as the process metric is
found to increase, then we say we have a positive correlation. The degree
of correlation may range from -1 to +1. This measure of correlation is
known as the correlation coefficient. A correlation coefficient of zero
means there is no relationship. A 0.5 correlation coefficient means some
relationship between the two metrics exist, but there are other factors
which account for the increase in the process metric besides an increase in
the product metric. A correlation coefficient of +1 means that it is likely
that the only factor which accounts for the increase in the process metric
is an increase in the product metric.

Negative correlations coefficients mean similar things, except the rela-
tionship is such that a decrease in the product metric accounts for an
increase of the process metric, or vice-versa. For example, a correlation
coefficient of -1 means that probably the only factor which accounts for an
increase in the process metric is a decrease in the product metric. A high
correlation does not necessarily imply that one variable is equal, or even
close to equal to the other variable. What it means is that one variable
seems to increase and decrease in relation to the other variable being
studied. For example, the following columns of numbers have a perfect
+1.0 correlation:

1020
1530
2040
2550
3060

Note that the numbers in the right column are always twice those in the
left column - therefore, as the numbers in one column increase or
decrease, so do the numbers in the other column, and at the same rate!
This is what is meant by a ‘‘perfect correlation’’.

Formulas to compute the correlation coefficient for two variables can be
found in any introductory statistics text book. However, if a high correla-
tion exists between two metrics, plotting their values on an X-Y graph
will allow the relationship to be recognized without going through the
calculations to determine the correlation coefficient.

METRIC User’s Guide

7

Other approaches may also be taken to show that a product metric is
related to a process metric. For example, a set of programs can be split
into two experimental groups based on some property such as number of
decisions. All the programs with 10 or fewer decisions would be assigned
to one group, and all the programs with more than 10 decisions assigned
to the second group. The average number of programming errors in each
group would then be compared to see if the difference between the two
groups is statistically significant.

If there is a statistically significant difference, then we can conclude the
metric in question may be valid. This is reliable only if the entire set of
programs are homogeneous in regards to other characteristics, such as
size, application, etc. If this is not true, differences in one of the other
characteristics might account for the differences in the process metric.

CHAPTER 1: Introduction to METRIC

8

1.3 METRIC and Software Complexity Measures

As mentioned earlier, numerous metrics exist. Perhaps the two most pop-
ular families of metrics currently in use are the Software Science of the
late Maurice Halstead, and the Cyclomatic Complexity.

In addition to being the two most popular, they are also good representa-
tives of the two categories of metrics mentioned earlier. Software Science
is based on the ‘‘size’’ of the software, while Cyclomatic Complexity is
based on the flow of control within the code.

METRICTM resolves the maintenance issue by automatically computing
several complexity metrics for the program, including Software Science
and Cyclomatic Complexity measures. These measures identify the most
complex, error prone, and maintenance effort parts of the program.
Because METRICTM identifies the most complex modules, you can con-
centrate your testing resources on just those complex parts.

The diagram below illustrates the METRICTM process. You should study
this diagram carefully so that you see the natural structure and rhythm of
the METRICTM use.

FIGURE 1 METRIC System Flow Chart

Source Code
File

Configuration
Files

Report Generation Kiviat Diagrams

METRIC

User

METRIC User’s Guide

9

1.4 Main System Features

Here is a list of the most important features the METRICTM offers:
• Reads any compilable source code text file.
• Automatically computes Software Science and Cyclomatic Com-

plexity measures for the specified program.
• Creates a Complexity report, which lists the complexity measures

for each program module.
• Creates an Exception reports, which lists the program’s modules

that exceed default complexity measure threshold values.
• Generates Kiviat diagrams, which allows you to view the impact

of multiple metrics on the program.
• Allows you to analyze entire groups of source code files whose

names match some sort of pattern.
• Allows you to set your complexity values.
• Functions accessed through a X Window System graphical user

interface (GUI).
• Supports code written in Ada, C, C++, and FORTRAN.

CHAPTER 1: Introduction to METRIC

10

11

CHAPTER 2

Quick Start
This chapter is a tutorial and shows step-by-step how to run a basic METRICTM test ses-
sion.

LEVEL: If you are an advanced METRICTM user, you may skip this chapter. This chapter
is intended for beginning and intermediate users.

2.1 Instructions

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This chapter will give you a feel for
how the system is organized and will permit you to create more efficient
and effective tests.

For best results, follow the instructions very carefully. When you have
completed this chapter, you should be familiar with the main activities
involved in using METRICTM, including selecting a program to analyze,
processing complexity metrics for that program, viewing resulting
reports, and using Kiviat diagrams to visualize the impact of several met-
rics at one time.

If you are a first-time METRICTM user, this chapter is best used if you
make reference to the introductory chapters (See CHAPTER 3 - "System
Introduction" on page 39.) (See CHAPTER 4 - "System Operation" on
page 71.) If you are an intermediate user, this chapter is best used if you
make reference only to those menu definitions which need further expla-
nation (see the SYSTEM OPERATION and GRAPHICAL USER INTER-
FACE chapters for further information).

If you have available the Xplabak utility (playback utility for CAPBAK/
XTM, you may, when you are done, run the supplied metric.ksv file to
see an example of how this session works. The instructions are at the end
of this chapter (See Section 2.2 - “Summary” on page 36.).

CHAPTER 2: Quick Start

12

2.1.1 STEP 1: Setting Up METRIC

You should start with the screen organized in a particular way, as shown
in the figure (See Figure 2 "Setting Up the Display Options (Initial Condi-
tion)" on page 12.).

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command xterm& from an existing window. The
xterm window will serve as the METRICTM invocation window.

Move the window to the upper left of the screen. Go to the $SR/demos
directory. The demos directory is supplied with the product, and it con-
sists of several language dependent files, which you can be used with
METRICTM for practice. This QUICK START will use xcalc.c and
sr.c to demonstrate METRICTM usage.

When initiating this quick start session, your display should look some-
thing like this:

FIGURE 2 Setting Up the Display Options (Initial Condition)

METRIC User’s Guide

13

2.1.2 STEP 2: Invoking METRIC

Now, invoke METRICTM:
1. Position the mouse so that it is located in the invocation window.
2. Activate it by clicking the mouse button on it. This window becomes

the main control window. During your session, all status messages
and warnings are displayed in this window.

3. Start METRICTM from your working directory by typing in:

Xmetric

Xmetric is the GUI-version of METRICTM.
4. When you type in the command, the Main METRICTM window pops

up. All operations for METRICTM can be performed from this win-
dow.

5. Move the Main window to the lower right of the screen. You can
move a window by clicking on its title bar and dragging it.

6. If you want to start over, you can terminate from the Main window
by clicking on the File pull-down menu and selecting Exit.

After invoking METRICTM, your display should look something like this:

FIGURE 3 Invoking METRIC

CHAPTER 2: Quick Start

14

2.1.3 STEP 3: Selecting a Source Code File

To obtain complexity measures for a source code file, all you have to do is
select any compilable file. METRICTM is a static code analyzer, so you do
not have to do anything special to a program’s code. For this demo, select
the file named sr.c :
1. Click on the File pull-down menu.
2. Select the Load Single File option.
3. A file selection dialog box pops up.
4. To select sr.c , do one of three things:

• Double click on sr.c in the File selection window,
• Highlight sr.c in the File selection window or type in the file

name in the Selection entry box and click on OK, or
• Highlight or type in sr.c and press the <ENTER> key.

5. METRICTM automatically processes complexity measures for sr.c .
These measures are displayed in a Complexity report.

METRIC User’s Guide

15

When selecting a source code file, your display should like this:

FIGURE 4 Selecting a Source Code File

CHAPTER 2: Quick Start

16

2.1.4 STEP 4: Analyzing the Complexity Report

After selecting the source code file, METRICTM automatically processes
complexity metrics for it in a Complexity report. Because this report is
important to your understanding of METRICTM, this step concentrates on
analyzing this report.
1. When METRICTM automatically created the Complexity report for

sr.c , the Main window may not reveal the entire report. In such a
case, simply resize the window to fit the report’s size or use the scroll
bars to move up/down and side/side.

2. The Complexity reports lists the program’s encountered procedures
and lists Software Science metrics (which are concerned with the size
of the software) and Cyclomatic Complexity measures (which are
concerned with the flow of control within the program’s code). The
report includes the following fields:
• Procedure Name
• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Length (N)
• Predicted Length (N^)
• Purity Ratio − estimated length divided by length (P/R)
• Volume (V)
• Effort (E)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Average Maximum Span of Reference of Variables (SP)
• Variable Name Length (VL)
Please refer to (See CHAPTER 7 - "Command Line Activation" on
page 145.) for complete information on these fields of complexity
measures.

METRIC User’s Guide

17

3. Those procedures with the highest field values are the most complex
values. You may consider analyzing procedures with particularly
high field values. In the case of sr.c , do_sr may need further analy-
sis.

When analyzing the Complexity report, your display should look like the
one below:

FIGURE 5 Analyzing the Complexity Report

CHAPTER 2: Quick Start

18

2.1.5 STEP 5: Analyzing Multiple Files

In most cases, you will most probably analyze more than one source code
file at once. For the remainder of this demo, you will be analyzing sr.c
and xcalc.c . To select multiple files:
1. Click on the File pull-down menu.
2. Select the Load Multiple Files option.
3. A file selection dialog box pops up.
4. To select sr.c and xcalc.c , do one of two things:

• Highlight sr.c and xcalc.c in the File selection window.
• Select Select All and then select OK .

5. METRICTM automatically processes complexity measures for sr.c
and xcalc.c into a Complexity report.

METRIC User’s Guide

19

When selecting multiple source code files, your display should like this:

FIGURE 6 Selecting Multiple Source Code Files

CHAPTER 2: Quick Start

20

2.1.6 STEP 6: Determining the Most Complex Procedures

When dealing with mid- to large- scale programs, you may initially find it
difficult to determine the most complex procedures, or modules. The pro-
cedures are ordered according to how they are encountered in the pro-
gram. You can, however, avoid scanning by ordering the procedures
according to ascending or descending order based on one of the 17 com-
plexity measures. For the sake of this demo, you are going to order the
procedures according to the number of unique operators (n1). Here’s
how:
1. Click on the Report pull-down menu.
2. Select Order Complexity.
3. The Sort Report By window pops up. It lists all of the complexity

fields. The default is set to procedure, which is reflected in the Com-
plexity report.

4. Click on the corresponding radio button for n1 .
5. You can order the procedures in ascending or descending order. For

this demo, please click on the Descend button.
6. METRICTM automatically reorders the procedures according to the

number of unique operators (n1). Those modules with the highest
number of unique operators are listed first. For sr.c , do_sr has the
highest number of unique operators; for xcalc.c , main has the
highest number of unique operators.

7. You may want see the effect of other fields on these two source code
files. Simply follow 1 through 5 again, but select different fields.

METRIC User’s Guide

21

When ordering procedures complexity based on the number of unique
operators, your display should like this:

FIGURE 7 Controlling Complexity Order

CHAPTER 2: Quick Start

22

2.1.7 STEP 7: Viewing a Summary Report

The Complexity report lists the complexity measures for each procedure.
METRICTM also offers a Summary report, which is an accumulated
account of the complexity measures for the entire source code file or files.
To look at a Summary report:
1. Click on the Report pull-down menu.
2. Select Summary Only.
3. METRICTM automatically creates an accumulated summary for sr.c

and xcalc.c .
4. You may want to resize the window to fit the size of the report, or you

can use the scroll bars to move side/side or up/down.
5. The Summary report consists of the following fields:

• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Software Science Length (N)
• Estimated Software Science Length (N^)
• Purity Ratio (P/R)
• Software Science Volume (V)
• Software Science Effort (E)
• Estimated Errors Using Software Science (B^)
• Estimated Time to Develop, in hours (T^)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Average Cyclomatic Complexity
• Average Extended Cyclomatic Complexity
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Number of Procedures/Functions

For complete information on these fields of complexity measures, see the
correct section (See CHAPTER 4 - "System Operation" on page 71.).

METRIC User’s Guide

23

After obtaining a Summary report your display should like this:

FIGURE 8 Analyzing the Summary Report

CHAPTER 2: Quick Start

24

2.1.8 STEP 8: Viewing an Exception Report

METRICTM also produces an Exception report. Each procedure in the
source files which exceeds a set of predefined complexity maximums is
included in this report. These complexity standards can be set in the con-
figuration file,.uxmetriccfg , or with the GUI’s Configuration Options
window (under the Options pull-down menu). To look at an Exception
report:
1. Click on the Report pull-down menu.
2. Select Exceptions.
3. METRICTM automatically generates an Exception report.
4. It lists each ‘‘violation’’ for each procedure encountered in sr.c and

xcalc.c . In other words, the Exception report lists where code
exceeds complexity measures’ threshold limits.

5. For module do_sr , for instance, seven of the complexity measures go
over their threshold limits. This module may be troublesome. In a
testing situation, you would design your test cases to some way more
thoroughly cover the more complex modules.

METRIC User’s Guide

25

After obtaining an Exception report your display should like this:

FIGURE 9 Analyzing the Exception Report

CHAPTER 2: Quick Start

26

2.1.9 STEP 9: Viewing an Error Report

METRICTM also produces an Error report. If an error is created during
processing and analysis, those errors will be listed in this report. To look
an Errors report:
1. Click on the Report pull-down menu.
2. Select Errors.
3. METRICTM automatically generates an Errors report.
4. The error message is

Error file.
<<< Unable to open include file icon >>>

This is not a serious error, so we don’t have to worry about it.

METRIC User’s Guide

27

After obtaining an Errors report your display should like this:

FIGURE 10 Viewing the Errors Report

CHAPTER 2: Quick Start

28

2.1.10 STEP 10: Using Kiviat Charts to See Complexity

With METRICTM, you can look at Kiviat diagrams. Kiviat diagrams pro-
vide a graphical means to view the impact of multiple metrics on source
code files. METRICTM produces three types of Kiviat diagrams. These
diagrams represent information from the Summary report. This step
looks at the first type.

To look at a Kiviat chart:
1. Click on the Charts option.
2. Select Type 1.
3. A window displaying a Kiviat chart pops up. You may have to resize

it. Move the window to the lower left of the screen.
4. The inner circle represents minimum values, the outer circle repre-

sents maximum values and radii through the circles represent the
metrics of interest.
In this Kiviat chart, the metrics of interest are
• Unique Operators (n1).
• Unique Operators (n2).
• Total Operators (N1).
• Total Operands (N2).
• Lines of Code (LOC).
• Number of Comment Lines (CMT).
• Number of Blank Lines (BLK).
• Number of Executable Semi-Colons (<;>).
• Number of Functions.
These values are defined in a file named Xmetric.I.def and can
also be set in the Type I window with the Xmetric GUI (See Section
4.6 - “Graphically Viewing Complexity” on page 100.).
Observed values are plotted on the radii and connected. From this,
metrics that are not within the acceptable range of values can be eas-
ily identified. In this example, some of the complexity measure fall
above the upper threshold.

5. To close the Kiviat chart, click on the File pull-down menu and select
Exit. The Kiviat chart closes.

METRIC User’s Guide

29

When looking at the Type I Kiviat chart, your display should like this:

FIGURE 11 Type I Kiviat Chart

CHAPTER 2: Quick Start

30

2.1.11 STEP 11: Looking at the Type II Chart

METRICTM also offers two other Kiviat charts. These charts offer different
metrics than the Type I chart, and may give us more insight into the pro-
grams. This step looks at the Type II chart.
1. Click on the Charts pull-down menu.
2. Select Type II.
3. A window with the Kiviat chart pops up. You may have to resize it.

Move it to the lower left of the screen.
4. In this Kiviat chart, the metrics of interest are

• Length (N).
• Predicted Length (N^).
• Purity Ratio (P/R).
• Estimated Effort (E).
• Estimated Errors (B^).
• Estimated Time to Develop (T^).
• Cyclomatic Complexity (VG1).
• Extended Cyclomatic Complexity (VG2).
• Average Cyclomatic Complexity.
• Average Extended Cyclomatic Complexity.
These values are defined in a file named Xmetric.II.def and can
also be set in the Type II window with the Xmetric GUI (See Section
4.6 - “Graphically Viewing Complexity” on page 100.).

5. To close the Kiviat chart, click on the File pull-down menu and select
Exit. The Kiviat chart closes.

METRIC User’s Guide

31

When looking at the Type II Kiviat chart, your display should like this:

FIGURE 12 Type II Kiviat Chart

CHAPTER 2: Quick Start

32

2.1.12 STEP 12: Looking at the Type III Chart

The most comprehensive Kiviat chart is the Type III chart. This step looks
at the Type III chart.
1. Click on the Charts pull-down menu.
2. Select Type III.
3. A window with the Kiviat chart pops up. You may have to resize it.

Move it to the lower left of the screen.
4. This chart graphically displays all of the metrics from the Summary

report. (See Section 2.1.7 - “STEP 7: Viewing a Summary Report” on
page 17.)
These values are defined in a file named Xmetric.III.def andcan
also be set in the Type III window with the Xmetric GUI (See Sec-
tion 4.6 - “Graphically Viewing Complexity” on page 100.).
In the case of this example, note how some of the metrics values are
plotted above and below the threshold circles.
At this point, it is useful to determine which metrics do not fall
within the threshold limits, then look at a Complexity report and
order procedures according to the metrics in violation. In so doing,
you can easily determine which modules are causing the complexity.

5. To close the Kiviat chart, click on the File pull-down menu and select
Exit. The Kiviat chart closes.

METRIC User’s Guide

33

When looking at the Type III Kiviat chart, your display should look
like this:

FIGURE 13 Type III Kiviat Chart

CHAPTER 2: Quick Start

34

2.1.13 STEP 13: Signoff and Cleanup

To complete this session:
1. Click on Main window’s File pull-down window.
2. Select Exit.

METRIC User’s Guide

35

After you finish a METRICTM session, your display should look like this:

FIGURE 14 Completing a METRIC Session

CHAPTER 2: Quick Start

36

2.2 Summary

If you successfully completed the preceding 13 steps, you’ve seen and
practiced the basic skills you need to use METRICTM productively. In this
chapter you should have learned how to invoke METRICTM, how to load
single file and multiple files, how to analyze a Complexity report, how to
obtain a Summary, Exception and Errors reports, and how to study a pro-
gram’s complexity with Kiviat charts.

For best learning, you may want to
• Repeat STEPS 1 - 13 without the manual.
• Repeat STEPS 1 - 13 with your application.
• Turn to the chapters on system operation reference and GUI ref-

erence where you had difficulties and to learn about other fea-
tures. (See CHAPTER 4 - "System Operation" on page 71.) (See
CHAPTER 6 - "Graphical User Interface" on page 125.)The table
of contents and the index can help you locate the topic you want.

• Use the supplied metric.ksv file to watch the session run:

To use the supplied metric.ksv file, initialize two xterm-type
windows by using the mouse to click on New Windows or issu-
ing the command xterm & from an existing window. Use the
mouse to move one to the upper left corner and the other to
lower left corner (as shown on the following page).

Then type the command:
Xplabak -S -k metric.ksv

in the lower left xterm window. This command will issue a call to
CAPBAK/XTM to playback the same 13 steps you went through.
While xplabak is playing back the session, do not interrupt the
keyboard and mouse input. Playback is done when you see the
message, ‘‘Playback complete . ’’ appearing on the lower left
window.

When using the supplied metric.ksv file to playback a MET-
RICTM session, your display should look like this:

METRIC User’s Guide

37

FIGURE 15 metric.ksv Setup

CHAPTER 2: Quick Start

38

39

CHAPTER 3

System Introduction
This chapter is an overview of the METRICTM system. It explains the overall operation of
METRICTM, and in particular, it explains the complexity measures and what their values
mean.
LEVEL: All level users may want to refer to this chapter for reviews of the complexity
measures. Beginners may find the introductory material useful.

3.1 Overview of METRIC

METRICTM takes your program and computes several complexity met-
rics, including the metrics known as Software Science and Cyclomatic
Complexity. These metrics have been researched in dozens of major stud-
ies over the last ten years and found to be highly correlated to program-
ming errors and maintenance effort.

METRICTM identifies the most complex modules through its reports: the
Complexity report, the Summary report, and the Exception report. The
Complexity report provides a set of complexity metrics for each of the
modules in a given source code file. The Summary report reports the
complexity measurements for the entire source code program, not for
individual procedures or functions. The Exception report lists where
code exceeds set threshold limits of complexity metric standards. These
reports identify the most complex modules for you.

In a testing situation this is ideal, because you can design your test cases
to more thoroughly test the most complex modules. You can then use
STW/CoverageTM to test the thoroughness of your test cases.

CHAPTER 3: System Introduction

40

3.2 How to Use METRIC

To use METRICTM all you have to do is specify the source code file(s) you
want METRICTM to process. METRICTM is a static code analyzer, so you
do not have to alter or change your code. METRICTM automatically cre-
ates reports and kiviat charts for the file(s) being analyzed. This chapter
will deal specifically with the reports and the kiviat charts.

NOTE: Please note that there are differences between the languages.
Please refer to "APPENDIX A" for ‘‘C’’ information, "APPENDIX B" for
‘‘C++’’ information, "APPENDIX C" for Ada information, and "APPEN-
DIX D" for FORTRAN information.

METRIC User’s Guide

41

3.3 The Complexity Report

The Complexity report provides a set of complexity metrics for each of
the modules in a given source code file(s). It uses two sets of complexity
metric; the Software Science family of metrics and the Cyclomatic Com-
plexity metrics. Software metrics are based on the ‘‘size’’ of the software,
while Cyclomatic Complexity metrics are based on the flows of control
within the code.

Below is a Complexity report generated for a ‘‘C’’ program.

FIGURE 16 Sample Complexity Report

The report includes the following fields:
• Procedure Name
• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Length (N)
• Predicted Length (N^)
• Purity Ratio − estimated length divided by length (P/R)

CHAPTER 3: System Introduction

42

• Volume (V)
• Effort (E)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Average Maximum Span of Reference of Variables (SP)
• Variable Name Length (VL)

Those procedures with the highest field values are the most complex val-
ues. The more complicated fields are discussed next.

METRIC User’s Guide

43

3.3.1 Fields n1, n2, N1, N2, and N

In the early 1970s, Maurice Halstead, of Purdue University, observed that
all programs were made up of operators and operands. He recognized
that simply counting the number of lines in a program did not accurately
measure how difficult it might be to work with. Therefore, by measuring
the number of operators and operands used in the program, one could
better measure the complexity of the code.

Halstead defined the following four parameters upon which the rest of
his theoretical framework was built:

n1 number of unique operators
n2 number of unique operands
N1 number of total operators
N2 number of total operands

In addition, he defined the vocabulary of the program, n as being the num-
ber of unique operators and operands used, or:

 n = n1 + n2

Likewise, he defined the Length of the program, N to be the total number
of operators and operands used, or:

N = N1 + N2

CHAPTER 3: System Introduction

44

3.3.2 Software Science Counting Rules

Halstead originally felt that the executable statements were the most sig-
nificant in terms of complexity, and so did not include declarations and
specification statements within his counts. The following Pascal proce-
dure would possess the indicated Software Science values:

function Fold(ch:char):ch;
begin
 if ch in [’A’..’Z’] then
 Fold:=chr(ord(ch)+ord(’a’))
 else
 Fold:=ch;
end; (* Fold *)

n1 = 12 n2 = 5
N1 = 17 N2 = 8
n = 17 N = 25

These measures were arrived at in the following manner:
Operators#Operands#
begin/end1ch3
if/then1’A’1
in1’Z’1
[]1Fold2
..1’a’1
:=2
chr1
()i3
ord2
+1
else1
;2

Note that those items which are always paired together (e.g., () , [] ,
begin/end , etc.) are counted as a single item. Likewise, note that proce-
dure and function invocations are treated as operators.

METRIC User’s Guide

45

Exactly what is to be counted as an operator and an operand is in many
cases left to an individual’s opinion, since some things could reasonably
be counted as either. For example, how does one count the statement
goto xyz? Is goto an operator and xyz an operand, or is the entire goto
xyz an operator?

Luckily, most work in this field suggests that minor differences in count-
ing rules have little impact upon the effectiveness of Software Science as
long as the rules are consistent. It is usually best if a specific set of count-
ing rules can be formulated, and then those rules used for all subsequent
work. A study by Nancy Currans of Hewlett-Packard Corporation, pre-
sented at the 1986 Pacific Northwest Software Quality Conference supports
this view. Currans computed various Software Science measures using
three different sets of counting rules for a software system consisting of
over 30,000 lines of C. She found that as long as the rules were applied
consistently, the results were consistent among the three strategies.

Specific counting rules have been formulated for many languages. For
example, Norman Salt formulated a set of counting rules for Pascal which
were published in the March 1982 issue of the ACM SIGPLAN Notices. An
alternate set of counting rules for Pascal were proposed by Melton and
Ramamurthy in 1984. Yet another set of counting rules for Pascal can be
found in the book Software Engineering Metrics and Models by Conte, Dun-
smore and Shen. The particular set of rules selected probably does not
matter as long as they are applied consistently.

CHAPTER 3: System Introduction

46

3.3.3 Fields N^ and P/R

Halstead was able to derive a large number of interesting relationships
from the four basic parameters that Software Science is built upon. Per-
haps one of the most interesting is the Predicted Length, N^ (pronounced
‘‘N-hat’’ - throughout Software Science, estimated parameters are suf-
fixed by the ‘‘hat’’ character to indicate they are an estimate). Halstead
theorized that a well-written program with n1 unique operators and n2
unique operands should have a length of approximately:

N^ = [n1 x log2(n1)] + [n2 x log2(n2)]

This is known as the length equation. Halstead suggested that programs
which are not the same length as predicted by N^ are victims of impurities.
Six classes of impurities exist:
1. Canceling of operators,
2. Ambiguous operands,
3. Synonymous operands,
4. Common subexpressions,
5. Unnecessary replacements,
6. Unfactored expressions.

The Purity Ratio is the ratio of N^ to N (ie, N^/N). This is a rough measure
of the degree to which impurities exist in a piece of code. A Purity Ratio
of 1 suggests few impurities exist. This measure has been the subject of
few empirical studies, however it seems in theory to be a reasonable mea-
sure of style.

The Length Equation is interesting because it suggests that the major fac-
tor which determines program length is the number of unique operators
and operands. This is important because often we might have an idea of
how many variables we are going to use in a program before we write it.
Since the number of operators available in most programming languages
is finite, and most programmers have their own small set of operators
that they regularly use anyway, the unique number of operators can be
treated as a constant. Therefore, if we can come up with an accurate esti-
mate of how many operands are going to be used in our program, a rea-
sonable prediction of how large it is going to be can be made.

High correlations between N^ and N have been reported in study after
study. Correlations of.90 and above are not uncommon. The reported cor-
relation seldom drops below .80 in studies involving traditional program-
ming languages.

METRIC User’s Guide

47

A nice property of variables which are highly correlated is that another
number may be added to or multiplied by the numbers in one of the col-
umns (as long as it is done to all the numbers in the column), without
changing the relationship. The length equation can benefit from this
property. The N^ value can be multiplied by some ‘‘correction factor’’ to
come up with a better absolute predictor.

Even though the length equation is highly correlated with the observed
length, like all the techniques we are going to be examining in this tuto-
rial, it may not be a satisfactory predictor for any specific program.
Rather, its predictions only hold in a statistical sense over a large number
of programs. In this respect, software metrics and their application are
very much like the actuarial tables used by insurance companies to assess
life insurance premiums.

For example, if a 35 year old male has a life expectancy of 71 years, it does
not necessarily mean all, or for that matter, any particular 35 year old
male will die at age 71. However, if the insurance company charges pre-
miums that will fully cover the amount of the policy within 36 years they
will not lose money in the long run. Some of the 35 year old males they
insure will die before they reach 71, and hence before paying off the pol-
icy (a loss for the insurance company) while others will live beyond 71,
and will continue to pay their premiums even after they have fully paid
the policy amount (a gain for the insurance company).

Software metrics must be applied in the same spirit. They may not work
for a particular program, but if applied over a large number of programs,
they will be right more often than not.

CHAPTER 3: System Introduction

48

3.3.4 Field V

Another interesting relationship Halstead hypothesized is one called Vol-
ume or V. The idea behind program Volume is simple. If a program has n
unique operators and operands, then it would take log2 (n) ‘‘bits’’ to
uniquely represent each. If there are N total usages of those operators and
operands, then the number of ‘‘bits’’ to represent the program is:

V = N x log2n

Halstead felt that this would be a reasonable measure of program size. He
suggested it as an alternative to a simple count of operators and operands
(N) since it tends to ‘‘penalize’’ programs with a large number of unique
operands and/or operators.

For example, consider two programs, each which consist of 100 uses of
operators and operands (ie, N = 100). However, the first program only
uses 8 different unique operators and operands, while the second uses 64
different operators and operands. The Volume of the first program is:

100 x log2 (8) = 300

while the Volume of the second program is:
100 x log2 (64) = 600

Thus, the second program could be considered twice as complex as the
first. This seems to agree with our intuition since a program with 64 dif-
ferent operators and operands (especially if most of them are variables) to
keep straight in our minds would seem to be more difficult to work with
and understand than a program with only 8.

METRIC User’s Guide

49

3.3.5 Field E

Another measure suggested by Halstead is the abstraction level of a pro-
gram. The abstraction level, L (sometimes referred to as the Program Level
in the literature) of a program is calculated as:

L = V*/V

where V is the Volume measure, and Vstar is called the Potential Volume. A
program’s Potential Volume is the Volume it would have if it were imple-
mented as a library function within the programming language (in other
words, a procedure call). The highest possible level of abstraction would
result in an L of 1 (the actual Volume is equal to the Potential Volume),
with programs of lower levels of abstraction having an L of less than 1.

As an example, consider the following invocation of a library routine
which is passed an unsorted array, and returns an ordered array:

SORT(Numbers)

This invocation would have a Potential Volume of:
3 x log2 (3) = 4.74

Naturally, the implementation of the procedure would yield a much
larger actual Volume, resulting in a Program Level of much less than 1.

Unfortunately, for large programs, especially those analyzed after the
fact, the Program Level can be difficult to arrive at. For this reason, Hal-
stead proposed an estimation (L^) that could be calculated from the basic
parameters, n1 , n2 and N2.

L^ = 2/n1 x n1/N2

Because L^ can be derived from a simple analysis of the source program
without having to know much about the design or application, it is usu-
ally used in most studies in place of L.

Yet another measure derived from the four Software Science parameters
is something called Effort, or E. Effort is based somewhat on Volume, but
is ‘‘adjusted’’ to account for the level of abstraction at which the program
is written. Effort is calculated in the following manner:

E = V / L

with most researchers using L^ in place of L.

Halstead suggested that the Effort measure reflected the number of men-
tal discriminations that a programmer would have to perform in order to
write the program.

CHAPTER 3: System Introduction

50

3.3.6 Field VG1

Software Science tends to be based on program size. An alternative
approach to assessing program complexity is to consider the program’s
flow of control. A program’s flow of control is of course based on the num-
ber and arrangement of decision statements within the code.

A measure known as the Cyclomatic Complexity measures a program’s
control flow graph. It determines the complexity of a program’s control
flow.

A control flow graph is simply a variant of a program flowchart. The
major difference is that while the ordinary flowchart might have a box, or
node in the terminology of flowgraphs, for every statement in the pro-
gram, a flowgraph only contains nodes for each basic block within the
code. A basic block is a segment of code which is entered only at one
point (the top), exited at one point (the bottom), and which has no trans-
fers of control within it. Basic blocks often begin with decision- making
statements, and end immediately before another decision-making state-
ment. For example, the following C program segment:

scanf("%d%d%d%d",a,b,c,d); [A]
 if a==b {
 c=10*d; [B]
 scanf("%d",d); [B]
 c=10*d; [B]
 }
 else {
 scanf("%d",d); [C]
 c=25*d; [C]
 }
 printf("%d",c); [D]

can be represented by the flow graph on the next page (the statements
that make up each node are shown in []):

METRIC User’s Guide

51

FIGURE 17 Flow Graph

The cyclomatic number of a flowgraph can be calculated as follows:

V(g) = e - n + 2

where n is the number of nodes in the graph, and e is the number of edges
or lines connecting each node. In the example, n is 4, and e is 4, giving a
cyclomatic number of 2.

The great popularity of this measure of complexity stems from the fact
that one need not create the program flowgraph in order to compute the
Cyclomatic Complexity, but instead can simply sum the number of deci-
sion making statements (ie, IF , WHILE, FOR, REPEAT, etc.), and add 1. In
the case of the previous example, there is 1 IF statement, and adding 1
gives 2. This ‘‘shortcut’’ method of calculation has made the Cyclomatic
Complexity easy to calculate, and thus it appears in almost every com-
plexity metric study ever performed.

A

B C

D

CHAPTER 3: System Introduction

52

3.3.7 Field VG2

Suggestions have been made to extend the Cyclomatic Complexity so that
it includes not just decision making statements, but also decision making
predicates. The first such suggestion was made by Glenford Myers of IBM
in the October 1977 issue of ACM SIGPLAN Notices. Myers suggested that
two numbers be provided in the measure, the first reflecting the number
of decisions, and the second reflecting the number of simple conditions.
This measure is sometimes referred to as the Extended Cyclomatic Complex-
ity. This is illustrated by the following Pascal program segment:

function Type(ch:char):ch;
begin
 if(ch in [’A’..’Z’])or
 (ch in [’a’..’z’]) then
 Type:=’c’
 else
 Type:=’n’;
end;
 Myers’ Extended
 Complexity: 2:3

Thus, the corresponding short cut calculation would be:

(number of decisions) + 1 : (the number decisions & ANDs & ORs) + 1

Regardless of its exact form, numerous studies have assessed the validity
of the Cyclomatic Complexity. Most results suggest that it is highly corre-
lated with selected process metrics such as time to find errors, number of
errors, effort to maintain, effort to test, etc.

METRIC User’s Guide

53

3.3.8 Fields LOC, BLK, CMT, and <;>

LOC includes all lines, including blank and comment lines, from the pro-
cedure declaration to the last statement of the procedure,} .

BLK includes the total number of blank lines of code.

CMT includes the count of all comments on a line by themselves encoun-
tered within the body of the procedure. If a single comment spans multi-
ple lines, the number of lines that it spans is added to the comment count.

<;> begins counting with the first executable line of code. Hence, all dec-
larations are not included. for loops will contribute two executable semi-
colons.

CHAPTER 3: System Introduction

54

3.3.9 Fields SP and VL

The average maximum span of reference SP counts the maximum num-
ber of lines between references to each variable in a procedure (either use
or assignment). The average of all the maximum references is then com-
pared. This average is listed in the report.

The variable name length (VL) value can be calculated in two ways, based
on the configuration file entry UNIQUE_VARIABLES. If
UNIQUE_VARIABLES is set to 1, then the length of all unique variable
names (used at least once) is divided by the number of unique variables.
If UNIQUE_VARIABLES is set to 0, then a weighted calculation is done.

With this method, for all variables, the length of the variable name is mul-
tiplied by the number of times the variable is used and this sum is
divided by the total count of variable usage.

METRIC User’s Guide

55

3.4 The Summary Report

The Summary report provides a set of complexity metrics for the entire
source code file. Below is a sample FORTRAN Summary report. Like the
Complexity report, there are slight differences between the languages.
Please refer to the appropriate language appendix.

FIGURE 18 Sample Summary Report

The report includes the following fields:
• Unique Operators (n1)
• Unique Operands (n2)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Software Science Length (N)
• Estimated Software Science Length (N^)
• Purity Ratio (P/R)
• Software Science Volume (V)
• Software Science Effort (E)

CHAPTER 3: System Introduction

56

• Estimated Errors Using Software Science (B^)
• Estimated Time to Develop, in hours (T^)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Average Cyclomatic Complexity
• Average Extended Cyclomatic Complexity
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Number of Procedures/Functions

METRIC User’s Guide

57

The Summary report consists of the same complexity measures as the
Complexity report (See Section 3.3 - “The Complexity Report” on page
41.), with the exception of the average minimum span of reference of vari-
ables (SP) and variable name length (VL). In addition, it includes the val-
ues:

• Estimated errors using Software Science (B^)
• Estimated time to develop in hours (T^)
• Average Cyclomatic Complexity
• Average Extended Cyclomatic Complexity
• Number of Procedures/Functions

Note that Software Science length (N) and Software Science predicted
length (N^) should not be confused with lines of code. The Software Sci-
ence lengths are based on the number of operators and operands whereas
lines of code are the actual number of physical lines in the source file.

Lines of code for the Summary report contains all lines including blank
and comment lines from the beginning of the file to the end (including
lines between procedures). Because of this, lines of code in the Summary
report will often be greater than the sum of lines of code listed with pro-
cedures.

The sum of certain parameters listed in the procedure list will not usually
match the corresponding values listed in the summary report. For exam-
ple, n1 , n2 , VG1, VG2, etc. This is to be expected and should not alarm the
user. This phenomenon is due to the mathematical definitions of the mea-
sures.

The fields in the reports that should match between the Summary report
and the Complexity report are total operators, total operands, and exe-
cutable semi-colons.

B^ and T^ take the Complexity report’s Volume and Effort values and go
even further. These fields are discussed next.

CHAPTER 3: System Introduction

58

3.4.1 Field B^

You may want to read the section on Volume (See Section 3.3.4 - “Field V”
on page 48.) prior to reading about B^.

Another popular interpretation of Volume suggests a program possessing
n unique operators and operands, and N total operators and operands
would require at most

N x log2 (n)

mental lookups to fully read and understand the entire program. This is
because each of the N tokens encountered in the code would require
log2 (n) mental lookups to recognize using the most efficient search we
know.

People tend to make mistakes, on the average, every E0 mental compari-
sons. Therefore the number of errors B^, that would be expected in a pro-
gram would be:

B^ = [N x log2 (n)] / E0

Independent work by psychologists, as well as empirical studies carried
out by Halstead and his students, suggest that an appropriate value for
E0 is around 3000-3200.

Thus, Software Science can predict, with some confidence, the number of
coding errors that can be expected in a computer program, if the number
of unique and total operators and operands used in the program are
known.

Naturally, every program will not have exactly the number of errors sug-
gested by the B^ relation. By the same token, the number of errors pre-
dicted by B^ is simply an estimate of how many errors existed in the
code upon completion of the coding phase. Because B^ predicts the number
of errors which existed in the code at the completion of coding, removal
of errors during testing will not, in itself, change the value of B^.

METRIC User’s Guide

59

Obviously, other factors besides the number of operators and operands
used in a program affect the number of errors in a piece of code. The B^
relation rests on a number of assumptions, including a familiarity of the
programmer with the programming language, system, and application
area, as well as what might be characterized as ‘‘average ability’’. Very
good (or very poor) programmers will obviously produce code that is less
error-prone (or more error-prone) than suggested by B^. By the same
token, an application which is new to a programmer might well be more
error prone than suggested by B^. The B^ relation likewise cannot reflect
requirement or specification errors since they typically do not manifest
themselves in the actual code (though the idea of applying these tech-
niques to the actual requirements and/or specification documents is
intriguing).

However, B^ gives one a reasonable starting point to work from. By
adjustments to the E sub 0 factor, one may customize the relation for a
particular environment.

CHAPTER 3: System Introduction

60

3.4.2 Field T^

You may want to read the section on Effort prior to reading about T^ (See
Section 3.3.5 - “Field E” on page 49.).

Independent work by a psychologist named Stroud found that humans
are capable of making up to 20 mental discriminations per second. This
suggests that by dividing Effort by the Stroud Number, we can estimate
how long the program should have taken to write.

In its general form, the estimated time, in seconds, is calculated as:
T^ = E/S

where S is the Stroud Number. Naturally, depending on the environment,
the Stroud Number may vary greatly. Stroud’s studies found a range of 5
to 20, in situations not involving programmers. Studies by Halstead and
his colleagues involving programmers found a value of 18 seemed to
work best.

METRIC User’s Guide

61

3.5 The Exception Report

The Exception report lists each procedure in the source code file which
exceeds a set of predefined complexity maximums. This report uses either
the default standards or standards specified in the configuration file,
.uxmetriccfg , to determine what the maximum complexities are. You
may edit the configuration file. Certain of the defaults are also specified in
the GUI’s Configuration Options window (use the Options pull-down
menu to initiate), which is user-editable. Below is a sample Ada Excep-
tion report.

FIGURE 19 Sample Exception Report

CHAPTER 3: System Introduction

62

The possible messages that will appear in this report when a standard is
not met are:

• ** At x lines, this procedure is larger than the standard of n lines
• ** At x executable semicolons, this procedure is larger than the

standard of n executable semicolons
• ** With a Cyclomatic Complexity of x this procedure exceeds the

standard of n

• ** With an extended Cyclomatic Complexity of x this procedure
exceeds the standard of n

• ** With an Average Maximum Span of Reference of x this proce-
dure exceeds the standard of n

• ** With a Comment Percentage of x this procedure does not meet
the standard of n

• ** With a Volume of x this procedure exceeds the standard of n

• ** This procedure contains x gotos

METRIC User’s Guide

63

3.6 Accuracy of the Reports

Because of the significant effect environment, application, programmer
ability, etc. can have on the act of programming, software measures are of
little use out of the box. In other words, they can be used to rank software
implementations in terms of complexity and other associated characteris-
tics, but the numbers themselves have little meaning.

However, by having historical data available, many of the metrics can be
tuned to reflect the environment in which they are being used. For exam-
ple, Software Science B^ and T^ measures are most meaningful if data for
past projects is available and can be used to tailor error rate and program-
mer speed. Likewise, excessive complexity levels for a given installation
can be determined by identifying the most complex 5% of all programs.
Thus, before a complete software metrics effort can be put into place, a
software data collection effort must first be initiated. Among other things,
development time and number of errors should be recorded for every
major system.

If software metrics are approached in this manner, without expecting any
‘‘magic numbers’’ to fall out of the sky, we think you’ll find METRICTM a
valuable addition to your set of programming and management tools.

METRICTM applies state of the art methods for objectively measuring the
complexity of software. Software Research cannot guarantee that these
methods are foolproof. In studies conducted by our staff, as well as oth-
ers, the metrics included in our tool have been shown to perform well
most of the time. However, differences from installation to installation
can reduce the usefulness of measuring software complexity.

CHAPTER 3: System Introduction

64

3.7 Using Metrics in Software Development

Up until now, we have had (hopefully) an interesting discussion about
software metrics. However, your reaction might very well be:

How can I use software metrics?

This section will attempt to address this question.

METRIC User’s Guide

65

3.7.1 Producing Less Complex Code

Perhaps the most directly applicable use of metrics is to help program-
mers produce code that is easier to understand and work with. This can
be done by using metrics as a feedback tool, just like writers might use one
of the style analysis packages currently on the market.

Thus, as the programmer codes, the complexity of each module com-
pleted can be measured. If the module exceeds some previously set limit
of complexity, remedial action might be appropriate. Remedial action
could take several forms:

• Recognizing that the module is overly complex, the programmer
might consider using a different approach or algorithm that will
result in less complex code. The use of complexity metrics can
make the selection of alternate approaches easier since only one
of the metrics might be above the pre-set complexity threshold.
For example, an unacceptable Cyclomatic Complexity suggests
that the control flow is too complex. Thus, an alternate algorithm
should be selected that will address this problem. Naturally if
several metrics are above the acceptable level, or no acceptable
alternatives exist, other actions might be appropriate.

• If the complexity of the solution cannot be reduced, it might be
beneficial to consider dividing the module up into several
smaller ones, each of which may individually possess an accept-
able level of complexity. This is of particular importance if the
module appears to perform more than a single ‘‘function’’.

• Naturally, one will probably never reduce the complexity of
every module to acceptable limits. Some problems and their solu-
tions are necessarily complex. In this case, complexity metrics can
help identify modules which need especially thorough comment-
ing.
Further, the metric or metrics which are beyond an acceptable
level can suggest the aspects to address in the commenting. This
approach ensures that the modules which need extra documenta-
tion are identified, and valuable time is not wasted doing extra
documentation of modules which may be adequately explained
using a minimum of commenting.

CHAPTER 3: System Introduction

66

The main point is that local standards of ‘‘acceptable’’ complexity levels
be established. The question is not if code is complex (all code will exhibit
some complexity), but rather how complex code is. Numerous ‘‘magic
numbers’’ representing maximum accepted complexity have been sug-
gested in the literature. For example, a Cyclomatic Complexity of 10 is the
maximum complexity a module should exhibit.

More important than some arbitrary number suggested by an ‘‘expert’’ is
a level of maximum complexity that your entire programming staff can
agree on and live with. Perhaps the best way to do this is through experi-
mentation. Examine the complexity of existing modules and reflect on
which ones were the most difficult to test, debug or maintain.

Another approach is followed by least one large organization which has
created baseline complexity measures based on their best programmers’
code. Any programmer who submits a piece of code more than a stan-
dard deviation off the baseline for a code review must explain why the
additional complexity is necessary. If a satisfactory answer is not pro-
vided, the programmer must rewrite the code.

METRIC User’s Guide

67

3.7.2 Allocating Testing Resources

Typically, a small percentage of the modules in a code system have an
inordinate percentage of the errors. Likewise, a small percentage of the
modules account for fewer errors than would be expected. Often, a 15-70-
15 rule is accepted by software testers. That is to say, 15% of the modules
account for perhaps 25% of the errors, another 15% of the modules
account for 5% of the errors, and the remaining 70% of the modules
account for the remaining 70% of the errors.

To ensure effective allocation of testing resources, identifying those top
15% and bottom 15% of the modules is important. Then, the bulk of the
resources allocated to test the less error-prone modules can be shifted to
help test the more error-prone modules. Often, complexity metrics can be
used as one of several tools to identify those modules whose testing
resources can be beneficially redistributed. A good description and evalu-
ation of this process can be found in ‘‘Using Software Metrics to Allocate
Testing Resources’’ by Warren Harrison in the Spring 1988 issue of The
Journal of Management Information Systems.

CHAPTER 3: System Introduction

68

3.7.3 Managing Maintenance

After a program is completed, a process of on-going maintenance begins.
Often, the amount of time (both chronological and total) required to make
the specified changes must be estimated. Metrics can serve as one of many
tools that can be used to help make such estimates. Metrics can be used to
help identify other modules which share common characteristics, such as
a V(g) of 10, or a Software Science Effort of 100,000. These modules can be
referred to as baseline modules. Then, experience gained from the mainte-
nance of the baseline modules can be applied to the new module to help
assess the effort required to maintain it.

Another use of metrics is in what is called preemptive rewriting. Often, a
decision must be made as to whether the entire module should be rewrit-
ten, or a modification should be made to the existing code. It is recog-
nized by most that as changes are made to a piece of code, it becomes
more and more complex. This phenomenon is usually referred to as
entropy. At some point, it might be worth rewriting to avoid having to
work with code that has been continuously patched and re-patched over
time. Again, metrics can help identify those modules which should be
rewritten, and those which could be profitably modified without a major
rewrite.

Yet another use of metrics in software maintenance is their use in assign-
ing modules to maintainers. Often a system which consists of multiple
modules will be maintained by a group of programmers. The parts of the
system each maintainer is responsible for can be assigned to level the
complexity encountered by each person using metrics. This can be done
by dividing the sum of the modules’ complexities by the number of main-
tenance programmers. The resulting number should approximately equal
the sum of the complexities of the modules assigned to each maintainer.

METRIC User’s Guide

69

3.7.4 Expecting Too Much

Metrics should be viewed as one of many tools used to help manage the
programming process. In all cases, common sense will aid you in determin-
ing if metric results seem reasonable.

As we have earlier remarked, applying metrics to one or two individual
programs will be disappointing. Metrics work best when they can be
applied to a large set of programs. Some good code will be flagged as bad
by the metrics, and some bad code will not be identified by the metrics.
This is to be expected.

CHAPTER 3: System Introduction

70

71

CHAPTER 4

System Operation
This chapter covers the basic X Window System graphical user interface operations of
METRICTM. It demonstrates how to operate the user interface, how to invoke METRICTM,
how to look at the available reports, set complexity measures thresholds, and how to read
the Kiviat charts.

4.1 Using this Chapter

Use this chapter to look up answers to questions about METRICTM. The
table of contents or the index can help you locate the topic you want. If
you prefer to work from the command line, please refer to the chapter on
COMMAND LINE ACTIVATION.

The first part of this chapter discusses the basics of the METRICTM graph-
ical user interface. If you are familiar with the OSF/Motif GUI, you may
go on to the next section.

CHAPTER 4: System Operation

72

4.2 User Interface

If you are familiar with the OSF/Motif style graphical user interface, you
can go on to the next section. This section demonstrates using file selec-
tion dialog boxes, help menus, message dialog boxes, option menus, and
pull-down menus.

File Selection Box

You must use file selection boxes to select the file(s) you want METRICTM

to analyze.

Refer to the next figure for each of the dialog box’s components:

Filter entry box Specifies a directory mask. When you click the Filter
push button, the directory mask is used to filter files
or directories that match this mask (or pattern).

Directories Lists directories in path defined in the Filter entry
box.

Files Lists files in path defined in the Filter entry box.

Scroll Bars Move up/down and side/side in the Directories and
Files selection windows. You use them to search for
the appropriate directory or file.

Selection entry box

Selects and enter file name.

Use the three push buttons at the bottom of the dialog box to issue com-
mands:

OK Accepts the file in the Selection entry box as the new
file or the file to be opened and then exits the dialog
box.

Filter Applies the pattern you specified in the Filter entry
box. It lists the directories and files that match that
pattern.

Cancel Cancels any selections made and then exits the dialog
box. No file is selected as a result.

METRIC User’s Guide

73

FIGURE 20 Using a File Selection Dialog Box

To use a file selection dialog box, follow these steps:
7. You can restrict the file selection operation to a named region (direc-

tory path) by typing in a directory path name in the Filter entry box
or by clicking on a path name in the Directories selection window.
Then click on the Filter push button.

8. Select a file by clicking on an already existing source file you want
METRICTM to process in the Files selection window or type in the file
name in the Selection entry box, with no limit on character length.

9. To select a source file name, do one of these three things:
• Double click on the file in the File selection window,
• Highlight the file in the File selection window or type in the

file name in the Selection entry box and click OK, or
• Highlight or type in the file name and press the <ENTER>

key.

CHAPTER 4: System Operation

74

Help Boxes

METRICTM provides one on-line help frame for its Main window and all
dependent windows. This on-line help will automatically bring up the
text corresponding to where you invoke it at. In other words, if you
invoke it at the Options pull-down window’s Language window, the
Help window will automatically display information pertinent to the
Language window.

Here’s how to use a help frame:
1. Once it is invoked, the text should correspond to the window at

which you invoke it.
2. You can use the scroll bars to move up/down and side/side.
3. If you don’t see what you need, you can search for specific text. To do

this:
• Click on the Action pull-down menu and select Search.
• A dialog box (shown below) pops up.
• Type in the pattern you want to search for and then click on

OK or press the <ENTER> key.
• If the pattern is found, the help frame will automatically

scroll to the location of the pattern.
4. If you select another Help option from another window, while the

current one is displayed, the Help window will automatically scroll
to the context of the new window.

5. To exit, click on Quit.

METRIC User’s Guide

75

FIGURE 21 Using the Help Dialog Box

Message Boxes

Pop-up message dialog boxes have three purposes:
1. They display warnings and error information.
2. They ask you to verify that you want to perform a task.
3. They ask to enter a command.

To remove a message box after you have read it or to tell METRICTM to go
ahead with a command, click the OK push button. If you want to cancel a
command, click the Cancel push button.

CHAPTER 4: System Operation

76

FIGURE 22 Using a Dialog Box

Pull-Down Menus

Pull-down menus are located within the menu bar. They often contain
several options. To use pull-down menus and their options, follow these
steps:
1. Move the mouse pointer to the menu bar and over the menu contain-

ing the item.
2. Hold the left mouse button down. This displays the items on the

menu.
3. While holding down the left mouse button, slide the mouse pointer to

the menu item you want to select. The menu item is highlighted in
reverse shadow.
Three dots at the right of the menu item indicates that selecting the
item will bring up a pop-up window.

An arrow to the right of the menu item indicates that the item is a
submenu (or cascading menu).

To display the submenu, slide the mouse pointer over the arrow. You
can then select an item on the submenu.

METRIC User’s Guide

77

4. Release the mouse button while the desired item is highlighted to
activate the command. To the function exit without selecting any-
thing, simply drag the mouse pointer off the menu before releasing
the mouse button to not activate anything.

FIGURE 23 Using a Pull-down Menu

CHAPTER 4: System Operation

78

4.3 Invoking METRIC

To start METRICTM from your working directory, type this command:

Xmetric -L lang

where the default is set to the ‘‘C’’ language. The Main window (See
Figure 24 "Invoking the Main Window" on page 78.) pops up, ready to
process the language of your source code file(s).

If you invoke Xmetric for the wrong language, you don’t have to quit
your session. The Option pull-down menu has a Language window
which allows you to select languages (See Section 4.4.1 - “Selecting a Lan-
guage” on page 81.).

Note: METRICTM can be customized through a combination of keyword
files and configuration file parameters. This allows most language dia-
lects to be accommodated. You can find keyword file information in the
APPENDIX for the language you are working with. Configuration file
information can be found in the appropriate section. (See Section 5.1.1 -
“Set-Up Suggestions” on page 115.)

FIGURE 24 Invoking the Main Window

METRIC User’s Guide

79

If you have the STWTM product tool set, you can invoke METRICTM by
typing the command:

stw

1. The STWTM window (shown in the next figure) pops up.
2. Click on the Advisor activation button.
3. The STW/ADVTM window pops up.
4. Click on METRIC. The METRICTM window pops up.

FIGURE 25 Invoking METRIC from STW

CHAPTER 4: System Operation

80

4.4 Processing a Source Code File

Because METRICTM is a static code analyzer, you do not have to do any-
thing special to the code. To use METRICTM, all you have to do is make
sure you have the language set, select a source code file name, and pro-
cessing is automatic.

METRIC User’s Guide

81

4.4.1 Selecting a Language

If you did not invoke METRICTM with the correct language, you can eas-
ily change it. Here’s how:
1. Click on the Options pull-down menu.
2. Select Language.
3. The Select Language window (shown below) pops up.
4. To change the language, simply click on the corresponding language

radio button.
5. Click on OK to change the language METRICTM will process or click

on Cancel.

FIGURE 26 Selecting a Language

CHAPTER 4: System Operation

82

4.4.2 Writing Reports to a File

Before you select a source code file, you may want to first save the reports
to files so that they share a specific prefix. If you choose not to do this,
your reports will not be saved.

To be consistent with the command line, reports will be saved in the fol-
lowing manner:

• For ‘‘C’’:
• filename.rpt - The Complexity and the Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.

• For ‘‘C++’’:
• filename.rpt - The Complexity and the Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.
• filename.cls - The C++ Class and Class Summary reports.
• filename.cht - The Class Hierarchy report.
• filename.cex - The Class Exception report.

• For Ada:
• filename.rpt - The Complexity, the Summary, and the Pack-

age Intermediates reports.
• filename.exp - The Exception report.
• filename.err - The Error report.
• filename.gen - The Generic report.
• filename.pex - The Package Exception report.

• For FORTRAN:
• filename.rpt - The Complexity and Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.

Note: Customization features are available when generating reports.
Please refer to Section 7.5 - “Configuration File Processing” for more
information

METRIC User’s Guide

83

To save the reports to a set of files sharing a common basename:
1. Click on the File pull-down menu.
2. Select Set Report Files Basename.
3. The Set Report Files Basename window (shown below) pops up.
4. Click the mouse pointer in the specification region. When a cursor

appears, type in the report file prefix.
5. Click on OK. When files are processed by METRICTM, they will auto-

matically be saved to files with the base name you specified.
6. The following Kiviat definition files will also be generated:

• basename.I.kvi

• basename.II.kvi

• basename.III.kvi

These files allow you to use the command line invocation of
Xkiviat (See Section 7.4 - “‘Xkiviat’ - Static Metrics Display Sys-
tem” on page 153.) to display the various metrics in a Kiviat
chart.

FIGURE 27 Saving Reports to a Common Basename

CHAPTER 4: System Operation

84

4.4.3 Selecting a Source Code File

METRICTM will automatically process report information for a source
code file. Here’s how to select a source code file:
1. Click on the File pull-down menu.
2. Select the Load Single File option. The file selection dialog box below

pops up. For further information on using the file selection dialog
box, please refer to that section (See Section 4.1 - “Using this Chapter”
on page 71.).

3. Select a source code file.
4. METRICTM is fast. It can process over 4,000 lines of code well under a

minute on a 386.
5. When it has processed the source code file, it will automatically create

the reports. The Complexity report is the default report, and should
be displayed in the window display area.

FIGURE 28 Selecting a Source Code File

METRIC User’s Guide

85

4.4.4 Selecting Multiple Source Code File

METRICTM also allows you to select more than one file for analysis.
Here’s how to select multiple source code files:
1. Click on the File pull-down menu.
2. Select the Load Multiple Files option. The file selection dialog box

below pops up. For further information on using the file selection
dialog box, please refer to that section (See Section 4.1 - “Using this
Chapter” on page 71.).

3. To select more than one file, do one of two things:
• Highlight the files in the File selection window by clicking on

the actual file names.
• You can select all of the files by clicking on the Select All but-

ton.
4. Click on OK.
5. When METRICTM has processed the source code files, it will automat-

ically create the reports. The Complexity report is the default report,
and should be displayed in the window display area.

FIGURE 29 Selecting Multiple Source Code Files

CHAPTER 4: System Operation

86

4.5 Looking at the Reports

After a source code file or multiple files have been loaded into MET-
RICTM, a Complexity report, a Summary report, an Exception report, and
an Error report are generated for the language you specified.

Note for ‘‘C++’’ Users: Four additional reports are created for you: C++
Class report, Class Summary report, Class Hierarchy report, and the
Class Exception report. Information on these reports is located in Appen-
dix B.

Note for ‘‘Ada’’ Users: Three additional reports are created for you:
Generic report, Package Exceptions report, and Package Intermediates
report. Information on these reports is located in Appendix C.

METRIC User’s Guide

87

4.5.1 Looking at a Complexity Report

When files are processed, the Complexity report should automatically be
loaded into the display area. If you are looking at another report and
want to go back to the Complexity report:
1. Click on the Report pull-down menu.
2. Select Complexity. The Complexity report is automatically loaded

into the display area.
3. Use the scroll bars to move up/down and side/side to look at the

report.

FIGURE 30 Selecting the Complexity Report

This report computes size, Software Science, control flow complexity, and
data object metrics for each function/procedure encountered.

CHAPTER 4: System Operation

88

These are the measures computed:

Size Total Lines of Code, Number of Blank Lines, Number
of Comment Lines, and Number of Executable State-
ments.

Software Science n1 , n2 , N1, N2, N, N^, Purity Ratio (N^/N), Volume,
and Effort.

Control Flow Cyclomatic Complexity (number of decision state-
ments) and Extended Cyclomatic Complexity (num-
ber of decision statements, plus number of compound
conditionals).

Data Objects Mean Maximum Span of Reference (average number
of maximum lines between subsequent variable refer-
ences) and Average Variable Name Length.

In-depth discussion of these fields can be found in a previous section (See
Section 3.3 - “The Complexity Report” on page 41.). You may also want to
refer to Description of the Reports section in the APPENDIXES that
applies to your language.

FIGURE 31 Complexity Report

METRIC User’s Guide

89

4.5.2 Re-Ordering Procedures/Functions

By carefully analyzing this report, you can detect modules that are overly
complex. Because the procedures/functions are ordered according to
how they are encounted, not by complexity, this can be very time con-
suming for mid- to large- scale program.

METRICTM alleviates this problem by allowing you to order the proce-
dures/functions in ascending or descending order according to one of the
17 complexity measures. For example, you can detect which one of your
modules has the highest predicted length by ordering the function/pro-
cedure in ascending or descending order with the N^ measures.

Here’s how to order the Complexity report’s procedures/functions
according to a complexity measure:
1. Click on the Report pull-down menu.
2. Select Order Complexity.
3. The Sort Report By window pops up (See Figure 32 "Sort Report By

Window" on page 90.). It lists all of the complexity measure fields.
The default is set to Procedure.

4. Click on the complexity field by which you want your Complexity
report ordered.

5. Now, you must decide if you want the order to be ascending or
descending. For ascending order, click on the Ascend button. For
descending order, click on the Descend button.

6. METRICTM automatically reorders the Complexity report. Your
report should be ordered according to the complexity measure you
selected.

7. We took the Complexity report from Section 4.5.1 and ordered it
according to the predicted length (N^) measure in descending order
(See Figure 33 "Re-Ordered Complexity Report" on page 90.)

Note: You can only use the Sort Report By window for 132 column
reports.

CHAPTER 4: System Operation

90

FIGURE 32 Sort Report By Window

FIGURE 33 Re-Ordered Complexity Report

METRIC User’s Guide

91

4.5.3 Looking at a Summary Report

The Summary report provides a set of complexity metrics for the entire
source code file. Please refer to the appropriate section for information on
the Summary report (See Section 3.4 - “The Summary Report” on page
55.) and to section entitled Description of the Reports in the APPEN-
DIXES that applies to your language. To look at a Summary report:
1. Click on the Report pull-down menu.
2. Select Summary Only. The Summary report is automatically loaded

into the display area.
3. Use the scroll bars to move up/down and side/side to view the

report.

FIGURE 34 Selecting the Summary Report

CHAPTER 4: System Operation

92

FIGURE 35 Summary Report

The metrics computed for the Summary report:

Size Total Lines of Code, Number of Blank Lines, Number
of Comment Lines, Number of Executable State-
ments, and number of procedures/functions.

Software Science n1 , n2 , N1, N2, N, N^, Purity Ratio, Volume, Effort, es-
timated programming errors (B^) and estimated pro-
gramming time (T^).

Control Flow Cyclomatic Complexity, Extended Cyclomatic Com-
plexity, Average Cyclomatic Complexity, and Aver-
age Extended Cyclomatic Complexity.

METRIC User’s Guide

93

4.5.4 Looking at an Exception Report

The Exception report lists all functions/procedures that exceed user
defined threshold values, such as Lines of Code, Number of Executable
Statements, Cyclomatic Complexity, Extended Cyclomatic Complexity,
Mean Maximum Span of Reference, Number of goto statements, and
Comment Density. These threshold values are defined in the configura-
tion file, .uxmetriccfg , and some can be set with the GUI (See Section
4.4.4 - “Selecting Multiple Source Code File” on page 85.). To look at an
Exception report:
1. Click on the Report pull-down menu.

2. Select Exceptions. The Exception report is automatically loaded into
the display area.

3. Use the scroll bars to move up/down and side/side to view the
report.

FIGURE 36 Exception Report

CHAPTER 4: System Operation

94

4.5.5 Looking at an Error Report

The Error report lists any errors encountered during processing and anal-
ysis. Errors differ with each language. See the section entitled Descrip-
tion of Report in the APPENDIXES for the language with which you are
working.

To look at an Error report:
1. Click on the Report pull-down menu.
2. Select Errors. The Error report is automatically loaded into the dis-

play area.
3. Use the scroll bars to move up/down and side/side.

METRIC User’s Guide

95

4.5.6 Setting Report Threshold Values

METRICTM offers a Configuration Options window, which allows you to
set the report parameters. To invoke it:
1. Click on the Options pull-down menu.
2. Select Report.
3. The Configuration Options (shown below) window pops up.

FIGURE 37 Configuration Options Window

CHAPTER 4: System Operation

96

4. You can set the following parameters:
• Columns: Simply click on the corresponding radio button to

change the column width of the Complexity report.
We recommend that use the 132-column report when you have
very large procedures in the files you are analyzing and wider
printer is available.
An 80-column report does not have the following complexity
metrics: P/R (Purity Ratio), BLK (Number of Blank Lines), CMT
(Number of Comment Lines), and VL (Average Variable Name
Length). BLK and CMT are replaced with B/C , which is a combina-
tion calculation for BLK and CMT.

• Defines: Allows you to turn on None (the default) of the source
code file(s) conditional compilation directives, Specific direc-
tives, or All of the directives during Xmetric processing. Click
on the corresponding radio button.
For Specify you must specify the directives in the specification
region. Click in the specification region and type when the cursor
appears.
This option only applies to ‘‘C’’ and ‘‘C++’’.

• Semicolons: Allows you set the maximum threshold for the
number of semi-colons a procedure can have. Those procedures
that exceed this threshold are listed in the Exception report. The
threshold is set at 50.
Click in the specification region. When the cursor appears, edit
accordingly.

• Lines of Code: Allows you to set the maximum threshold for the
number of lines of code a procedure/function can have. Those
procedures/functions that exceed this threshold are listed in the
Exception report. The threshold is set at 62.
Click in the specification region. When the cursor appears, edit
accordingly.

• Cyclomatic Complexity: Allows you set the maximum threshold
for the cyclomatic complexity number a procedure/function can
have. Those procedures/functions that exceed this threshold are
listed in the Exception report. The threshold is set at 10.
Click in the specification region. When the cursor appears, edit
accordingly.

METRIC User’s Guide

97

• Extended Cyclomatic Complexity: Allows you set the maximum
threshold for the extended cyclomatic complexity number a pro-
cedure/function can have. Those procedures/functions that
exceed this threshold are listed in the Exception report. The
threshold is set at 15.
Click in the specification region. When the cursor appears, edit
accordingly.

• Comment Percent: Allows you set the maximum threshold for
the comment percent (comment/lines of code - blank lines) a pro-
cedure/function can have. Those procedures/functions that
exceed this threshold are listed in the Exception report. The
threshold is set at 0.
Click in the specification region. When the cursor appears, edit
accordingly.

5. After you have made your changes, click on the Apply button. The
changes should be reflected in the reports.

6. Exit the window by clicking on the Close button.

These threshold guidelines can also be set in the configuration file (See
Section 7.5 - “Configuration File Processing” on page 156.).

CHAPTER 4: System Operation

98

4.6 Graphically Viewing Complexity

After looking at reports, you may want to look at METRICTM’s Kiviat dia-
grams. Kiviat diagrams provide a graphical means to view the impact of
multiple metrics on a source code file or multiple files.

These diagrams represent information from the Summary report. MET-
RICTM provides three types of Kiviat diagrams, each with different metric
than the previous one.

METRIC User’s Guide

99

4.6.1 Looking at a Type I Kiviat Chart

The first Kiviat chart, Type I, displays the following software measures
for the processed source code:

• Unique Operators (n1).
• Unique Operators (n2).
• Total Operators (N1).
• Total Operands (N2).
• Lines of Code (LOC).
• Number of Comment Lines (CMT).
• Number of Blank Lines (BLK).
• Number of Executable Semi-Colons (<;>).
• Number of Functions.

To look at the Kiviat chart:
1. Click on the Charts pull-down menu.
2. Select Type I.
3. A window displaying a Kiviat chart pops up. You may need to resize

it. See the example diagram. (See Figure 38 "Type I Kiviat Chart" on
page 100.)

4. The inner circle represents minimum values, the outer circle repre-
sents maximum values and radii through the circles represent the
metrics of interest.

These minimum/maximum thresholds are defined in a file
named .Xmetric.I.def and also can be set in the Type I
Kiviat Chart window with the Xmetric GUI (both are dis-
cussed in this section).

Observed values are plotted on the radii and connected. From this, met-
rics that are not within the acceptable range of values can be easily identi-
fied.
5. To close the Kiviat chart, click on the File pull-down menu and select

Exit. The Kiviat chart closes.

CHAPTER 4: System Operation

100

FIGURE 38 Type I Kiviat Chart

METRIC User’s Guide

101

Setting Type I Chart Parameters

You can set your own Type I chart metric values. One way is to edit the
Xmetric.I.def configuration file to fit your own needs, or you can edit
the threshold parameters with from the GUI.

Below is the Type I configuration file, Xmetric.I.def :

#
A Sample of Type-I Kiviat Chart Definition
#
Min Max Value Text

9 1458 100 Unique Operators
27 777 100 Unique Operands
37 6377 100 Total Operators
47 3477 100 Total Operands
157 1577 100 Lines of Code
177 1777 100 #Comment Lines
100 1000 100 #Blank Lines
197 1977 100 #Executable Semi-

colons
1 80 100 #Functions

FIGURE 39 Xmetric.I.def Configuration File

MIN The minimum threshold parameter.

MAX The maximum threshold parameter.

Value The threshold values for the metrics. These values are
overwritten by the actual values of the
\f6Summary\f1 report, so you do not need to edit
this column.

Text The complexity measure. Do not remove any of the
metrics. If you want to customize your own report,
please see the correct section (See Section 4.6.4 - “Cus-
tomizing Your Own Kiviat Chart” on page 113.).

Simply use any ASCII file editor to edit the file.

CHAPTER 4: System Operation

102

To edit minimum/maximum thresholds from the GUI:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Charts cascading menu.
3. Select Type I.
4. The Type I Configuration window pops up.
5. You can change the minimum and maximum parameters by clicking

on the corresponding specification region. When a cursor appears,
edit accordingly.

6. After you have made your changes, click on the Apply button. The
Kiviat chart will be redrawn, reflecting the changes.

7. Exit the window by clicking on the Close button.

FIGURE 40 Type I Configuration Window

METRIC User’s Guide

103

4.6.2 Looking at a Type II Kiviat Chart

The second Kiviat chart, Type II, displays the following software mea-
sures for the processed source code:

• Length (N).
• Predicted Length (N^).
• Purity Ratio (P/R) .
• Estimated Effort (E).
• Estimated Errors (B^).
• Estimated Time to Develop (T^).
• Cyclomatic Complexity (VG1).
• Extended Cyclomatic Complexity (VG2).
• Average Cyclomatic Complexity.
• Average Extended Cyclomatic Complexity.

To look at the Kiviat chart:
1. Click on the Charts pull-down menu.
2. Select Type II.
3. A window displaying a Kiviat chart pops up. You may need to resize

the window. See the example diagram (See Figure 41 "Type II Kiviat
Chart" on page 104.).

4. The inner circle represents minimum values, the outer circle repre-
sents maximum values and radii through the circles represent the
metrics of interest.

These values are defined in a file named .Xmetric.II.def and
can be set in the Type II window with the Xmetric GUI (both are
described in this section).
Observed values are plotted on the radii and connected. From
this, metrics that are not within the acceptable range of values
can be easily identified.

5. To close the Kiviat chart, click on the File pull-down menu and select
Exit. The Kiviat chart closes.

CHAPTER 4: System Operation

104

FIGURE 41 Type II Kiviat Chart

Setting Type II Chart Parameters

You can set you own Type II chart metric values. One way is to edit the
Xmetric.II.def configuration file to fit your own needs or you can
edit the threshold parameters with the GUI.

METRIC User’s Guide

105

Below is the Type II configuration file, Xmetric.II.def :

#
A Sample of Type-II Kiviat Chart Definition
#
6700 9677 100 Software Science Length

67 5677 100 Est. Software Science
Length

0.070 0.700 100 Purity Ratio

77000 97777 100 Software Science Volume

8700000 111778877 100 Software Science Effort

2 37 100 Estimated Errors

107 1077 100 Estimated Time To Develop

117 1177 100 Cyclomatic Complexity

1 377 100 Ext. Cyclomatic Complexity

1 37 100 Avg. Cyclomatic Complexity

147 1477 100 Avg. Ext. Cyclomatic Com-
plexity

FIGURE 42 Xmetric.II.def Configuration File

MIN The minimum threshold parameter.

MAX The maximum threshold parameter.

Value The threshold values for the metrics. These values are
overwritten by the actual values of the Summary re-
port, so you do not need to edit this column.

Text The complexity measure. Do not remove any of the
metrics. If you want to customize your own report,
please see the correct section (See Section 4.6.4 - “Cus-
tomizing Your Own Kiviat Chart” on page 113.).

Simply use any ASCII file editor to edit the file.

CHAPTER 4: System Operation

106

To edit the minimum/maximum values from the GUI:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Charts cascading menu.
3. Select Type II.
4. The Type II Configuration window pops up.
5. You can change the minimum and maximum parameters by clicking

on the corresponding specification region. When a cursor appears,
edit accordingly.

6. After you have made your changes, click on the Apply button. The
Kiviat chart will be redrawn, reflecting the changes.

7. Exit the window by clicking on the Close button.

FIGURE 43 Type II Configuration Window

METRIC User’s Guide

107

4.6.3 Looking at a Type III Kiviat Chart

The third Kiviat chart, Type III, displays the following software mea-
sures for the processed source code:

• Unique Operators (n1).
• Unique Operands (n2).
• Total Operators (N1).
• Total Operands (N2).
• Software Science Length (N).
• Estimated Software Science Length (N^).
• Purity Ratio (P/R).
• Software Science Volume (V).
• Software Science Effort (E).
• Estimated Time to Develop (T^).
• Cyclomatic Complexity (VGI).
• Extended Cyclomatic Complexity (VG2).
• Average Cyclomatic Complexity.
• Average Extended Cyclomatic Complexity.
• Lines of Code (LOC).
• Number of Comment Lines (CMT).
• Number of Blank Lines (BLK).
• Number of Executable Semi-colons (<;>).
• Number of Functions.

CHAPTER 4: System Operation

108

To obtain a Kiviat chart:
1. Click on the Charts option.
2. Select Type III .
3. A window displaying a Kiviat chart pops up. You may need to resize

it. See the example diagram (See Figure 44 "Type III Kiviat Chart" on
page 109.).

4. The inner circle represents minimum values, the outer circle repre-
sents maximum values and radii through the circles represent the
metrics of interest.
Observed values are plotted on the radii and connected. From this,
metrics that are not within the acceptable range of values can be eas-
ily identified.

5. To close the Kiviat chart, click on the File pull-down menu and select
Exit. The Kiviat chart closes.

METRIC User’s Guide

109

FIGURE 44 Type III Kiviat Chart

Setting Type III Chart Parameters

You can set your own Type III chart metric values. One way is to edit the
Xmetric.III.def configuration file to fit your own needs or you can
edit the threshold parameters from the GUI.

CHAPTER 4: System Operation

110

Following is the Type III configuration file, Xmetric.III.def :

FIGURE 45 Xmetric.III.def Configuration File

#

A Sample of Type-III Kiviat Chart Definition

Min Max Value Text

9 1458 100 Unique Operators

27 777 100 Unique Operands

37 6377 100 Total Operators

47 3477 100 Total Operands

6700 9677 100 Software Science Length

67 5677 100 Est. Software Science
Length

0.070 0.700 100 Purity Ratio

77000 97777 100 Software Science Volume

8700000 111778877 100 Software Science Effort

2 37 100 Estimated Errors

107 1077 100 Estimated Time To
Develop

117 1177 100 Cyclomatic Complexity

1 377 100 Ext. Cyclomatic Com-
plexity

1 37 100 Avg. Cyclomatic Com-
plexity

147 1477 100 Avg. Ext. Cyclomatic
Complexity

157 1577 100 Lines of Code

177 1777 100 #Comment Lines

100 1000 100 #Blank Lines

197 1977 100 #Executable Semi-colons

1 80 100 #Functions

METRIC User’s Guide

111

MIN The minimum threshold parameter.

MAX The maximum threshold parameter.

Value The threshold values for the metrics. These values are
overwritten by the actual values of the Summary re-
port, so you do not need to edit this column.

Text The complexity measure. Do not remove any of the
metrics. If you want to customize your own report,
please see Section 4.6.4

Simply use any ASCII file editor to edit the file.

To edit the minimum/maximum values from the GUI:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Charts cascading menu.
3. Select Type III.
4. The Type III Configuration window pops up.
5. You can change the minimum and maximum parameters by clicking

on the corresponding specification region. When a cursor appears,
edit accordingly.

6. After you have made your changes, click on the Apply button. The
Kiviat chart will be redrawn, reflecting the changes.

7. Exit the window by clicking on the Close button.

CHAPTER 4: System Operation

112

FIGURE 46 Type III Configuration Window

METRIC User’s Guide

113

4.6.4 Customizing Your Own Kiviat Chart

You do not have to use METRICTM’s available Kiviat charts. You can cre-
ate you own. For example, you may want a Kiviat chart, using only Soft-
ware Science measures or Control Flow measures.

To do this, simply create a file that follows the pattern of

Xmetric.I.def , .Xmetric.II.def , or .Xmetric.III.def .

Then you must load this file into METRICTM. To do this:
1. Click on the Charts pull-down menu.
2. Select Type User.
3. A file selection dialog box pops up.
4. Select the file in which you have your own metrics and values listed.
5. Your own Kiviat diagram will be displayed.

CHAPTER 4: System Operation

114

4.7 Exiting METRIC

The Exit option allows you to close the Main window. Here’s how:
1. Click on the File pull-down menu.
2. Select Exit.
3. You have exited METRICTM.

FIGURE 47 Exiting METRIC

115

CHAPTER 5

Helpful Hints
READERS’ GUIDE: This chapter offers recommendations and principles of operation for
METRICTM in an automated testing environment.

LEVEL: This chapter is intended for all users.

5.1 Measuring Program Complexity

The METRICTM system for expressing the characteristics of a piece of
software in quantitative software complexity measures is a powerful and
effective tool for computing complexity measures. This chapter describes
important set-up information and how you can use software metrics in
general, and METRICTM to help you develop, test and maintain software.

5.1.1 Set-Up Suggestions

These are some common guidelines you should follow:
• Make sure the environment variable, SR, is set up correctly.

Xmetric relies on this variable to locate various control files for
different reports. Please see your Installation Instructions for fur-
ther information.

• Before running Xmetric, you should put all the source files that
need to be analyzed into one directory, and then invoke Xmetric.

• If you have different groups using Xmetric, then each of them
should have their own configuration files in their home directory.
This way they can customize their own environment without
interfering with others’ work.

• Xmetric will look first in the home directory for the various con-
figuration files. If Xmetric cannot find the configuration files, it
will look at the directory defined in the SR environment variable.

• If you run Xmetric on a source file and no reports are generated,
look at the Error report. Most often this occurs when the SR file is
not defined correctly.

CHAPTER 5: Helpful Hints

116

5.1.2 Software Development

Software metrics can be used quite effectively during the development
stage of the software life cycle. METRICTM can be introduced quite early
in this phase as a feedback tool for programmers. Likewise, software met-
rics can be used during code reviews to help reviewers identify those por-
tions of the code which may be the most difficult to work with, and hence
most appropriate to cover in a review.

Using Metrics as a Feedback Tool

One of the most effective uses of metrics is as a feedback tool for pro-
grammers. In general, this is best accomplished by identifying a set of
complexity thresholds beyond which code complexity must be addressed.
The complexity may be addressed by a variety of actions, ranging from
simply adding additional comments to procedures which violate the
thresholds to an entire rewrite of the offending procedures.

One of the most difficult tasks is arriving at suitable threshold levels for a
particular environment. Due to differences among personnel, applica-
tions, etc., installation standards must be developed on a case by case
basis. Thus, the numbers used by the shop down the street may have little
relevance to the numbers used in your environment. While we can’t sug-
gest specific numbers, we can outline some steps to follow to arrive at
some standards for your installation.

Once installation thresholds are obtained, they can be enforced by speci-
fying them in the configuration file, .uxmetriccfg . After setting up the
configuration file, procedures which violate the standards will be flagged
in the METRICTM exception report. This allows ‘‘remedy by exception’’,
so the programmer can avoid addressing the complexity of those proce-
dures which are within the predefined thresholds.

The installation standards can best be established by either (1) identifying
your top programmer and analyzing a sample of his/her code using
METRICTM or (2) simply analyzing a sample of all your programmers’
code using METRICTM. In either case, the sample should consist of well
over 100 different procedures.

After computing these threshold values, you would then use your favor-
ite text editor to change the entries in the configuration file to flag proce-
dures which exceed the threshold values.

METRIC User’s Guide

117

After establishing these standards, every procedure would be analyzed
by METRICTM before the programmer could consider it complete. A cur-
sory examination of the exception report would identify those procedures
which violate the standards.

A procedure which violates the threshold complexity is not necessarily
poorly written. It may be the case that it cannot be improved upon. How-
ever, by carefully examining procedures which do violate the threshold
complexity, and taking remedial action with those procedures which can
be improved it is likely the programmer will deliver code with fewer
bugs that is easier to test and maintain. Remedial action may consist of one
or more of these activities:
1. The module may be rewritten (and perhaps decomposed into several

less complex modules) to reduce complexity. Depending on the met-
ric which exceeded the complexity threshold, either the control flow
(VG), data structuring (SP) or size (LOC or <;>) of the original module
should be changed.

2. The module may not need to be rewritten, but extra documentation
may be added to the module to compensate for its additional com-
plexity. As in the previous activity, the particular measure which
exceeded the threshold may give some ideas on which items to stress
in the documentation.

Other approaches to arriving at a complexity threshold include examina-
tion of selected programs and arriving at a consensus among the pro-
gramming team. It is important that the software developers ‘‘buy into’’
the thresholds since complexity metrics can easily be circumvented by
using pathological coding practices. For example, the lines of code mea-
sure can be minimized by writing several statements to a line, and the
extended cyclomatic complexity can be bypassed by separating com-
pound conditionals into individual groups of if statements.

CHAPTER 5: Helpful Hints

118

Using Metrics in the Review Process

Many organizations make use of a formal software review process to
identify potential problems and inconsistencies in the code before it can
be integrated with the rest of the system. The greatest drawback with this
activity is that preparation required by the reviewers can be quite time
consuming since they have to carefully read every line of code to be
reviewed. By using software metrics to identify overly complex parts of
the code, the reviewers can easily locate the most risky parts of the code.

Two approaches can be taken by the reviewers. In the first approach,
threshold limits can be identified, and procedures which exceed these
thresholds can be flagged using the Exception report generated by MET-
RICTM. The second approach recognizes the fact that the reviewer has
only a fixed amount of time to devote to working with the reviewed code.
Using the Kiviat diagrams, reviewers can graphically identify those pro-
cedures which contribute the bulk of the complexity to the overall file
under review.

In either case, the reviewer can then use this knowledge to help allocate
their attention to specific parts of the code. Additionally, the programmer
can be asked to justify the complexity of the procedures during the
review process. This would ensure the programmer has examined the
overly complex procedures and satisfied him/herself that they could not
be written in a less complex manner.

METRIC User’s Guide

119

Using Metrics in Estimation

One of the most interesting measures produced by METRICTM is the Soft-
ware Science based T^ measure, estimated development time. The utility
of this measure is often not appreciated since it is an estimate of how
much time is required to develop the software. Unfortunately, this
appears to be of little use to many developers once the code has been
developed.

In fact, there are times when a programmer needs to know how long it
took to develop a piece of code. For example, custom programming
houses usually charge clients based on the amount of time a programmer
spends writing the program, but a single programmer may be speed
among several projects at once. At the end of the projects, how much time
was spent on each? Likewise, if a program to be developed is similar to
an existing program, it would be helpful to know how much effort went
into developing the original version when presenting a bid or asking for a
budget to develop the new version.

Unfortunately, if the developers were not careful in recording the time
spent on the program it may require spending a great deal of effort
attempting to ‘‘guesstimate’’ how much time was actually spent on the
program. This is even more difficult if the original developer is not avail-
able. Even if a good estimate is formulated, it can be difficult to substanti-
ate the estimate.

The T^ measure can be used in these situations. It possesses many useful
qualities. It is totally automated so little programmer effort need be
expended manually “guesstimating” development time after the fact.
Additionally, Software Science is well accepted by many researchers and
practitioners, so there should be relatively little effort required to justify
the estimate.

The T^ measure is computed by dividing Software Science Effort (E) by
programmer speed. Naturally, even though Halstead suggested a prelim-
inary value of 18, programmer speed will vary from programmer to pro-
grammer. Therefore, this parameter should be adjusted for individual
programmers.

Individual adjustments can be made by analyzing a large sample of a pro-
grammer’s code with METRICTM and summing the reported develop-
ment time estimates (T^). This will yield the estimated development time
in hours for the set of programs analyzed. Divide the sum of the T^ mea-
sures by the sum of the actual observed development time, and multiply
the current programmer speed parameter in the configuration file
(SPEED) by the resulting ratio. If the SPEED parameter is not included in
the current configuration file use 18, and insert the resulting value in the
configuration file.

CHAPTER 5: Helpful Hints

120

Chances are good that the resulting estimate will not be exactly correct for
most programs, but it should yield close estimates for sets of programs.
For example, we may be disappointed with the estimate obtained for a
single program written for a client. However, the sum of the estimates for
a set of programs written for a client will usually be fairly close to the
time actually spent.

In effect, the T^ measure can be viewed as an automated analogue to the
mechanics ‘‘flat rate manual’’, which indicates how much time should be
billed for a variety of repairs. While seldom exactly correct for any partic-
ular repair performed by a garage, chances are good that the flat rate esti-
mates will be accurate over time.

METRIC User’s Guide

121

Metrics in Software Testing

Software metrics can be used even more effectively during the software
testing activity than they can during the development phase. One of the
most common dilemmas faced by a software project manager is the lack
of resources available for testing. Usually by the time the testing phase is
reached, any slack that was in the schedule and budget is used up. Thus,
the manager must determine where to allocate his or her scarce testing
resources.

A useful measure obtained from Software Science is B^, estimated num-
ber of coding errors. The B^ measure is computed by dividing Software
Science Volume (V) by programmer error rate (this is how it is computed by
METRICTM; other definitions have been suggested which use Effort (E) in
place of Volume). Naturally, even though Halstead suggested a prelimi-
nary value of 3200, error rate will vary from programmer to programmer.
Therefore, this parameter should be adjusted for individual program-
mers.

Individual adjustments can be made by analyzing a large sample of a pro-
grammer’s code with METRICTM and summing the reported bug esti-
mates (B^). This will yield the estimated number of coding bugs for the
set of programs analyzed. Divide the sum of the B^ measures by the sum
of the actual observed number of bugs, and multiply the current error
rate parameter in the configuration file (E0) by the resulting ratio. If the
E0 parameter is not included in the current configuration file use 3200,
and insert the resulting value in the configuration file.

The exact number of errors predicted by the B^ measure is unlikely to be
precisely correct. However, recent studies (see for example, ‘‘Using Soft-
ware Metrics to Allocate Testing Resources’’ by Warren Harrison in the
Spring 1988 issue of The Journal of Management Information Systems) sug-
gest that the proportion of the total errors encountered in each module is
reflected well by Software Science.

In general, by allocating testing resources based on the proportion of the
total number of predicted errors estimated for each module, a more effec-
tive testing program can be carried out.

CHAPTER 5: Helpful Hints

122

For example, consider the following set of modules, associated B^ values,
and amount of testing resources allocated to each module assuming we
have 100 units (a ‘‘unit’’ could be dollars, hours of tester’s time, etc.) of
resources to go around:

As can be seen, the percentage of testing resources allocated to each pro-
cedure is proportional to the contribution the procedure has made to the
estimated programming errors total.

As pointed out at the beginning of the chapter, other characteristics
besides just those captured by software metrics impact the number of
bugs a module will have. Thus, this technique may not work in every sit-
uation. As we suggested earlier, we recommend using this technique in
parallel with whatever approach you use currently to allocate testing
resources among modules, and compare them.

Module B^ % of B^ Test Resources
 A 51 40% 40 units
 B 13 10% 10 units
 C 16 13% 13 units
 D 6 5% 5 units
 E 2 1% 1 units
 F 20 16% 16 units
 G 3 1% 1 units
 H 11 9% 9 units
 I 6 5% 5 units
Total 128 100% 100 units

METRIC User’s Guide

123

5.1.3 Software Maintenance

Software metrics can also be used during program maintenance. By using
metrics as a feedback tool during development, they have an eventual
impact on software maintenance. However, metrics can have an even
more direct impact on the maintenance phase of the software life cycle if
used properly.

Apportioning Duties

Large systems are quite often maintained by a staff of several program-
mers. In such situations, it is common to assign different parts of the sys-
tem (groups of procedures or programs) to each individual maintainer.
After assignment, the maintainer will then be responsible for all mainte-
nance that needs to be performed on the corresponding set of procedures.

An unenviable task charged to most project managers is assigning por-
tions of a system to each maintainer. Most managers have their own pri-
vate set of heuristics for assigning portions of a system to maintainers. A
common heuristic is arranging assignments so each maintainer is respon-
sible for approximately the same number of lines of code. In some cases
however, this can be inequitable since two modules with the same num-
ber of lines of code can differ greatly in complexity (and hence mainte-
nance difficulty).

An alternative to allocating portions of a system for maintenance based
on lines of code is to apportion modules so each maintainer is responsible
for approximately the same amount of complexity. For example, the Soft-
ware Science Effort measure would be appropriate for this use. This is
illustrated using the following example:

Thus, if a manager has three maintenance programmers available, it
would be reasonable to assign two of them to module A, and apportion
the remaining modules to the third programmer (assuming each individ-
ual was of equal ability).

Module Effort

(10000s)

% of

Effort
A 1570 68%
B 119 5%
C 142 6%
D 38 2%
E 8 0%
F 291 13%
G 7 0%
H 76 3%
I 41 2%

CHAPTER 5: Helpful Hints

124

Controlling Entropy

When maintaining a piece of software, it is common for the changed ver-
sion of the software to be a little less clean and a little more complex than
the original version. For the most part this is due to changes not fitting
into the overall structure of the program, and simply being ‘‘patched in’’.
This gradual degradation of the software is called entropy. If it occurs only
once or twice, it presents few problems. However, over its life a fre-
quently used program may be modified dozens of times. Software met-
rics can be used to help minimize the effects of entropy.

This can be done by requiring all modified software to be analyzed by
METRICTM before it can be put back into production. If the changed
modules’ complexity increased by more than 10% the programmer must
either re-implement the change to achieve a complexity increase of less
than 10% or explain why the additional complexity increase is necessary.

Naturally this does not address issues such as maintaining up to date
comments, but it can help reduce entropy by ensuring changes fit better
into the structure of the code.

In those rare instances when a maintenance programmer has some time
on his or her hands, it may be profitable to attempt to rewrite certain
modules to help reduce the entropy which has accrued. Metrics can be
used in this situation to help identify the modules which should be
rewritten. If the complexity levels for modules over time are maintained,
the amount of complexity growth since development of each module can
be tracked. Those modules whose complexity has grown 100% or more
are prime candidates for a preemptive rewrite.

125

CHAPTER 6

Graphical User Interface
This chapter defines and explains the content of the Main window that makes up the
METRICTM product. If you have questions about operation, please refer to the appropri-
ate chapter for further information. (See CHAPTER 4 - "System Operation" on page 71.)
This chapter is intended to act as a reference chapter.
LEVEL: This chapter is intended for all users.

6.1 About the Main Window

Once you have invoked METRICTM, all operations are accessible from
this window, including:

• Selecting a source code file for METRICTM to process.
• Writing report files to a specific prefix.
• Looking at reports.
• Setting report thresholds.
• Looking at Kiviat diagrams.
• Setting Kiviat definition thresholds.

CHAPTER 6: Graphical User Interface

126

6.2 Main Features of METRIC

The window includes the following features:
• Display area where reports are loaded.
• File pull-down menu. You can use it to load a source code file,

multiple source code files, save report files to files that share the
same prefix, and exit METRICTM.

• Options pull-down menu. You can use it to set parameters for
the reports and Kiviat charts and to set the language.

• Report pull-down menu. You can use it to select reports for MET-
RICTM.

• Charts pull-down menu. You can use it to select different types of
Kiviat charts.

• Help button. This button brings up the main Help window for
METRICTM.

Each of these features will be discussed in the sections that follow.

METRIC User’s Guide

127

FIGURE 48 Display Area

6.2.1 Display Area

When reports are generated for METRICTM, they are displayed in the
scrolled display area. You can use the scroll bars to move up/down or
side/side. If you want the reports to fit the size of the window display,
you must resize the window.

CHAPTER 6: Graphical User Interface

128

6.2.2 File Pull-Down Menu

File pull-down menu consists of these features:

Load Single File option brings up a selection dialog box that allows you
to select an existing source code file. After clicking on OK, METRICTM

automatically processes the file and generates reports. These reports are
loaded into the display area. Please refer to the appropriate section for
operation instructions (See Section 4.4.3 - “Selecting a Source Code File”
on page 84.)

FIGURE 49 Load Single File Selection

METRIC User’s Guide

129

Load Multiple Files option brings up a selection dialog box that allows
you to select more than one source code file. After clicking on OK, MET-
RICTM automatically processes the files and generates reports. These
reports are loaded into the display area. Please refer to the appropriate
section for operation instructions (See Section 4.4.4 - “Selecting Multiple
Source Code File” on page 85.).

FIGURE 50 Load Multiple Files Selection

Set Report Files Basename option brings up the Set Report Files Base-
name window, where you type in the prefix that you want all of your
reports to share. You must set the basename before you load in source
code, if you want your report to be saved. Otherwise, the reports will not
be saved. Please see Section 4.4.2 for operation instructions.

FIGURE 51 Setting the Report Files Basename

CHAPTER 6: Graphical User Interface

130

Help option brings up an on-line help window for the File pull-down
menu. See Section 4.2 for information on using help windows.

FIGURE 52 File Pull-Down Window Help

Exit options terminates METRICTM.

FIGURE 53 File Pull-Down Menu

METRIC User’s Guide

131

6.2.3 Options Pull-Down Menu

The Options pull-down menu consists of these options:

Report option brings up the report Configuration Options window.
Please refer to the appropriate section for operation instructions (See Sec-
tion 4.4.2 - “Writing Reports to a File” on page 82.).

FIGURE 54 Configuration Options Window

Here you can adjust the following report parameters:
• Columns: Allows you to set the column width for the Complex-

ity report. We recommend that use the 132-column report when
you have very large procedures in the files you are analyzing and
wider printer is available.
An 80-column report does not have the following complexity
metrics: P/R (Purity Ratio), BLK (Number of Blank Lines), CMT
(Number of Comment Lines), and VL (Average Variable Name
Length). BLK and CMT are replaced with B/C , which is a combina-
tion calculation for BLK and CMT.

• Defines: Allows you to turn on None (the default) of the source
code file(s) conditional compilation directives, Specific direc-
tives, or All of the directives during Xmetric processing. This
option only applies to ‘‘C’’ and ‘‘C++’’.

CHAPTER 6: Graphical User Interface

132

• Semicolons: Allows you set the maximum threshold for the
number of semi-colons a procedure can have. Those procedures
that exceed this threshold are listed in the Exception report. The
threshold is set at 50.

• Lines of Code: Allows you set the maximum threshold for the
number of lines of code a procedure/function can have. Those
procedures/functions that exceed this threshold are listed in the
Exception report. The threshold is set at 62.

• Cyclomatic Complexity: Allows you to set the maximum thresh-
old value for the cyclomatic number a procedures/functions can
have. Those procedures/functions that exceed this threshold are
listed in the Exception report. The threshold is set at 10.

• Extended Cyclomatic Complexity: Allows you set the maximum
threshold for the extended cyclomatic complexity number a pro-
cedure/function can have. Those procedures/functions that
exceed this threshold are listed in the Exception report. The
threshold is set at 15.

• Comment Percent: Allows you set the maximum threshold for
the comment percent (comment/lines of code - blank lines) a pro-
cedure/function can have. Those procedures/functions that
exceed this threshold are listed in the Exception report. The
threshold is set at 0.

Charts cascading menu offers has the following options:

METRIC User’s Guide

133

Type I option brings up the Type I Configuration window. This window
(See Figure 55 "Type I Configuration Window" on page 133.)consists of
the minimum and maximum threshold complexity measure values for
the Type I Kiviat chart. Remember, Kiviat diagrams provide a graphical
representation of several metrics on a source code file or multiple files.
Please refer to the appropriate section for further information on setting
these threshold parameters (See Section 4.6.2 - “Looking at a Type II Kiv-
iat Chart” on page 103.).

FIGURE 55 Type I Configuration Window

CHAPTER 6: Graphical User Interface

134

Type II option brings up the Type II Configuration window. This win-
dow (shown below) consists of the minimum and maximum threshold
complexity measure values for the Type II Kiviat chart. The Type II Kiv-
iat diagram offers different complexity measures than the Type I dia-
gram. Please refer to Section 4.6.2 for further information on setting these
threshold parameters.

FIGURE 56 Type II Configuration Window

METRIC User’s Guide

135

Type III option brings up the Type III Configuration window. This win-
dow (shown below) consists of the minimum and maximum threshold
complexity measure values for the Type III Kiviat chart. The Type III
Kiviat diagram offers all of the complexity measures from the Summary
report. Please refer to the appropriate section for further information on
setting these threshold parameters (See Section 4.6.3 - “Looking at a Type
III Kiviat Chart” on page 107.).

FIGURE 57 Type III Configuration Window

CHAPTER 6: Graphical User Interface

136

Language brings up the Select Language window (shown below). This
window allows you to select the language you would like to work from:
‘‘C’’, ‘‘C++’’, Ada, and FORTRAN. The default is ‘‘C’’. You must have the
proper language set, before you load a language source file. For example,
you can only load an Ada file if the Ada language is set. Please refer to the
appropriate section for operation instruction (See Section 4.4.1 - “Select-
ing a Language” on page 81.).

FIGURE 58 Select Language Window

METRIC User’s Guide

137

6.2.4 Report Pull-Down Window

The window offers the following report options:

Order Complexity option brings up the Sort Report By window (shown
below). This window lets you specify which complexity measure you
would like your procedures/functions ordered by in the Complexity
report. This is useful for mid- to large- scale programs, where it may be
difficult to initially determine the most complex modules. The default is
procedure.

Please see the appropriate section for operation instructions (See Section
4.5.2 - “Re-Ordering Procedures/Functions” on page 89.).

FIGURE 59 Sort Report By Window

Complexity option loads the Complexity report into the display area.
Please see the appropriate section for instruction and background infor-
mation (See Section 4.5.1 - “Looking at a Complexity Report” on page
87.).

Summary Only option loads the Summary report into the display area.
Please see the appropriate section for instruction and background infor-
mation (See Section 4.5.3 - “Looking at a Summary Report” on page 91.).

CHAPTER 6: Graphical User Interface

138

Exceptions option loads the Exception report into the display area. Please
see the appropriate section for instruction and background information
(See Section 4.5.4 - “Looking at an Exception Report” on page 93.).

Errors option loads the Error report into the display area. Please see the
appropriate section for instruction and background information (See Sec-
tion 4.5.5 - “Looking at an Error Report” on page 94.).

Generic option loads the Generic report into the display area. This report
is available for Ada only. Please see Appendix C for instruction and back-
ground information.

Package Exceptions option loads the Package Exception report into the
display area. This report is available for Ada only. Please see Appendix C
for instruction and background information.

Package Intermediates option loads the Package Intermediates report
into the display area. This report is available for Ada only. Please see
Appendix C for instruction and background information.

C++ Class option loads the C++ Class report into the display area. This
report is available for ‘‘C++’’ only. Please see AppendixB for instruction
and background information.

Class Summary option loads the Class Summary report into the display
area. This report is available for ‘‘C++’’ only. Please see AppendixB for
instruction and background information.

Class Hierarchy option loads the Class Hierarchy report into the display
area. This report is available for ‘‘C++’’ only. Please see AppendixB for
instruction and background information.

Class Exceptions option loads the Class Exception report into the display
area. This report is available for ‘‘C++’’ only. Please see Appendix B for
instruction and background information.

Help brings up an on-line help window for the File pull-down menu.

METRIC User’s Guide

139

FIGURE 60 Report Pull-Down Menu

CHAPTER 6: Graphical User Interface

140

6.2.5 Charts Pull-Down Menu

Charts pull-down menu consists the following options:

Type I displays the first kind of Kiviat chart, which consists of the of the
following software measures for the processed source code:

• Average Cyclomatic Complexity.
• Lines of Code (LOC).
• Software Science Length (N).
• Estimated Errors (B^).
• Purity Ratio (P/R).
• Number of Functions.

Below is a Type I Kiviat diagram. The inner circle represents minimum
values, the outer circle represents maximum values and radii through the
circles represent the metrics of interest.

Observed values are plotted on the radii and connected. From this, met-
rics that are not within the acceptable range of values can be easily identi-
fied. Please see the appropriate section for further information(See
Section 4.6 - “Graphically Viewing Complexity” on page 98.).

FIGURE 61 Type I Kiviat Chart

METRIC User’s Guide

141

Type II displays the second kind of Kiviat chart, which consists of the of
the following software measures for the processed source code:

• Unique Operators (n1).
• Unique Operands (n2).
• Total Operators (N1).
• Total Operands (N2).
• Software Science Length (N).
• Estimated Errors (B^).
• Lines of Code (LOC).
• Number of Functions.

Below is a Type II Kiviat diagram. The inner circle represents minimum
values, the outer circle represents maximum values and radii through the
circles represent the metrics of interest.

Observed values are plotted on the radii and connected. From this, met-
rics that are not within the acceptable range of values can be easily identi-
fied. Please see the appropriate section for further information (See
Section 4.6.2 - “Looking at a Type II Kiviat Chart” on page 103.).

FIGURE 62 Type II Kiviat Chart

CHAPTER 6: Graphical User Interface

142

Type III displays the third kind of Kiviat chart, which consists of all the
software measures represented in the Summary report. Please see the
appropriate section for further information (See Section 4.6.3 - “Looking
at a Type III Kiviat Chart” on page 107.).

Below is a Type III Kiviat diagram.

FIGURE 63 Type III Kiviat Chart

User brings up a file selection dialog box (shown below), which allows
you to select a user-customized diagram file. Please see the appropriate
section for further information (See Section 4.6.4 - “Customizing Your
Own Kiviat Chart” on page 113.).

When you select the file, a Kiviat diagram will pop up.

METRIC User’s Guide

143

FIGURE 64 Type User Kiviat Chart Selection

FIGURE 65 Charts Pull-Down Menu

CHAPTER 6: Graphical User Interface

144

6.2.6 Help Button

The Help activation button provides you with an on-line explanation of
METRICTM. Please refer to the appropriate section for usage of help win-
dows (See Section 4.2 - “User Interface” on page 72.).

FIGURE 66 Help Window for METRIC

145

CHAPTER 7

Command Line Activation
READERS’ GUIDE: This chapter describes in detail the various command line switches
which perform tasks very similar to the graphical user interface.
LEVEL: If you are a beginning or intermediate METRICTM user, you can skip this section
on first reading. This chapter is intended for advanced users.

7.1 Command Line Usage

You may want to work from command line in situations where you will
be analyzing several source files and just want to obtain complexity mea-
sures. This chapter describes the main operating modes of METRICTM,
including obtaining reports and using Kiviat charts.

It also lists the configuration file, .uxmetriccfg , commands. Editing
this configuration file can save you a lot of time. Rather than use special
switches (for command line) or edit the GUI’s parameters, you can edit
this file to change a parameter.

You may find it helpful to read the APPENDIX for your specific language.

CHAPTER 7: Command Line Activation

146

7.2 ‘Xmetric’ Command

You invoke the METRICTM GUI with the command:
Xmetric [-L lang]

Options and Parameters:

No Options Invokes Xmetric for the ‘‘C’’ language interactive-
ly.

-L lang Specifies the language. The following languages
are supported:

-L C - Supports the ‘‘C’’ language. This is the de-
fault.

-L C++ - Supports the ‘‘C++’’ language.

-L Ada - Supports the Ada language.

-L F77 - Supports the FORTAN language.

Note: Please refer to the appropriate chapter for GUI usage (See CHAP-
TER 6 - Graphical User Interface” on page 125.).

METRIC User’s Guide

147

7.3 ‘lang metric’ Command

To execute in command line mode, at the system prompt enter

cmetric <filename1> ... <filenamen> <options> for ‘‘C’’.

adametric <filename1> ... <filenamen> <options> for Ada.

cppmetric <filename1> ... <filenamen> <options> for ‘‘C++’’.

fmetric <filename1> ... <filenamen> <options> for FORTRAN.

where <filename> is the name of the file(s) to be analyzed. Enter a path if
the file(s) to be analyzed reside in a directory other than the current direc-
tory. Any number of files contained in any number of directories may be
listed on the i command line (each file name must be separated by a
space). Also, you may enter file name patterns (e.g. *.c , *.ada , *.cpp ,
*.for).

By default, the report files will be named after the first file name to be
analyzed. You may specify your own report file name by entering -o base-
name anywhere on the command line after the langmetric command. If
the report files are to be located in a directory other than the current direc-
tory, specify a path.

Do not enter an extension with the file name. The report files created will
be basename.rpt , which contains a combined Complexity report by pro-
cedure and Summary report; basename.exp , which contains an Excep-
tion report; and basename.err , which contains any processing errors. If
you analyze multiple files, the report files basename will be named after
the first file specified for analysis.

NOTE: Additional reports are created for ‘‘C++’’ and Ada.

CHAPTER 7: Command Line Activation

148

Options and Parameters

langmetric [basename]

[-b d]

[-b n]

[-ce n]

[-cht n]

[-cr n]

[-c sym]

[-g n]

 [-i]

 [-ne]

[-pe n]

[-p n]

[-pr n]

 [-s]

 [-80|-132]

Additionally in the command line mode, the options -b d, -b n, -c sym, -
cen, -cht n, -cr n, gn, -i , -ne , pen, pn, pr n, -s , and -80 or -132 may be
specified anywhere after the langmetric command. These are explained
as follows:

-b d Directs METRICTM to create an Intermediate
Summary complexity report whenever a change in
directory occurs. This may be helpful if different
subsystems of an application being analyzed are
placed in different directories and you want a sum-
mary complexity report for each subsystem.

This report is saved to filename.rpt .

-b n Directs METRICTM to break whenever a change in
the first n characters of the filenames occurs and
creates an Intermediate Summary complexity
report. This may be helpful if the files comprising
the different subsystems of an application all have
the same prefix and you want a summary complex-
ity report for each subsystem.

This report is saved to filename.rpt .

METRIC User’s Guide

149

cht n Specifies whether or not the Class Hierarchy
Table report, filename.cht , is to be generated. A
value of 1 means to generate the report, a value of 0
will not generate the report. This value overrides
the CLASSCHART entry in the configuration
file,.uxmetriccfg .

If this option is not specified in the command line,
METRICTM will look for CLASSCHARTin the con-
figuration file. If it is not found, then this report will
not be generated.

This options applies only to ‘‘C++’’.

-cr n Specifies whether or not the class report, filena-
me.cls , is to be generated. A value of 1 means to
generate the report, a value of 0 will not generate
the report. This value overrides CLASSREPORT en-
try in the configuration file,.uxmetriccfg .

If this option is not specified in the command line,
METRICTM will look for CLASSREPORT in the con-
figuration file. If it is not found, then this report will
not be generated.

This options applies only to ‘‘C++’’.

-ce n Specifies whether or not the class exception report,
filename.cex , is to be generated. A value of 1 means
to generate the report, a value of 0 will not generate
the report. This value overrides CLASSEXCEPTION
entry in the configuration file,.uxmetriccfg .

If this option is not specified in the command line,
METRICTM will look for CLASSREPORT in the con-
figuration file. If it is not found, then this report will
not be generated.

This options applies only to “C++”.

-c sym The -c sym option(s) specify the conditional compi-
lation directives that are to be TRUE. Any number
of -c sym options can be used. If you want all direc-
tives to be TRUE, use the option -call .

This option only applies to “C” and “C++”. Please
refer to Appendix A for “C” compilation directives
and Appendix B for “C++” compilation directives.

CHAPTER 7: Command Line Activation

150

-g n Indicates whether or not you want the generic in-
stantiated information printed in the Generic re-
port. A value of 1 prints the information, a value of
0 does not. This value overrides the entry in the
configuration file. Note that both the generic in-
stantiated information and the interface pragma in-
formation are printed in the report file
filename.gen .

Disabling one portion of the report does not stop
the report from being generated, but only a portion
of the report. The report will not be generated only
if both portions have been disabled.

This option applies only to Ada.

-i Directs METRICTM to display all processing mes-
sages on the screen. This option cannot be used
when redirecting or piping input and output.

-ne Directs METRICTM not to produce an Exception
report, filename.exp . This overrides the PRINTEXP
entry in the configuration file.

-pe n Indicates whether the Package Exception re-
port, filename.pex should be printed or not. A value
of 1 prints the report, a value of 0 does not. This op-
tion overrides the PRINTPKGEXP entry in the con-
figuration file.

This option applies only to Ada.

-p n Specifies the package break level. Use this option if
you wish to produce an Intermediate Summary
Complexity report at the package level. Package
breaks are only performed at the outermost level
‹em nested packages will not have a break. A value
of 0 indicates that no package breaks are to be per-
formed and a value of 1 indicates that package
breaks are to be done. This overrides the package
summary level parameter in the configuration file.

This option applies only to Ada.

METRIC User’s Guide

151

-pr n Indicates whether or not you want the Interface
Pragma information printed in the Generic re-
port, filename.gen . A value of prints the informa-
tion, a value of 0 does not. This value overrides the
entry in the configuration file.

Note that both the generic instantiated information
and the interface pragma information are printed in
the Generic report file.

Disabling one portion of the report does not stop
the report from being generated, but only a portion
of the report. The report will not be generated only
if both portions have been disabled.

This option applies only to Ada.

-s Directs METRICTM to produce only the Summary
report portion of filename.rpt (i.e., the procedure
by procedure report Complexity is not generat-
ed). This overrides the SUMMARY ONLY entry in the
configuration file.

-80|-132 These parameters indicate the column width of the
complexity report. This overrides the ’report width’
entry in the configuration file. The 132 column re-
port is the default.

Please note that the 80 column report does not have
the following complexity measures found in the
132 column report: P/R (Purity Ratio), BLK (Blank
Lines), CMT (Comment Lines), and VL (Variable
Name Length). The fields BLK and CMT are com-
bined into one field, B/C .

CHAPTER 7: Command Line Activation

152

If all options are used for each language, the following reports are gener-
ated:

• For ‘‘C’’:
• filename.rpt - The Complexity and the Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.

• For ‘‘C++’’:
• filename.rpt - The Complexity and the Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.
• filename.cls - The C++ Class and Class Summary

reports.
• filename.cht - The Class Hierarchy report.
• filename.cex - The Class Exception report.

• For Ada:
• filename.rpt - The Complexity , the Summary, and the

Package Intermediates reports.
• filename.exp - The Exception report.
• filename.err - The Error report.
• filename.gen - The Generic report.
• filename.pex - The Package Exception report.

• For FORTRAN:
• filename.rpt - The Complexity and Summary reports.
• filename.exp - The Exception report.
• filename.err - The Error report.

METRIC User’s Guide

153

7.4 ‘Xkiviat’ - Static Metrics Display System

This command produces an X Window display that shows the relation-
ships of a set of input factors, taken from a simple input file format, in a
standard kiviat diagram format.

The diagram has:
1. A minimum threshold inner circle.
2. A maximum outer circle.
3. Radii through the circles represent complexity metrics.
4. Plotted dots along the radii represent the observed values.
5. Text annotation of each radii in standard locations.
6. The set of dots is connected with a double-width line to illustrate the

relationships.

FIGURE 67 Example Kiviat Diagram

CHAPTER 7: Command Line Activation

154

Options and Parameters

The Xkiviat function is called as follows:

Xkiviat filename
[-n value]
[-q]
[-s x y]
[-v]

where the parameters and switches have the following values:

filename Input Data File Name. This file is “white-space” de-
limited and contains the following information for
each radius, or “arm” of the diagram: This argu-
ment is required to be present.

1. The minimum value for the minimum arm threshold.
2. The maximum value for the maximum arm threshold.
3. The actual value to be displayed on the arm.
4. The text (maximum 60 characters) to be displayed on the diagram.

-n value Number of Arms Value. This is the number of
“arms” in the kiviat chart. This number must be 4,
6, 8, 10, or 12. The default value is 8. (Actually, it
would be nice if it were able to do any number of
arms, say even 24(!), but that is not a hard require-
ment.)

If there is insufficient data to fill up all of the speci-
fied arms then the dots are placed at the midpoints
of non-specified arms.

Extra lines in the input file, beyond the number of
arms specified by -n , are ignored.

If the -n switch is absent, the Kiviat chart is drawn
with one arm for each non-blank or non-comment
line in the file.

-q Quiet Operation Switch. The version and compila-
tion date and other information is not displayed.

-s x y Diagram Size Switch. The size of the display in pix-
els. Default is 250 x 250. The actual diagram is
scaled to fit into the specified area.

-v Display Value Switch. The complexity measures
and the upper and lower threshold values are dis-
played in Kiviat

METRIC User’s Guide

155

Here is an example input file (lines with # are treated as comments):
This is a sample of the input file for
“Xkiviat”.
#
10 100 45 Number of State-
ments
Min Max Value Text
0.2 0.7 0.75 S1 Coverage Value
#
10 100 45 Number of State-
ments
#
0.5 0.9 0.75 C1 Coverage Value
#
0.2 0.7 0.75 S1 Coverage Value
#
10 100 45 Number of State-
ments
#

CHAPTER 7: Command Line Activation

156

7.5 Configuration File Processing

The configuration file, .uxmetriccfg , can be used to change various
guideline parameters supplied with the program. All configurations for
all language versions of METRICTM are contained in this file. The group
of entries pertaining to the “C” version of METRICTM must be preceded
by a single line containing the entry {C} . The end of the “C” entries
occurs when either a new METRICTM version is encountered (e.g.,
{C++}) or the end of file is reached. The Metric Configuration File can be
updated through the use of your favorite UNIX editor.

It may be placed in any directory you wish. METRICTM first checks the
user’s home directory for the file. If it is not found, then the environment
variable METRICCFG is checked for the location of .uxmetriccfg . To set
the environment variable, it is most convenient to add an entry to
your.login file indicating where the configuration file is at. For example:

setenv METRICCFG
/usr/staff/develop/.uxmetriccfg

You may change values for some or all of the defaults so as to tailor them
to your specifications.

The entries LOC, SEMI, SPAN,VARIABLE_LENGTH, VG, VG+, and VOLUME
refer to threshold values which METRICTM uses to determine if a proce-
dure exceeds user-defined complexity maximums. All procedures, func-
tions, or subprograms that exceed one or more of these values will be
listed in the Exception report. The default thresholds are general guide-
lines, but it is important that these values are tailored to the environment
and installation norms.

The parameters EO and SPEED are used in the Software Science calcula-
tions for predicted number of bugs (B^) and predicted development time
(T^). Again, the default values are general guidelines.

These parameters should be tailored to the environment METRICTM is
being used in. This can be done by retroactively applying METRICTM to
past code development projects. Assuming the database is representative
of current projects, these values should provide reasonably accurate esti-
mates in most cases.

The following parameters are available:

ADVLENGTH Exception Page Length. This parameter indicates
how many lines should be printed in a report be-
fore breaking for a new page. The default is 53 lines.

METRIC User’s Guide

157

ANALYZEINCLUDE Analyze Includes. This parameter indicates wheth-
er include files should be automatically analyzed (a
value of 1) or not analyzed (a value of 0). The de-
fault is to analyze the included files (1). If you chose
to not have include files automatically picked up,
you will have to explicitly list them in the files to be
analyzed.

This parameter is not available for Ada.

CLASSCHART Generate Class Chart. This parameter indicates
whether or not the filename.cht report is to be gen-
erated. A value of 1 will generate a report, a value
of 0 will not generate the report. These values can
be overridden with the command line parameter -
cht . The default is 1.

This parameter applies only to ‘‘C++’’.

CLASSEXCEPTION Generate Class Exception. This parameter indicates
whether or not the filename.cex report is to be gen-
erated. A value of 1 will generate a report, a value
of 0 will not generate the report. These values can
be overridden with the command line parameter -
ce . The default is 1.

This parameter applies only to ‘‘C++’’.

CLASSREPORT Generate Class Report. This parameter indicates
whether or not the filename.cls report is to be gen-
erated. A value of 1 will generate a report, a value
of 0 will not generate the report. These values can
be overridden with the command line parameter -
cr . The default is 1.

This parameter applies only to ‘‘C++’’.

COLSTART Starting Column. This parameter indicates in
which column the FORTRAN code starts - includ-
ing line labels. Generally this value will be 1. How-
ever, if you have some old FORTRAN code to be
analyzed that has the sequencing numbers appear-
ing in column 1 rather than after column 72, you
will need to change this value. The default value is
1.

This parameter is available for FORTRAN only.

CHAPTER 7: Command Line Activation

158

COMMENT_PERCENTComment Percentage. This parameter indicates
what percentage of a procedure’s lines of code
should be comprised of comments. A procedure’s
comment percentage is calculated as

Comments / (LOC - Blanks)

If a procedure does not meet this percentage, it will
be listed in the Exception report. The default val-
ue is 60.

COMMENT_SYMBOLComment Symbol. This parameter indicates that if
this symbol is found, the rest of the line is a com-
ment. The default value is set to 1, which will treat
the rest of the line as a comment; a value of 0 will
not treat it as a comment.

This parameter is available for FORTRAN only.

CONDCOMPILE Conditional Compilation. This parameter deter-
mines how compiler directives should be analyzed.
A value of 0 means that conditional compilation is
not enabled and, hence, all code contained in #if-
defs , #if , #else , etc. is analyzed. A value of 1
means that conditional compilation is enabled and
only if something has been defined will the #ifdef
code portion be analyzed; otherwise the #else/
#ifndef code portion is analyzed.

The default is set to 1. This option is available for
‘‘C’’ and ‘‘C++’’ only.

COUNTCR Count Carriage Returns. This parameter indicates
whether executable carriage returns should be
counted as an operator (value 1) or not counted
(value 0). Counting carriage returns as an operator
will affect the counts for n1 and N1. This option is
provided so that the FORTRAN analyzer is consis-
tent with the other METRICTM analyzers that count
a statement ender (such as a semicolon, ; , in lan-
guages such as “C”, “C++”, and Ada) as an opera-
tor. The default is 1.

This parameter is available for FORTRAN only.

COUNTINC Count Include Lines. The parameter determines
whether or not to count include lines. A value of 0
(the default) means include lines will not be count-
ed; a value of 1 will count include lines.

This parameter is available for FORTRAN only.

METRIC User’s Guide

159

DLINES Debug Lines. This parameter indicates whether de-
bug lines (lines with a ’D’ in column 1) are counted
as executable statements (a value of 1) or treated as
comment lines (a value of 0). The default is to treat
them as comment lines. The default value is 0.

For FORTRAN only.

EO Programmer Error Rate for each Procedure (for
‘‘C’’ and Ada), Function (for ‘‘C++’’), or Subpro-
gram (for Fortran). This is the value for predicting
the number of programming errors (B^) a program
should have. The default is set to 3200.

FREEFORMAT Free Format Line. This parameter identifies the for-
mat that lines in the source code take on. A value of
1 means that column restrictions of older FOR-
TRAN code is not followed. A value of 0 means that
columns are used and a line of code does not exceed
72 columns. The default value is 1.

This parameter is available for FORTRAN only.

GOTOS Maximum Gotos. This parameter indicates the
maximum number of GOTOs that a subprogram can
have before an exception is generated. The default
value is 5.

This parameter is available for FORTRAN only.

HEADER_SUMMARYHeader Summary. This parameter indicates wheth-
er a Summary report should be generated in the
x.rpt file even if no executable code was encoun-
tered. Since no operators and operands would have
been found, the information produced would be
lines of code, comment lines, and blank lines. A val-
ue of 1 generates the header summary and a value
of 0 does not. The default is 0.

This parameter is available for “C” and “C++” only.

CHAPTER 7: Command Line Activation

160

INCLUDE_DIR Included Directories. This parameter indicates the
directories to look for include files if they could not
be found given the information in the file being an-
alyzed. Any number of INCLUDE_DIR entries may
appear and each one will be searched in turn until
either the included file is found or no more places
are listed to look. The format for these entries is:

INCLUDE_DIR /dir1/dir2
INCLUDE_DIR /dir1/subdir2

where the path that is entered is the path leading to
the directory in which to search for the file.

This parameter is available for “C”, “C++” and For-
tran.

INLINE_COMMENTS Count In-line Comments. This parameter indicates
whether comments appearing on a line not by itself
should be included in the comment count. A value
of 1 counts inline comments; a value of 0 does not.
If inline comments are counted, then the sum of the
comments, blanks, and executable statements may
exceed the Lines of Code (LOC) count at both the
procedure by procedure level and the Summary
level. You do not want to count in-line comments if
you are trying to derive non-comment source state-
ments. 1 is the default value for “C”, “C++” and
Ada; 0 is the default value for FORTRAN.

LOC Lines of Code in a Procedure (for “C” and Ada),
Function (for “C++”), or Subprogram (for Fortran).
This default threshold value is set to 62 lines of code
for each procedure, function, or subprogram.

You can also edit this parameter from the GUI for
Xmetric with the Configuration window
(available with the Options pull-down menu).

MAXPKGN^ Package Maximum N^. This parameter indicates
what the minimum and maximum estimated
length of a package should be. Any time a package
does not meet or exceeds the standard, it will be
listed in the Package Exception report. A value
of zero will not generate an exception; only non-
zero entries will cause an exception to be listed. The
default is 0.

This parameter is available for Ada only.

METRIC User’s Guide

161

MAXPKGSEMI Package Maximum Statements. This parameter in-
dicates the minimum and maximum number of ex-
ecutable statements that a package should contain.
Any time that a package does not meet or exceeds
the standard, it will be listed in the package excep-
tion report. A value of zero will not generate an ex-
ception; only non-zero entries will cause an
exception to be listed. The default is 0.

This parameter is available for Ada only.

MAXSTDN^ Procedure Maximum N^. This parameter indicates
the minimum and maximum estimated length that
a procedure should have. Any time a procedure
does not meet or exceeds the standard, it will be
listed in the procedure Exception report. A value
of zero will not generate an exception; only non-
zero entries will cause an exception to be listed. The
default is 0.

This parameter is available for Ada only.

MINPKGN^ Package Minimum N^. This parameter indicates
what the minimum and maximum estimated
length of a package should be. Any time a package
does not meet or exceeds the standard, it will be
listed in the Package Exception report. A value
of zero will not generate an exception; only non-
zero entries will cause an exception to be listed. The
default is 0.

This parameter is available for Ada only.

MINPKGSEMI Package Minimum Statements. This parameter in-
dicates the minimum and maximum number of ex-
ecutable statements that a package should contain.
Any time that a package does not meet or exceeds
the standard, it will be listed in the package excep-
tion report. A value of zero will not generate an ex-
ception; only non-zero entries will cause an
exception to be listed. The default is 0.

This parameter is available for Ada only.

CHAPTER 7: Command Line Activation

162

MINPSEMI Procedure Minimum Statements. This parameter
indicates the minimum number of executable state-
ments that a procedure should have. Any time a
procedure does not meet the standard, it will be
listed in the procedure Exception report. A value
of zero will not generate an exception; only non-
zero entries will cause an exception to be listed. The
default is 0.

This parameter is available for Ada only.

MINSTDN^ Procedure Minimum N^. This parameter indicates
the minimum and maximum estimated length that
a procedure should have. Any time a procedure
does not meet or exceeds the standard, it will be
listed in the procedure Exception report. A value
of zero will not generate an exception; only non-
zero entries will cause an exception to be listed. The
default is 0.

This parameter is available for Ada only.

NESTED Nested Comments. Indicates whether your compil-
er allows nested comments or not. An entry of 0
means nested comments are not supported, and an
entry of 1 means nested comments are supported.
The default is set to 0.

This parameter is available for “C” and “C++” only.

NONEXE Nonexecutable Word File. This file contains a sort-
ed lists of all reserved words that are nonexecut-
able. This parameter is available for “C” and “C++”
only.

“C” cnonexe.tab

“C++” cppnonexe.tab

Please refer to the appendices for further informa-
tion on the above files.

NONEXCT Reserved Word Count. It specifies the number of
entries in the nonexecutable word file (NONEXCT).

This parameter is available for “C” and “C++” only.
The default for “C” is 25 and the default for “C++”
is 40.

METRIC User’s Guide

163

OUTSIDE_COMMENTCount Outside Comments. This parameter indi-
cates whether comments that occur before the start
of a procedure should be counted as part of the pro-
cedures comments.

A value of 1 counts outside comments; a value of 0
does not. Note that comment lines at the start of a
file will be associated with the first procedure en-
countered, giving it a higher comment count than
maybe it should have.

Also when counting outside comments, the proce-
dure’s lines of code count will be incremented by
the number of outside comments. You can then cal-
culate the value of Non-Comment Source State-
ments by subtracting out blanks and comments
from the procedures lines of code. 0 is the default
value for FORTRAN; 1 is the default value for “C”,
“C++” and Ada.

PAGE_BREAK Print Page Breaks. This parameter indicates wheth-
er a new page in the report should be started for
each file in the set of files being analyzed. If a large
number of files are being analyzed and each file
only contains a few subprograms, you will get a lot
of wasted paper when the reports are printed with
each file on a new page. A value of 1 prints page
breaks (default value), a value of 0 does not. The de-
fault is set to 1.

This parameter is available for FORTRAN only.

PAGE_HEADINGS Print Page Headings.This parameter indicates
whether a new report heading is printed for each
new file analyzed when pages are not skipped.

If PRINT_HEADINGS is set to 1, when a new file is
being analyzed, two lines in the report file are
skipped, a new report heading is printed, then all
subprograms associated with the file are printed in
the report. If PRINT_HEADINGS is set to 0 then all
subprograms from all files are listed in the report as
if they did not come from different files. The default
is set to 1.

This parameter is available for FORTRAN only.

CHAPTER 7: Command Line Activation

164

PAGELENGTH Report Page Length. This parameter indicates how
many lines should be printed in a report before
breaking for a new page. The default is 58 lines.

PKG_COUNT_ALL_LINES

Count Package Lines. This parameter indicates
whether or not to include all task and procedure
lines of code as part of the package’s lines of code.

A value of 1 includes all task and procedure lines of
code as part of the package’s lines of code in the
procedure by procedure Complexity Report. A
value of 0 (the default) treats only the code not con-
tained in a task/procedure as part of the package’s
lines of code for the Procedure by Procedure Com-
plexity Report.

In the case of a value of 0, the total of lines of code
in the procedure by procedure report for tasks, pro-
cedures, and packages will equal the value in the
Package Intermediate Summary report Lines
of Code (LOC) entry.

In the case of a value of 1, the lines of code entry for
the package in the procedure by procedure report
will be the same as the lines of code entry in the
Package Intermediate Summary report.

The default is 0. This parameter is available for Ada
only.

PKGLOC Package Lines of Code. This parameter indicates
the maximum lines of code a package should con-
tain. Any time a package exceeds this standard it
will be listed in the package exception report. A val-
ue of zero will not generate an exception; only non-
zero values will cause an exception to be listed. The
default is 62.

This parameter is available for Ada only.

METRIC User’s Guide

165

PKGSPAN Package Span of Reference. This parameter indi-
cates the maximum span of reference between vari-
ables that a package should contain. Any time a
package exceeds the standard, it will be listed in the
Package Exception report. A value of zero will
not generate an exception; only non-zero entries
will cause an exception to be listed. The default is 0.

This parameter is available for Ada only.

Package Summary Level. This parameter indicates
whether an Intermediate Summary complexity
report should be generated for packages. The val-
ues entered here may be either 0 or 1. A value of 0
inhibits the breaks from being printed. A value of 1
prints the report. Note that only the outermost
package will have a report printed. Packages nest-
ed within other packages will not have an interme-
diate report printed. The value entered here may be
overridden with the use of the command line pa-
rameter -p0 or -p1 . The default is set to 1.

This parameter is available for Ada only.

PKGVG Package Cyclomatic Complexity. This parameter
indicates what the maximum cyclomatic complexi-
ty for a package should be. Any time a package ex-
ceeds the standard, it will be listed in the Package
Exception report. A value of zero will not gener-
ate an exception; only non-zero entries will cause
an exception to be listed. The default is 0.

This parameter is available for Ada only.

PKGVG2 Package Extended Cyclomatic Complexity. This
parameter indicates what the maximum cyclomatic
complexity for a package should be. Any time a
package exceeds the standard, it will be listed in the
Package Exception report. A value of zero will
not generate an exception; only non-zero entries
will cause an exception to be listed. The default is 0.

This parameter is available for Ada only.

CHAPTER 7: Command Line Activation

166

PRINTER Report Width. The determines the width of the pro-
cedure by procedure complexity report. The values
entered here may be 80 or 132. Reports with 132 col-
umns allow larger field sizes as well as additional
metrics. The value entered here may be overridden
with the use of the command line parameter -80 or
-132 . The default is set to 132 columns.

PRINTEXP Exception Report. This parameter indicates wheth-
er you want the Exception report printed. A val-
ue of 1 means print the Exception report, a value
of 0 means do not print it. The command line option
-ne will override the default value of 1.

PRINTGENERIC Print Generic Report. This parameter indicates
whether or not the generic instantiated information
is printed in the Generic report. A value of 1
prints the generic information; a value of 0 does
not. The default is 1.

This parameter is available for Ada only.

PRINTPKGEXP Print Package Exception. This parameter indicates
whether or not an Package Exception report
filename.pex should be produced. A value of 1
means to print the report. A value of 0 means do not
print the report. Note that if the Package Summa-
ry level option is turned off, no Package Excep-
tion report will be generated. The command line
option -pen overrides this entry. The default is 1.

This parameter is available for Ada only.

PRINTPRAGMA Print Pragma Report. This parameter indicates
whether or not the interface pragma information is
printed in the Generic report. A value of 1 (the de-
fault) prints the pragma information; a value of 0
does not.

This parameter is available for Ada only.

PROTECTEDMEMS Protect Members/Class. The default is 0.

This parameter applies only to “C++”.

PUBLICMEMS Public Members/Class. The default is 0.

This parameter applies only to “C++”.

PRIVATEMEMS Private Members/Class. The default is 0.

This parameter applies only to “C++”.

METRIC User’s Guide

167

RESCT Reserved Word Count. For “C” and “C++”, it spec-
ifies the number of entries in the reserved word file
(RESFILE) and the nonexecutable word file (NON-
EXCT). For Ada and Fortran, it specifies the number
of entries in the reserved word file. You must spec-
ify this value if more entries exist than the default
values.

“C”, “C++” and Ada have a default word count of
100. Fortran’s default is 330.

RESFILE Reserved Word File. This file contains a sorted list
of all operators and executable reserved words.

“C”cresword.tab

“C++”cppresword.tab

Adaadaresword.tab

Fortranforreswo.tab

Please refer to the appendices for further informa-
tion on the above files.

SEMI Executable Semi-colons in a Procedure (‘‘C’’ and
Ada), or Function (for “C++”). Specifies the default
threshold value of executable statements in a proce-
dure or function. The default is set to 50 semi-co-
lons. Not available for FORTRAN.

You can also edit this parameter from the GUI for
Xmetric with the Configuration window
(available with the Options pull-down menu).

SPAN Average Span of Reference of variables in a Proce-
dure (“C” and Ada), Function (for “C++”), or Sub-
program (for Fortran). The default value is set to 10.

SPEED Programmer Speed for each Procedure (for “C” and
Ada), Function (for “C++”), or Subprogram (for
Fortran). This is the default threshold values for
predicting development time (T^). The default is
set to 18.

SPAN Average Span of Reference of variables in a Proce-
dure (“C” and Ada), Function (for “C++”), or Sub-
program (for Fortran). The default threshold is set
to 10.

CHAPTER 7: Command Line Activation

168

STATEMENT Executable Statements. Specifies the default thresh-
old value of executable statements in a subpro-
gram. The default is set to 50 semi-colons. Available
only for FORTRAN.

STDEXPLICIT Explicit In-line Functions. The default is 0.

This parameter applies only to “C++”.

STDFRIEND Friend Functions/Class. The default is 0.

This parameter applies only to “C++”.

STDFRIENDCLS Friend Classes/Class. The default is 0.

This parameter applies only to “C++”.

STDINLINE In-line Members/Class. The default is 0.

This parameter applies only to “C++”.

STDMEMBERS Members Per Class. The default is 0.

This parameter applies only to “C++”.

STDVIRTUAL Virtual Members/Class. The default is 0.

This parameter applies only to “C++”.

SUMMARYONLY Summary Only. This option indicates whether you
want only the summary of the Complexity report
(*.rpt) printed. A value of 1 means print summary
report only, a value of 0 means also produce the
procedure by procedure report. The command line
option -s will override this option.

UNIQUE_VARIABLESCount Unique Variables. This parameter indicates
how the average variable name length is computed.
A value of 1 calculates it based on unique variable
names and a value of 0 calculates it based on the
number of occurrences of each variable. The default
value is 1.

VARIABLE_LENGTH Average Variable Name Length. This parameter in-
dicates what the average variable name length
should be for each procedure. If a procedure does
not meet this average, it will be listed in the Excep-
tion report. The default value is 8.

METRIC User’s Guide

169

VG Cyclomatic Complexity number for a Procedure,
Function, or Subprogram. Specifies the cyclomatic
complexity number. The default threshold value is
set to 10.

You can also edit this parameter from the GUI for
Xmetric with the Configuration window
(available with the Options pull-down menu).

VG+ Extended Cyclomatic Complexity number for a
Procedure, Function, or Subprogram. Specifies the
extended cyclomatic complexity number. The de-
fault is set to 15.

You can also edit this parameter from the GUI for
Xmetric with the Configuration window
(available with the Options pull-down menu).

VOLUME Volume. This parameter indicates what the maxi-
mum volume of a procedure should be. Anytime a
procedure exceeds this standard, it will be listed in
the exception report. The default value is 3200.

WARNINGS Print Warnings. This parameter indicates whether
warning messages should be printed in the error
file, filename.err (value 1) or not printed (value 0).
The most common warning will be that a file does
not contain any executable code. The default is 1.

CHAPTER 7: Command Line Activation

170

171

 APPENDIX A

‘‘C’’ Notes

METRICTM for ‘‘C’’ consists of several files, the following of which will be
explained in this chapter:

• cmetric

• cresword.tab

• cnonexe.tab

cmetric

This file is the actual analyzer. It uses the remaining files in determining if
a word is an operator or an operand or if it is a nonexecutable word. A
complete description on how to use cmetric is given in the COMMAND
LINE ACTIVATION chapter (See CHAPTER 7 - Command Line Activa-
tion” on page 145.).

cresword.tab

This file contains a sorted list of all operators and reserved words for
standard ‘‘C’’. For a more detailed explanation of the contents of this file,
see Section A.1.

If you are using an extension to standard ‘‘C’’ and need to add/remove
items to/from the list, you may do so in one of two ways:

• Edit the file, cresword.tab , and add those entries not appear-
ing in the list and remove the entries that should not be in the list.
If the number of entries exceeds 100, you must make modifica-
tions to the configuration file .uxmetriccfg . Refer to the cor-
rect section for details on how to increase the number of
allowable entries (See Section 7.5 - “Configuration File Process-
ing” on page 156.).

APPENDIX A:

172

• Create a new reserved word file containing the operators and
executable reserved words for your version of ‘‘C’’. If this option
is chosen, you must use the configuration file indicating that a
different reserved word file is being used. See the correct section
for details on how to do this (See Section 7.5 - “Configuration File
Processing” on page 156.).

Before you modify the list, be sure to read the section that describes the
process, and understand the usage of some of the items (See Section 5.1.2
- “Software Development” on page 116.).

cnonexe.tab

This file contains a sorted list of all reserved words that are nonexecutable
as defined in ANSI standard ‘‘C’’ (for example, int , char , and struct).
For a more complete description of the contents of this file, refer to Sec-
tion A.2. When you analyze a program using METRICTM, statements
beginning with one of these words are skipped, and therefore do not
affect the operator or operand count.

If you are using an extension to standard ‘‘C’’ and need to add/remove
items to/from the list you may do so in one of the following ways:

• Edit the file cnonexe.tab and add those words not appearing
in the list or remove those words from the list that you wish to be
counted.

• Create a new nonexecutable word file containing the words not
to be counted. If this option is chosen, you must use the configu-
ration file, indicating that a different nonexecutable word file is
being used. See the correct section for information on how to do
this (See Section 7.5 - “Configuration File Processing” on page
156.).

Note that if there are more than 25 entries in the nonexecutable word file,
you must make a modification to the file .uxmetriccfg . See the correct
section for details on how to do this (See Section 7.5 - “Configuration File
Processing” on page 156.).

METRIC User’s Guide

173

A.1 Description of the Reports

This section describes the reports created by METRICTM: the Complexity
report, the Summary report, the Exception report, and the Error report.

The Complexity Report

The Complexity report by Procedure, filename.rpt includes the following
fields:

• Procedure Name
• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Length (N)
• Predicted Length (N^)
• Purity Ratio − estimated length divided by length (P/R)
• Volume (V)
• Effort (E)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Average Maximum Span of Reference of Variables (SP)
• Variable Name Length (VL)

Please refer to the correct chapter for an in-depth discussion of the vari-
ous fields. (See CHAPTER 3 - System Introduction” on page 39.)

APPENDIX A:

174

FIGURE 68 Complexity Report for ‘‘C’’

METRIC User’s Guide

175

The Summary Report

The Summary report (part of filename.rpt) consists of Complexity report
fields, with the exception of average maximum span of reference of vari-
ables and average variable name length. In addition it includes the val-
ues:

• Estimated errors (B^)
• Estimated development time (T^)
• Average cyclomatic complexity
• Average extended cyclomatic complexity
• Number of procedures

Please refer to the correct chapter for an explanation of the Summary
report’s fields (See CHAPTER 4 - System Operation” on page 71.).

The command line also allows you create an Intermediate Summary
report whenever there is a change in directory (-b n). This report may be
helpful if different subsystems of an application being analyzed are
placed in different directories and you want a Summary report for each
subsystem.

You can also create an Intermediate Summary report whenever a change
in the first n characters of the filename occurs (-b n). This report may be
helpful if the files comprising the different subsystems of an application
all have the same prefix and you want a Summary report for each sub-
system.

APPENDIX A:

176

See the correct chapter for command line activation (See CHAPTER 7 -
Command Line Activation” on page 145.).

FIGURE 69 Summary Report for ‘‘C’’

METRIC User’s Guide

177

The Exception Report

The Exception report is the third report created by METRICTM. Each pro-
cedure in the source files which exceeds a set of predefined complexity
maximums is included in this report. This report uses either the defined
standards specified in the configuration file or the GUI Configuration
Options window to determine what the maximum complexities are (See
Section 4.5.6 - “Setting Report Threshold Values” on page 95.).

FIGURE 70 Exception Report for ‘‘C’’

APPENDIX A:

178

The Error Report

The Error report will only be created if there was an error encountered
during processing and analysis. Possible errors are listed below:

• message: <<< Unable to open input file <filename> >>>
• cause: The file specified to be analyzed could not be found or

opened successfully
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message: <<< Unable to open reserved word file <filename> >>>
• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the pathname is correct.

• message: <<< Number of operators exceeds limit >>>
• cause: When modifying the reserved word file to include addi-

tional words, you exceeded the default limit, or the reserved
word limit is too small.

• remedy: Add or modify the configuration file parameter RESCT.

• message:

<<< Unable to open nonexecutable word file <filename> >>>
• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message:

<<< Number of nonexecutable words exceeds limit >>>
• cause: The number of nonexecutable words in the nonexecutable

word file exceeds the default limit or the limit is too small.
• remedy: Add or modify the configuration file parameter NON-

EXCT to accommodate the number of entries. Typedefs are stored
internally as nonexecutable words and therefore require a larger
NONEXCT.

METRIC User’s Guide

179

• message: <<< Heap overflow - reorganize source program >>>
• cause: Your file to be analyzed contains too many unique oper-

ands or operators. You have run out of memory to continue pro-
cessing.

• remedy: Remove RAM resident routines or do not analyze as
many source files at one time.

• message:<<< Improper pathname or no files found >>>
• cause: The file names entered could not be opened.
• remedy: Check the spelling of the file names and make sure the

directory path is correct.

• message: <<< Unable to create reserved word dynamic array >>>
• cause: Not enough memory is available to load the reserved

word lists.
• remedy: Make sure that the entry RESCT is not overly large.

• message: <<< Unexpected end of file - analysis aborting >>>
• cause: The end of file has been reached before the end of the pro-

cedure.
• remedy: Make sure your source file compiles. If it does, contact

Software Research.

• message: <<<Unable to open include file <filename> >>>
• cause: The include file could not be found given the specification

in the source code.
• remedy: Make sure the include file exists. If it exists in a different

directory than specified in the source code, make INCLUDE_DIR
entries in the configuration file.

APPENDIX A:

180

A.2 Counting Rules

This chapter describes the rules METRICTM uses in analyzing ‘‘C’’ pro-
grams. It addresses issues associated with the reserved word and nonexe-
cutable word files used in the analysis, miscellaneous counting rules of
operators and operands, cyclomatic complexity, executable semicolons,
variable name length, span of reference, and line of code counting rules.
Description of the Halstead Software Science entries can be found in the
correct chapter (See CHAPTER 4 - System Operation” on page 71.).

Reserved Word/Nonexecutable Word File

The reserved word file, cresword.tab , contains a list of ‘‘C’’ operators.
To see what this file is comprised of, simply print out the file. The nonexe-
cutable word file, cnonexe.tab , contains a list of nonexecutable words
for ANSI ‘‘C’’. A few of the items in cresword.tab are not part of stan-
dard ‘‘C’’ and are explained below.

• In ‘‘C’’, a parenthesis has three uses: it can change the default
ordering of arithmetic operations, it follows a procedure call, and
it follows a control statement. To distinguish these uses, three dif-
ferent parentheses have been defined in the file: “(” indicates an
arithmetic paren, “(c ” indicates a paren following a control state-
ment, and “(p ” indicates a paren following a procedure call.
Each of these are a different use of a parenthesis and, therefore,
each is a different operator.

• In ‘‘C’’, the asterisk, * , has two uses: as a multiplication sign and
as a pointer. To distinguish these uses, two asterisks have been
defined: “* ” indicates multiplication, and “*p ” indicates a
pointer. Since these are different meanings, each is counted as a
different operator.

• In ‘‘C’’, the ampersand, &, has two uses: as a unary AND operator
and as an address operator. To distinguish these uses, two amper-
sands have been defined: “&” indicating unary AND, and “&p”
indicating the address operator. Since these are different mean-
ings, each is counted as a different operator.

• Certain items in the list are not counted. These are the items that
must be paired with another and consist of:) , } ,] , while when
associated with do and “: ” when associated with “?”. Also not
counted are the single quote, ’ , and double quote, ” . These sig-
nals the start of a string and is counted as part of the string.

Any statement preceded by one of the words in the nonexecutable word
file is considered nonexecutable and, hence, ignored with the following
exception:

METRIC User’s Guide

181

• A nonexecutable word can precede a procedure name and still
allow the procedure to be recognized. For example:

 long roundit(x)
 double x;
 {
 .
 .
 .
 }

will see that roundit(x) is a procedure, skip over double x ,
and begin analyzing the code contained within {...} .

• When a nonexecutable word appears after a parenthesis, then a
cast operation is being performed. In this case, the entire string
between parentheses is considered to be an operand. For example
in the following,

y = (float) x;
return((struct tnode *)t);

float and struct tnode * are considered to be operands. The
parenthesis, in this case is counted as an arithmetic parenthesis.

Miscellaneous Operator/Operand Rules

The following are some miscellaneous rules used when counting opera-
tors and operands

• Procedure calls are counted as operators.
• All operands are considered to be global in the Summary report.

Therefore, local variables of the same name defined in different
procedures are counted as multiple occurrences of the same vari-
able for purposes of the Summary report.

• C is case sensitive. Therefore, x and X are two different operands.
• When using goto s, the goto label is treated as an operator and

the occurrence of the label in the code is an operand. The colon
following the label is an operator.

Cyclomatic Complexity

The following control structures increment the cyclomatic complexity
count: if , while (unassociated with do), do , for , ?: , and case . Occur-
rences of else do not increment the count. The extended cyclomatic com-
plexity is incremented for each of these operators plus && and || .

APPENDIX A:

182

Span of Reference

The span of reference counts the maximum number of lines between ref-
erences to each variable in a procedure (either use or assignment). The
average of all the maximum references is then computed. This average for
each procedure is listed in the Complexity report.

Executable Semi-colons

Executable semicolons begin counting with the first executable line of
code. Hence, all declarations are not included. for loops will contribute
two executable semicolons.

Average Variable Name Length

The average variable name length provides a ‘readability index’ based on
variable naming conventions. The value can be calculated in two ways,
based on the configuration file entry UNIQUE_VARIABLES. If
UNIQUE_VARIABLES is set to 1, then the length of all unique variable
names (used at least once) is divided by the number of unique variables.
If UNIQUE_VARIABLES is set to 0, then a weighted calculation is done.
With this method, for all variables, the length of the variable name is mul-
tiplied by the number of times the variable is used and this sum is
divided by the total count of variable usage. Note that this is not the same
as dividing by n2 (in the first case) or N2 (in the second case). n2 and N2
include numeric constants and literal strings whereas these calculations
are concerned only with variables.

Lines of Code

Lines of code for a procedure include all lines of code from the procedure
heading to the last statement of the procedure, } . This includes com-
ments, blanks and continued lines. In addition, if OUTSIDE_COMMENTS
are being counted, then the line of code count for the procedure will be
incremented by the number of outside comments encountered.

Comments

The number of comments in a procedure is the count of all comments on
a line by themselves encountered within the body of the procedure. If a
single comment spans multiple lines, the number of lines that it spans is
added to the comment count. If INLINE_COMMENTS is 1, then comments
on the same line as an executable statement will also increment the count.
If OUTSIDE_COMMENTS is 1, then comments outside of the scope of any
procedure immediately before the procedure are added to the count.

METRIC User’s Guide

183

A.3 Creating a Shell Script File

If there are a group of programs to be analyzed, where a separate report is
to be produced for each program, it may be convenient to analyze them
all at once through the use of a shell script. To create a shell script, create a
file, filename, and enter METRICTM command lines as though they were
being entered at the system prompt. Make sure that for the filename you
choose, there does not currently exist a command of the same name. You
may use the command line mode with or without display to analyze the
files.

For example, suppose we create a shell script shtest that contains the
following:

 #! /bin/sh -f
 cmetric cmetric
 cmetric filematch tool

“cmetric ” must appear as the first word on the line since it is the pro-
gram to be executed. The source file(s) to be analyzed and any command
line parameters follow. Be sure to include pathnames for those files to be
analyzed that do not reside in the current directory.

You can run the shell script file in either of the following ways:
• At the system prompt, give the filename as an argument to the sh

command. For example:
 sh shtest

• Use the chmod command to make the file executable and then
use the name of the shell script like any other command. For
example:

 chmod 755 shtest

Each source file in the shell script will be processed in turn. If a file is not
found in the shell script, processing will continue with the next file. An
error file will be created for each file in which an error occurred.

APPENDIX A:

184

A.3.1 Conditional Compilation Directives

METRICTM for ‘‘C’’ will support the following conditional compilation
directives:

 - #define
 - #undef
 - #ifdef
 - #else
 - #elif
 - #if sym
 - #if defined(sym)
 - #ifndef
 - #endif

A symbol can be defined using a combination of either of the following
methods:

• On the command line, specify any number of -c sym options
where sym is the symbol to be defined. If every symbol is to be
defined, specify -call . However, if -call is used, the #undef
sym will not work and all symbols will remain defined through
completion of analysis.

• In the source files being analyzed, if a statement such as
 #define sym

 appears, then sym will be defined through the completion of
analysis of all the files (or until a #undef sym statement occurs).

If there are a large number of symbols to be defined whose definitions do
not occur in the source files to be analyzed, it may not be feasible to list
them all on the command line. In this case you can list them in a separate
file. This file must be specified as the first file to be analyzed so that all the
definitions can be picked up. For example, suppose the file, hdrfile.h ,
consists of the following:

#define VAX
#define unix
#define DEMO

then cmetric should be invoked with the command:
cmetric hdrfile.h *.c

Note that the file hdrfile.h does not contain any executable code.
Therefore, an error file, hdrfile.err , will be created with the message:

File hdrfile.h does not contain any exe-
cutable code

This is just a warning message and does not affect the analysis process.

METRIC User’s Guide

185

Some processing notes when using conditional compilation directives:
• If the configuration file parameter CONDCOMPILE is 1 and no

-c sym options are specified on the command line and no
#define statements are found, then all #else portions of
#ifdef (or #if), all #ifndef , #if ! sym, and #if
!defined (sym) portions of the code will be analyzed.

• If the configuration file parameter CONDCOMPILE is 0 and no
-c sym options on the command line appear, then none of the
#define statements will be picked up and all compiler direc-
tives will be ignored and every line of code will be analyzed.

• If the configuration file parameter CONDCOMPILE is 0 and one or
more -c sym options are specified, then the configuration file
parameter is overridden. Also, any #define statements in the
code will be picked up.

APPENDIX A:

186

A.3.2 Comments About METRIC

If you analyze your programs before they are completed and you have
empty procedures such as the following:

 procA()
 {
 }

 You will get spurious results for that procedure in the Complexity report.
The above example does not contain any operands and many of the met-
rics are not defined for programs without operators or operands.

Throughout this manual, it was said the METRICTM can be used to ana-
lyze any compilable ‘‘C’’ program. There is an exception to this. Some
programmers find it convenient to write ‘‘C’’ code as if it were Pascal by
doing the following:

#define BEGIN {
#define END }
 .
 .
 .
 main()
 BEGIN
 .
 .
 .
 END

Even though the above code compiles, METRICTM cannot analyze this
type of code correctly. METRICTM looks for “{ ” to determine when exe-
cutable code starts and “} ” to signal the end. Analyzing code written in
this manner will cause much, if not all, of the code to be treated as nonex-
ecutable, and thus ignored. Calculations will be made but they will not be
correct.

If any of your code is written in this manner, you can run it through a pre-
processor commonly included with most C compilers that expands all
#define statements and then run METRICTM on the expanded code.
Redefinitions of other special words (e.g.: if) can also cause inaccuracies
in the reports. For this reason, it is highly recommended that code to be
analyzed be run through a preprocessor first if it contains any of this type
of #define statements.

187

APPENDIX B

‘‘C++’’ Notes

METRICTM for ‘‘C++’’ consists of several files, the following of which will
be explained in this chapter:

• cppmetric

• cppresword.tab

• cppnonexe.tab

cppmetric

This file is the actual analyzer. It uses the remaining files in determining if
a word is an operator or an operand or if it is a nonexecutable word. A com-
plete description on how to use cppmetric is given in the COMMAND
LINE ACTIVATION chapter.

cppresword.tab

This file contains a sorted list of all operators and reserved words for
standard ‘‘C++’’. See Section B.2 for a more detailed explanation of the
contents of this file .

If you are using an extension to standard ‘‘C++’’ and need to add/remove
items to/from the list, you may do so in one of two ways:

• Edit the file, cppresword.tab , and add those entries not
appearing in the list and remove the entries that should not be in
the list. If the number of entries exceeds 100, you must make
modifications to the configuration file .uxmetriccfg . Refer to
the correct section for details on how to increase the number of
allowable entries (See Section 7.5 - “Configuration File Process-
ing” on page 156.).

• Create a new reserved word file containing the operators and
executable reserved words for your version of ‘‘C++’’. If this

APPENDIX B:

188

option is chosen, you must use the configuration file indicating
that a different reserved word file is being used. See the correct
section for details on how to do this (See Section 7.5 - “Configura-
tion File Processing” on page 156.).

Before you modify the list, be sure to read Section the correct section and
understand the usage of some of the items (See Section 5.1.2 - “Software
Development” on page 116.).

cppnonexe.tab

This file contains a sorted list of all reserved words that are nonexecutable
as defined in ANSI standard ‘‘C++’’. For example, int , char , and
struct . For a more complete description of the contents of this file, refer
to Section B.2. When you analyze a program using METRICTM, state-
ments beginning with one of these words are skipped, and therefore do
not affect the operator or operand count.

If you are using an extension to standard ‘‘C++’’ and need to add/remove
items to/from the list you may do so in one of the following ways:

• Edit the file cppnonexe.tab and add those words not appear-
ing in the list or remove those words from the list that you wish
to be counted.

• Create a new nonexecutable word file containing the words not
to be counted. If this option is chosen, you must use the configu-
ration file, indicating that a different nonexecutable word file is
being used. See Section B.2 for information on how to do this.

Note that if there are more than 25 entries in the nonexecutable word file,
you must make a modification to the file .uxmetriccfg . See Section B.2
for details on how to do this.

METRIC User’s Guide

189

B.1 Description of the Reports

This section describes the reports created by METRICTM: the Complexity
report, the Summary report, the Exception report, the Error report, the
C++ Class Report, the Class Summary report, the Class Hierarchy
report, and the Class Exception report.

The Complexity Report

The Complexity report by Procedure, filename.rpt , includes the follow-
ing fields:

• procedure name
• in-line functions (FT)
• unique operators (n1)
• unique operands (n2)
• total operators (N1)
• total operands (N2)
• length (N)
• predicted length (N^)
• purity ratio ‹em estimated length divided by length (P/R)
• volume (V)
• effort (E)
• cyclomatic complexity (VG1)
• extended cyclomatic complexity (VG2)
• lines of code (LOC)
• blank lines of code (BLK)
• comment lines of code (CMT)
• executable semi-colons (<;>)
• average maximum span of reference of variables (SP)
• variable name length (VL)

Note: All fields, except FT, are discussed in a prior chapter (See CHAP-
TER 5 - Helpful Hints” on page 115.). FT identifies in-line functions. You
can tell if a function is a an in-line function, if a function is listed as func-
tion|classname and PV is listed in the FT column.

APPENDIX B:

190

FIGURE 71 Complexity Report for ‘‘C++’’

METRIC User’s Guide

191

The Summary Report

The Summary report consists of Complexity report fields, with the
exception of average maximum span of reference of variables (SP) and
average variable name length (VL). In addition it includes the values:

• Estimated errors (B^)
• Estimated development time (T^)
• Average cyclomatic complexity
• Average extended cyclomatic complexity
• Number of procedures

Please refer to the correct chapter for an explanation of the Summary
report’s fields (See CHAPTER 5 - Helpful Hints” on page 115.).

The command line also allows you create an Intermediate Summary
report whenever there is a change in directory (-b n). This report may be
helpful if different subsystems of an application being analyzed are
placed in different directories and you want a Summary report for each
subsystem.

You can also create an Intermediate Summary report whenever a change
in the first n characters of the filename occurs (-b n). This report may be
helpful if the files comprising the different subsystems of an application
all have the same prefix and you want a Summary report for each sub-
system.

Please see the correct chapter for command line activation (See CHAP-
TER 7 - Command Line Activation” on page 145.).

APPENDIX B:

192

FIGURE 72 Summary Report for ‘‘C++’’

METRIC User’s Guide

193

The Exception Report

The Exception report is the next report created by METRICTM. Each pro-
cedure in the source files which exceeds a set of predefined complexity
maximums is included in this report. This report uses either the defined
standards specified in the configuration file or the GUI’s Configuration
Options window (See Section 4.5.6 - “Setting Report Threshold Values”
on page 95.) to determine what the maximum complexities are.

FIGURE 73 Exception Report for ‘‘C++’’

APPENDIX B:

194

The Error Report

The Error report will only be created if there was an error encountered
during processing and analysis. Possible errors are listed below:

• message: <<< Unable to open input file <filename> >>>
• cause: The file specified to be analyzed could not be found or

opened successfully.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message: <<< Unable to open reserved word file <filename> >>>
• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the pathname is correct.

• message: <<< Number of operators exceeds limit >>>
• cause: When modifying the reserved word file to include addi-

tional words, you exceeded the default limit, or the reserved
word limit is too small.

• remedy: Add or modify the configuration file parameter RESCT.

• message: <<< Unable to open nonexecutable word file <file-
name> >>>

• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message: <<< Number of nonexecutable words exceeds limit
>>>

• cause: The number of nonexecutable words in the nonexecutable
word file exceeds the default limit or the limit is too small.

• remedy: Add or modify the configuration file parameter NON-
EXCT to accommodate the number of entries. Typedefs are stored
internally as nonexecutable words and therefore require a larger
NONEXCT.

• message: <<< Heap overflow - reorganize source program >>>

METRIC User’s Guide

195

• cause: Your file to be analyzed contains too many unique oper-
ands or operators. You have run out of memory to continue pro-
cessing.

• remedy: Remove RAM resident routines or do not analyze as
many source files at one time.

• message: <<< Improper pathname or no files found >>>
• cause: The file names entered could not be opened.
• remedy: Check the spelling of the file names and make sure the

directory path is correct.

• message: <<< Unable to create reserved word dynamic array >>>
• cause: Not enough memory is available to load the reserved

word lists.
• remedy: Make sure that the entry RESCT is not overly large.

• message: <<< Unexpected end of file - analysis aborting >>>
• cause: The end of file has been reached before the end of the pro-

cedure.
• remedy: Make sure your source file compiles. If it does, contact

Software Research.

• message: Unable to open include file <filename>
• cause: The include file could not be found given the specification

in the source code.
• remedy: Make sure the include file exists. If it exists in a different

directory than specified in the source code, make INCLUDE_DIR
entries in the configuration file.

APPENDIX B:

196

C++ Class Report

The C++ Class Report, filename.cls , specifies the number of members in
each class, the type of members in each class, the number of in-line and
virtual functions in each class, as well as how many friend functions and
friend classes are associated with each class.

It contains the following fields:
• Class being analyzed.
• Its base class (Baseclass).
• Public functions and variable members (Public Var/Fct).
• Private functions and variable members (Private Var/Fct).
• Private functions and variable members (Private Var/Fct).
• Total functions and variable members (Total Membs).
• Count of In-Line Function Members (Inline).
• Count of Virtual Function Members (Virt).
• Count of Friend Classes and functions (Friend Cls/Fct).

Class Summary

‘‘C++’’ also produces a summary listing the averages of the different
members listed in the C++ Class Report, a part of filename.cls .

It contains the following fields:
• Number of Classes.
• Average Number of Members per Class.
• Average Number of Private Members per Class.
• Average Number of Public Members per Class.
• Average Number of Protected Members per Class.
• Average Number of In-line Members per Class.
• Number of Explicit In-Line Functions.
• Average Number of Friend Functions per Class.
• Average Number of Friend Classes per Class.

METRIC User’s Guide

197

Class Hierarchy

The Class Hierarchy report, filename.cht , lists all the base classes and
their derived classed for all files analyzed. It can help you easily identify
what classes are derived from other classes.

Class Exception Report

The Class Exception report, filename.cex , contains a listing of all the
classes which exceed predefined standards. This report is very similar to
the Exception report. These standard or defaults are listed in the configu-
ration file. (See Section 7.5 - “Configuration File Processing” on page 156.)

APPENDIX B:

198

B.2 Counting Rules

This chapter describes the rules METRICTM uses in analyzing ‘‘C++’’ pro-
grams. It addresses issues associated with the reserved word and nonexe-
cutable word files used in the analysis, miscellaneous counting rules of
operators and operands, cyclomatic complexity, executable semicolons,
variable name length, span of reference, and line of code counting rules.
Description of the Halstead Software Science entries can be found in the
another section (See Section 5.1.2 - “Software Development” on page
116.).

Reserved Word/Nonexecutable Word Files

The reserved word file, cppresword.tab , contains a list of ‘‘C++’’ oper-
ators. To see what this file is comprised of, simply print out the file. The
nonexecutable word file, cppnonexe.tab , contains a list of nonexecut-
able words for ANSI C++. A few of the items in cppresword.tab are
not part of standard ‘‘C++’’ and are explained below.

• In ‘‘C++’’, a parenthesis has three uses: it can change the default
ordering of arithmetic operations, it follows a procedure call, and
it follows a control statement. To distinguish these uses, three dif-
ferent parentheses have been defined in the file: “(” indicates an
arithmetic paren, “(c ” indicates a paren following a control state-
ment, and “(p ” indicates a paren following a procedure call.
Each of these are a different use of a parenthesis and, therefore,
each is a different operator.

• In ‘‘C++’’, the asterisk, * , has two uses: as a multiplication sign
and as a pointer. To distinguish these uses, two asterisks have
been defined: “* ” indicates multiplication, and “*p ” indicates a
pointer. Since these are different meanings, each is counted as a
different operator.

• In ‘‘C++’’, the ampersand, &, has two uses: as a unary AND opera-
tor and as an address operator. To distinguish these uses, two
ampersands have been defined: “&” indicating unary AND, and
“&p” indicating the address operator. Since these are different
meanings, each is counted as a different operator.

• Certain items in the list are not counted. These are the items that
must be paired with another and consist of:) , } ,] , while when
associated with do and “: ” when associated with “?”. Also not
counted are the single quote, ’ , and double quote, “ . These sig-
nals the start of a string and is counted as part of the string.

METRIC User’s Guide

199

Any statement preceded by one of the words in the nonexecutable word
file is considered nonexecutable and, hence, ignored with the following
exception:

• A nonexecutable word can precede a procedure name and still
allow the procedure to be recognized. For example:

 long roundit(x)
 double x;
 {
 .
 .
 .
 }

will see that roundit(x) is a procedure, skip over double x , and begin
analyzing the code contained within {...} .

• When a nonexecutable word appears after a parenthesis, then a
cast operation is being performed. In this case, the entire string
between parentheses is considered to be an operand. For example
in the following,

 y = (float) x;
 return((struct tnode *)t);

float and struct tnode * are considered to be operands. The parenthe-
sis, in this case is counted as an arithmetic parenthesis.

Miscellaneous Operator/Operand Rules

The following are some miscellaneous rules used when counting opera-
tors and operands:

• Procedure calls are counted as operators.
• All operands are considered to be global in the Summary report.

Therefore, local variables of the same name defined in different
procedures are counted as multiple occurrences of the same vari-
able for purposes of the Summary report.

• C is case sensitive. Therefore, x and X are two different operands.
• When using goto s, the goto label is treated as an operator and

the occurrence of the label in the code is an operand. The colon
following the label is an operator.

APPENDIX B:

200

Cyclomatic Complexity

The following control structures increment the cyclomatic complexity
count: if , while (unassociated with do), do , for, ?: , and case . Occur-
rences of else do not increment the count. The extended cyclomatic com-
plexity is incremented for each of these operators plus && and || .

Span of Reference

The span of reference counts the maximum number of lines between ref-
erences to each variable in a procedure (either use or assignment). The
average of all the maximum references is then computed. This average for
each procedure is listed in the Complexity report.

Executable Semi-colons

Executable semicolons begin counting with the first executable line of
code. Hence, not all declarations are included. for loops will contribute
two executable semicolons.

Average Variable Name Length

The average variable name length provides a ‘readability index’ based on
variable naming conventions. The value can be calculated in two ways,
based on the configuration file entry UNIQUE_VARIABLES. If UNIQUE_
VARIABLES is set to 1, then the length of all unique variable names (used
at least once) is divided by the number of unique variables. If UNIQUE_
VARIABLES is set to 0, then a weighted calculation is done. With this
method, for all variables, the length of the variable name is multiplied by
the number of times the variable is used and this sum is divided by the
total count of variable usage. Note that this is not the same as dividing by
n2 (in the first case) or N2 (in the second case). n2 and N2 include
numeric constants and literal strings whereas these calculations are con-
cerned only with variables.

Lines of Code

Lines of code for a procedure include all lines of code from the procedure
heading to the last statement of the procedure, } . This includes com-
ments, blanks and continued lines. In addition, if OUTSIDE_COMMENTS
are being counted, then the line of code count for the procedure will be
incremented by the number of outside comments encountered.

METRIC User’s Guide

201

Comments

The number of comments in a procedure is the count of all comments on
a line by themselves encountered within the body of the procedure. If a
single comment spans multiple lines, the number of lines that is spans is
added to the comment count. If INLINE_COMMENTS is 1, then comments
on the same line as an executable statement will also increment the count.
If OUTSIDE_COMMENTS is 1, then comments outside of the scope of any
procedure immediately before the procedure are added to the count.

APPENDIX B:

202

B.3 Creating a Shell Script File

If there are a group of programs to be analyzed, where a separate report is
to be produced for each program, it may be convenient to analyze them
all at once through the use of a shell script. To create a shell script, create a
file, filename, and enter METRICTM command lines as though they were
being entered at the system prompt. Make sure that for the filename you
choose, there does not currently exist a command of the same name. You
may use the command line mode with or without display to analyze the
files.

For example, suppose we create a shell script shtest that contains the
following:

 #! /bin/sh -f^M
 cppmetric cppmetric
 cppmetric filematch tool

“cppmetric ” must appear as the first word on the line since it is the pro-
gram to be executed. The source file(s) to be analyzed and any command
line parameters follow. Be sure to include pathnames for those files to be
analyzed that do not reside in the current directory.

You can run the shell script file in either of the following ways:
• At the system prompt, give the filename as an argument to the sh

command. For example:
 sh shtest

• Use the chmod command to make the file executable and then
use the name of the shell script like any other command. For
example:

 chmod 755 shtest
 shtest

• Each source file in the shell script will be processed in turn. If a
file is not found in the shell script, processing will continue with
the next file. An error file will be created for each file in which an
error occurred.

METRIC User’s Guide

203

B.3.1 Conditional Compilation Directives

METRICTM for ‘‘C++’’ will support the following conditional compilation
directives:

 - #define
 - #undef
 - #ifdef
 - #else
 - #elif
 - #if sym
 - #if defined(sym)
 - #ifndef
 - #endif

A symbol can be defined using a combination of either of the following
methods:

• On the command line, specify any number of -c sym options
where sym is the symbol to be defined. If every symbol is to be
defined, specify -call . However, if -call is used, the #undef
sym will not work and all symbols will remain defined through
completion of analysis.

• In the source files being analyzed, if a statement such as
#define sym

 appears, then sym will be defined through the completion of
analysis of all the files (or until a #undef sym statement occurs).

If there are a large number of symbols to be defined whose definitions do
not occur in the source files to be analyzed, it may not be feasible to list
them all on the command line. In this case you can list them in a separate
file. This file must be specified as the first file to be analyzed so that all the
definitions can be picked up. For example, suppose the file, hdrfile.h ,
consists of the following:

#define VAX
#define unix
#define DEMO

then cppmetric should be invoked with the command:

 cppmetric hdrfile.h *.c

Note that the file hdrfile.h does not contain any executable code.
Therefore, an error file, hdrfile.err , will be created with the message:

APPENDIX B:

204

File hdrfile.h does not contain any exe-
cutable code

This is just a warning message and does not affect the analysis process.

The following are some processing notes when using conditional compi-
lation directives:

• If the configuration file parameter CONDCOMPILE is 1 and no
-c sym options are specified on the command line and no
#define statements are found, then all #else portions of
#ifdef (or #if), all #ifndef , #if ! sym, and #if
!defined (sym) portions of the code will be analyzed.

• If the configuration file parameter CONDCOMPILE is 0 and no
-c sym options on the command line appear, then none of the
#define statements will be picked up and all compiler direc-
tives will be ignored and every line of code will be analyzed.

• If the configuration file parameter CONDCOMPILE is 0 and one or
more -c sym options are specified, then the configuration file
parameter is overridden. Also, any #define statements in the
code will be picked up.

METRIC User’s Guide

205

B.3.2 Comments About METRIC

If you analyze your programs before they are completed and you have
empty procedures such as the following:

 procA()
 {
 }

You will get spurious results for that procedure in the Complexity report.
The above example does not contain any operands and many of the met-
rics are not defined for programs without operators or operands.

If your code contains typedef , class , struct , or enum definitions in
the header files, make sure these files are analyzed first. cppmetric
needs to see these definitions so that it can correctly distinguish when
executable code begins. Otherwise, the operator and operand count will
be inaccurate, and the analysis may not proceed correctly. If you get the
error message:

Number of nonexecutable words exceed limit

when analyzing your files, you have more than 40 typedefs , classes ,
structs , and/or rnums . Simply modify the configuration file parame-
ter NONEXCT to accommodate the number of declarations. cppmetric
allows 40 words above what is specified in the NONEXCT parameter for
these declarations.

Throughout this manual, it was said the METRICTM can be used to ana-
lyze any compilable ‘‘C++’’ program. There is an exception to this. Some
programmers find it convenient to write ‘‘C++’’ code as if it were Pascal
by doing the following:

#define BEGIN {
#define END }
.
.
.
main()
BEGIN
.
.
.
END

Even though the above code compiles, METRICTM cannot analyze this
type of code correctly. METRICTM looks for “{ ” to determine when exe-
cutable code starts and “} ” to signal the end. Analyzing code written in
this manner will cause much, if not all, of the code to be treated as nonex-

APPENDIX B:

206

ecutable, and thus ignored. Calculations will be made but they will not be
correct.

If any of your code is written in this manner, you can run it through a pre-
processor commonly included with most ‘‘C++’’ compilers that expands
all #define statements and then run METRICTM on the expanded code.
Redefinitions of other special words (e.g.: if) can also cause inaccuracies
in the reports. For this reason, it is highly recommended that code to be
analyzed be run through a preprocessor first if it contains any of this type
of #define statements.

207

APPENDIX C

Ada Notes

METRICTM for Ada consists of several files, two of which will be
explained in this chapter:

• adametric

• adaresword.tab.

adametric

This file is the actual analyzer. It uses the remaining files in determining if
a word is an operator or an operand or if it is a nonexecutable word. A com-
plete description on how to use adametric is given in the COMMAND
LINE ACTIVATION chapter (See CHAPTER 7 - Command Line Activa-
tion” on page 145.).

adaresword.tab

This file contains a sorted list of all operators and reserved words for
standard Ada. For a more detailed explanation of the contents of this file,
see Section C.2.

If you are using an extension to standard Ada and need to add/remove
items to/from the list, you may do so in one of two ways:

• Edit the file, adaresword.tab , adding those entries not appear-
ing in the list and removing the entries that should not be in the
list.

• Create a new reserved word file containing the operators and
executable reserved words for your version of Ada. If this option
is chosen, you must use the configuration file indicating that a
different reserved word file is being used. See the correct section
for details on how to do this (See Section 7.5 - “Configuration File
Processing” on page 156.).

APPENDIX C:

208

C.1 Description of the Reports

This section describes the reports created by METRICTM: the Complexity
report, the Summary report, the Exception report, the Error report, the
Generic report, the Package Exception report, and the Package Interme-
diates report.

The Complexity Report

The Complexity report by Procedure, filename.rpt , includes the follow-
ing fields:

• Procedure Name
• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Length (N)
• Predicted Length (N^)
• Purity Ratio − estimated length divided by length (P/R)
• Volume (V)
• Effort (E)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Number of Executable Semi-Colons (<;>)
• Average Maximum Span of Reference of Variables (SP)
• Variable Name Length (VL)

Please refer to the correct chapter for an in-depth discussion of the vari-
ous fields (See CHAPTER 3 - System Introduction” on page 39.).

Note in the Complexity report, a ’^ ’ in front of the procedure name indi-
cates that it is really a task name. An ’* ’ in front of the procedure name
indicates that it is a package.

If a file analyzed does not contain any executable code, it will be listed in
with the name emptyfile . Also, all values will be zero except lines of
code (LOC) which indicates the total lines of code in the file.

METRIC User’s Guide

209

FIGURE 74 Complexity Report for Ada

The Summary Report

The Summary report, filename.rpt consists of Complexity report fields,
with the exception of average maximum span of reference of variables
and average variable name length. In addition it includes the values:

• Estimated errors (B^)
• Estimated development time (T^)
• Average cyclomatic complexity
• Average extended cyclomatic complexity
• Number of procedures/functions
• Number of nonexecutable semi-colons
• Number of Tasks
• Number of Packages

Please refer to the correct chapter for an explanation of the Summary
report’s fields (See CHAPTER 7 - Command Line Activation” on page
145.).

The command line also allows you create an Intermediate Summary
report whenever there is a change in directory (-b n). This report may be
helpful if different subsystems of an application being analyzed are

APPENDIX C:

210

placed in different directories and you want a Summary report for each
subsystem.

You can also create an Intermediate Summary report whenever a change
in the first n characters of the filename occurs (-b n). This report may be
helpful if the files comprising the different subsystems of an application
all have the same prefix and you want a \f6Summary\f1 report for each
subsystem.

See the correct chapter for command line activation (See CHAPTER 7 -
Command Line Activation” on page 145.).

FIGURE 75 Summary Report for Ada

METRIC User’s Guide

211

The Exception Report

The Exception report, filename.exp is the third report created by MET-
RICTM. Each procedure in the source files which exceeds a set of pre-
defined complexity maximums is included in this report. This report uses
either the defined standards specified in the configuration file or the stan-
dards set in the GUI’s Configuration Options window to determine what
the maximum complexities are.

FIGURE 76 Exception Report for Ada

The Error Report

The Error report, filename.err will only be created if there was an error
encountered during processing and analysis. Possible errors are listed
next:

• message: <<< Unable to open input file <filename> >>>
• cause: The file specified to be analyzed could not be found or

opened successfully.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message: <<< Unable to open reserved word file <filename> >>>

APPENDIX C:

212

• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the pathname is correct.

• message: <<< Number of operators exceeds limit >>>
• cause: When modifying the reserved word file to include addi-

tional words, you exceeded the default limit, or the reserved
word limit is too small.

• remedy: Add or modify the configuration file parameter RESCT.

• message: <<< Heap overflow - reorganize source program >>>
• cause: Your file to be analyzed contains too many unique oper-

ands or operators. You have run out of memory to continue pro-
cessing.

• remedy: Remove RAM resident routines or do not analyze as
many source files at one time.

• message: <<< Improper pathname or no files found >>>
• cause: The file names entered could not be opened.
• remedy: Check the spelling of the file names and make sure the

directory path is correct.
• message: <<< Unable to create reserved word dynamic array >>>
• cause: Not enough memory is available to load the reserved

word lists.
• remedy: Make sure that the entry RESCT is not overly large.
• message: <<< Unexpected end of file - analysis aborting >>>
• cause: The end of file has been reached before the end of the pro-

cedure.
• remedy: Make sure your source file compiles. If it does, contact

Software Research.

The Generic Report

The Generic, or generic instantiation report (filename.gen), lists, for each
generic, the generic name, the number of times it is instantiated and the
names of the routines it is instantiated by. Below is sample report:

METRIC User’s Guide

213

FIGURE 77 Generic Report

APPENDIX C:

214

The Package Exception Report

Each package in the source files analyzed which do not meet or exceed a
set of predefined complexity standards is included in this report, file-
name.pex . This report uses the standards specified in the METRICTM con-
figuration file to determine what the complexities should be. Here is list
of some of the messages that will appear when a standard is not met.

• With x lines of code, this package exceeds the standard of n lines
of code.

• With x executable statements, this package does not meet the
standard of n executable statements.

• With x executable statements, this package exceeds the standard
of n executable statements.

• With a cyclomatic complexity of x, this package exceeds the stan-
dard of n.

• With an extended cyclomatic complexity of x, this package
exceeds the standard of n.

• With an average span of reference of x, this package exceeds the
standard of n.

• With an estimated length of x this package does not meet the
standard of n.

• With an estimated length of x this package exceeds the standard
of n.

FIGURE 78 Package Exceptions Report

METRIC User’s Guide

215

The Package Intermediates Report

The Package Intermediates Report is an Intermediate Summary, file-
name.rpt , report at the package level. Package breaks are only performed
at the outermost level - nested package will not have a break. This
report has the same complexity fields as the Summary report, with the
addition of the Number of Nested Packages.

FIGURE 79 Package Intermediates Report

APPENDIX C:

216

C.2 Counting Rules

This chapter describes the rules METRICTM uses in analyzing Ada pro-
grams. It addresses issues associated with the reserved word and nonexe-
cutable word files used in the analysis, miscellaneous counting rules of
operators and operands, cyclomatic complexity, executable semicolons,
variable name length, span of reference, and line of code counting rules.
Description of the Halstead Software Science entries can be found in the
correct chapter (See Section 5.1.2 - “Software Development” on page 116.).

Reserved Word File

The reserved word file, adaresword.tab , contains a list of Ada opera-
tors. To see what this file is comprised of, simply print out the file. A few
of the items in adaresword.tab are not part of standard Ada and are
explained below.

• In Ada, a parenthesis has three uses: it can change the default
ordering of arithmetic operations, it follows a procedure call, and
it follows an array. To distinguish these uses, three different
parentheses have been defined in the file: “(” indicates an arith-
metic paren, “(s ” indicates a paren following an array name, and
“(p ” indicates a paren following a procedure call. Each of these
are a different use of a parenthesis and, therefore, each is a differ-
ent operator.

• Certain items in the list are not counted. These are the items that
must be paired with another and consist of: END) , and IN , when
associated with FOR and LOOP, when associated with FOR or
WHILE. Also not counted are the single quote, ’ , and double
quote, “ . These signal the start of a string and are counted as part
of the string.

Miscellaneous Operator/Operand Rules

The following are some miscellaneous rules used when counting opera-
tors and operands:

• Procedure calls are counted as operators. All procedure and func-
tion names are stored so that they can be distinguished from
array names (which are operands). It is important that all sepa-
rately compiled units be included in the list of files to be analyzed
if references to procedures/functions in them are made from
other files. Otherwise, the operator and operand count will be
inaccurate.

METRIC User’s Guide

217

• All operands are considered to be global in the Summary report.
Therefore, local variables of the same name defined in different
procedures are counted as multiple occurrences of the same vari-
able for purposes of the Summary report.

• When using goto s, the goto label is treated as an operator and
the occurrence of the label in the code is an operand. The colon
following the label is an operator.

• When using DECLARE statements, all variable declarations are
ignored. Also, if procedures/functions are declared, the heading
is skipped, and the code portion of the procedure/functions is
counted as part of the outer procedure/function. It will not be
listed in the Complexity report nor will the count of procedures
be incremented.

• When a ’ is encountered that is not enclosing a single character
and it is not an instantiation of a variable (ie, it is an attribute),
then ’attr is an operator.

• When an ACCEPT statement is encountered with parameters in
its heading, all parameters are operands, and all : typedef ’s are
ignored.

• When using the NEW operator, the new var1 is treated as one
operator.

Cyclomatic Complexity

The following control structures increment the cyclomatic complexity
count: if , elseif , while , loop (unassociated with for and while),
for , and when. Occurrences of else do not increment the count. The
extended cyclomatic complexity is incremented for each of these opera-
tors plus && and || .

Span of Reference

The span of reference counts the maximum number of lines between ref-
erences to each variable in a procedure (either use or assignment). The
average of all the maximum references is then computed. This average for
each procedure is listed in the Complexity report.

Executable Semi-colons

Executable semicolons begin counting with the first executable line of
code. Hence, all declarations are not included.

APPENDIX C:

218

Average Variable Name Length

The average variable name length provides a ‘readability index’ based on
variable naming conventions. The value can be calculated in two ways,
based on the configuration file entry UNIQUE_VARIABLES. If
UNIQUE_VARIABLES is set to 1, then the length of all unique variable
names (used at least once) is divided by the number of unique variables.
If UNIQUE_VARIABLES is set to 0, then a weighted calculation is done.

With this method, for all variables, the length of the variable name is mul-
tiplied by the number of times the variable is used and this sum is
divided by the total count of variable usage. Note that this is not the same
as dividing by n2 (in the first case) or N2 (in the second case). n2 and N2
include numeric constants and literal strings whereas these calculations
are concerned only with variables.

Lines of Code

Lines of code for a procedure include all lines of code from the function
heading to the last statement of the function, } . This includes comments,
blanks and continued lines. In addition, if OUTSIDE_COMMENTS are being
counted, then the line of code count for the procedure will be incre-
mented by the number of outside comments encountered.

Comments

The number of comments in a procedure is the count of all comments on
a line by themselves encountered within the body of the procedure. If a
single comment spans multiple lines, the number of lines that is spans is
added to the comment count. If INLINE_COMMENTS is 1, then comments
on the same line as an executable statement will also increment the count.
If OUTSIDE_COMMENTS is 1, then comments outside of the scope of any
procedure immediately before the procedure are added to the count.

METRIC User’s Guide

219

C.3 Creating a Shell Script File

If there are a group of programs to be analyzed, where a separate report is
to be produced for each program, it may be convenient to analyze them
all at once through the use of a shell script. To create a shell script, create a
file, filename, and enter METRICTM command lines as though they were
being entered at the system prompt. Make sure that for the filename you
choose, there does not currently exist a command of the same name. You
may use the command line mode with or without display to analyze the
files.

For example, suppose we create a shell script shtest that contains the
following:

 #! /bin/sh -f
 adametric adacode
 adametric filematch tool

“adametric ” must appear as the first word on the line since it is the pro-
gram to be executed. The source file(s) to be analyzed and any command
line parameters follow. Be sure to include pathnames for those files to be
analyzed that do not reside in the current directory.

You can run the shell script file in either of the following ways:
• At the system prompt, give the filename as an argument to the sh

command. For example:
 sh shtest

• Use the chmod command to make the file executable and then
use the name of the shell script like any other command. For
example:

 chmod 755 shtest
 shtest

• Each source file in the shell script will be processed in turn. If a
file is not found in the shell script, processing will continue with
the next file. An error file will be created for each file in which an
error occurred.

C.3.1 Comments About METRIC

If you analyze your programs before they are completed and you have
empty procedures such as the following:

 procedure procA is
 begin
 end;

APPENDIX C:

220

you will get spurious results for that procedure in the procedure list. The
above example does not contain any operands and many of the metrics
are not defined for programs without operators or operands.

If a package does not contain any executable code of its own, it will be
listed in the Complexity report with values of 1 in all the fields except
LOC. The lines of code figure represents all the lines of code in the pack-
age body. An example is a package of the form:

package body pkgname is
 procedure A is
 begin
 .
 .
 .
 end A;
 procedure B is
 begin
 .
 .
 .
 end B;
end pkgname;

Note that a package body will always have at least one operator - the
semicolon following the ’end ’. In the Complexity report, package names
are prefixed with an asterisk, ’* ’, and task names are prefixed with ’^ ’.

If a file does not contain any executable code (ie, it contains only declara-
tions), in the Complexity report it will be listed as a procedure called
emptyfile . Furthermore, all values will be zero except for lines of code
(LOC) which will reflect the total lines of code in the file.

221

APPENDIX D

FORTRAN Notes

METRICTM for FORTRAN consists of several files, the following of which
will be explained in this chapter:

• fmetric

• forreswo.tab

fmetric

This file is the actual analyzer. It uses the remaining files in determining if
a word is an operator or an operand or if it is a nonexecutable word. A com-
plete description on how to use fmetric is given in another chapter (See
CHAPTER 7 - "Command Line Activation” on page 145.).

forreswo.tab

This file contains a sorted list of all operators and reserved words for
standard FORTRAN proceeded by a number. The meaning of the num-
bers is as follows:

0 Ignore the word for it must always occur with anoth-
er word.

1 The word is a nonexecutable word and does not in-
crement any count.

2 The word is an operator and therefore increments the
operator count.

3 The word is a control word. It increments the opera-
tor count and cyclomatic complexity.

4 The word increments the operator count, cyclomatic
complexity and extended cyclomatic complexity.

APPENDIX D:

222

If you need to modify the list to change the counting rules or add/remove
items to/from the list, you may do so in one of two ways:
1. Edit the file, forreswo.tab , and modify those entries that are to be

changed. If the number of entries exceeds 330, you must make modi-
fications to the configuration file .uxmetriccfg . Refer to the correct
section for details on how to increase the number of allowable entries
(See Section 7.5 - “Configuration File Processing” on page 156.).

2. Create a new reserved word file containing the counting rules and
operators you wish to use. If this option is chosen, you must use the
configuration file indicating that a different reserved word file is
being used. See the correct section for details on how to do this (See
Section 4.4.2 - “Writing Reports to a File” on page 82.).

Before you modify the list, be sure to read the section that describes this
activity (See Section 4.4.2 - “Writing Reports to a File” on page 82.).

METRIC User’s Guide

223

D.1 Description of the Reports

This section describes the reports created by METRICTM: the Complexity
report, the Summary report, the Exception report, and the Error report.

The Complexity Report

The Complexity report by Subprogram, filename.rpt includes the follow-
ing fields:

• Subprogram Name
• Procedure Name
• Unique Operators (n1)
• Unique Operands (n2)
• Total Operators (N1)
• Total Operands (N2)
• Length (N)
• Predicted Length (N^)
• Purity Ratio − estimated length divided by length (P/R)
• Volume (V)
• Effort (E)
• Cyclomatic Complexity (VG1)
• Extended Cyclomatic Complexity (VG2)
• Lines of Code (LOC)
• Number of Comment Lines (CMT)
• Number of Blank Lines (BLK)
• Executable Carriage Returns (<CR>)
• Average Maximum Span of Reference of Variables (SP)
• Variable Name Length (VL)

Please refer to the correct chapter for an in-depth discussion of the vari-
ous fields (See CHAPTER 3 - "System Introduction” on page 39.).

APPENDIX D:

224

FIGURE 80 Complexity Report for FORTRAN

METRIC User’s Guide

225

The Summary Report

The Summary report, filename.rpt consists of Complexity report fields,
with the exception of average maximum span of reference of variables
and average variable name length. In addition it includes the values:

• Estimated errors (B^)
• Estimated development time (T^)
• Average cyclomatic complexity
• Average extended cyclomatic complexity
• Number of subroutines/functions

Please refer to the correct section for an explanation of the Summary
report’s fields (See Section 2.1.7 - “STEP 7: Viewing a Summary Report”
on page 22.). The command line also allows you create an Intermediate
Summary report whenever there is a change in directory (-b n). This
report may be helpful if different subsystems of an application being ana-
lyzed are placed in different directories and you want a Summary report
for each subsystem.

You can also create an Intermediate Summary report whenever a change
in the first n characters of the filename occurs (-b n). This report may be
helpful if the files comprising the different subsystems of an application
all have the same prefix and you want a Summary report for each sub-
system.

See the chapter that describes command line activation (See CHAPTER 7
- "Command Line Activation” on page 145.).

APPENDIX D:

226

FIGURE 81 Summary Report for FORTRAN

METRIC User’s Guide

227

The Exception Report

The Exception report is the third report created by METRICTM. Each pro-
cedure in the source files which exceeds a set of predefined complexity
maximums is included in this report. This report uses either the defined
standards specified in the configuration file or the GUI’s Configuration
Options window to determine what the maximum complexities are.

FIGURE 82 Exception Report for FORTRAN

APPENDIX D:

228

The Error Report

The Error report will only be created if there was an error encountered
during processing and analysis. Possible errors are listed below:

• message: <<< Unable to open input file <filename> >>>
• cause: The file specified to be analyzed could not be found or

opened successfully.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the path name is correct.

• message: <<< Unable to open reserved word file <filename> >>>
• cause: The reserved word file could not be found.
• remedy: Check the spelling of the filename. Make sure the exten-

sion (if any) is correct. Make sure the pathname is correct.

• message: <<< Number of operators exceeds limit >>>
• cause: When modifying the reserved word file to include addi-

tional words, you exceeded the default limit, or the reserved
word limit is too small.

• remedy: Add or modify the configuration file parameter RESCT.

• message: <<< Heap overflow - reorganize source program >>>
• cause: Your file to be analyzed contains too many unique oper-

ands or operators. You have run out of memory to continue pro-
cessing.

• remedy: Remove RAM resident routines or do not analyze as
many source files at one time.

• message: <<< Improper pathname or no files found >>>
• cause: The file names entered could not be opened.
• remedy: Check the spelling of the file names and make sure the

directory path is correct.

• message: <<< Unable to create reserved word dynamic array >>>
• cause: Not enough memory is available to load the reserved

word lists.
• remedy: Make sure that the entry RESCT is not overly large.

METRIC User’s Guide

229

• message: <<< Unexpected end of file - analysis aborting >>>
• cause: The end of file has been reached before the end of the pro-

cedure.
• remedy: Make sure your source file compiles. If it does, contact

Software Research.

• message: <<<Unable to open include file <filename> >>>
• cause: The include file could not be found given the specification

in the source code;
• remedy: Make sure the include file exists. If it exists in a different

directory than specified in the source code, make INCLUDE_DIR
entries in the configuration file.

APPENDIX D:

230

D.2 Counting Rules

This section describes the rules METRICTM uses in analyzing FORTRAN
programs. It addresses issues associated with the reserved word and non-
executable word files used in the analysis, miscellaneous counting rules
of operators and operands, cyclomatic complexity, executable semicolons,
variable name length, span of reference, and line of code counting rules.
Description of the Halstead Software Science entries can be found in the
chapter that describes that topic (See CHAPTER 3 - "System Introduc-
tion” on page 39.).

Reserved Word File

The reserved word file, forreswo.tab , contains a list of FORTRAN
operators. To see what this file is comprised of, simply print out the file. A
few of the items in forreswo.tab are not part of standard FORTRAN
and are explained below.

• In FORTRAN, a parenthesis has four uses: it can change the
default ordering of arithmetic operations, it follows a subpro-
gram call, it follows a control statement, and it follows an array
name. To distinguish these uses, four different parentheses have
been defined in the file: “(” indicates an arithmetic paren, “(c ”
indicates a paren following a control statement, “(s ” indicates a
paren following an array name, and “(p ” indicates a paren fol-
lowing a subprogram call. Each of these are a different use of a
parenthesis and, therefore, each is a different operator.

• In FORTRAN, the asterisk, * , has two uses: as a multiplication
sign and to represent a default device unit. To distinguish these
uses, two asterisks have been defined: “* ” indicates multiplica-
tion, and “*w” indicates a default device. Since these are different
meanings, each is counted as a different operator.

• In FORTRAN, END can be used to signal the end of a subprogram
or used in a file access statement. Therefore, two ENDs have been
defined: “END” is for the end of a subprogram/program, and
“END” is for the end used in a file access command.

• Certain items in the list are not counted. These are the items that
must be paired with another and consist of: END and) and TO
when associated with ASSIGN. Also not counted are the single
quote, ’ . This signals the start of a string and is counted as part of
the string.

Any statement preceded by one of the ’1’ words in the reserved word file
is considered nonexecutable.

METRIC User’s Guide

231

A nonexecutable word can precede a subprogram name and still allow
the subprogram to be recognized. For example:

 INTEGER FUNCTION ROUNDIT(X)
 .
 .
 .
 END

will see that ROUNDIT(X) is a subprogram and will analyze the code up
to the END.

Miscellaneous Operator and Operand Rules

The following are some miscellaneous rules used when counting opera-
tors and operands.

• Subprogram calls are counted as operators.
• All operands are considered to be global in the Summary report.

Therefore, local variables of the same name defined in different
subprograms are counted as multiple occurrences of the same
variable for purposes of the Summary report.

• When using goto s, the goto label is treated as an operator and
the occurrence of the label in the code is an operand.

• When using do loops, the DO label is treated as an operator and
the occurrence of the label in the code is an operand.

• FORMAT is generally considered to be a nonexecutable word but
to be consistent with the other METRICTM analyzers, it is
counted as an operator. The label preceding the FORMAT is an
operand and the entire format specification from the opening
paren to the closing paren is one operand.

• ENTRY statements are nonexecutable and, hence ignored. How-
ever, their appearance in the source code is indicated in the
Exception report.

Cyclomatic Complexity

The following control structures increment the cyclomatic complexity
count: IF , DO, and GOTO when used in a computed GOTO or an assigned
GOTO. Occurrences of else do not increment the count. The extended
cyclomatic complexity is incremented for each of these operators plus
.AND. , and .OR. .

APPENDIX D:

232

Span of Reference

The span of reference counts the maximum number of lines between ref-
erences to each variable in a subprogram (either use or assignment). The
average of all the maximum references is then computed. This average for
each subprogram is listed in the Complexity report.

Executable Carriage Returns

Executable carriage returns begin counting with the first executable line
of code. Hence, all declarations are not included. Commented lines are
also not included. Executable lines that are continued on the next line are
not counted.

Average Variable Name Length

The average variable name length provides a ‘readability index’ based on
variable naming conventions. The value can be calculated in two ways,
based on the configuration file entry UNIQUE_VARIABLES. If
UNIQUE_VARIABLES is set to 1, then the length of all unique variable
names (used at least once) is divided by the number of unique variables.
If UNIQUE_VARIABLES is set to 0 then a weighted calculation is done.

With this method, for all variables, the length of the variable name is mul-
tiplied by the number of times the variable is used and this sum is
divided by the total count of variable usage. Note that this is not the same
as dividing by n2 (in the first case) or N2 (in the second case). n2 and N2
include numeric constants and literal strings whereas these calculations
are concerned only with variables.

Lines of Code

Lines of code for a subprogram include all lines of code from the subpro-
gram heading to the last statement of the subprogram (END). This
includes comments, blanks and continued lines. In addition, if
OUTSIDE_COMMENTS are being counted, then the line of code count for
the subprogram will be incremented by the number of outside comments
encountered.

Comments

The number of comments in a subprogram is the count of all comments
on a line by themselves encountered within the body of the subprogram.

METRIC User’s Guide

233

In addition, if DLINES is 0 then all lines preceded with D are comment
lines. If INLINE_COMMENTS is 1, then comments on the same line as an
executable statement will also increment the count. If
OUTSIDE_COMMENTS is 1, then comments outside of the scope of any
subprogram immediately before the subprogram are added to the count.

APPENDIX D:

234

D.3 Creating a Shell Script File

If there are a group of programs to be analyzed, where a separate report is
to be produced for each program, it may be convenient to analyze them
all at once through the use of a shell script. To create a shell script, create a
file, filename, and enter METRICTM command lines as though they were
being entered at the system prompt. Make sure that for the filename you
choose, there does not currently exist a command of the same name. You
may use the command line mode with or without display to analyze the
files.

For example, suppose we create a shell script shtest that contains the
following:

 #! /bin/sh -f
 fmetric forfile
 fmetric forfile2 forfile3

“fmetric ” must appear as the first word on the line since it is the pro-
gram to be executed. The source file(s) to be analyzed and any command
line parameters follow. Be sure to include pathnames for those files to be
analyzed that do not reside in the current directory.

You can run the shell script file in either of the following ways:
• At the system prompt, give the filename as an argument to the sh

command. For example:
 sh shtest

• Use the chmod command to make the file executable and then
use the name of the shell script like any other command. For
example:

 chmod 755 shtest
 shtest

Each source file in the shell script will be processed in turn. If a file is not
found in the shell script, processing will continue with the next file. An
error file will be created for each file in which an error occurred.

METRIC User’s Guide

235

D.4 Comments About METRIC

If you analyze your programs before they are complete and you have
empty procedures such as the following:

 SUBROUTINE ABC
 END

you will get spurious results for that subprogram in the subprogram list.
The above example does not contain any operands and many of the met-
rics are not defined for programs without operators or operands.

APPENDIX D:

236

237

Index

A
adametric 207
adametric command 147
allocating testing resources 67, 122
ampersand 180, 198
analyzing the Complexity report 16
Apply button 96, 101, 104, 113
apportioning duties to programmers 123
Ascend button 89
asterisk 180, 198, 230
average Cyclomatic Complexity 57
average Extended Cyclomatic Complexity 57

C
C++ Class option 137
C++ Class Report 196
changing the configuration file 116
chapter organization xiv
Charts cascading menu 101, 113, 132
Charts Pull-Down Menu 140, 141
Charts pull-down menu 99, 103, 113
Class Exception report 197
Class Exceptions option 138
Class Hierarchy option 138
Class Hierarchy report 197
Class Summary option 137
Class Summary report 196
Close button 96, 101, 104, 113
cmetric command 147
Columns option 96, 131
Comment Percent option 96, 132
Comments 182, 200, 232
completing a session 34
complex modules 20
Complexity option 86, 137
Complexity Report 173

Complexity report 86, 189, 208, 223
Complexity Report fields 41
Complexity report, looking at 86
complexity, ordering procedures 89
conditional compilation directives 184, 203
configuraiton option, MINIPKGN 160
configuration file 115
configuration file processing 156
configuration option, ADVLENGTH 156
configuration option, ANALYZEINCLUDE 156
configuration option, CLASSCHART 156
configuration option, CLASSEXCEPTION 156
configuration option, CLASSREPORT 157
configuration option, COLSTART 157
configuration option, COMMENT_PERCENT 157
configuration option, COMMENT_SYMBOL 157
configuration option, CONDCOMPILE 158
configuration option, COUNINC 158
configuration option, COUNTCR 158
configuration option, DLINES 158
configuration option, EO 159
configuration option, FREEFORMAT 159
configuration option, GOTOS 159
configuration option, HEADER_SUMMARY 159
configuration option, INCLUDE_DIR 160
configuration option, INLINE_COMMENTS 160
configuration option, LOC 160
configuration option, MAXPKGN 160
configuration option, MAXPKGSEMI 161
configuration option, MAXSTDN 161
configuration option, MINIPGSEMI 161
configuration option, MINPKGSEMI 162
configuration option, MINSTDN^ 162
configuration option, NESTED 162
configuration option, NONEXCT 162
configuration option, NONEXE 162
configuration option, OUTSIDE_COMMENT 162
configuration option, PAGE_BREAK 163

INDEX

238

configuration option, PAGE_HEADINGS 163
configuration option, PAGELENGTH 163
configuration option,

PKG_COUNT_ALL_LINES 163
configuration option, PKGLOC 164
configuration option, PKGSPAN 164
configuration option, PKGVG 165
configuration option, PKGVG2 165
configuration option, PKSUMMARYLEVEL 165
configuration option, PRINTER 166
configuration option, PRINTEXP 166
configuration option, PRINTGENERIC 166
configuration option, PRINTPKGEXP 166
configuration option, PRINTPRAGMA 166
configuration option, PRIVATEMEMS 166
configuration option, PROTECTEDMEMS 166
configuration option, PUBLICMEMS 166
configuration option, RESCT 166
configuration option, RESFILE 167
configuration option, SEMI 167
configuration option, SPAN 167
configuration option, SPEED 167
configuration option, STATEMENT 167
configuration option, STDEXPLICIT 168
configuration option, STDFRIENDCLS 168
configuration option, STDINLINE 168
configuration option, STDMEMBERS 168
configuration option, STDVIRTUAL 168
configuration option, SUMMARYONLY 168
configuration option, UNIQUE_VARIABLES 168
configuration option, VARIABLE_LENGTH 168
configuration option, VG 168
configuration option, VG+ 168
configuration option, VOLUME 168
configuration option, WARNINGS 168
Configuration Options window 95, 96, 131
configurationoption, STDFRIEND 168
Control Flow metrics 87, 93
control flow metrics 3
counting lines of code 1
counting rules 180, 198, 216, 230
cppmetric 187, 207
cppmetric command 147
Cyclomatic Complexity 50, 181, 199, 217, 231
Cyclomatic Complexity measures 7, 16
Cyclomatic Complexity option 96, 132

D
Data Objects metrics 87
Defines option 96, 131
Descend button 89
developing metrics 3

development time 119
Directories selection window 72
directory, demos 11
display area 127

E
edge 50
Effort 49
END 230
entropy 123
environment variable, METRICCFG 156
error messages 178, 194, 211, 228
Error Report 178
Error report 26, 94, 194, 211, 228
Error report, analyzing 26
Error report, looking at 94
Errors option 94, 137
estimated errors 58
estimated time to develop 58, 60
Exception Report 177
Exception report 24, 61, 93, 193, 211, 227
Exception report, analyzing 24
Exception report, looking at 93
Exceptions option 93, 137
Executable Carriage Returns 231
Executable Semi-Colons 181
Executable Semi-colons 199, 217
Exit option 74, 103, 107, 130
exiting METRIC 114
expecting too much 69
Extended Cyclomatic Complexity 52
Extended Cyclomatic Complexity option 96, 132

F
field, B^ 58
field, Baseclass 196
field, E 49
field, Friend Cls/Fct 196
field, FT 189
field, Inline 196
field, N^ 46
field, N1 43
field, n1 43
field, N2 43
field, n2 43
field, P/R 46
field, Private Var/Fct 196
field, Public Var/Fct 196
field, T^ 60
field, Total Membs 196
field, V 48

STW User’s Guide

239

field, VG1 50
field, VG2 52
field, Virt 196
File pull-down menu 83, 84, 85, 103, 107, 127
file selection dialog boxes 72
file, .adaresword 207
file, .uxmetriccfg 61
file, .Xmetric.I.def 99
file, cnonexe.tab 172, 173
file, cppnonexe.tab 188
file, cppresword.tab 187, 207
file, filename.cex 82, 197
file, filename.cht 82, 197
file, filename.cls 82, 196
file, filename.err 82, 178, 194, 211, 228
file, filename.exp 82, 177, 193, 211, 227
file, filename.gen 82, 212
file, filename.pex 82, 214
file, filename.rpt 82, 152, 173, 175, 189, 191,

208, 209, 215, 223, 225
file, forreswo.tab 221
file, METRICtm 11
file, sr.c 11
file, xcalc.c 11
file, Xmetric.I.def 28
file, Xmetric.II.def 30
file, Xmetric.III.def 32
Files selection window 72
Filter entry box 72
flow of control 50
fmetric 221
font

italics xv
italix xv

font, bold face xv
font, courier xv

G
Generic option 137
Generic report 212

H
Help Button 144
help dialog frame 74
Help option 130, 138

I
identifying complex modules 1
Intermediate Summary Report 175
Intermediate Summary report 191

invocation window 11
invoking from STW 79
invoking METRIC 78

K
Kiviat charts 28, 99
Kiviat charts, using 28, 99
Kiviat diagram, creating your own 113
Kiviat diagrams 98

L
langmetric -132 switch 150
langmetric -80 switch 150
langmetric -bd switch 148
langmetric -bn switch 148
langmetric -cen switch 149
langmetric -chtd switch 149
langmetric -crn switch 149
langmetric -csym switch 149
langmetric -gn switch 149
langmetric -i switch 149
langmetric -n switch 149
langmetric -pen switch 149
langmetric -pn switch 150
langmetric -prn switch 150
langmetric -sn switch 150
Language option 81, 136
Length Equation 46
Lines of Code 182, 200, 232
Lines of Code option 96, 132
Load Multiple Files option 85, 129
Load Single File file selection 127
Load Single File option 84, 127

M
main system features 8
Main window 78, 125
maintenance problem 1
managing maintenance 67
manual organization xiv
message dialog boxes 75
metric accuracy, assessing 4
metric validity, determining 4
metrics as a feedback tool 116
metrics in estimation 119
metrics in software development 116
metrics in software maintenance 123
metrics in software testing 121
metrics in the review process 118
metrics to control entropy 123

INDEX

240

metrics, why 1
METRICtm process 7
Multiple File selection 129
multiple file selection dialog box 85
multiple files, analyzing 18
multiple files, loading 18
multiple users 115

N
name patterns 147
no reports generated, error 115
node 50
nonexecutable reserved words 188
nonexecutable word file 180, 198
number of total operands 43
number of total operators 43
number of unique operands 43
number of unique operators 43

O
operand rules 181, 199, 216, 231
operator 187, 207
operator rules 181, 199, 216, 231
Option pull-down window 81
Options pull-down menu 95, 101, 104, 107, 113,

131
Order Complexity Option 89
Order Complexity option 137
OSF/Motif style GUI 72

P
Package Exception report 214
Package Exceptions option 137
Package Intermediates option 137
Package Intermediates report 215
parenthesis 180, 198, 216, 230
Potential Volume 49
predicates 52
Predicted Length 46
processing a source code file 80
producing less complex code 64
Program Level 49
pull-down menus 76
Purity Ratio 46

R
Report option 95, 96, 131
Report pull-down menu 86, 91, 93, 94

Report Pull-Down Window 137
Report pull-down window 91
reports, accuracy 63
reserved word file 180, 198, 216, 230, 231
reserved words 187

S
saving reports 82
scroll bars 72
Search option 74
Select Language window 81, 136
selecting a keysave file, general purpose 72
selecting a language window 81
selecting a source code file 14, 18, 84
selecting multiple source code files 85
Selection entry box 72
Semicolons option 96, 132
Set Report Files Basename option 83, 129
Set Report Files Basename window 83, 129
setting up 11, 115
shell script file, creating 183, 202
shell script, creating 234
single file selection dialog box 84
Size metrics 87, 93
size metrics 3
software complexity measures 7
software maintenance 123
software metrics 1
software metrics in development 64
software science counting rules 44
Software Science measures 16
Software Science metrics 87, 93
Sort Report By 89
Sort Report By window 137
source files, where to put 115
Span of Reference 181, 199, 217, 231
special text xv
SR variable 115
static code analyzer 40
statistical techniques 6
Stroud Number 60
STW 79
STW/MAN 79
Summary Only option 91, 137
Summary Report 175
Summary report 22, 91, 191, 209, 225
Summary report fields 55
Summary report, analyzing 22
Summary report, looking at 91
System Operation 71

STW User’s Guide

241

T
text

"double quotation marks" xv
boldface xv
italics xv
special xv

text, boldface xv
text, courier xv
text, italix xv
threshold values, violations 116
Type I Configuration window 101, 133
Type I Kiviat chart 28
Type I option 133, 140
Type II Configuration window 104, 134
Type II Kiviat chart 30, 103
Type II option 103, 104, 134, 141
Type III Configuration window 135
Type III option 107, 113, 135, 142
Type User option 113

U
User 142
using a file selection dialog box 73
using message dialog boxes 75
using METRIC 40
using pull-down menus 76
using the help frame 74

V
Variable Name Length 182, 200, 217, 231
Volume 48

X
Xkiviat -nvalue switch 154
Xkiviat -q switch 154
Xkiviat -s x y switch 154
Xkiviat -v switch 154
Xmetric command 78
Xmetric utility 146
Xmetric-LAda switch 146
Xmetric-LC switch 146
Xmetric-LC++ switch 146
Xmetric-LF77 switch 146
xterm window 11

INDEX

242

