
U S E R ’ S G U I D E

STATIC
Version 1.2

Static Analyzer

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored
in a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

Documentation: Ann Kuchins

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight, and Xvirtual are
trademarks or registered trademarks of Software Research, Inc. Other trademarks
are owned by their respective companies. METRIC is a trademark of SET
Laboratories, Inc. and Software Research, Inc. and STATIC is a trademark of
Software Research, Inc. and Gimpel Software.

Copyright 1997 by Software Research, Inc
(Last Update November 19, 1997)

documentation/user-manuals/unix/advisor/97advisor.book

625 Third Street
San Francisco, CA 94107-1997
Tel: (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com
http:www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface .xi
Audience .. xi
Format of Chapters .. xii
Identifying Special Text .. xiii

CHAPTER 1 Introduction to STATIC . 1
1.1 Static Analysis .1

1.2 Language Definition .3

1.3 Main System Features .4

CHAPTER 2 Quick Start . 5
2.1 Instructions .5

2.1.1 STEP 1: Setting Up STATIC .6
2.1.2 STEP 2: Invoking STATIC. .7
2.1.3 STEP 3: Selecting a Source Code File .8
2.1.4 STEP 4: Analyzing the Report .10
2.1.5 STEP 5: Modifying the Report .12
2.1.6 STEP 6: Activating Modifications .14
2.1.7 STEP 7: Sign Off and Cleanup. .15

2.2 Summary . 16

CHAPTER 3 STATIC GUI Operation . 19
3.1 Using This Chapter . 19

3.2 User Interface . 19

3.3 Invoking STATIC . 25

TABLE OF CONTENTS

iv

3.4 Processing Source Code .27

3.5 Selecting a Source Code File 28
3.5.1 Selecting Multiple Source Code Files . 28

3.6 Analyzing the Report .30
3.6.1 Writing the Report to a File. 31

3.7 Modifying the Report Options 32
3.7.1 Error Messages Options . 32
3.7.2 Flag Options . 38
3.7.3 Library Header File Options . 47
3.7.4 Size Options . 51
3.7.5 Compiler Vendor Options . 54
3.7.6 Compiler Customization Options . 58
3.7.7 Strong Typing Options . 61

-strong . 63
-index . 68
-parent . 71
Hints on Strong Typing . 74
Reference Information . 76

3.7.8 Other Options . 78
Toggle Options . 78
Define Options . 80

3.8 Saving Modifications .87

3.9 Customizing STATIC . .90

3.10 Exiting STATIC . .91

CHAPTER 4 Messages. 93
4.1 Categories of Messages . .93

4.2 Message Glossary . .94

4.3 Syntax Error Messages .98

4.4 Internal Errors . 109

4.5 Fatal Errors . 110

4.6 Warning Messages . 112

4.7 Informational Messages . 137

4.8 Elective Notes . 153

CHAPTER 5 Libraries. 157
5.1 Library Modules . 157

STATIC User’s Guide

v

5.1.1 The Current Role of Library Modules .158
5.1.2 Creating a Library Module .158

5.2 Library Object Modules . 159

CHAPTER 6 Lint Object Modules. 161
6.1 What is a Lint Object Module (LOB)? 161

6.2 Why are LOBs Used? . 161

6.3 Producing a LOB . 164

6.4 Make Files . 164

6.5 Library Modules . 165

6.6 Options for LOB's . 166

6.7 Limitations of LOB's . 166

CHAPTER 7 Special Features . 167
7.1 Order of Evaluation . 167

7.2 Complete Format Checking 168

7.3 Indentation Checking . 168

7.4 const Checking . 170

7.5 volatile Checking . 171

7.6 Prototype Generation . 172
7.6.1 Header File Regeneration .173
7.6.2 -odi (static functions) .173
7.6.3 -odf (only functions) .173
7.6.4 -ods (structs) .174
7.6.5 -odwidth .174
7.6.6 Precautions with Prototypes. .174
7.6.7 typedef Types in Prototypes .174

7.7 Exact Parameter Matching 174

7.8 Weak Definials . 176

7.9 UNIX Lint Options . 179

7.10 Static Initialization . 180

7.11 Possibly Uninitialized . 180

7.12 Function Mimicry (-function) 183

TABLE OF CONTENTS

vi

CHAPTER 8 Language Extensions. 185
8.1 ANSI Extensions . 185

8.1.1 The void Type . 185
8.1.2 Function Prototypes . 185
8.1.3 Enumerations . 186
8.1.4 signed . 187
8.1.5 const and volatile . 187
8.1.6 Trigraphs . 187

8.2 Non-ANSI Extensions . 188
8.2.1 // Comments . 188
8.2.2 Memory Models . 188

8.3 Additional Reserved Words 190

CHAPTER 9 Preprocessor. 191
9.1 Preprocessor Symbols . 191

9.2 include Processing . 192

9.3 ANSI Preprocessor Facilities 192
9.3.1 Initial White Space . 192
9.3.2 #elif expression. 192
9.3.3 #include name . 193
9.3.4 #pragma . 193
9.3.5 #error . 193
9.3.6 # . 193
9.3.7 ## Pasting operator. 194
9.3.8 # Stringize operator . 194

9.4 Non-ANSI Preprocessing . 194
9.4.1 #assert . 194

9.5 User-Defined Keywords . 195

CHAPTER 10 Additional Notes . 197
10.1 Size of Scalars . 197

10.2 !0 . 198

CHAPTER 11 Common Problems and Applications. 199
11.1 Common Problems . 199

11.1.1 Too Many Messages. 199
11.1.2 Warning 516 . 199
11.1.3 Error 123 Using Min or Max . 200
11.1.4 LONG_MIN Macro . 200

STATIC User’s Guide

vii

11.1.5 Plain Vanilla Functions .201
11.1.6 Strange Compilers .202

11.2 Real-Life Applications . 202
11.2.1 An Example of a Policy. .203
11.2.2 The Setup. .205
11.2.3 Using Lint Object Modules .205
11.2.4 Summarizing .206

References . 207

Index . 209

TABLE OF CONTENTS

viii

ix

List of Figures

FIGURE 1 STATIC System Flow Chart 2

FIGURE 2 Setting Up the Display (Initial Condition) 6

FIGURE 3 Invoking STATIC 7

FIGURE 4 Selecting a Source Code File 9

FIGURE 5 Analyzing the Report 11

FIGURE 6 Suppressing Error Messages 13

FIGURE 7 Re-loading a Source Code File 14

FIGURE 8 Completing a STATIC Session 15

FIGURE 9 static.ksv Setup 17

FIGURE 10 Using a File Selection Dialog Box 21

FIGURE 11 Using the Help Dialog Box 22

FIGURE 12 Using a Dialog Box 23

FIGURE 13 Using a Pull-down Menu 24

FIGURE 14 Invoking the Main Window 25

FIGURE 15 Invoking STATIC from the STW Suite 26

FIGURE 16 Selecting Single or Multiple Source Code File(s) 29

FIGURE 17 Report 30

FIGURE 18 Saving the Report 31

FIGURE 19 Error Options Window 33

FIGURE 20 Grouping Messages Together 34

FIGURE 21 Flag Options Window 39

FIGURE 22 Library Options Window 49

FIGURE 23 Size Options Window 52

FIGURE 24 Compiler Options Window 55

FIGURE 25 Compiler Customization Options Window 58

FIGURE 26 Strong Type Options 62

List of Figures

x

FIGURE 27 Other Toggle Options Window 79

FIGURE 28 Other Define Options Window 81

FIGURE 29 Load Window 88

FIGURE 30 Load Error Options Window 89

FIGURE 31 Saving Option Modifications 91

FIGURE 32 Exiting STATIC 92

FIGURE 33 LOB 162

FIGURE 34 LOB-2 163

xi

Preface
This preface explains how this user’s guide is organized.

Congratulations!

By choosing the TestWorks integrated suite of testing tools, you have
taken the first step in bringing your application to the highest possible
level of quality.

 Software testing and quality assurance, while becoming more important
in today’s competitive marketplace, can dominate your resources and
delay your product release. By automating the testing process, you can
assure the quality of your product without needlessly depleting your
resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TestWorks is the most complete solution available, with full-featured
regression testing, coverage analyzers, and metric tools.

Audience

This manual is intended for software testers who are using STATIC tools.
You should be familiar with the X Window System and your workstation.

xii

Format of Chapters

This manual is organized to aid you after installation has been completed
(See the Installation Instructions if you are trying to install.).

This manual is divided into the following sections:

Chapter 1 INTRODUCTION TO STATIC explains the basic func-
tions of STATIC.

Chapter 2 QUICK START is a tutorial and shows step-by-step
how to run a basic STATIC test session.

Chapter 3 STATIC GUI OPERATION covers the basic X Window
System graphical user interface operations of STATIC.

Chapter 4 MESSAGES details all of the error message STATIC
PRODUCES.

Chapter 5 LIBRARIES explains what library modules are, how
they are used to describe libraries, and how to use the
alternative library object module.

Chapter 6 LINT OBJECT MODULES defines Lint Object Mod-
ules, how they are used, and how to produce one.

Chapter 7 SPECIAL FEATURES discusses how STATIC checks
for the following: out-of order expressions, formats,
indentations, consts, and volatiles.

Chapter 8 LANGUAGE EXTENSIONS describes generally-ac-
cepted, non-K&R extensions to the C language which
have been optionally incorporated into STATIC.

Chapter 9 PREPROCESSOR discusses STATIC ANSI and non-
ANSI as well as include processing.

Chapter 10 ADDITIONAL NOTES discusses how the size of sca-
lars may affect your report results.

Chapter 11 COMMON PROBLEMS AND APPLICATIONS de-
scribes how to handle common problems and how to
use STATIC in a practical manner.

METRIC User’s Guide

xiii

Identifying Special Text

This section explains the typographical conventions that are used
throughout this manual.

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for man-
ual and book titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with spe-
cial meanings may also be set apart with double quo-
tation marks the first time they are used.

courier Indicates system output such as error messages, sys-
tem hints, file output, and CAPBAK/X’s keysave file
language.

Boldface Courier

Indicates any command or data input that you are di-
rected to type. For example, prompts and invocation
commands are in this text. (For instance, stw invokes
TestWorks.)

xiv

1

CHAPTER 1

Introduction to STATIC
This chapter explains the STATIC basics. You will learn the basic functions of STATIC,
how it can help you, and its role in a Quality Assurance activity.

1.1 Static Analysis

STATIC finds quirks, idiosyncrasies, glitches and bugs in C programs.
The purpose of such analysis is to determine potential problems in C pro-
grams prior to integration or porting, or to reveal unusual constructs that
may be a source of subtle and, as yet, undetected errors. Because it looks
across several modules rather than just one, it can determine things that a
compiler cannot. It is normally much fussier about many details than a
compiler wants to be.

Consider the following C program (we have deliberately kept this exam-
ple small and comprehensible):

 half(x)
 double x;
 {
 return x / 2;
 }

 main()
 {
 double n;

 n = half(10000);
 printf("%d", n);
 }

The diagram below illustrates the STATIC process.

CHAPTER 1: Introduction to STATIC

2

FIGURE 1 STATIC System Flow Chart

Source Code File

STATIC

Report Generation

Report

Customization

Configuration Files
(*.static)

User

Error Messages

Flag Options

Library Header
File Options

Size Options

Compiler Options

Strong Type
Options

STATIC User’s Guide

3

As far as many compilers are concerned, it is a valid C program. How-
ever, it has a number of subtle errors and question marks that will be
reported upon by STATIC. The return statement of half() shows a
double being returned but half() is typed int (by default). Therefore x/2
is truncated to integer before returning. Is this what the programmer
wanted? Or did he/she forget a declaration somewhere? This is reported
upon by STATIC because the assignment (or implied assignment in this
case) loses information. If the programmer really wants to return an inte-
ger then a cast should be used as in:

(int)(x/2).

Another problem is that half() is called with an int argument whereas
it expects a double . These kinds of errors get by many compilers but
STATIC will report on a mismatch (in number or type) of argument lists.
STATIC has a number of options to lower its sensitivity to a type mis-
match (See Section 3.7.1 - “Error Messages Options” on page 32.) and also
an option to indicate that some functions have variable arguments (See
Section 3.7.2 - “Flag Options” on page 38.).

As a third problem, the format specifier (%d) implies an int whereas a
double is provided as argument. printf is one of several functions
about which STATIC has built-in knowledge. For the most part, STATIC
obtains information about library functions by processing compiler-pro-
vided header files.

1.2 Language Definition

STATIC assumes the ANSI definition of C and supports K&R where it
does not conflict with ANSI. It also supports common extensions to the
standard especially for specific compilers. See Section 19.2 for non-ANSI
extensions and Chapter 20 for preprocessor information.

The Kernighan & Ritchie (K&R) description of the C programming lan-
guage [1] has served as a de facto standard ever since its publication in
1978. An excellent exposition of this standard as well as a thorough
description of current practice within the C community is provided by
Harbison & Steele [3].

Over the past several years, the ANSI (American National Standards
Institute) C committee (X3J11) has developed a C standard [2] that is
largely upward compatible with K&R (one of its major tenets was to ‘‘not
break working code”).

CHAPTER 1: Introduction to STATIC

4

At this writing, the work of the ANSI committee has drawn to a close and
it seems clear that their efforts are successful. Most major vendors have
adopted the standard or have at least indicated intentions of evolving
toward the standard. ISO (the International Standards Organization) has
so far adopted the ANSI work and authors K&R and H&S have produced
subsequent editions of their respective works based on the ANSI stan-
dard.

1.3 Main System Features

• Reads any compilable C language source code file.
• Allows you to analyze entire groups of source code files whose

names match some sort of pattern.
• Automatically computes a message report.
• Six kinds of messages can be reported:

• Syntax Errors.
• STATIC Internal Errors.
• Fatal Errors.
• Warning Messages.
• Informational Messages.
• Elective Note Messages.

• Allows you suppress or activate available error messages as well
as:
• Flags that give directives which effect STATIC’s behavior.
• Library headers that explain how libraries are passed to

STATIC.
• Size options.
• Compiler vendor switches and compiler feature options.
• typedef -based type-checking options.

• Functions accessed through a X Window System graphical user
interface (GUI).

5

CHAPTER 2

Quick Start
This chapter is a tutorial that shows step-by-step how to run a basic STATIC session,
including invoking STATIC, loading a source code file, analyzing a resulting report, and
suppressing error messages. If you are an advanced STATIC user, you may skip this chap-
ter. This chapter is intended for beginning and intermediate users.

2.1 Instructions

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This chapter will give you a feel for
how to use STATIC.

For best results, follow the instructions very carefully. When you have
completed this chapter, you should be familiar with the main activities
involved in using STATIC, including selecting a source code file to ana-
lyze, analyze the resulting report, suppressing an error message, and then
viewing the impact.

If you are a first-time STATIC user, this chapter is best used if you make
reference to the appropriate chapter for further operational instructions
(See CHAPTER 3 - "STATIC GUI Operation” on page 19.).

If you have the Xplabak utility (playback utility for CAPBAKTM) you can
run the supplied static.ksv file to see an example of how this session
works. The instructions are at the end of this chapter.

CHAPTER 2: Quick Start

6

2.1.1 STEP 1: Setting Up STATIC

You should start with the screen organized in a particular way, as shown
in the figure (See Figure 2 "Setting Up the Display (Initial Condition)" on
page 6.).

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command xterm & from an existing window.
The xterm window will serve as the STATIC invocation window.

Move the window to the upper left of the screen. Go to the $SR/demos
directory. The demos directory is supplied with the product, and it con-
sists of a source code file named xcalc.c . This tutorial will make use of
this file.

When initiating this quick start session, your display should look like
this:

FIGURE 2 Setting Up the Display (Initial Condition)

STATIC User’s Guide

7

2.1.2 STEP 2: Invoking STATIC

Now, invoke STATIC:
1. Position the mouse so that it is located in the invocation window.
2. Activate it by clicking the mouse button on it. This window becomes

the main control window. During your session, all status messages
and warnings are displayed in this window.

3. Start STATIC from your working directory by typing in:

Xstatic

4. When you type in the command, the Main STATIC window pops up.
All operations for STATIC can be performed from this window.

5. Move the Main window to the lower right of the screen. You can
move a window by clicking on its title bar and dragging it.

6. If you want to start over, you can terminate from the Main window,
by clicking on the File pull-down menu and selecting Exit.

After invoking STATIC, your display should look like this:

FIGURE 3 Invoking STATIC

CHAPTER 2: Quick Start

8

2.1.3 STEP 3: Selecting a Source Code File

To obtain a report for a source code file, all you have to do is select any
compilable file. STATIC is a static code analyzer, so you do not have to do
anything special to a program’s code. For this demo, select the file named
xcalc.c :
1. Click on the File pull-down menu.
2. Select the Load Single File option.
3. A file selection dialog box pops up.
4. To select xcalc.c , do one of three things:

• Double click on xcalc.c in the File selection window, or
• Highlight xcalc.c in the File selection window or type in the file

name in the Selection entry box and click on OK, or
• Highlight or type in xcalc.c and press the <ENTER> key.

5. STATIC automatically processes the source code and generates a
report.

When selecting a source code file, your display should look like this:

STATIC User’s Guide

9

FIGURE 4 Selecting a Source Code File

CHAPTER 2: Quick Start

10

2.1.4 STEP 4: Analyzing the Report

After selecting the source code file, STATIC automatically processes the
source code file. The resulting report consists of messages which identify
program errors and potential hot-spots found.

You can use the scroll bars to move up and down and side to side.

It contains the following information:
1. Module Name. The path and the source code file name are indicated.
2. Program Statement.
3. Line Number. For each message, the source code file line number that

it applies to is indicated.
4. The Type of Message. The type of message for the program statement

is indicated. STATIC reports the following messages:
• Error Messages
• Internal Messages
• Fatal Messages
• Warning Messages
• Informational Messages
• Elective Notes
For further information, please refer to the appropriate chapter (See
CHAPTER 4 - "Messages” on page 93.).

5. Number and Message. Each message type is identified by a number
and brief description.

STATIC User’s Guide

11

When analyzing the report, your display should look like the one below:

FIGURE 5 Analyzing the Report

CHAPTER 2: Quick Start

12

2.1.5 STEP 5: Modifying the Report

As you may have noticed, the report is quite substantial. Although many
of the messages will identify error-prone code, there will be times when
the code identified really isn’t error-prone. It could simply be a matter of
programming style. For this reason, STATIC allows you to suppress error
messages.

For the purpose of this example, you are going to suppress the first error
messages listed in the report: 544 and 7. If you want to know more about
these messages, you can refer to the appropriate chapter for their mean-
ing (See CHAPTER 4 - "Messages” on page 93.).
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu and select Error.
3. The Error Options window pops up. On the left side of the window,

the available options are listed. On the right, the Error Options Set
window lists the default options.

4. The -/+e# option allows you to suppress or activate particular mes-
sages.

5. Position the mouse pointer so it is in the specification region and
click. A cursor should appear.

6. To suppress message 544 , type in:
-e544

 and then click on the Add button.
7. -e544 should appear at the bottom of the Error Option Set window.
8. To suppress message 7 , do the same as you did for message 544 in

step 6.
9. To exit the window, click on the Close button.

STATIC User’s Guide

13

When suppressing error messages, your display should look like the one
below:

FIGURE 6 Suppressing Error Messages

CHAPTER 2: Quick Start

14

2.1.6 STEP 6: Activating Modifications

For the report to reflect these changes, you must reload the xcalc.c file:
1. Click on the File pull-down menu.
2. Select the Load Single File option.
3. When the file selection dialog box pops up, select xcalc.c .
4. STATIC automatically re-processes the source code file to generate

another report.
5. This time, however, messages 544 and 7 are gone.

After you make modifications and re-load a source code file, the report
should be changed:

FIGURE 7 Re-loading a Source Code File

STATIC User’s Guide

15

2.1.7 STEP 7: Sign Off and Cleanup

To complete this session:
1. Click on Main window’s File pull-down window.
2. Select Exit.
3. Because modifications were made to the default error option settings,

you will be prompted with a dialog box if you want to save those
changes.

4. Since this is a demo, do not save this modifications. Click on No.

When exiting this STATIC session, your display should look like this:

FIGURE 8 Completing a STATIC Session

CHAPTER 2: Quick Start

16

2.2 Summary

If you successfully completed the preceding 7 steps, you’ve seen and
practiced the basic skills you need to use STATIC productively. In this
chapter you should have learned how to invoke STATIC, how to load sin-
gle file, how to analyze a report, and how to suppress error messages.

For best learning, you may want to
• Repeat STEPS 1 - 7 with your application.
• Turn to the appropriate chapters to learn more about other kinds

of modifications (See CHAPTER 3 - "STATIC GUI Operation” on
page 19.), and message meaning (See CHAPTER 4 - "Messages”
on page 93.).

• If you have our CAPBAK tool, use the supplied static.ksv file
to watch the session run (see below for instructions).

To use the supplied static.ksv file, initialize two xterm-type
windows by using the mouse to click on New Windows or issu-
ing the command xterm & from an existing window. Use the
mouse to move one to the upper left corner and the other to
lower left corner (as shown on the following page).

Then type the command:

 Xplabak -S -k static.ksv

in the lower left xterm window. This command will issue a call to
STATIC to playback the same 7 steps you went through. While
Xplabak is playing back the session, do not interrupt the key-
board and mouse input. Playback is done when you see the mes-
sage, “Playback complete.” appearing on the lower left
window.

When using the supplied static.ksv file to playback a STATIC
session, your display should look like the figure (See Figure 9
"static.ksv Setup" on page 17.).

STATIC User’s Guide

17

FIGURE 9 static.ksv Setup

CHAPTER 2: Quick Start

18

19

CHAPTER 3

STATIC GUI Operation
This chapter covers the basic X Window System graphical user interface operations of
STATIC. It demonstrates how to load a file(s), analyze the generated report, modify
options, and how to customize your reports.
If you are an advanced STATIC user, you may just want to refer to the appropriate section
for option information (See Section 3.7 - “Modifying the Report Options” on page 32.).

3.1 Using This Chapter

Use this chapter to look up operational questions about STATIC you may
have. To analyze the report error messages, please refer to the appropriate
chapter (See CHAPTER 4 - "Messages” on page 93.).

Turn to the appropriate section for a discussion of the basics of the
STATIC graphical user interface (See Section 3.2 - “User Interface” on
page 19.). If you are already familiar with the OSF/Motif GUI, you may
go on to the proper section (See Section 3.3 - “Invoking STATIC” on page
25.).

3.2 User Interface

If you are familiar with the OSF/Motif style graphical user interface, you
can go on to the next section (See Section 3.3 - “Invoking STATIC” on
page 25.). This section demonstrates using file selection dialog boxes,
help menus, message dialog boxes, option menus, and pull-down menus.

File Selection Box

You must use the file selection box to select the file(s) you want STATIC to
analyze. Refer to the next figure for each of the dialog box’s components
(See Figure 10 "Using a File Selection Dialog Box" on page 21.).

Filter entry box Specifies a directory mask. When you click the Filter
push button, the directory mask is used to filter files
or directories that match this mask (or pattern).

Directories Lists directories in path defined in the Filter entry
box.

Files Lists files in path defined in the Filter entry box.

CHAPTER 3: STATIC GUI Operation

20

Scroll Bars Move up/down and side/side in the Directories and
Files selection windows. You use them to search for
the appropriate directory or file.

Selection entry box

Selects and enters file name.

Use the three push buttons at the bottom of the dialog box to issue com-
mands:

OK Accepts the file in the Selection entry box as the new
file or the file to be opened and then exits the dialog
box.

Filter Applies the pattern you specified in the Filter entry
box. It lists the directories and files that match that
pattern.

Cancel Cancels any selections made and then exits the dialog
box. No file is selected as a result.

STATIC User’s Guide

21

FIGURE 10 Using a File Selection Dialog Box

To use a file selection dialog box, follow these steps:
1. You can restrict the file selection operation to a named region (direc-

tory path) by typing in a directory path name in the Filter entry box
or by clicking on a path name in the Directories selection window.
Then click on the Filter push button.

2. Select a file by clicking on an already existing source file you want
STATIC to process in the Files selection window or type in the file
name in the Selection entry box, with no limit on character length.

3. To select a source file name, do one of these three things:
• Double click on the file in the File selection window,
• Highlight the file in the File selection window or type in the file

name in the Selection entry box and click OK, or
• Highlight or type in the file name and press the <ENTER> key.

CHAPTER 3: STATIC GUI Operation

22

Help Boxes

STATIC provides on-line help. This on-line help will automatically bring
up the text corresponding to the window from which you invoke it. In
other words, if you invoke it at the Options pull-down window’s Error
window, the Help window will automatically display information perti-
nent to the Error window. Here’s how to use a help frame:
1. Once it is invoked, the text should correspond to the window from

which you invoke it.
2. You can use the scroll bars to move up/down and side/side.
3. If you don’t see what you need, you can search for specific text. To do

this:
• Click on the Action pull-down menu and select Search.

A dialog box (shown below) pops up.
• Type in the pattern you want to search for and then click on OK

or press the <ENTER> key.
If the pattern is found, the help frame will automatically scroll to
the location of the pattern.

4. If you select another Help option from another window, while the
current one is displayed, the Help window will automatically scroll
to the context of the new window.

5. To exit, click on Quit.

FIGURE 11 Using the Help Dialog Box

STATIC User’s Guide

23

Message Boxes

Pop-up message dialog boxes have three purposes:
1. They display warnings and error information.
2. They ask you to verify that you want to perform a task.
3. They ask you to enter a command.

To remove a message box after you have read it or to tell STATIC to go
ahead with a command, click the OK push button. If you want to cancel a
command, click the Cancel push button.

FIGURE 12 Using a Dialog Box

CHAPTER 3: STATIC GUI Operation

24

Pull-Down Menus

Pull-down menus are located within the menu bar. They often contain
several options. To use pull-down menus and their options, follow these
steps:
1. Move the mouse pointer to the menu bar and over the menu contain-

ing the item.
2. Hold the left mouse button down. This displays the items on the

menu.
3. While holding down the left mouse button, slide the mouse pointer to

the menu item you want to select. The menu item is highlighted in
reverse shadow.
Three dots at the right of the menu item indicates that selecting the
item will bring up a pop-up window.
An arrow to the right of the menu item indicates that the item is a
submenu (or cascading menu).
To display the submenu, slide the mouse pointer over the arrow. You
can then select an item on the submenu.

4. Release the mouse button while the desired item is highlighted to
activate the command. To exit the function without selecting any-
thing, simply drag the mouse pointer off the menu before releasing
the mouse button to not activate anything.

FIGURE 13 Using a Pull-down Menu

STATIC User’s Guide

25

3.3 Invoking STATIC

To start STATIC from your working directory, type this command:
Xstatic

The Main window will pop up. A configuration file static.rc is auto-
matically loaded. It contains the default settings for the available error
messages, available flags, library header, size, compiler and strong type
options. These options, when changed, can significantly change the
behavior of STATIC. After experimenting with running STATIC and mod-
ifying the options (See Section 3.7 - “Modifying the Report Options” on
page 32.) (See Section 3.8 - “Saving Modifications” on page 87.) (See Sec-
tion 3.9 - “Customizing STATIC” on page 90.), you may want to perma-
nently change these default settings (See Section 3.9 - “Customizing
STATIC” on page 90.).

FIGURE 14 Invoking the Main Window

If you have the STW product tool set, you can invoke STATIC by typing
the command:

 stw

1. The STW window (shown below) pops up.
2. Click on the Advisor activation button.
3. The STW/Advisor window pops up.

CHAPTER 3: STATIC GUI Operation

26

4. Click on STATIC. The STATIC window pops up.

FIGURE 15 Invoking STATIC from the STW Suite

STATIC User’s Guide

27

3.4 Processing Source Code

Because STATIC is a static code analyzer, you do not have to do anything
special to the code. To use STATIC, all you have to do is select a source
code file name, and processing is automatic.

STATIC will automatically generate a report that contains messages
regarding your code. These messages indicate areas of your code that
may have errors. There are a total of 950 messages possible. Because cer-
tain messages may not indicate programming errors for your application,
you can turn off particular messages.

CHAPTER 3: STATIC GUI Operation

28

3.5 Selecting a Source Code File

Files can be C source files (or modules).

Here’s how to select a source code file:
1. Click on the File pull-down menu.
2. Select the Load Single File option. The file selection dialog box below

pops up.
For further information on using the file selection dialog box, please
refer to the appropriate section (See Section 3.2 - “User Interface” on
page 19.).

3. Select a source code file.
4. When STATIC has processed the source code file, it will automatically

create a report. This report is shown in the display area of the Main
window.

3.5.1 Selecting Multiple Source Code Files

STATIC also allows you to select more than one file for analysis. Here’s
how to select multiple source code files:
1. Click on the File pull-down menu.
2. Select the Load Multiple Files option. The file selection dialog box

below pops up.
For further information on using the file selection dialog box, please
refer to the appropriate section (See Section 3.2 - “User Interface” on
page 19.).

3. To select more than one file, do one of two things:
• Highlight the files in the File selection window by clicking on the

actual file names.
• You can select all of the files, by clicking on the Select All button.

4. Click on OK.
5. When it has processed the source code files, it will automatically cre-

ate the report.

STATIC User’s Guide

29

FIGURE 16 Selecting Single or Multiple Source Code File(s)

CHAPTER 3: STATIC GUI Operation

30

3.6 Analyzing the Report

After a source code file or multiple files have been loaded into STATIC, a
report similar to the one below is generated. You can use the scroll bars to
move up and down and side to side. It contains the following informa-
tion:
1. Module Name - The path and the source code file name.
2. Program Statement.
3. Line Number. For each message, the source code file line number that

it applies to is indicated.
4. The Type of Message. The type of message for the program statement

is indicated. STATIC reports on the following types of messages: Syn-
tactical, Internal, Fatal, Warning, Informational, and Elective Notes.

5. Number and Message. Each message type is identified by a number
and brief description. Please refer to the correct chapter for further
message information (See CHAPTER 4 - "Messages” on page 93.).

FIGURE 17 Report

STATIC User’s Guide

31

3.6.1 Writing the Report to a File

After a report is generated, you may want to save it to a file. If you choose
not to do this, your report will not be saved.

To save the report:
1. Click on the File pull-down menu.
2. Select Save Analysis of File(s) option.
3. The Save static results as window (shown below) pops up.
4. Click the mouse pointer in the specification region. When a cursor

appears, type in the name of the file you want the report saved to.
5. Click on OK.

FIGURE 18 Saving the Report

CHAPTER 3: STATIC GUI Operation

32

3.7 Modifying the Report Options

By now you probably have seen STATIC’s power. It will find things in
your code that you probably never would have realized. After a few runs,
you may notice that some of the messages are unnecessary for your appli-
cation. STATIC allows you to suppress or to activate messages as well as
turn on available flags and options.

To activate or suppress these options, you can do one of two things:
1. Modify the options through the GUI.
2. Manually edit the static.rc configuration file. This file includes

several other files which list the default options. Each file represents a
category of options. static.err , for instance, represents the default
error options.

When you are familiar with STATIC and its options and are ready to cus-
tomize it to your own options, you can do most of your editing in the con-
figuration files and then make minor modifications by using the GUI.
Minor modifications can then be saved to the default configuration files
when you exit STATIC. See the correct section for further information (See
Section 3.10 - “Exiting STATIC” on page 91.).

This Section describes how to modify options through the GUI and
details the available options.

3.7.1 Error Messages Options

Because the report is substantial, you may find it beneficial to suppress
certain messages.

Most message are defaulted on, except special elective notes. These mes-
sages are listed in the 900 to 950 range. Please refer to the correct chapter
to see if you want any of these message turned on (See CHAPTER 4 -
"Messages” on page 93.).

To turn on or turn off messages:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu and select Error.
3. The Error Options window pops up. You can use the scroll bars in

the Error Option Set window to see which messages are already sup-
pressed.

STATIC User’s Guide

33

FIGURE 19 Error Options Window

4. The Error Options window’s Add and Delete buttons allow you to
add or delete inhibition/enabling options to the Error Option Set.
To add a switch to the Error Option Set window:
• Position the mouse pointer so it is in the specification region and

click. A cursor should appear.
• Type in the option you would like to add, such as -e720 .
• If you want the option listed at the bottom of the Error Option

Set, click on Add.
• If you want the option listed at a specific location in the Error

Option Set window, highlight the option where you would like
the new option to go below and then click on Add. The new
option will be inserted below the option you highlighted.

This is recommended if you are planning on having a lot of switches.
By placing all the -e# options together, for instance, it’s easier to fig-
ure out which messages are suppressed or enabled.

CHAPTER 3: STATIC GUI Operation

34

To delete a switch in the Error Option Set:
• Highlight the switch you would like to remove.
• Click on Delete.
• The option should be removed.

FIGURE 20 Grouping Messages Together

5. Options begin with a plus (+) or minus (-) sign. Options beginning
with - inhibit error messages; options beginning with + turns on a
message. Because only the 900 level messages are defaulted off, you
will only use the + with these messages.

These are the available options to suppress or restore messages:

-e# Inhibits

+e# (# is the number of the numeric pattern) Re-enables
error message(s) #. For example -e504 will turn off
error message 504. The number designator may con-
tain the ? wild card character. For example -e7??
will turn off all 700 level errors (informational mes-
sages).

-ea letter Inhibits

STATIC User’s Guide

35

+ea letter Activates.Argument Mismatch Switch. letter is one of:

i sub-integer

n nominal

s same size

u unsigned vs. signed

This option suppresses warning 516 (argument type
mismatch) for selected type differences. Warning 516
is issued when actual arguments and/or formal pa-
rameters are inconsistent in function calls not made in
the presence of a prototype.

eai Refers to argument type mismatches of
the form char vs. int or short vs
int . Such a difference can occur when
an old-style function definition of char
(promoted to int) meets a prototype of
char . This option is recommended only
if your compiler always passes at least a
full int as argument.

ean Refers to argument type mismatches
where the arguments differ nominally.
Examples include the case where one
argument is int and the other is long
and where both int s and long s are the
same size. This also affects argument
mismatches between unsigned int
and unsigned long where both are
the same size. It can also suppress mes-
sages involving short and int when
these are the same size.

eas Refers to unlike types where both types
occupy the same size. For example, if the
function f() expects a pointer argument
then the call, f(3) , will normally draw
a message (#516). If pointers occupy the
same space as integers (they do by
default) then the message will be inhib-
ited if eas is set.

eau Refers to type differences where one
type is a signed and the other an
unsigned quantity of the same type.

CHAPTER 3: STATIC GUI Operation

36

For example, if the function f expects an
unsigned integer and n is an int , then
the call, f(n) , will normally draw warn-
ing message #516 . This message will be
inhibited if eau is set.

ean is orthogonal to eau ; neither option implies the
other. If both options are set, int s match up with un-
signed long s, etc. provided they are the same size.
Note that eas implies ean and eau . E.g., if eas is set,
it is not necessary to also set -eau .

-ep letter Inhibits.

+ep letter Activates. Pointer to Type Mismatch Switch. This op-
tion refers to pointer-to-pointer mismatch (Error 64)
across assignment or implied assignment as in initial-
izers, return from function, or passing arguments in
the presence of a prototype. By selecting one or more
of these options, the user can suppress notification of
this error for selected pointer differences. letter is one
of:

n nominal

p all indirect values

s same size

u unsigned vs. signed

epn The pointed-to types differ nominally.
For example pointer to short vs.
pointer to int where int and short
are the same size.

epp The pointed-to types differ in anyway
imaginable. Said another way... "Pointers
are pointers".

eps The pointed-to types differ but they are
the same size. For example, pointer to
long vs. pointer to a union containing
a long but nothing larger.

epu The pointed-to types differ in that one is
an unsigned version of the other. For
example, pointer to char being assigned
to pointer to unsigned char .

STATIC User’s Guide

37

epn is orthogonal to epu ; neither implies the other
and both can meaningfully be selected. eps implies
both. If you select eps you needn’t bother selecting
epu or epn . epp implies the other three.

-esym (n,Symbol[,Symbol]...) Inhibits

+esym (n,Symbol[,Symbol]...) Re-enables error message n for the indicated
symbols. This is one of the more useful options be-
cause it inhibits messages with laser-like precision.
For example -esym(714,alpha,beta) will inhibit
error message 714 for symbols alpha and beta . (As
in all options, embedded blanks are not permitted).
Only messages that are parameterized by the identi-
fier Symbol can be so suppressed (See Section 4.2 -
“Message Glossary” on page 94.). This error inhibi-
tion is independent of the -e# option. For a message
regarding a particular symbol to be reported, its num-
ber must not be inhibited by -e# and it must not be
inhibited by -esym (n,Symbol). For example, the com-
bination:

-e714 +esym(714,alpha)

does not enable message 714 for alpha . The first op-
tion suppresses 714 completely independently of any
esym option. The second option, unless there was a
prior -esym(714,alpha) , has no effect.

-efile (n,file[,file]...) Inhibits

+efile (n,file[,file]...) Re-enables error message n for the indicated files.
This works exactly like -esym but only on those mes-
sages parameterized by FileName (e,g., 7, 305, 306,
307, 314, 404, 405, 406, 537, 766). Please note, this does
not inhibit messages within a file but rather messages
about a file.

-elib # Inhibits

+elib # Re-enables error message # in library headers. This is
handy because library headers are usually beyond
the control of the individual programmer. For exam-
ple, if the stdio.h you are using has the construct:

#endif comment

instead of

#endif /*comment*/

CHAPTER 3: STATIC GUI Operation

38

as it should, you will receive message 544. This can be
inhibited for just library headers by -elib(544) . #
may contain wild cards. For example, -elib(7??)
will inhibit informationals within library headers.

-etd (TypeDiff[,...]) Inhibits

+etd (TypeDiff[,...]) Re-enables messages arising through certain speci-
fied type differences. The chapter details the various
type differences (under the heading TypeDiff) and
some messages are parameterized by type differences
(See Section 4.2 - “Message Glossary” on page 94.).

For example, -etd(ellipsis) will inhibit messag-
es reported as the result of two function types differ-
ing in that one is specified with an ellipsis and the
other is not. The TypeDiff must be an identifier or of
the form identifier/identifier; it may not be of the form
Type = Type, or Type vs. Type or otherwise compound.

Examples of Error Inhibition Options

-e720

will inhibit message 720.

+e9??

will turn on all the 900 level messages.

-e??? +e526

will turn off all messages except number 526.

-epp -eau -esym(526,alpha)

will inhibit errors arising from pointer-pointer clashes and unsigned
arguments and will suppress complaints about alpha not being defined.

3.7.2 Flag Options

STATIC allows you to turn on flags. These flags give directives to STATIC
on how to treat data types and syntax structure.

To turn on any flags:

STATIC User’s Guide

39

1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu and select Flag.
3. The Flag Options window pops up. It lists all the flags that can effect

how STATIC treats data types and syntax structure.
4. To select an option, simply click on the corresponding check button.

FIGURE 21 Flag Options Window

The Flag Options window consists of the following options:
• Abbreviated Structure (fab) - If this flag is ON, struc-

ture references may be abbreviated. Thus, instead of s.a.b , if it
would cause no ambiguity, you may use s.b . Few compilers sup-
port this feature.

CHAPTER 3: STATIC GUI Operation

40

• Anonymous Union (fan) - If this flag is ON, anonymous
unions are supported. Anonymous unions appear within struc-
tures and have no name within the structure so that they must be
accessed using an abbreviated notation. For example:

struct abc
 {
 int n;
 union { int ui; float uf; };
 } s;
 ... s.ui ...

In this way a reference to one of the union members (s.ui or
s.uf) is made as simply as a reference to a member of the struc-
ture (s.n).
This is a feature of the Microsoft 6.0 compiler and is also in C++.

• Continue on Error (fce) - If a #error directive is encoun-
tered, processing will normally terminate. If this flag is ON, the
#error line is printed and processing will continue.

• Char is Unsigned (fcu) - If this flag is ON, all char decla-
rations are assumed to be equivalent to unsigned char .
This is useful for compilers which, by default, treat char s as
unsigned . Note that this treatment is specifically allowed by the
ANSI standard. That is, whether char is unsigned or signed is
up to the implementation. See also the String Unsigned flag
in subsequent explanation of #define.

• Directory of Including File (fdi) - If this flag is ON
the search for #include files will start with the directory of the
including file (in the double quote case) rather than with the cur-
rent directory. This is the standard UNIX convention and is also
used by the Microsoft compiler. For example:

#include “alpha.h”
begins the search for file alpha.h in the current directory if the
fdi flag is OFF, or in the directory of the file that contains the
#include statement if the fdi flag is ON. This normally won’t
make any difference unless you are running STATIC on a file in
some other directory as in:

source\alpha.c

If alpha.c contains the above #include line and if alpha.h
also lies in directory source you need to use the +fdi option.

STATIC User’s Guide

41

• Pointer Difference is Long (fdl) - This flag specifies
that the difference between two pointers is typed long . Other-
wise the difference is typed int .
This flag is automatically adjusted upon encountering a type-
def for ptrdiff_t .

• Deduce Return Mode (fdr) - The return mode of a func-
tion has to do with whether the function does, or does not, return
a value. This flag only affects function definitions and declara-
tions that do not have an explicit return type. This can be a very
valuable option for older C programs. If the flag is ON, return
statements are examined to determine the return mode of such a
function. If the flag is OFF, such a function is assumed to return
an int . With the flag OFF we are adhering strictly to ANSI.

• Float to Double (ffd) - If this flag is ON float expres-
sions are automatically promoted to double when being used in
an arithmetic expression (just as char is promoted to int). Auto-
matic float promotion is K&R C but not ANSI C.

• Flush Output Files (ffo) - When ON, the fflush()
function is called after each message. Otherwise messages are
buffered. If there are many messages it is slightly faster to buffer.

• Hierarchy Graphics (fhg) - If this flag is ON, the IBM
graphics characters are used to display a type hierarchy tree (See
Section 3.7.7 - “Strong Typing Options” on page 61.).

• Hierarchy of Strong Types (fhs) - If this flag is ON,
strong types are considered to form a hierarchy based on type-
def statements (See Section 3.7.7 - “Strong Typing Options” on
page 61.).

• Hierarchy of Strong Indexes (fhx) - If this flag is ON,
strong index types are related via the type hierarchy (See Section
3.7.2 - “Flag Options” on page 38.).

• Integer Model for Enum (fie) - If this flag is ON, a loose
model for enumerations is used. specifically, enumerations are
regarded semantically as integers. By default, a strict model is
used wherein variables of some enumerated type must be
assigned compatible enumerated values and an attempt to use an
enumeration as an int is greeted with a (suppressible) warning
(641). An important exception is an enum that has no tag and no
variable. Thus

enum {false,true};
is assumed to define two integer constants and is always integer
model.

CHAPTER 3: STATIC GUI Operation

42

• Indentation Check on Labels (fil) - Normally no
indentation check is done on labels because frequently they are
positioned far to the left of a listing in a position of prominence
and easy visibility. If you want labels checked, turn this flag ON.
See the correct section for indentation checking (See Section 7.3 -
“Indentation Checking” on page 168.).

• Integral Constants Are Signed (fis) - If this flag is
ON integer constants are typed int or long , not unsigned or
unsigned long . For example, by the rules of ANSI (See Section
10.1 - “Size of Scalars” on page 197.), 0xFFFF is considered
unsigned if int s are 16 bits. However, some older compilers
regard all integral constants as signed. To mimic these use +fis .

• K&R Preprocessor (fkp) - A number of preprocessor facili-
ties are allowed by the ANSI C Standard which are not allowed
in K&R C. These include blanks and tabs preceding the initial #
sign. Setting this flag causes strict adherence to the K&R prepro-
cessor specification.

• Library (flb) - The option has been made into a flag to per-
mit it to be turned ON and OFF in a recursive setting as when
include files are being processed. In this way all entries in a
particular include file can be designated as library entries. This
flag has been largely superseded by the notion of library header
files (See Section 3.7.3 - “Library Header File Options” on page
47.).

• Multiple Definitions (fmd) - Some compilers allow mul-
tiple definitions of data items provided they are not accompanied
by an initializer. These are referred to in ANSI C as tentative defi-
nitions. For example, in the sequence:

int n;
int n = 3;
int n;
int n = 3;

some compilers would consider only the last declaration as erro-
neous. If the fmd flag is ON, only the last declaration draws the
previously defined error message (number 14). Multiple defini-
tions of functions are always reported.

• Nested Comments (fnc) - If this flag is ON, comments may
be nested. This allows STATIC to process files in which code has
been ’commented out’. Commenting out code should not be con-
sidered good practice, however. Code should be disabled by
using a preprocessor conditional as it avoids the quoted star-
slash problem and it automatically assigns a condition to the re-
enabling of the code.

STATIC User’s Guide

43

• Output Declared Objects (fod) - This flag has an effect
only when a Lint Object Module is being produced. See option -
oo (See Section 3.7.8 - “Other Options” on page 78.) Normally,
objects declared but not referenced are not placed in the output.
With this flag ON, all objects declared are placed there. This has
the disadvantage of making the object modules much larger than
they need to be. It has the advantage that all declared objects will
be cross-checked.

• Output Library Objects (fol) - This flag has an effect
only when a Lint Object Module is being produced. See option -
oo . (See Section 3.7.8 - “Other Options” on page 78.)Normally,
objects declared when the library flag is set (see +flb and/or -
library) (See Section 3.7.8 - “Other Options” on page 78.) are
not placed in the output. With this flag ON, all library objects are
placed in the output module. It is not usually necessary to set this
flag ON when creating a Lint Object Module that describes a
library (See Section 3.2 - “User Interface” on page 19.)..

• Pointer Casts Retain lvalue (fpc) - This flag can be
used to legitimize a non-ANSI non-K&R practice which is rife in
the C community. For example if you wanted to add 1 (1 byte not
1 int) to an int pointer (pi) then you could write:

(*(char **)&pi)++;
which is a lot of effort and confusing. You could write:

((char *)pi)++;
This is non-ANSI and non-K&R because the cast removes the
lvalue property from pi and hence it can no longer be incre-
mented. For this reason it will draw a diagnostic from STATIC
even though many (if not most) compilers accept it. If you choose
the second alternative you should turn ON the fpc flag to sup-
press the message.

• Precision Limited to Max. of Arg. (fpm) - This is
used to suppress certain kinds of Loss of Precision messages
(#734). In particular, if multiplication or left shifting is used in an
expression involving char (or short where short is smaller
than int) an unwanted loss of precision message may occur. For
example, if ch is a char then:

ch = ch * ch
would normally result in a Loss of Precision. This is suppressed
when +fpm is set. This flag is automatically (and temporarily) set
for operators <<= and *= .
For example

CHAPTER 3: STATIC GUI Operation

44

ch <<= 1
is not greeted with Message 734.

• Parameters Within Strings (fps) - This flag, when set
ON, allows macro parameters to be substituted within strings as
in:

#define printi(n) printf("n = %d\n", n)
which prints both the name and the value of the parameter
passed to the macro printi . This depends on the substitution of
a macro parameter within a string constant and is supported by
many compilers but is now expressly forbidden by ANSI C.
There are other ways to accomplish this task provided your com-
piler supports them (See Section 9.3.8 - “# Stringize operator” on
page 194.). If it doesn’t, set this flag ON; see also Warning #607 in
the chapter (See CHAPTER 4 - "Messages” on page 93.).

• Read Binary (frb) - When this flag is ON, all files fopen ed
on input are given a mode of rb rather than r . This is to resolve
an obscure problem that can arise with some editor/compiler
combinations. On a system (such as MS-DOS) that uses CR-LF to
separate lines, some editors do not insert a CR between lines (to
save space) and some run-time libraries will not stop (with
fgets) on just an LF unless read with rb . Using this option will
handle the situation.

• Structure Assignment (fsa) - If this flag is ON, structure
assignment is assumed to be valid. Functions, actual arguments
and parameters may be typed struct or union and such objects
are allowed to be used in assignment.

• String Unsigned (fsu) - With this flag ON, a string of con-
stant characters (as in “...”) is regarded as a pointer to an
unsigned character. See also the fcu flag in subsequent explana-
tion for FZu..

• Unsigned Long (ful) - If the unsigned long flag is ON, then
unsigned long is a valid type.

• Variable Arguments (fva) - Functions declared or defined
while this flag is ON are assumed to have a variable argument
list. Warning messages (515 and 516) reporting inconsistencies
between argument lists are suppressed for such functions. For
example:

 /+fva */
 extern int printf();
 extern int fprintf();
 /-fva */

STATIC User’s Guide

45

will cause printf() and fprintf() to be regarded as having
variable argument lists.
An integer suffix N can be added to ’fva ’ to denote that variabil-
ity begins after the Nth argument.For example:

 /+fva1 */
 extern printf();
 /-fva */

indicates that only the first argument of printf() should be
checked. Note that the same effect can be achieved by using pro-
totypes.
A function, once dubbed as having variable argument status,
cannot lose this status by being declared or defined with the fva
flag OFF. This allows setting the flag once in one declarations
module and omitting this flag in subsequent modules.
Note that the flag has no direct effect when a function call is
encountered. That is, a function called with the flag ON will not
be marked as having variable argument status. Whether an error
is reported will depend on whether the function had been
defined or declared with the flag having been ON.

• Void Data Types (fvo) − If this flag is ON, void is recog-
nized as a type and functions declared as void are assumed to
return no value.

• Varying Return Mode (fvr) − The return mode has to do
with whether particular functions do, or do not, return a value. If
this flag is ON when a function is defined or declared, then the
function does not have to be consistent in this respect. Error mes-
sages arising out of an incompatibility between calls to the func-
tion and the function declaration or between two calls or between
return statements and either of the above are inhibited. For exam-
ple, since strcpy() returns a string (in most standard libraries)
and since the string is seldom used, it would be wise to set this
flag ON for at least one of the declarations of strcpy() .
This flag, once widely used, is now being replaced by the more
concise:

-esym(534 ,name1,name2, ...)
• Exact Array (fxa) − This flag, if ON, selectively inhibits

promotion of array arguments and array parameters (for the pur-
pose of type matching) to pointers. This provides a more strict
type-checking in function calls than is normally obtainable. In
particular, only arrays may be passed to parameters declared as
array and the sizes, if specified, must match. On the other hand,
both arrays and pointers may be passed to a parameter typed as

CHAPTER 3: STATIC GUI Operation

46

pointer. See the correct section for exact parameter matching
information (See Section 7.7 - “Exact Parameter Matching” on
page 174.).

• Exact Char (fxc) − This flag, if ON, inhibits promotion of
char or unsigned char arguments and parameters (for the
purpose of type matching). Normally these types are silently pro-
moted for argument passing to int , and this promotion can hide
unintended disagreements between parameter and argument.
See the correct section for exact parameter matching information
(See Section 7.7 - “Exact Parameter Matching” on page 174.).

• Exact Float (fxf) − This flag, if ON, inhibits promotion of
float arguments and parameters (for the purpose of type
matching). Normally these types are silently promoted to dou-
ble , and this promotion can hide unintended disagreements
between parameter and argument. Seethe correct section for
exact parameter matching information (See Section 7.7 - “Exact
Parameter Matching” on page 174.).

• Exact Short (fxs) − This flag, if ON, inhibits promotion of
short and unsigned short arguments and parameters (for
the purpose of type matching). Normally these types are silently
promoted to int , and this promotion can hide unintended dis-
agreements between parameter and argument. See the correct
section for exact parameter matching (See Section 7.7 - “Exact
Parameter Matching” on page 174.).

• Sizeof is Long (fzl) − If this flag is ON, sizeof() is
assumed to be a long (or unsigned long if -fzu is also ON).
The flag is OFF by default because sizeof is normally typed
int . This flag is automatically adjusted upon encountering a
size_t type. This flag is useful on architectures where int s are
not the same size as long s.

• Sizeof is Unsigned (fzu) − If this flag is ON, sizeof()
is assumed to return an unsigned quantity (unsigned long if -
fzl is also ON). This flag is automatically adjusted upon encoun-
tering a size_t type.

STATIC User’s Guide

47

3.7.3 Library Header File Options

Note: This section is not about how to include header files that may be in
some directory other than the current directory. For that information, see
the correct section (See Section 9.2 - “include Processing” on page 192.).
This section explains how information about libraries is passed to
STATIC. This usually, but not always, takes the form of header files.

Examples of libraries are compiler libraries such as the standard I/O
library, and third-party libraries such as windowing libraries, and data-
base libraries. Also, an individual programmer may choose to organize a
part of his own code into one or more libraries if it is to be used in more
than one application. The important features of libraries, in so far as
STATIC is concerned, are:
1. The source code may not be available for STATIC.
2. The library is used by programs other than the one you are running

STATIC on.

Information about libraries is conveyed to STATIC via Library Headers. A
library header file is a header file that describes (in whole or in part) the
interface to a library.

The most familiar example of a library header file is stdio.h . Consider
#include <stdio.h>

main()
 {
 printf("hello world");
 }

Without the header file, STATIC would complain that printf was nei-
ther declared (Informational #718) nor defined (Warning #526). (The dis-
tinction between a declaration and a definition is extremely important in
C. A definition for a function, for example, uses curly braces and there
can be only one of them for any given function. Conversely, a declaration
for a function ends with a semi-colon, is simply descriptive, and there can
be more than one).

With the inclusion of stdio.h (assuming stdio.h contains a declara-
tion for printf), STATIC will no longer issue message #718. Moreover, if
stdio.h is recognized as a library header file (it is by default because it
was specified with angle brackets), STATIC will understand that source
code for printf is not necessarily available, see clause (1) on the previ-
ous page, and will not issue warning 526 either.

CHAPTER 3: STATIC GUI Operation

48

Note: Other messages associated with library headers are not suppressed
automatically. But you may use -elib for this purpose. See the correct
section for error inhibition options (See Section 3.7.3 - “Library Header
File Options” on page 47.).

Because of clause (2), not all components of a library header file need to
be fully utilized over the course of compiling a program. Such compo-
nents include: declared data objects and functions, types specified with
typedef, macros specified with #define, and struct, union and enum dec-
larations and their members. For these components, messages 749-770 are
suppressed. See the correct section for weak definial information (See Sec-
tion 7.8 - “Weak Definials” on page 176.).

A header file can become a library header file if:
1. It falls within one of the four broad categories of the option +lib-

class , viz. all , ansi , angle and foreign (described below),
and not excluded by either the -libdir or the -libh option.

2. OR, for finer control, it comes from a directory specified with +lib-
dir and is not specifically excluded with -libh.

3. OR, for the finest control, is specifically included by name vi +libh.
4. OR, is included within a library header file.

For each included library header you will receive a message similar to:
Including file c:\\compiler\\stdio.h
(library)

The tag: ’(library)’ indicates a library header file. Other header files
will not have that tag.

To specify if or when a header is a library header file:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu and select Library.
3. The Library Options window pops up.

STATIC User’s Guide

49

FIGURE 22 Library Options Window

4. The Library Options window’s Add and Delete buttons allow you to
add or delete library header options. To add a library option:
• Position the mouse pointer so it is in the specification region and

click. A cursor should appear.
• Type in the option you would like to add.
• If you want the option listed at the bottom of the Library Option

Set, click on Add.
• If you want the option listed at a specific location in the Library

Option Set window, highlight the option where you would like
the new option to go below and then click on Add. The new
option will be inserted below the option you highlighted.

To delete a switch in the Library Option Set:
• Highlight the switch you would like to remove.
• Click on Delete.
• The option should be removed.

What follows is a more complete description of the three options used to
specify if or when a header file is a library header file.

+libclass(identifier[, identifier]...) specifies the set or sets of header files
that are assumed to be library header files. Each identifier can be one of:

angle All headers specified with angle brackets.

foreign All header files found in directories other than the
current directory.

CHAPTER 3: STATIC GUI Operation

50

Note: If the #include contains a complete path
name then the header file is not considered ’foreign’.
To endow such a file with the library header property
use either the +libh option or angle brackets. For ex-
ample, if you have

#include <\include\graph.h>

and you want this header to be regarded as a library
header use angle brackets as in:

#include <\include\graph.h>

 or use the option:

+libh(\include\graph.h)

(This should not be construed as an endorsement for
using full path names in #include files.) "

identifier option, ansi

ansi The ‘standard’ ANSI header files, viz.

assert.h locale.hstddef.h

ctype.h math.hstdio.h

errno.h setjmp.hstdlib.h

float.h signal.hstring.h

limits.h stdarg.htime.h

all All header files are regarded as being library headers.
By default, +libclass (angle,foreign) is in effect. This
option is not cumulative. Any +libclass option
completely erases the effect of previous +libclass
options. To specify no class use the option +lib-
class() .

+libdir (directory[, directory]...)

Activates -libdir (directory[, directory]...)Deacti-
vates the directory (or directories) specified. The no-
tion of directory here is identical to that in the -i
option. If a directory is activated then all header files
found within the directory will be regarded as library
header files (unless specifically inhibited by the -libh
option). It overrides the +libclass option for that par-
ticular directory. For example:

+libclass()

+libdir(/compiler)

STATIC User’s Guide

51

+libh(os.h)

requests that no header files be regarded as library
files except those coming from directory /compiler
and the header os.h from whatever directory. Also,

+libclass(foreign)

-libdir(headers)

requests that all headers coming from any foreign di-
rectory except the directory specified by headers
should be regarded as library headers.

Note: A file specified as #include “/compiler/i.h” is
not regarded as libdir(/compiler). Only files found in
/compiler via -i searching are so regarded.

+libh (file[, file]...) Adds

-libh (file[, file]...) Removes files from the set that would otherwise be
determined from the +libclass option.

For example:

+libclass(ansi,angle)

+libh(windows.h,graphics.h)

+libh(os.h)

-libh(float.h)

requests that the header files described as ansi or
angle (except for float.h) and the individual
header files: windows.h , graphics.h and os.h
(even if not specified with angle brackets) will be tak-
en to be library header files. Note that the libh op-
tion is cumulative whereas the libclass option
overrides any previous libclass option, including
the default.

3.7.4 Size Options

This size options allow you to set the sizes of various scalars (shorts,
int s, etc.) for the target machine. The separate setting of these parame-
ters is not normally necessary as the default settings are consistent with
most compilers in your environment. Use the size options for specifying
architectures other than the native architectures.

To change sizes of scalars:
1. Click on the Options pull-down menu.

CHAPTER 3: STATIC GUI Operation

52

2. Drag the mouse to the Modify submenu and select Size.
3. The Size Options window pops up. It lists all the size options on the

left side and the default scalars sizes on the right side.
4. To edit a size, simply click on the corresponding specification region.

When the cursor appears, you can begin editing.
5. If you want to keep your changes, click on the Apply button. If not,

click on the Reset button.

FIGURE 23 Size Options Window

For example, a

sizeof(int) -si size of 2

specifies that the size of integers is two bytes. In the
list below # stands for a small integer.

Bits in a Byte -sb

The number of bits in a byte is #.8 is the default. The
number of bits in an int is presumed to be sizeof(int)

STATIC User’s Guide

53

times this quantity. The maximum integer is deter-
mined from this quantity by assuming a 2’s comple-
ment machine. The maximum integer, in turn, is used
to determine whether a constant is int or long.

sizeof(char) -sc

The default value is, of course, 1 (this option is
present for completeness. Do you really want to set
the size of a char to something other than 1?)

sizeof(short) -ss

sizeof(short) becomes #. 2 is the default.

sizeof(int) -si

sizeof(int) becomes #. 4 is the default.

sizeof(long) -sl

sizeof(long) becomes #. 8 is the default.

sizeof(float) -sf

sizeof(float) becomes #. 4 is the default.

sizeof(double) -sd

sizeof(double) becomes #. 8 is the default.

sizeof(long double) -sld

sizeof(long double) becomes #. 8 is the default.

sizeof(pointers) -sp

sizeof pointers becomes #. This option sets both pro-
gram and data pointer sizes to the same value. 8 is the
default. This option sets both program and data
pointer sizes to the same value.

sizeof Data Pointers -spD

Indicates the size of data pointers is # bytes. This has
no effect on the assumed size of program (function)
pointers. The default is 8.

sizeof Function Pointers -spP

Indicates that the size of a Program (function) pointer
is # bytes. This has no effect on the assumed size of
data pointers. The default is 8.

CHAPTER 3: STATIC GUI Operation

54

3.7.5 Compiler Vendor Options

All compilers are slightly different owing largely to differences in librar-
ies and preprocessor variables, if not actually to differences in the lan-
guage processed. The key to coping with these differences is the selection
of STATIC’s vendor switches or compiler options.

 To select the compiler vendor:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu.
3. Drag the mouse to the Compiler submenu and select Vendors.

4. The Compiler Options window pops up. It lists all the compiler ven-
dors. If your compiler is not found in the group above, you may want
to modify co.lnt which is the generic compiler options file. In addi-
tion, if your compiler does not provide prototypes and is not in the
list above, you may wish to modify the file sl.c which is a generic
standard library file.

5. To select an option, simply click on the corresponding check button.
6. Click on OK.

STATIC User’s Guide

55

FIGURE 24 Compiler Options Window

The Compiler Options window consists of the following options:

-caztec (Manx Aztec C compiler). Enables __FUNC__ and
MPU8086 and, for large data pointers, __LDATA .

-cc86 (Computer Innovations C86). Enables _C86_BIG for
large data pointers.

-cdesm (DeSmet C). Enables the symbol LARGE_CASE for
large data pointers.

-cdl (Datalight C). Enables DLC, I8086 and one of
I8086L , I8086D , I8086P and I8086S depending
on memory model. Also LPTR is defined to be 1 for
large data models and SPTR is defined to be 1 for
small data models.

-cec (Ecosoft Eco-C88). Enables __ECO, and, for memory
models having large data pointers, enables

CHAPTER 3: STATIC GUI Operation

56

__BIGDATA, and, for memory models having large
code pointers, enables __BIGCODE.

-chc (MetaWare High C). Pre-assigns 0 to
_stdio_defs_included , _1167 , _HIGHC_.

-cht (Hi-Tech C). Pre-assigns 0 to symbols z80 and m68k
and pre-assigns 1 to symbol i8086 .

-cicb (Intel Code Builder). Pre-assigns variables
LINT_ARGS, _TIMESTAMP_, CH_TIME,
INTELC32 , _ARCHITECTURE_, 386 and sets the
size of int s and pointer s to 4 bytes and allows
’$’ in identifiers.

-clc (Lattice C, Versions 2 & 3). MSDOS is enabled. SPTR
is defined to be 1 if the memory model uses small data
pointers and 0 otherwise. LPTR is defined to be 1 if
the memory model uses large data pointers and 0 oth-
erwise. In addition, CPM80, CPM86 CPM68, LATTICE ,
and I8086 are enabled and one of I8086L,
I8086D , I8086P or I8086S depending on memory
model.

-clc6 (Lattice C, Version 6). This is like -clc except that, in
addition, preprocessor words ANSI, NULL and LC60
are enabled and CPM* are not. The user should en-
able DOS, FAMILY or OS2 if using these symbols.

Also, keywords align , critical , noalign , no-
pad , pad, private , interrupt , near , far , huge ,
pascal , actual , inline and their double under-
score prefix versions are enabled.

-cibmc2 (IBM C2). Both of these options have the same effect.
They enable MSDOS, M_I86 and one of M_I86LM,
M_I86CM, M_I86MM and M_I86SM depending on
memory model. Also, keywords (reserved words)
_loadds , _export , _saveregs _asm , _based ,
_segment , _segname and _self are enabled, as
well as the Microsoft keywords which are: near ,
far , huge , pascal , fortran , cdecl , interrupt ,
_near , _far , _huge , _pascal , _fortran ,
_cdecl , _interrupt , _fastcall . The // form
of comment is understood. If -A (or -Za) is set then
NO_EXT_KEYSis enabled and then special keywords
and comment control are disabled.

STATIC User’s Guide

57

-ctc (Turbo C and Borland C). This option supports Turbo
C, and the C portion of Turbo C++ and Borland C++.
__TURBOC__, __MSDOS__, __CDECL__ are defined
to be 1 and one of __LARGE__, __COMPACT__,
__MEDIUM__, __SMALL__ are defined (to be 1) ac-
cording to the memory model selected. Also,
__STDC__ is treated differently than for other com-
pilers. __STDC__ is by default undefined and is de-
fined (to be 1) only if -A is set.

Additional keywords supported are: asm , _ss , _es ,
_ds , _cs , and _seg (this is in addition to far , near ,
huge, pascal , fortran and cdecl which are en-
abled by default). For the large model, sizeof is as-
sumed to be unsigned long.

Register keywords (as in Turbo C, these are pre-de-
clared to be of type unsigned or unsigned char
depending on whether the associated register is 16
bits or 8 bits long).

_AX _BX _CX _DX _SI _DI _SP _BP

_AH _AL _BH _BL _CH _CL _DH _DL

_DS _ES _RS _SS _FLAGS

-ctsc (TopSpeed C). Enables M_I86LM, M_I86CM,
M_I86MM, M_I86SM according to memory model
(like Microsoft C).

-cwc (Watcom C.) Enables M_I86 and one of M_I86LM ,
M_I86CM, M_I86MM and M_I86SM depending on
memory model. Enables keywords __far , __near ,
__huge and __interrupt . If -A (or -Za) is set,
then NO_EXT_KEYS is enabled. As with all compilers,
the Microsoft keywords are enabled by default.

CHAPTER 3: STATIC GUI Operation

58

3.7.6 Compiler Customization Options

STATIC allows you to support a number of features in a variety of compil-
ers. With some exceptions, they are used mostly to get STATIC to ignore
some nonstandard constructs accepted by some compilers. To turn on any
of these features:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu.
3. Drag the mouse to the Compiler submenu and select Customiza-

tions.
4. The Compiler Customization Options window pops up. When you

add more options, you can use the scroll bars in the Compiler Option
Set window to move up/down or side/side. The default option is -
d_NO_PROTO.

FIGURE 25 Compiler Customization Options Window

5. The window’s Add and Delete buttons allow you to add or delete
compiler options to the Compiler Option Set list.

To add an option:
• Position the mouse pointer so it is in the specification region and

click. A cursor should appear.

STATIC User’s Guide

59

• Type in the option you would like to add.
• If you want the option listed at the bottom of the Compiler

Option Set, click on Add.
• If you want the option listed at a specific location in the Compiler

Option Set window, highlight the option where you would like
the new option to go below and then click on Add. The new
option will be inserted below the option you highlighted.

To delete a switch:
• Highlight the switch you would like to remove.
• Click on Delete.
• The option should be removed.

These are the available compiler options:

-a# predicate(token-sequence)

Asserts the truth of # predicate for the given token-se-
quence. This is to support the UNIX System V Release
4 #assert facility. For example:

-a#machine(pdp11)

makes the predicate #machine(pdp11) true. See
also the appropriate section for non-ANSI prepro-
cessing .

-d Name()= Replacement

 To induce STATIC to ignore or reinterpret a function-
like sequence it is only necessary to #define a suit-
able function-like macro. However, this would re-
quire modifying source code and is hence not as
convenient as using this option. For example, if your
compiler supports

char_varying (n)

 as a type and you want to get STATIC to interpret this
as char* you can use

-dchar_varying()=char*

As another example, for VAX-11 C,

 -d_align()=

may be used to blank out the effects of the
_align(k) option. If the macro requires n argu-
ments, n-1 commas are required between the paren-
theses.

CHAPTER 3: STATIC GUI Operation

60

-plus (char) Identifies char as an alternate ’+’ character.

STATIC User’s Guide

61

3.7.7 Strong Typing Options

The notion of strong typing is not usually carefully defined. It generally
means the kind of type checking that Pascal has that C does not. These
include the following:
1. User-defined types match only through the nominal type, not

through the underlying type as is done with C.
2. A special Boolean type is supported which must be used where Bool-

ean’s are expected. In C, any scalar can be used as a Boolean and any
Boolean is typed int .

3. The Pascal-equivalent of char and enum objects are not automati-
cally converted to and from int as is done in C. Explicit conversion
is required.

4. Every array has an expected index type and every subscript must
match this type. In C, any integral can be used as a subscript for any
array.

5. Pascal has a set facility implemented as a finite number of bits that
are either on or off. In C, one uses bit-wise operations on integral
quantities to achieve the same effect. C’s approach is more flexible
but Pascal sets and their members cannot be improperly mixed.

In addition to these static checks, Pascal systems have run-time checks
that include subscript bounds and pointer-NIL checks. We do not include
these under the notion of Strong Type checking.

In the pages that follow, each of the static type checks enumerated above
will be seen to be represented as options for STATIC. We describe how a
STATIC-like utility can superimpose strong typing wholly or partially on
a C program through the use of the typedef facility and in the judicious
selection of appropriate options.

Additional flexibility is obtained by means of a type hierarchy. In a type
hierarchy generic uses of a type are distinguished from, but related to,
more specific uses of a type.

 What Are Strong Types?

Have you ever gone through the trouble of typedef’ing types and then
wondered whether it was worth the trouble? It didn’t seem like the com-
piler was checking these types for strict compliance.

Consider the following typical example:
typedef int Count;
typedef int Bool;
Count n;

CHAPTER 3: STATIC GUI Operation

62

Bool stop;
 n = stop ; /* mistake but no warn-
ing */

This programming botch goes undetected by the compiler because the
compiler is empowered by the ANSI standard to check only underlying
types which, in this case, are both the same (int).

The -strong option and its supplementary option -index exist to
support full or partial typedef -based type-checking. We refer to this as
strong type-checking. In addition to checking, these options have an
effect on generated prototypes.

To turn on any of the strong type options:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu and select Strong Types.
3. The Strong Type Options window pops up. When you add more

options, you can use the scroll bars in the Strong Option Set window
to move up/down or side/side.

FIGURE 26 Strong Type Options

4. The Add and Delete buttons allow you to add or delete compiler
options to the Strong Option Set list.

STATIC User’s Guide

63

To add an option:

Position the mouse pointer so it is in the specification region and click. A
cursor should appear.

Type in the option you would like to add.

If you want the option listed at the bottom of the Strong Option Set win-
dow, click on Add.

If you want the option listed at a specific location in the Strong Option
Set window, highlight the option where you would like the new option to
go below and then click on Add. The new option will be inserted below
the option you highlighted.

To delete a switch:
• Highlight the switch you would like to remove.
• Click on Delete.
• The option should be removed.

These are the available options:

3.7.7.1 -strong

-strong (flags[, name]...)

Identifies each name as a strong type with properties specified by flags.
Presumably there is a later typedef defining any such name to be a type.
This option has no effect on typedef’s defined earlier. If name is omitted,
then flags specifies properties for all typedef ’ed types that are not iden-
tified by some other -strong option.

The flags can be:

A Issue a warning upon some kind of Assignment to the
strong type. (assignment operator, return value, ar-
gument passing, initialization). A may be followed by
one or more of the following letters which soften the
meaning of A.

i Ignore Initialization

r Ignore Return statements

p Ignore argument Passing

c Ignore assignment of Constants

As an example, -strong(Ai,BITS) will issue a warning
whenever a value whose type is not BITS is assigned
to a variable whose type is BITS except when the vari-
able is being initialized. (If the strong type is a pointer

CHAPTER 3: STATIC GUI Operation

64

then &x, where x is a STATIC or automatic variable, is
considered a constant.)

X Check for strong typing when a value is extracted.
This causes a warning to be issued when a strongly
typed value is assigned to a variable of some other
type (in one of the four ways described above). But
note, the softeners (i , r , p, a , c) cannot be used with
X.

J Check for strong typing when a value is Joined (i.e.,
combined) with another type across a binary opera-
tor. This can be softened with one or more of the fol-
lowing lower case letters immediately following the
J :

e Ignore Equality operators (== and !=)
and the conditional operator (?:).

r Ignore the four Relational operators
(>>= <<=).

o Ignore the Other binary operators which
are the five arithmetic operators (+ - * /
%) and the three bit-wise operators (| &
^).

 c Ignore combining with Constants.

By ‘ignoring’ we mean that no message is produced.
If, for example, Meters is a strong type then it might
be appropriate to check only Equality and Rela-
tional operators and leave others alone. In this case
Jo would be appropriate.

B The type is Boolean. Normally only one name would
be provided and normally this would be used in con-
junction with other flags (if through the fortunes of
using a third party library, multiple Booleans are
thrust upon you, make sure these are related through
a type hierarchy. See Type Hierarchies (See Section
3.7.7 - “Strong Typing Options” on page 61.). The let-
ter ’B’ has two effects:

1. Every Boolean operator will be assumed, for the
purpose of strong type-checking, to return this type.
The Boolean operators are those that indicate true or
false and include the four Relational and two Equality
operators mentioned above, Unary !, and Binary &&
and ||.

STATIC User’s Guide

65

2. Every context expecting a Boolean, such as an if
clause, while clause, second expression of a for state-
ment, operands of Unary ! and Binary || and &&,
will expect to see this strong type or a warning will be
issued.

b This is like flag B except that it has only effect num-
bered 1 above. It does not have effect 2. Boolean con-
texts do not require the type.

Flag B is quite restrictive insisting as it does that all
Boolean contexts require the indicated Boolean type.
By contrast, flag b is quite permissive. It insists on
nothing by itself and serves to identify certain opera-
tors as returning a designated Boolean type rather
than an int . See also the ’l’ flag below.

l Is the Library flag. This designates that the objects of
the type may be assigned values from or combined
with library functions (or objects) or may be passed as
arguments to library functions. The usual scenario is
that a library function is prototyped without strong
types and the user is passing in strongly typed argu-
ments. Presumably the user has no control over the
declarations within a library. Also, this flag is neces-
sary to get built-in predicates such as isupper to be ac-
cepted with flag B. See example below.

f f goes with B or b and means that bit fields of
length one should not be Boolean (otherwise they
are). See Bit field example below.

These flags may appear in any order except that soft-
eners for A and J must immediately follow the letter.
There is at most one ’B’ or ’b’. If there is an ’f’ there
should also be a ’B’ or ’b’. In general, lower case let-
ters reduce or soften the strictness of the type check-
ing whereas upper case letters add to it. The only
exceptions are possibly ’b’ and ’f’ where it is not clear
whether they add or subtract strictness.

If no flags are provided, the type becomes a ‘strong
type’ but engenders no specific checking other than
for declarations.

Examples of -strong

For example, the option

CHAPTER 3: STATIC GUI Operation

66

 -strong(A)

indicates that, by default, all typedef types are checked on Assignment
(A) to see that the value assigned has the same typedef type.

The options:

 -strong(A) -strong(Ac,Count)

specify that all typedef types will be checked on Assignment and con-
stants will be allowed to be assigned to variables of type Count.

As another example,

-strong(A) -strong(,Count)

removes strong checking for Count but leaves Assignment checking in
for everything else. The order of the options may be inverted. Thus

-strong(,Count) -strong(A)

is the same as above.

Consider:
/-strong(Ab,Bool) */
typedef int Bool;

Bool gt(a,b)
 int a, b;
 {
 if(a) return a > b; /* OK */
 else return 0; /* Warning */
 }

This identifies Bool as a strong type. If the flag b were not provided in
the -strong option, the result of the comparison operator in the first
return statement would not have been regarded as matching up with the
type of the function. The second return results in a Warning because 0 is
not a Bool type. An option of -strong(Acb,Bool) , i.e. adding the c
flag, would suppress this warning.

We do not recommend the option ’c’ with a Boolean type. It’s better to
define

 #define False (bool) 0

and

return False;

Had we used an upper case B rather than lower case b as in:

STATIC User’s Guide

67

 -strong(AB,Bool)

then this would have resulted in a Warning that the if clause is not Bool-
ean (variable a is int). Presumably we should write:

 if(a != 0) ...

As another example:

 /*-strong(AJXl,STRING) */

 typedef char *STRING;

 STRING s;

 .

 .

 .

 s = malloc(20);

 strcpy(s, “abc”);

Since malloc and strcpy are library routines, we would ordinarily
obtain strong type violations when assigning the value returned by mal-
loc to a strongly typed variable s or when passing the strongly typed s
into strcpy. However, the l flag suppresses these strong type clashes.

Strong types can be used with bit fields. Bit fields of length one are
assumed to be, for the purpose of strong type checking, the prevailing
Boolean type if any. If there is no prevailing Boolean type or if the length
is other than one, then, for the purpose of strong type checking, the type
is the bulk type from which the fields are carved. Thus:

/*-strong(AJXb,Bool) */
/*-strong(AJX,BitField) */

typedef int Bool;
typedef unsigned BitField;

struct foo
 {
 unsigned a:1, b:2;
 BitField c:1, d:2, e:3;
 } x;

CHAPTER 3: STATIC GUI Operation

68

void f()
 {
 x.a = (Bool) 1; /* OK */
 x.b = (Bool) 0; /* strong type */
 /* violation */
 x.a = 0; /* strong type */
 /* violation */
 x.b = 2; /* OK */
 x.c = x.a; /* OK */
 x.e = 1; /* strong type */
 /* violation */
 x.e = x.d; /* OK */
 }

In the above, members a and c are strongly typed Bool, members d and
e are typed BitField and member b is not strongly typed.

To suppress the Boolean assumption for one-bit fields use the flag ’f’ in
the -strong option for the Boolean. In the example above, this would
be -strong(AJXbf,Bool) .

3.7.7.2 -index

-index (flags,ixtype,sitype[, sitype]...)

This option is supplementary to and can be used in conjunction with the
-strong option. It specifies that ixtype is the exclusive index type to be
used with arrays of (or pointers to) the Strongly Indexed type sitype (or
sitypes if more than one is provided). Both the ixtype and the sitype are
assumed to be names of types subsequently defined by a typedef dec-
laration. flags can be

c allow Constants as well as ixtype, to be
used as indices.

d allow array Dimensions to be specified
without using an ixtype.

Examples of -index

For example:
/* -index(d,Count,Temperature)
 Only Count can index a Temperature */

typedef float Temperature;
typedef int Count;

STATIC User’s Guide

69

Temperature t[100];
/* OK because of d flag */
Temperature *pt = t;
/* pointers are also checked */

 /* ... within a function */
 Count i;

 t[0] = t[1];
/* Warnings, no c flag */
 for(i = 0; i < 100; i++)
 t[i] = 0.0;
/* OK, i is a Count */
 pt[1] = 2.0; /* Warning */
 i = pt - t;
/* OK, pt-t is a Count */

In the above, Temperature is said to be strongly indexed and Count is
said to be a strong index. If the d flag were not provided, then the array
dimension should be cast to the proper type as for example:

Temperature t[(Count) 100];

However, this is a little cumbersome. It is better to define the array
dimension in terms of a manifest constant, as in:

#define MAX_T (Count) 100
Temperature t[MAX_T];

This has the advantage that the same MAX_T can be used in the for
statement to govern the range of the for .

Note that pointers to the Strongly Indexed type (such as pt above) when
used in array notation are also checked. Indeed, whenever a value is
added to a pointer that is pointing to a strongly indexed type, the value
added is checked to make sure that it has the proper strong index.

Moreover, when strongly indexed pointers are subtracted, the resulting
type is considered to be the common Strong Index. Thus, in the example,

i = pt - t;

no warning resulted.

It is common to have parallel arrays, arrays with identical dimensions but
different types, processed with similar indices. The -index option is set up
to conveniently support this. For example, if Pressure and Voltage
were types of arrays similar to the array t of Temperature one might
write:

CHAPTER 3: STATIC GUI Operation

70

/*-index(,Count,Temperature,Pressure,Volt-
age)*/

Temperature t[MAX_T];
Pressure p[MAX_T];
Voltage v[MAX_T];

Multidimensional Arrays

The indices into multidimensional arrays can also be checked. Just make
sure the intermediate type is an explicit typedef type; an example is Row
in the code below:

/* Types to define and access a 25x80
Screen.
 a Screen is 25 Row’s
 a Row is 80 Att_Char’s */

/* -index(d,Row_Ix,Row)
 -index(d,Col_Ix,Att_Char) */

typedef unsigned short Att_Char;
typedef Att_Char Row[80];
typedef Row Screen[25];
typedef int Row_Ix; /* Row Index */
typedef int Col_Ix; /* Column Index */

#define BLANK (Att_Char) (0x700 + ’ ’)

Screen scr;
Row_Ix row;
Col_Ix col;

void main()
 {
 int i = 0;

 scr[row][col] = BLANK ;/* OK */
 scr[i][col] = BLANK; /* Warning */
 scr[col][row] = BLANK; /* Two Warnings
*/
 }

STATIC User’s Guide

71

In the above, we have defined a Screen to be an array of Rows. Using an
intermediate type does not change the configuration of the array in mem-
ory. Other than for type-checking, it is the same as if we had written:

typedef Att_Char Screen[25][80];

3.7.7.3 -parent

Consider a Flags type which supports the setting and testing of individual
bits within a word. An application might need several different such
types. For example, one might write:

typedef unsigned Flags1;
typedef unsigned Flags2;
typedef unsigned Flags3;

#define A_FLAG (Flags1) 1
#define B_FLAG (Flags2) 1
#define C_FLAG (Flags3) 1

Then, with strong typing, an A_FLAG can be used with only a Flags1
type, a B_FLAG can be used with only a Flags2 type, and a C_FLAG
can be used with only a Flags3 type. This, of course, is just an example.
Normally there would be many more constants of each Flags type.

What frequently happens, however, is that some generic routines exist to
deal with Flags in general. For example, you may have a stack facility
that will contain routines to push and pop Flags. Or you might have a
routine to print Flags (given some table that is provided as an argu-
ment to give string descriptions of individual bits).

Although you could cast the Flags types to and from another more
generic type, the practice is not to be recommended, except as a last
resort. Not only is a cast unsightly, it is hazardous since it suspends type-
checking completely.

The Natural Type Hierarchy

The solution is to use a type hierarchy. Define a generic type called
Flags and define all the other Flags in terms of it:

typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;
typedef Flags Flags3;

In this case Flags1 can be combined freely with Flags , but not with
Flags2 or with Flags3 . This depends, however, on the state of the fhs

CHAPTER 3: STATIC GUI Operation

72

(Hierarchy of Strong types) flag which is normally ON. If you turn it off
with the

 -fhs

option, the natural hierarchy is not formed.

We say that FLAGS is a parent type to each of Flags1 , Flags2 and
Flags3 which are its children. Being a parent to a child type is similar to
being a base type to a derived type in an object oriented system with one
very important difference. A parent is interchangeable with each of its
children; a parent can be assigned to a child and a child can be assigned to
a parent. But a base type is a subset of a derived type and assignment can
go only one way.

A generic Flags type can be useful for all sorts of things, such as a generic
zero value, as the following example shows:

/*-strong(AJX) */
typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;
#define FZERO (Flags) 0
#define F_ONE (Flags) 1

void m()
 {
 Flags1 f1 = FZERO; /* OK */
 Flags2 f2;

 f2 = f1; /* Warning */
 if(f1 & f2) /* Warning */
 f2 = f2 | F_ONE; /* OK */
 f2 = F_ONE | f2; /* OK */
 f2 = F_ONE | f1; /* Warning */
 }

Note that the type of a binary operator is the type of the most restrictive
type of the type hierarchy (i.e., the child rather than the parent). Thus, in
the last example above, when a Flags OR’s with a Flags1 the result is
a Flags1 which clashes with the Flags2 .

Type hierarchies can be arbitrarily many levels deep.

There is evidence that type hierarchies are being built by programmers
even in the absence of strong type-checking. For example, the header file
for Microsoft’s Windows SDK, windows.h , contains:

STATIC User’s Guide

73

 ...
typedef unsigned int WORD;
typedef WORD ATOM;
typedef WORD HANDLE;
typedef HANDLE HWND;
typedef HANDLE GLOBALHANDLE;
typedef HANDLE LOCALHANDLE;
typedef HANDLE HSTR;
typedef HANDLE HICON;
typedef HANDLE HDC;
typedef HANDLE HMENU;
typedef HANDLE HPEN;
typedef HANDLE HFONT;
typedef HANDLE HBRUSH;
typedef HANDLE HBITMAP;
typedef HANDLE HCURSOR;
typedef HANDLE HRGN;
typedef HANDLE HPALETTE;
 ...

Adding to the Natural Hierarchy

The strong type hierarchy tree that is naturally constructed via type-
def ’s has a limitation. All the types in a single tree must be the same
underlying type. The -parent option can be used to supplement (or com-
pletely replace) the strong type hierarchy established via typedef s. An
option of the form:

-parent(Parent, Child[, Child]...)

where Parent and Child are type names defined via typedef will create a
link in the strong type hierarchy between the Parent and each of the Child
types. The Parent is considered to be equivalent to each Child for the pur-
pose of Strong type matching. The types need not be the same underlying
type and normal checking between the types is unchanged.

A link that would form a loop in the tree will not be permitted. For exam-
ple, given the options:

-parent(Flags1,Small)
-strong(AJX)

 and the following code:
typedef unsigned Flags;
typedef Flags Flags1;
typedef Flags Flags2;

CHAPTER 3: STATIC GUI Operation

74

typedef unsigned char Small;

then the following type hierarchy is established:
 Flags
Flags1 Flags2
 |
 Small

If an object of type Small is assigned to a variable of type Flags1 or
Flags no strong type violation will be reported. Conversely, if an object
of type Flags or Flags1 is assigned to type Small no strong type viola-
tion will be reported but a loss of precision message will still be issued
(unless otherwise inhibited) because normal type checking is not sus-
pended.

To obtain a visual picture of the hierarchy tree, use the letter h in connec-
tion with the -v option. For example, using the option +vhm for the
above example, you will capture the following hierarchy tree.

- Flags
 |
 |- Flags1
 | |_ Small
 |
 |_ Flags2

The characters used to draw the hierarchy may be regular ASCII charac-
ters.

If the -fhs option is set (turning off the hierarchy of strong types flag)
typedef ’s will not add hierarchical links. The only links that will be
formed will be via the -parent option.

3.7.7.4 Hints on Strong Typing

1. Beware of excessive casting. If, in order to pull off a system of strong
typing you need to cast just about every access, you are missing the
point. The casts will inhibit even ordinary checking which has con-
siderable value. Remember, strong type-checking is gold, normal
type-checking is silver, and casting is brass.

2. Rather than cast, use type hierarchies. For example:
/*-strong(AXJ,Tight) -strong(,Loose) */
typedef int Tight;
typedef Tight Loose;

Tight has a maximal amount of Strong Type checking; Loose has
none. Since Loose is defined in terms of Tight the two types are
interchangeable from the standpoint of Strong Type checking. Pre-

STATIC User’s Guide

75

sumably you work with Tight int s most of the time. When abso-
lutely necessary to achieve some effect Loose is used.

3. A time when it’s really good to cast is to endow some otherwise neu-
tral constant with a special type. FZERO of the previous section is an
example.

4. For large, mature projects enter strong typing slowly working on one
family of strong types at a time. A family of strong types is one hier-
archy structure

5. Don’t bother with making pointers to functions strong types. For
example:

typedef int (*Func_Ptr)(void);

If you make Func_Ptr strong, you’re not likely to get much more
checking that if you didn’t make it strong. The problem is that you
would then have to cast any existing function name when assigning
to such a pointer. This represents a net loss of type-checking (remem-
ber: gold, silver, brass).

6. Rather than strong type a pointer, strong type the base type. For
example:

typedef char TEXT;
typedef TEXT *STRING;
 TEXT buffer[100];
STRING s;

It may seem wise to strong type both STRING and TEXT. This would be a
mistake since whenever you assign buffer to s, for example, you would
have to cast. But note that -strong(Ac, STRING) would allow the
assignment. It is usually better to strong type just TEXT . Then when
buffer is assigned to s the indirect object TEXT is strongly checked and
no cast is needed.
7. Care is needed in declaring strong self-referential struct s. The

usual method, i.e.,
typedef struct list { struct list * next ;
... }
LIST;

is incompatible with making LIST a strong type because its member
next will not be pointer to strong. Better:

typedef struct list LIST;
struct list { LIST * next; ...};

This is explicitly sanctioned in ANSI C and will make next com-
patible with other pointers to LIST .

CHAPTER 3: STATIC GUI Operation

76

3.7.7.5 Reference Information

Strong Expressions

An expression is strongly typed if:
1. it is a strongly typed variable, function, array, or member of union or

struct or an indirectly referenced pointer to a strong type.
2. it is a cast to some strong type.
3. it is one of the type- propagating unary operators, (viz. + - ++ -- ~),

applied to a strongly typed expression.
4. it is formed by one of the balance and propagate binary operators

applied to two strongly typed expressions (having the same strong
type). The balance and propagate operators consist of the five binary
arithmetics (+ - * / %), the three bit-wise operators (& | ^^), and
the conditional operator (? :).

5. it is a shift operator whose left side is a strong type.
6. it is a comma operator whose right side is a strong type.
7. it is an assignment operator whose left side is a strong type.
8. it is a Boolean operator and some type has been designated as Boolean

(with a b or B flag in the -strong option). The Boolean operators
consist of the four relationals (> >= < <=), the two equality opera-
tors (== !=), the two logical operators (|| &&), and unary !

General Information

When the option

-strong (flags [, name]...)

is processed, name and flags are entered into a so-called Strong Table cre-
ated for this purpose.

If there is no name, then a variable, Default Flags, is set to the flags pro-
vided. When a subsequent typedef is encountered within the code, the
Strong Table is consulted first and if the typedef name is not found, the
Default Flags are used. These flags become the identifying flags for strong
typing purposes for the type.

The option

-index (flags, ixtype, sitype[,...])

is treated similarly. Each sitype is entered into the Strong Table (if not
already there) and its index flags ORed with other strong flags in the

STATIC User’s Guide

77

table. A pointer is established from sitype to ixtype which is another entry
in the Strong Table.

For these reasons it does not, in general, matter in what order the
-strong options are placed other than that they be placed before the
associated typedef . There should be, at most, one option that specifies
Default Flags.

Strong Types and Prototypes

If you are producing prototypes with some variation of the -od option
(Output Declarations), and if you want to see the typedef types rather
than the raw types, just make sure that the relevant typedef types are
strong. You can make them all strong with a single option: -strong() .
Since you have not specified ’A’, ’J ’ or ’X’ you will not receive messages
owing to strong type mismatches for Assigning, Joining or eXtraction.
However, you may get them for declarations. You can set

-etd(strong)

to inhibit any such messages.

 Epilogue

The hierarchy of strong types compels one to compare this hierarchy with
the object-oriented hierarchy of C++ and other languages. If one closely
examines the phase "code reusability" touted as a property of OOP one
finds that it refers to the fact that one can write generic functions, i.e.,
functions that operate on more than just one struct type.

The way that one must do this in straight C is by passing pointers to a
function expecting a void * pointer and hoping that all struc ts passed
this way were compatible. With strict type checking (without hierarchies)
you can not do it at all.

So perhaps it is now a little clearer why "code reusability" is such a puzzle
to C programmers. With a loosely typed language such as C, code reus-
ability was something you did not have to work very hard for. In the past,
when C code would mix pointers and int’s freely "code reusability" had
always been a fact of life. Coming from Pascal or Ada, however, OOP
really does provide for the writing of generic functions. One may specu-
late that C’s general success over Pascal may be attributed in part to its
greater code reusability. For C, OOP provides not reuse but type check-
ing.

Viewed in this way the strong type hierarchies described in this paper
serve the same purpose for scalars as the OOP hierarchies do for

CHAPTER 3: STATIC GUI Operation

78

struct s. It may also be pointed out that for each struct one could have
an associated void pointer and arrange these in a hierarchy. For example:

typedef void *vShape;
typedef vShape vCircle;
typedef vShape vSquare;

With these as strong types a server routines could accept vShape s as
arguments and provide for vCircle s and vShape s as results. The
strong type facility would check types and keep them in line. All the ben-
efits of object orientedness would result with one additional bonus. The
server routines alone would know or care about the internal structure of a
Shape, Circle or Square. This would greatly reduce header file cascading.

3.7.8 Other Options

When using STATIC, you can use the ‘other’ options. These options effect
the behavior of STATIC. Some options are activated by toggles, while
other must be keyed in.

3.7.8.1 Toggle Options

To select a toggle option:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu.
3. Drag the mouse to the Other submenu and select Toggles.
4. The Other Toggles Options window pops up.
5. To select an option, simply click on the corresponding check button.

The default is Unit Checkout -u.
6. Click on OK.

STATIC User’s Guide

79

FIGURE 27 Other Toggle Options Window

The Other Toggle Options window consists of the following options:
• Strictly ANSI Processing -A: Enables Elective Note 950. Non-

ANSI keywords (i.e., reserved words) and other non-ANSI fea-
tures such as the // form of comment are reported but duly pro-
cessed according to their non-ANSI meaning. A common
situation is when your compiler header files are non-ANSI but
you want your ANSI program to be checked. For this situation,
use, in addition to -A, the option -elib(950). Note, to really check
your code for ANSI compliance, use STATIC with a set of ANSI
header files.

• Unit Checkout -u: This is defaulted on. It is used when running a
subset (frequently just one) of the modules comprising a pro-
gram. For example, -u suppresses the inter-module messages 526,
552, 628, 714, 729, 755-759, 765.

• Run Preprocessor Only -p: Runs just the preprocessor. If this flag
is set, the entire character of STATIC is changed from a diagnostic
tool to a preprocessor. Running STATIC with the -os(file) -p will
produce on file.p the result of processing all the # lines within
file.c.

The warning levels consist of:

CHAPTER 3: STATIC GUI Operation

80

• Display No Messages -w0 − No messages (except for fatal
errors)

• Display Error Messages Only -w1 − No warnings or infor-
mationals. (Equivalent to -e4?? -e5?? -e6?? -e7??).

• Display Error and Warning Messages Only -w2: This is
equivalent to -e7?? and -e8??.

• Display Error, Warning and Informational Messages Only -
w3

• Display All Messages -w4 Equivalent to +e9??.
Because options are processed in order, the combined effect
of the two options: -w2 +e720 is to turn off all Informational
messages except 720.

• Set Exit Code to 0 -zero − This is useful to prohibit the pre-
mature termination of make files.
With STATIC, you can also use define options.

3.7.8.2 Define Options

To select a define option:
1. Click on the Options pull-down menu.
2. Drag the mouse to the Modify submenu.
3. Drag the mouse to the Other submenu and select Defines.
4. The Other Define Options window pops up. When you add more

options, you can use the scroll bars in the Other Option Set window
to move up/down or side/side. The default option is -i/usr/include.

STATIC User’s Guide

81

FIGURE 28 Other Define Options Window

5. The Add and Delete buttons allow you to add or delete compiler
options to the Other Option Set list. To add an option:
• Position the mouse pointer so it is in the specification region and

click. A cursor should appear.
• Type in the option you would like to add.
• If you want the option listed at the bottom of the Other Option

Set, click on Add.
• If you want the option listed at a specific location in the Other

Option Set window, highlight the option where you would like
the new option to go below and then click on Add. The new
option will be inserted below the option you highlighted.

To delete a switch:
• Highlight the switch you would like to remove.
• Click on Delete.
• The option should be removed.

These are the define options:

-function (func0(, funcN)This option specifies that FuncN are like
Function0 in that they exhibit special properties normally associated with

CHAPTER 3: STATIC GUI Operation

82

Func0. The special functions with built-in meaning are abort, exit, free,
longjmp, realloc, and setjmp. See the section on function mimicry infor-
mation (See Section 7.12 - “Function Mimicry (-function)” on page 183.).

-i directory Files not found in the current directory are searched
for in the directory specified. There is no intrinsic lim-
it to the number of such directories. The search order
is given by the order of appearance of the -i directory
strings on the command line. For example:

-i/lib

can be used to make sure that all files not found in the
current directory are looked up in some library direc-
tory named lib .

STATIC also supports the INCLUDE environment
variable (See Section 9.2 - “include Processing” on
page 192.). Note: Any directory specified by a -i di-
rective takes precedence over the directories specified
via the INCLUDE environment variable. STATIC also
supports the INCLUDE environment variable for
some systems where appropriate.

-I directory is identical to -i directory.

-ident (String) This option allows the user to specify alternate iden-
tifier characters. Each character in String is taken to be
an identifier character. For example if your compiler
allows ^@ as an identifier character then you may
want to use the option:

-ident (^@)

Option -$ is identical in effect to -ident ($) and is
retained for historical reasons.

-idlen (count[,options])

will report on pairs of identifiers in the same name
space that are identical in their first count characters
but are otherwise different. Options are:

x linker (eXternal) symbols

p Preprocessor symbols

c Compiler symbols

If omitted, all symbols are assumed. Frequently, link-
ers and, less frequently, preprocessors and compilers,
have a limit on the number of significant characters of
an identifier. They will ignore all but the first n char-

STATIC User’s Guide

83

acters. The -idlen option can be used to find pairs
of identifiers that are identical in the first n characters
but are nonetheless different. STATIC treats the iden-
tifiers as different but reports on the clash.

Option p, preprocessor symbols, refers to macros and
parameters of function-like macros. Option x , linker
symbols, refers to inter-module symbols. Option c ,
compiler symbols, refers to all the other symbols and
includes symbols local to a function, struct/union
tags and member names, enum constants, etc. Warn-
ing 621, Identifier clash may be suppressed for
individual identifiers with the -esym option. -
idlen is OFF by default.

-od[s][i][f][width](filename)

Output Declarations (including prototypes) to filena-
me using the optional width to specify the maximum
line width. If i is specified, functions with internal
linkage are included; if s is specified, structure defi-
nitions are provided and, if f is specified, output is
restricted to functions. [s][i][f] may appear in
any order. (See Section 7.6 - “Prototype Generation”
on page 172.)

-oo [(filename)] Output Object Module to filename. This option caus-
es binary information for all processed modules (usu-
ally just one) to be output to filename. The extension
for filename should be .lob . If filename is omitted, as
in -oo , a name will be manufactured using the first
name of the source file and an extension of .lob . (See
Section 6.3 - “Producing a LOB” on page 164.) Related
options are +fol and +fod .

-os (filename) Causes Output directed to Standard out to be placed
in the file filename. This is like redirection and has the
following advantages: (a) not all systems support re-
direction and (b) redirection can have strange side ef-
fects (see Section 6.4 for make file information).

+ppw(word1[,wordN]...)

Adds

-ppw (word1[,wordN]...)

Removes preprocessor command word(s) word1,
wordN, etc. STATIC might stumble over strange pre-
processor commands that your compiler happens to

CHAPTER 3: STATIC GUI Operation

84

support (for example some UNIX system compilers
support #ident). Since this is something that can-
NOT be handled by a suitable #define of some iden-
tifier we have added the +ppw option. For example,
+ppw(ident) will add the preprocessor command
alluded to above. STATIC then recognizes and ig-
nores lines beginning with #ident .

-printf (N{ ,nameN})

This option specifies that name1, nameN, etc. are func-
tions which take printf -like formats. The format is
provided in the Nth argument. For example, STATIC
is preconfigured as if the following options were giv-
en:

-printf(1,printf)

-printf(2,sprintf,fprintf)

For such functions, the types and sizes of arguments
following the Nth argument are expected to agree in
size and type specified by the format. See also -
scanf below and a later section (See Section 7.12 -
“Function Mimicry (-function)” on page 183.) for
function mimicry information.

+rw (word1[,wordN]...)

Adds

-rw (word1[,wordN]...)

Removes Reserved Word(s) word1, wordN, etc. If the
meaning of a reserved word being added is already
known, that meaning is assumed. For example,
+rw(fortran) will enable the reserved word for-
tran . If the reserved word has no prior known se-
mantics, then it will be passed over when
encountered in the source text. For example:

+rw(_loadds,asm,entry)

adds the three reserved words shown. _loadds is as-
signed a meaning consistent with that of the Mi-
crosoft C compiler (See Section 3.7.5 - “Compiler
Vendor Options” on page 54.). asm is assigned a
meaning consistent with that of the Turbo C compil-
er. entry is assigned no meaning; it is simply
skipped over when encountered in a source state-
ment. Since no meaning is to be ascribed to entry, it

STATIC User’s Guide

85

could just as well have been assigned a null value as
in

-dentry=

As a special case, if wordn is *ms , then all the Mi-
crosoft keywords are identified. Thus +rw(*ms)
adds all the Microsoft keywords. (See Section 8.3 -
“Additional Reserved Words” on page 190.) This
would not normally be necessary for Microsoft users
since co-msc.lnt has the -cmsc option embedded
within it and this option also enables the Microsoft
keywords. However, users of other compilers may
wish to enable these keywords because they have be-
come something of a de-facto standard.

By default, a number of Microsoft’s keywords are
pre-enabled because they are so commonly used. To
deactivate all of them use -rw(*ms) . See the section
that describes-cmsc (See Section 3.7.5 - “Compiler
Vendor Options” on page 54.) for the current list of
supported Microsoft keywords (reserved words).

-scanf (N{, nameN})

This option specifies that nameN is a function which
takes scanf -like formats. The format is provided in
the Nth argument. For example, STATIC is preconfig-
ured as if the following options were given:

-scanf(1,scanf)

-scanf(2,sscanf,fscanf)

For such functions, the types and sizes of arguments
following the Nth argument are expected to be point-
ers to arguments that agree in size and type with the
format specification. See also -printf above.

-t# Sets STATIC’s idea of what the tab size is. This is used
for indentation checking. By default STATIC pre-
sumes that tabs occur every 8 column positions. If
your editor is converting blanks to tabs at some other
exchange rate, then use this option. For example -t4
indicates that a tab is worth 4 blank characters.

-u Name Can be used to undefine an identifier that is normally
pre-defined. For example:

-u_lint

CHAPTER 3: STATIC GUI Operation

86

will undefine the identifier _lint which is normally
pre-defined before each module. The undefine will
take place for all subsequent modules after the de-
fault pre-definitions are established. If given within a
comment, the undefine will take place immediately
as well as in subsequent modules (similar to -d.. .).
The observant reader will notice that you may not un-
define the name nreachable .

 -zero [(#) Will set the exit code to zero if all reported errors are
numbered # or higher. More precisely, errors which
have an error message number that is equal to or
greater than # do not increment the error count re-
ported by the exit code. Note that suppressed errors
also have no effect on the exit code. Use this option if
you want to see warnings but proceed anyway.

STATIC User’s Guide

87

3.8 Saving Modifications

After you modify the different categories of available options, you can
decide to save these modifications to a new file or overwrite one the cate-
gory files specified in the configuration file static.rc. STATIC automatically
reads in the default configuration file static.rc.

If your want your changes to be permanent, it is best to simply save the
modifications to one the configuration’s file’s existing category of
options.

If you modify STATIC’s error messages, for instance, and want these
options to be permanent, you can simply override these changes to the
existing sr.err file. The configuration file static.rc lists sr.err as the file
where the default error message options are listed. Now, the next time
you invoke STATIC and select a file for analysis, static.rc will automati-
cally be loaded with the new option modifications. As a precautionary
measure, you should make a copy of the original sr.err file (i.e., cp sr.err
sr.err.old.)

If you want your modifications to apply only to certain situations, you
probably don’t want it saved to one of the configuration file categories.
Instead, you should save these kind of modifications to a new file name.
When STATIC is invoked the existing static.rc is left intact.

To activate these modifications that you save to a new file, you must use
the Load utility (see the following "Leading Option Modification Files"
Section) before you select a file for analysis. To save option modifications,
you must exit out of STATIC. (See Section 3.10 - “Exiting STATIC” on page
91.)

Loading Option Modification Files

Modifications can either be permanent (if saved to a file within the config-
uration file) or used for certain situations (usually saved to a new file).
When you save your option modifications to a new file and re-invoke
STATIC, you will notice that the old options are left intact. This is because
STATIC is reading in the static.rc configuration file. To activate your new
modifications:
1. Click on the Options pull-down menu.
2. Select Load.
3. The Load window pops up. It lists the different categories of options.
4. If you made and saved modifications to the error messages and want

the new list activated, you would click on the Error radio button.

CHAPTER 3: STATIC GUI Operation

88

There are corresponding radio button to flag options, library header
file options, size options, strong types, and other options.

FIGURE 29 Load Window

5. Click on OK.
The Load window disappears and a Load Error Option file selection
dialog box pops up. There are corresponding dialog boxes for the
other option categories.

6. This window is similar to most file selection dialog boxes, except it
has an Options Set window. When a file is selected, it will list the
options in that file.

7. Select the file where you saved the changes to.
8. The options for that file should now be listed in the Options Set win-

dow. STATIC will now read the options from the file specified instead
of static.rc.

9. If you changed other categories of options and want these options
activated, then follow the steps 1 - 8.

10. You can new select a source code file for analysis and STATIC’s report
should reflect the new file’s options.

STATIC User’s Guide

89

FIGURE 30 Load Error Options Window

CHAPTER 3: STATIC GUI Operation

90

3.9 Customizing STATIC

Modifying options through the GUI is most beneficial when you want to
make minor modifications to the default option settings. When you make
major modifications, its usually easiest just to edit the configuration file
static.rc.

static.rc looks like this:
CompilerOption File = static.cmp
ErrorOption File = static.err
FlagOption File = static.flg
FormatOption File = static.frm
LibraryOption File = staticb
OtherOption File = static.oth
SizeOption File = static.size
StrongOption File = static.stg

It basically consists of several default files, which represent the different
categories of options (similar to the GUI). represent the different catego-
ries of options (similar to the GUI).

If you want to remove categories of options, you simply edit the static.rc
file accordingly.

If you want to edit one of the category’s options, edit the corresponding
file. If you wanted to suppress or reactivate error messages, for instance,
you would edit static.err (shown below) using any UNIX text editor (such
as vi).

-e746
-e534
-e762
-e578
-elib(537)
-elib(544)
-elib(762)
-elib(652)
-elib(760)
-esym(516,XtAddCallback)
-esym(718,fprintf)
-esym(515,fprintf)
-esym(718,unlink,printf)
-esym(715,w,callData)
-esym(718,system)
-esym(515,sprintf)
-esym(515,printf)

STATIC User’s Guide

91

-esym(516,printf)
-esym(718,fputs,fputc)
-esym(558,fprintf)
-esym(718,fread)
-esym(718,fclose)
-esym(526,fprintf)
-esym(526,fread)
-esym(526,fclose)

3.10 Exiting STATIC

The Exit option allows you to close the Main window as well as save
option modifications. Here’s how:
1. Click on the File pull-down menu.
2. Select Exit.
3. If you made a modification to any of the option categories, you will

be prompted with a dialog box telling which category was changed
and if you want to save those changes. A different dialog box will
pop for each category you modify. If you did not make modifications,
please go to #7.

4. Click on OK if you want to save your changes; click on No if you
don’t want to save your changes.

5. If you clicked on OK, a file selection dialog box pops up.
6. For permanent changes, overwrite static.rc’s corresponding file. If you

made changes to error options, you would select static.err. If you
modified a category for a particular circumstance and don’t want to
overwrite static.rc’s files, simply name a new file name. (See Section
3.8 - “Saving Modifications” on page 87.)

FIGURE 31 Saving Option Modifications

7. After modifications are saved or discarded, STATIC will prompt you
to exit with a dialog box.

CHAPTER 3:

92

8. Click on OK.

FIGURE 32 Exiting STATIC

93

CHAPTER 4

Messages
This chapter details all of the error messages STATIC produces. When STATIC produces a
report for your source code file, use this chapter to reference the error message number.

4.1 Categories of Messages

Most messages have an associated number. By looking up the number in
the list below you can obtain additional information about the cause of
the message.

Here are the categories of messages:
• Errors in the 1-199 range are syntax errors.
• Errors in the 200-299 range are STATIC internal error and should

never occur.
• Errors in the 300-399 range are fatal errors usually brought about

by exceeding some limit.
• Messages in the 400-699 range are warning messages. They indi-

cate that something is likely to be wrong with the C program
being examined.

• Messages in the 700-799 range are informational messages. These
may be errors but they also may represent legitimate program-
ming practices depending upon personal programming style.

• Messages in the 900-999 range are called Elective Notes. They are
not automatically generated. You may examine the list to see if
you wish to be alerted to any of them. To turn on any of these
messages, please refer to the correct section (See Section 3.7.1 -
“Error Messages Options” on page 32.).

CHAPTER 4: Messages

94

4.2 Message Glossary

The terms used to describe the messages are:

argument The actual argument of a function as opposed to a
dummy (or formal) parameter of a function (see pa-
rameter).

arithmetic Any of the integral types (see below) plus float ,
double , and long double .

Boolean In general, refers to quantities that can be either true
or false. An expression is said to be Boolean (perhaps
it would be better to say ‘definitely Boolean') if it is of
the form: operand op operan where op is a rela-
tional (> >= < <=), an equality operator (== !=),
logical And (&&) or logical Or (||). A context is said
to require a Boolean if it is used in an if or while
clause or if it is the 2nd expression of a for clause or
if it is an argument to one of the operators: && or || .
An expression needn't be definitely Boolean to be ac-
ceptable in a context that requires a Boolean. Any in-
teger or pointer is acceptable.

declaration Gives properties about an object or function (as op-
posed to a definition).

definition That which allocates space for an object or function
(as opposed to a declaration) and which may also in-
dicate properties about the object. There should be
only one definition for an object but there may be
many declarations.

integral A type that has properties similar to integers. These
include char, short, int, and long and unsigned varia-
tions of any of these.

scalar Any of the arithmetic types plus pointers.

1value An expression that can be used on the Left hand side
of an assignment operator (=). Some contexts require
lvalues such as autoincrement (++) and autodecre-
ment (--).

macro An abbreviation defined by a #define statement. It
may or may not have arguments.

member Subelements of struct s and unions are called
members.

STATIC User’s Guide

95

module That which is compiled by a compiler in a single in-
dependent compilation. It typically includes all the
text of a .c file plus any text within any #include
file(s).

parameter A formal parameter of a function as opposed to an ac-
tual argument (see argument). Some of the messages
are parameterized with one or more of the following
italicized names:

Char Some character

Context Specifies one of several contexts in which an assign-
ment can be made. Can be one of:

• assignment--refers to an explicit assignment operator.
• return--refers to the implied assignment of a return state-

ment. The type of the expression is converted implicitly to
the type of the function.

• initialization--refers to the assignment implied by an initial-
ization statement.

• arg. no...--refers to the implied assignment of an argument in
the presence of a prototype. The type of the expression is
implicitly converted to the type within a prototype.

FileName A filename. Messages containing this parameter can
be suppressed with the -efile ...) option.

Int Some integer.

Location A line number followed optionally by a filename (if
different from the current) and/or a module name if
different from the current.

String A sequence of characters identified further in the
message description.

Symbol The name of a user identifier referring to a C object
such as variable, function, structure, etc. Messages
containing this parameter can be suppressed with the
-esym(...) option.

Type A type or a top type base is provided. A top type base
is one of pointer, function, array, struct ,
union , or enum.

TypeDiff Specifies the way in which one type differs from an-
other. Because of type qualification, function proto-
types, and type compounding, it may not be obvious
how two types differ. Also, see the -etd option to in-

CHAPTER 4: Messages

96

hibit errors based on type differences. TypeDiff can
be one or more of:

• basic --The two types differ in some fundamental way such
as double versus int.

• count --Two function types differ in the number of argu-
ments.

• ellipsis --Two function types differ in that one is proto-
typed using an ellipsis and the other is not prototyped.

• incomplete --At least one of the types is only partially spec-
ified such as an array without a dimension or a function
without a prototype.

• nominal --The types are nominally different but are other-
wise the same. For example, int versus long where these are
the same size or double versus long double where these are
the same size. The two types are either both integral or both
float or are functions that return types or have arguments
that differ nominally. If long's are the same size as int's then
unsigned long will differ from int both as nominal and as
signed/unsigned. If not the same size, then the difference is
precision.

• origin --The types are not actually different but have differ-
ent origins. For example a struct is defined in two separate
modules rather than in one header file. If for some reason
you want to do this then use the option -etd(origin) .

• precision --Two arithmetic types differ in their precision
such as int vs. long where these are different sizes.

• promotion --Two function types differ in that one is proto-
typed with a char, short or float type and the other is not pro-
totyped.

• ptrs to... --Pointers point to different types, some TypeD-
iff code follows.

• ptrs to incompatible types --Pointers point to types
which in turn differ in precision, count, size, ellipsis or pro-
motion.

• qualification ==Qualifiers such as const , volatile ,
etc. are inconsistent.

• signed/unsigned --The types differ in that one is a signed
integral type and the other is unsigned of the same size, or
they are both functions that return types that differ in this
way, or they are both pointers to types that differ in this way.

• size --Two arrays differ in array dimension.

STATIC User’s Guide

97

• strong --Two types differ in that one is strong and the other
is not the same strong type.

• void/nonvoid --The two types differ in that one is void and
the other is not or, more frequently, they are both functions
returning types that differ in this respect or pointers to types
that differ in this respect.

• int/enum --One type is an enum and the other is an int .
• Type = Type --The two types in an assignment of some kind

differ in some basic way and no more information is avail-
able.

• Type vs. Type --The two types differ in some basic way
and no more information is available.

CHAPTER 4: Messages

98

4.3 Syntax Error Messages

1 Unclosed Comment (Location)--End of file was
reached with an open comment still unclosed. The
Location of the open comment is shown.

2 Unclosed Quote --An end of line was reached and
a matching quote character (single or double) to
an earlier quote character on the same line was not
found.

3 #else without a #if --A #else was encoun-
tered not in the scope of a #if , #ifdef or #ifndef .

4 Too many #if levels --An internal limit was
reached on the level of nesting of #if 's (including
#ifdef 's and #ifndef 's).

5 Too many #endif's--A #endif was encoun-
tered not in the scope of a #if or #ifdef or #ifndef.

6 Stack Overflow --One of the built-in non-extend-
ible stacks has been overextended. The possibilities
are too many nested #if s, #include s (including all
recursive #include s), static blocks (bounded by
braces) or #define replacements.

7 Unable to open include file: FileName FileNa-
me is the name of the include file which could not be
opened. See also flag fdi (See Section 3.7.2 - “Flag
Options” on page 38.) and option -i... (See Section
3.7.6 - “Compiler Customization Options” on page
58.).

8 Unclosed #if (Location) A #if (or #ifdef or #if-
ndef) was encountered without a corresponding
#endif . Location is the location of the #if .

9 Too many #else 's in #if (Location) A given#if
contained a #else which in turn was followed by ei-
ther another #else or a #elif . The error message
gives the line of the #if statement that started the
conditional that contained the aberration.

10 Expecting String String is the expected token.
The expected token could not be found. This is com-
monly given when certain reserved words are not
recognized.

int __interrupt f();

STATIC User’s Guide

99

will receive an Expecting ';' message at the f be-
cause it thinks you just declared __interrupt. The cure
is to establish a new reserved word +rw(__interrupt).
Also, make sure you are using the correct compiler
options file.

11 Excessive Size The filename specified on a #in-
clude line had a length that exceeded
FILENAME_MAX characters.

12 Need < or After a #include is detected and
after macro substitution is performed, a file specifica-
tion of the form <filename> or filename is expected.

13 Bad type A type adjective such as long, unsigned
etc. cannot be applied to the type which follows.

14 Symbol previously defined (Location) The
named object has been defined a second time. The lo-
cation of the previous definition is provided. If this is
a tentative definition (no initializer) then the message
can be suppressed with the +fmd flag. (See Section
3.7.2 - “Flag Options” on page 38.).

15 Symbol redeclared (TypeDiff) (Location) The named
symbol has been previously declared or defined in
some other module (location given) with a type dif-
ferent from the type given by the declaration at the
current location. The parameter TypeDiff provides
further information on how the types differ (see glos-
sary above).

16 Unrecognized name A# directive is not followed
by a recognizable word. If this is not an error, use the
+ppw option (See Section 3.7 - “Modifying the Report
Options” on page 32.).

17 Unrecognized name A non-parameter is being de-
clared where only parameters should be.

18 Symbol redeclared (TypeDiff) conflicts with
Location A symbol is being redeclared. The parameter
TypeDiff provides further information on how the
types differ (see Glossary above). Location is the loca-
tion of the previous definition.

19 Useless Declaration A type appeared by itself
without an associated variable, and the type was not
a struct and not a union and not an enum.

CHAPTER 4: Messages

100

20 Illegal use of = , ignored A function decla-
ration was followed by an = sign.

21 Expected { An initializer for an indefinite size ar-
ray must begin with a left brace.

22 Illegal operator A unary operator was found
following an operand and the operator is not a post
operator.

23 Expected colon A ? operator was encountered
but this was not followed by a : as was expected.

24 Expected an expression An operator was found
at the start of an expression but it was not a unary op-
erator.

25 Illegal constant Too many characters were en-
countered in a character constant (a constant bound-
ed by' marks).

26 Expected an expression An expression was not
found where one was expected.

27 Illegal character (Oxhh) An illegal character
was found in the source code. The hex code is provid-
ed in the message. A blank is assumed.

28 Redefinition of symbol Symbol Location The
identifier preceding a colon was previously declared
at the Location given as not being a label.

30 Expected a constant A constant was expected
but not obtained. This could be following a case key-
word, an array dimension, bit field length, enumera-
tion value, #if expression, etc.

31 Redefinition of symbol Symbol conflicts with
Location A data object or function previously defined
in this module is being redefined.

32 Bad field size The length of a field was given as
non-positive, (0 or negative).

33 Illegal constant A constant was badly formed
as when an octal constant contains one of the digits 8
or 9.

34 Non-constant initializer A non-constant ini-
tializer was found for a static data item.

35 Initializer has side-effects An initializer
with side effects was found for a static data item.

STATIC User’s Guide

101

36 Redefining the storage class of symbol
Symbol conflicts with Location An object's stor-
age class is being changed.

38 Redefinition of symbol Symbol An element of a
structure or unionis being redefined.

39 Redefinition of symbol Symbol conflicts
with Location A struct or union is being redefined.

40 Undeclared identifier (String) Within an ex-
pression, an identifier was encountered that had not
previously been declared and was not followed by a
left parenthesis. String is the name of the identifier.

41 Redefinition of symbol Symbol A parameter of
either a function or a macro is being repeated.

42 Expected a statement A statement was expect-
ed but a token was encountered that could not possi-
bly begin a statement.

43 Vacuous type for variable Symbol A vacuous
type was found such as an array with no bounds or a
structure with no members in a context that expected
substance.

44 Need a switch A case or default statement oc-
curred outside a switch.

45 Bad use of register A variable is declared as a
register but its type is inconsistent with it being a reg-
ister such as a function.

46 Field type should be int Bit fields in a struc-
ture should be typed unsigned or int. If your compiler
allows other kinds of objects, such as char, then sim-
ply suppress this message.

47 Bad type Unary minus requires an arithmetic oper-
and.

48 Bad type Unary * or the left hand side of the ptr (->)
operator requires a pointer operand

49 Expected a type Only types are allowed within
prototypes. A prototype is a function declaration
with a sequence of types within parentheses. The pro-
cessor is at a state where it has detected at least one
type within parentheses and so is expecting more
types or a closing right parenthesis.

CHAPTER 4: Messages

102

50 Expected an lvalue Unary & operator requires
an value (a value suitable for placement on the left
hand side of an assignment operator).

51 Expected integral type Unary ~ expects an in-
tegral type (signed or unsigned char , short ,
int , or long).

52 Expected an lvalue autodecrement (--) and auto-
increment (++) operators require an lvalue (a value
suitable for placement on the left hand side of an as-
signment operator). Remember that casts do not nor-
mally produce lvalues. Thus
++(char *)p;

is illegal according to the ANSI standard. This con-
struct is allowed by some compilers and is allowed if
you use the +fpc option (Pointer Casts are lvalues).
See the correct section for flag options (See Section
3.7.2 - “Flag Options” on page 38.)

53 Expected a scalar Autodecrement (--) and auto-
increment(++) operators may only be applied to sca-
lars (arithmetics and pointers).

54 Division by 0 The constant 60 was used on the
right hand side of the division operator (/) or the re-
mainder operator (%).

55 Bad type The context requires a scalar, function, ar-
ray, or struct (unless -fsa).

56 Bad type Add/subtract operator requires scalar
types and pointers may not be added to pointers.

57 Bad type Bit operators (&, | and ^^) require inte-
gral arguments.

58 Bad type Bad arguments were given to a relational
operator; these always require two scalars and point-
ers can't be compared with integers (unless constant
0).

59 Bad type The amount by which an item can be shift-
ed must be integral.

60 Bad type The value to be shifted must be integral.

61 Bad type The context requires a Boolean. Booleans
must be some form of arithmetic or pointer.

STATIC User’s Guide

103

62 Incompatible type (TypeDiff) for operator: The
2nd and 3rd arguments to ? : must be compatible
types.

63 Expected an lvalue Assignment expects its first
operand to be an lvalue.

64 Type mismatch (Context) (TypeDiff) There was a
mismatch in types across an assignment (or implied
assignment, see Context).TypeDiff specifies the type
difference. See options -epn, -eps, -epu, -epp
See the correct section for error inhibition options
(See Section 3.7.1 - “Error Messages Options” on page
32.). to suppress this message when assigning some
kinds of pointers.

65 Expected a member name After a dot (.) or pointer
(->) operator a member name should appear.

66 Bad type A void type was employed where it is not
permitted. If a void type is placed in a prototype then
it must be the only type within a prototype. (See error
number 49).

67 Can't cast from Type to Type Attempt to cast a
non-scalar to an integral.

68 Can't cast from Type to Type Attempt to cast a
non-arithmetic to a float.

69 Can't cast from Type to Type Bad conversion in-
volving incompatible structures or a structure and
some other object.

70 Can't cast from Type to Type Attempt to cast to
a pointer from an unusual type (non-integral).

71 Can't cast from Type to Type Attempt to cast to
a type that does not allow conversions.

72 Bad option 'String‘ Was not able to interpret an op-
tion. The option is given in String.

73 Bad left operand The cursor is positioned at or
just beyond either an -> or a . operator. These opera-
tors expect an expression primary on their left. Please
enclose any complex expression in this position with-
in parentheses.

74 Address of Register An attempt was made to
apply the address (&) operator to a variable whose
storage class was given as register.

CHAPTER 4: Messages

104

75 Too late to change sizes (option 'String') The
size option was given after all or part of a module was
processed. Make sure that any option to reset sizes of
objects be done at the beginning of the first module
processed or on the command line before any module
is processed.

76 Can't open file : String String is the name of the
file. The named file could not be opened for output.
The file was destined to become a STATIC object mod-
ule.

78 Symbol Symbol typedef'ed at Location used in ex-
pression The named symbol was defined in a typede
statement and is therefore considered a type. It was
subsequently found in a context where an expression
was expected.

79 Bad type for % operator The % operator should
be used with some form of integer.

80 this use of ellipsis is not strictly
ANSI The ellipsis should be used in a prototype only
after a sequence of types not after a sequence of iden-
tifiers. Some compilers support this extension. If you
want to use this feature suppress this message.

81 struct /union not permitted in equality comparison
Two struct 's orunion's are being compared with
one of ==or !=. This is not permitted by the ANSI
standard. If your compiler supports this, suppress
this message.

82 return <exp>; illegal with void function
The ANSI standard does not allow an expression
form of the return statement with a void function. If
you are trying to cast to void as in return (void)f();
and your compiler allows it, suppress this message.

83 Incompatible pointer types with subtrac-
tion Two pointers being subtracted have indirect
types which differ. You can get STATIC to ignore
slight differences in the pointers by employing one or
more of the -ep options described in the section that
details error inhibition options (See Section 3.7.2 -
“Flag Options” on page 38.).

101 Expected an identifier While processing a
function declarator, a parameter specifier was en-

STATIC User’s Guide

105

countered that was not an identifier, whereas a prior
parameter was specified as an identifier. This is mix-
ing old-style function declarations with the new-style
and is not permitted. For example
void f(n,int m)

will elicit this message.

102 Illegal parameter specifications Within a
function declarator, a parameter must be specified as
either an identifier or as a type followed by a declara-
tor.

103 Unexpected declaration After a prototype, only
a comma, semi-colon, right parenthesis or a left brace
may occur. This error could occur if you have omitted
a terminating character after a declaration or if you
are mixing old-style parameter declarations with
new-style prototypes.

104 Conflicting types Two consecutive conflicting
types were found such as int followed by double. Re-
move one of the types!

105 Conflicting modifiers Two consecutive con-
flicting modifiers were found such as far followed by
near. Remove one of the modifiers!

106 Illegal constant A string constant was found
within a preprocessor expression as in
#if ABC == abc

Such expressions should be integral expressions.

107 Label Symbol (Location) not defined The Symbol at
the given Location appeared in a goto but there was
no corresponding label.

108 Invalid context A continue or break state-
ment was encountered without an appropriate sur-
rounding context such as a for, while, or do loop or,
for the break statement only, a surrounding switch
statement.

110 Attempt to assign to void An attempt was
made to assign a value to an object designated (possi-
bly through a pointer) as void.

111 Assignment to const object An object de-
clared as const was assigned a value. This could arise

CHAPTER 4: Messages

106

via indirection. For example, if p is a pointer to a const
int then assigning to *p will raise this error.

113 Inconsistent enum declaration The sequence
of members within an enum (or their values) is incon-
sistent with that of another enum (usually in some
other module) having the same name.

114 Inconsistent structure declaration for
tag Symbol The sequence of members within a struc-
ture (or union) is inconsistent with another structure
(usually in some other module) having the same
name.

115 Struct/union not defined A reference to a
structure or a union was made that required a defini-
tion and there is no definition in scope. For example,
a reference to p->a where p is a pointer to a struct
that had not yet been defined in the current module.

116 Inappropriate storage class A storage class
other than register was given in a section of code
that is dedicated to declaring parameters. The section
is that part of a function, preceding the first left brace.

117 Inappropriate storage class A storage class
was provided outside any function that indicated ei-
ther auto or register. Such storage classes are appro-
priate only within functions.

118 Too few arguments for prototype The num-
ber of arguments provided for a function was less
than the number indicated by a prototype in scope.

119 Too many arguments for prototype The num-
ber of arguments provided for a function was greater
than the number indicated by a prototype in scope.

122 Illegal octal digit (Char) The indicated charac-
ter was found in a constant beginning with zero. Such
constants are octal constants and should contain only
octal digits.

123 Macro (Symbol) defined with arguments at
Location The name of a macro defined with arguments
was subsequently used without a following. The use
of a macro should be consistent with its definition. It
is not uncommon to suppress this message (with -
e123), because some compilers allow, for example,
the macro max() to coexist with a variable max.

STATIC User’s Guide

107

124 Pointer to void not allowed A pointer to void was
used in a context that does not permit void. This in-
cludes subtraction, addition and the relationals (> >=
< <=).

125 Too many storage class specifiers More
than one storage class specifier (static, extern, type-
def, register or auto) was found. Only one is permit-
ted.

126 Inconsistent structure definition (Symbol)
The named structure (or union or enum) was incon-
sistently defined across modules. The inconsistency
was recognized while processing a lint object mod-
ule. Line number information was not available with
this message. Alter the structures so that the member
information is consistent.

127 Illegal constant An empty character constant
('') was found.

128 Pointer to function not allowed A pointer
to a function was found in an arithmetic context such
as subtraction, addition, or one of the relationals (>
>= < <=).

129 declaration expected, identifier Symbol
ignored In a context in which a declaration was ex-
pected an identifier was found. Moreover, the identi-
fier was not followed by '(' or a '['

130 Expected integral type The expression in a
switch statement must be some variation of an int
(possibly long or unsigned) or an enum.

131 syntax error in call of macro Symbol at
location Location This message is issued when a
macro with arguments (function-like macro) is in-
voked and an incorrect number of arguments is pro-
vided. Location is the location of the start of the
macro call. This can be useful because an errant mac-
ro call can extend over many lines.

132 Expected function definition A function
declaration with identifiers between parentheses is
the start of an old-style function definition (K&R
style). This is normally followed by optional declara-
tions and a left brace to signal the start of the function

CHAPTER 4: Messages

108

body. Either replace the identifier(s) with type(s) or
complete the function with a function body.

133 Too many initializers for aggregate In a
brace-enclosed initializer, there are more items than
there are elements of the aggregate.

134 Missing initializer An initializer was expected
but only a comma was present.

135 Expected function definition comma as-
sumed in initializer A comma was missing between
two initializers. For example:

int a[2][2] = { { 1, 2 } { 3, 4 } };

is missing a comma after the first right brace (}).

136 Illegal macro name The ANSI standard restricts
the use of certain names as macros. defined is on the
restricted list.

137 constant String used twice within switch
The indicated constant was used twice as a case with-
in a switch statement. Currently only enumerated
types are checked for repeated occurrence.

STATIC User’s Guide

109

4.4 Internal Errors

200-299 Some inconsistency or contradiction was discovered
in the STATIC system. This may or may not be the re-
sult of a user error. This inconsistency should be
brought to the attention of Software Research.

CHAPTER 4: Messages

110

4.5 Fatal Errors

Errors in this category are normally fatal and suppressing the error is nor-
mally impossible. However, those errors marked with an asterisk(*) can
be suppressed and processing will be continued. For example -e306
will allow reprocessing of modules.

302 Exceeded Available Memory Main memory has
been exhausted. Try preprocessing separately.

303 String too long A single #define definition or
macro invocation exceeded an internal limit (of 2048
characters).

304 Corrupt object file A STATIC object file is ap-
parently corrupted. An expected header was not
found. Please delete the object module and recreate it
using the -oo option. See the section that describes
producing a LOB (See Section 6.3 - “Producing a
LOB” on page 164.).

305 Unable to open module: FileName--FileName is
the name of the file. The named module could not be
opened for reading. Perhaps you misspelled the
name.

* 306 Previously encountered module: FileName
FileName is the name of the module. The named mod-
ule was previously encountered. This probably is not
a user blunder.

307 Can't open indirect file: FileName--FileName
is the name of the indirect file. The named indirect file
(ending in .lnt) could not be opened for reading.

308 Can't write to standard out--stdout was
found to equal NULL. This is most unusual.

* 309 #error ... The #error directive was encountered.
The ellipsis reflects the original line. Normally pro-
cessing is terminated at this point. If you set the fce
(continue on #error) flag, processing will continue.

310 Declaration too long : ‘String...' A single decla-
ration was found to be too long for an internal buffer
(about 2000 characters). The first 30 characters of the
declaration is given in String. Typically this is caused
by a very long struct whose sub strucs, if any, are
untagged. First identify the declaration that is caus-
ing the difficulty. If a struct or union, assign a tag

STATIC User’s Guide

111

to any unnamed substructs or sub unions. Typedef's
can also be used to reduce the size of such declara-
tions.

311 ‘String' was one word too many The number of
reserved words exceeded an internal limit. This was
brought about by too many +rw() or +ppw() options.
(See Section 3.7.7 - “Strong Typing Options” on page
61.)

312 Static Object Module has obsolete or
foreign version id A STATIC object module was
produced with a prior or different version of STATIC.
Delete the.lob file and recreate it using your new
version of STATIC.

313 Too many files The number of files that STATIC
can process has exceeded an internal limit. To process
more files you will need to acquire a special version
of STATIC. Please make inquiries to Software Re-
search. The number of files is limited to 2048.

CHAPTER 4: Messages

112

4.6 Warning Messages

401 redefining the storage class of symbol
Symbol conflicts with Location The indicated
Symbol declared static was previously declared with-
out the static storage class. This is technically a viola-
tion of the ANSI standard. Some compilers will
accept this situation without complaint and regard
the Symbol as static.

402 static function Symbol (Location) not defined
The named Symbol was declared as a static function
in the current module and was referenced but was
not defined (in the module).

403 static symbol Symbol has unusual type mod-
ifier Some type modifiers such as _export are
inconsistent with the static storage class.

404 struct not completed within file FileName
A struct (or union or enum) definition was started
within a header file but was not completed within the
same header file.

405 #if not closed off within file FileName An
#if construct was begun within a header file (name
given) but was not completed within that header file.
Was this intentional?

406 Comment not closed off within file FileNa-
me A comment was begun within a header file (name
given) but was not completed within that header file.
Was this intentional?

407 Inconsistent use of tag Symbol conflicts
with Location A tag specified as a union, struct or
enum was respecified as being one of the other two in
the same module.

For example:
struct tag *p;
union tag *q;

will elicit this message.

408 Type mismatch with switch expression The
expression within a case does not agree exactly with
the type within the switch expression. For example,
an enumerated type is matched against an int .

STATIC User’s Guide

113

409 Expecting a pointer or array An expression
of the form i [...] was encountered where i is an inte-
gral expression. This could be legitimate depending
on the subscript operand. For example, if i is an int
and a is an array then i[a] is legitimate but unusual.
If this is your coding style, suppress this message.

501 Expected signed type The unary minus opera-
tor was applied to an unsigned type. The resulting
value is a positive unsigned quantity and may not be
what was intended.

502 Expected unsigned type Unary ~ being a bit
operator would more logically be applied to un-
signed quantities rather than signed quantities.

503 Boolean argument to relational Normally a
relational would not have a Boolean as argument. An
example of this is a < b < c which is technically
legal but does not produce the same result as the
mathematical expression which it resembles.

504 Unusual shift value Either the quantity being
shifted or the amount by which a quantity is to be
shifted was derived in an unusual way such as with a
bit-wise logical operator, a negation, or with an unpa-
renthesized expression. If the shift value is a com-
pound expression that is not parenthesized,
parenthesize it.

505 Redundant left argument to comma The left
argument to the comma operator had no side effects
in its top-most operator and hence is redundant.

506 Constant value Boolean A Boolean, i.e., a quan-
tity found in a context that requires a Boolean such as
an argument to && or || or an if() or while() clause
or ! was found to be a constant and hence will evalu-
ate the same way each time.

507 Size incompatibility A cast was made to an in-
tegral quantity from a pointer and according to other
information given or implied it would not fit. For ex-
ample a cast to an unsigned int was specified and in-
formation provided by the options indicate that
pointers are larger than int's.

508 extern used with definition A function defi-
nition was accompanied with an extern storage class.

CHAPTER 4: Messages

114

extern is normally used with declarations rather
than with definitions. At best the extern is redundant.
At worst you may trip up a compiler.

509 extern used with definition A data object
was defined with a storage class of extern. This is
technically legal in ANSI and you may want to sup-
press this message. However, it can easily trip up a
compiler and so the practice is not recommended at
this time.

511 Size incompatibility A cast was made from an
integral type to a pointer and the size of the quantity
was too large to fit into the pointer. For example if a
long is cast to a pointer and if options indicate that
long's are larger than pointers, this warning would be
reported.

512 Symbol previously used as static (Location)
The Symbol name given is a function name that was
declared as static in some other module (the location
of that declaration is provided). The use of a name as
static (i.e., private) in one module and external in an-
other module is legal but suspect.

514 Unusual use of a Boolean An argument to an
arithmetic operator (+ - / * %) or a bit-wise logical op-
erator (| & ^^) was a Boolean. This can often happen
by accident as in:

if(flags & 4 == 0)

where the ==, having higher precedence than&, is
done first (to the puzzlement of the programmer).

515 Symbol has arg. count conflict (Int vs. Int)
with Location An inconsistency was found in the
number of actual arguments provided in a function
call and either the number of formal parameters in its
definition or the number of actual arguments in some
other function call. See the +fva option to selectively
suppress this message. Also see the appropriate sec-
tion for information on function prototypes (See Sec-
tion 7.6 - “Prototype Generation” on page 172.).

516 Symbol has arg. type conflict (no . Int -- Typ-
eDiff) with Location An inconsistency was found in
the type of an actual argument in a function call with
either the type of the corresponding formal parame-
ter in the function definition or the type of an actual

STATIC User’s Guide

115

argument in another call to the same function or with
the type specified for the argument in the function's
prototype. The call is not made in the presence of a
prototype. See options -ean , -eau , -eas and -eai
For error inhibition options, see the appropriate sec-
tion (See Section 3.7 - “Modifying the Report Op-
tions” on page 32.). for selective suppression of some
kinds of type differences. If the conflict involves types
char or short then you may want to consider using the
+fxc or +fxs option (See Section 3.2 - “User Inter-
face” on page 19.).

517 defined not K&R The defined function (not a
K&R construct) was employed and the K&R prepro-
cessor flag (+fkp) was set. Either do not set the flag or
do not use defined.

518 Expected '(' sizeof type is not strict C.
sizeof (type) or sizeof expression are both permis-
sible.

519 Size incompatibility An attempt was made to
cast a pointer to a pointer of unequal size. This could
occur for example in a P model where pointers to
functions require 4 bytes whereas pointers to data re-
quire only 2. This error message can be circumvented
by first casting the pointer to an integral quantity (int
or long) before casting to a pointer.

520 Expected void type, assignment, incre-
ment or decrement .The first expression of a for
clause should either be an expression yielding the
void type or be one of the privileged operators: as-
signment, increment, or decrement. See also message
522.

521 Expected void type, assignment, incre-
ment or decrement The third expression of a for
clause should either be an expression yielding the
void type or be one of the privileged operators: as-
signment, increment, or decrement. See also message
522.

522 Expected void type, assignment, incre-
ment or decrement If a statement consists only of
an expression, it should either be an expression yield-
ing the void type or be one of the privileged opera-
tors: assignment, increment, or decrement. Note that

CHAPTER 4: Messages

116

*p++;

draws this message but
p++;

does not. This message is frequently given in cases
where a function is called through a pointer and the
return value is not void .In this case we recommend
a cast to void . If your compiler does not support the
void type then you should use the -fvo option.

524 Loss of precision (Context) (Type to Type) There
is a possible loss of a fraction in converting from a
float to an integral quantity. Use of a cast will sup-
press this message.

525 Negative indentation from Location The cur-
rent line was found to be negatively indented(i.e., not
indented as much) from the indicated line.The latter
corresponds to a clause introducing a controlstruc-
ture and statements and other control clauses and
braceswithin its scope are expectedto have no less in-
dentation.If tabs within your program are other than
8 blanks you should usethe -t# option. See the ap-
propriate section for indentation checking (See Sec-
tion 7.3 - “Indentation Checking” on page 168.).

526 Symbol (Location) not defined The named external
was referenced but not defined and did not appear-
declared in any library header file nor did it appear in
a LibraryModule. This message is suppressed for unit
checkout (-u option).Please note that a declaration,
even one bearing prototype information isnot a defi-
nition. See the glossary at the beginning of this chap-
ter. If the Symbol is a library symbol, make sure that
it is declared in a header filethat you're including.
Also make sure that the header file is regarded by
STATIC as a Library Header file.Alternatively, the
symbol may be declaredin a Library Module. See
Sthe section on Library Header Files (See Section 3.7.3
- “Library Header File Options” on page 47.).

527 Unreachable A portion of the program cannot be
reached.

528 Symbol (Location) not referenced The named
static variable was not referenced in the module.

STATIC User’s Guide

117

529 Symbol (Location) not referenced The named
variable was declared but not referenced in a func-
tion.

530 Symbol (Location) not initialized An auto
variable was used before it was initialized.

531 Bad field size The size given for a bit field of a
structure exceeds the size of an int .

532 Return mode of Symbol inconsistent with
Location A declaration (or a definition) of a function
implies a differentreturn mode than a previous state-
ment. (The return mode of a function has to do with
whether thefunction does, or does not, return a val-
ue). A return mode is determined from a declaration
by seeing if the function returns void or, optionally,
by observing whether an explicit type is given. See
the fdr flag for a further explanation of this. See also
the fvr and fvo flags for flag options (See Section
3.7.2 - “Flag Options” on page 38.).

533 Return mode of Symbol inconsistent with Lo-
cation A return statement within a function (or lack of
a return at the end of the function) implies a different
return mode than a previous statement at Location
(The return mode of a function has to do with wheth-
er the function does, or does not, return a value.) See
also the fv r,fvo and fdr flags for flag options (See
Section 3.7.2 - “Flag Options” on page 38.).

534 Return mode of Symbol inconsistent with Lo-
cation A call to a function implies a return mode in-
consistent with a previous statement. (The return
mode of a function has to do with whether the func-
tion does, or does not, return a value.) If a call is made
just for side effects as, for example, in a statement by
itself or the left-hand side of a comma operator, then
it is presumed that the function does not return a val-
ue. Try: (void) function(); to call a function
and ignore its return value. All other calls presume a
returned value. See also the fvr , fvo and fdr flags
for flag options (See Section 3.7.2 - “Flag Options” on
page 38.).

537 Repeated include file : 'FileName' The file
whose inclusion within a module is being requested
has already been included in this compilation. The

CHAPTER 4: Messages

118

file is processed normally even if the message is giv-
en. If it is your standard practice to repeat included
files then simply suppress this message.

538 Excessive size The size of an array equals or ex-
ceeds 64K bytes.

540 Excessive size A string initializer required more
space than what was allocated.

541 Excessive size The size of a character constant
specified with d or h equalled or exceeded 2**b
where b is the number of bits in a byte (established by
the -sb option) The default is -sb8 .

542 Excessive size for bit field An attempt was
made to assign a value into a bit field that appears to
be too large to fit. The value to be assigned is either
another bit field larger than the target, or a numeric
value that is simply too large. You may cast the value
to the generic unsigned type to suppress the error.

544 endif or else not followed by EOL The pre-
processor directive #endif should be followed by an
end-of-line. Some compilers specifically allow com-
mentary to follow the #endif . If you are following
that convention simply turn this error message off.

545 Suspicious use of & An attempt was made to
take the address of an array name. Since array names
are promoted to address, the use of the & is redun-
dant and could be erroneous.

546 Suspicious use of & An attempt was made to
take the address of a function name. Since names of
functions by themselves are promoted to address, the
use of the & is redundant and could be erroneous.

547 Redefinition of symbol Symbol conflicts
with Location The indicated symbol had previously
been #define d to some other value.

548 else expected A construct of the form if (e); was
found which was not followed by an else . This is al-
most certainly an unwanted semi-colon as it inhibits
the if from having any effect.

549 Suspicious cast A cast was made from a pointer
to some enumerated type or from an enumerated
type to a pointer. This is probably an error. Check
your code and if this is not an error, then cast the item

STATIC User’s Guide

119

to an intermediate form (such as an int or a long)
before making the final cast.

550 Symbol (Location) not accessed A variable (local to
some function) was not accessed though the variable
was referenced. This could occur for example if the
variable was assigned a value but was never used.
Note that a variable's value is not considered accessed
by autoincrementing or autodecrementing unless the
autoincrement/decrement appears within a larger
expression which uses the resulting value. The same
applies to a construct of the form: var += expression. If
an address of a variable is taken, its value is assumed
to be accessed. Arrays, struct s and union s are con-
sidered accessed if any portion thereof is accessed.

551 Symbol (Location) not accessed A variable (de-
clared static at the module level) was not accessed
though the variable was referenced. See the explana-
tion under message 550 (above) for a description of
"access" .

552 Symbol (Location) not accessed An external vari-
able was not accessed though the variable was refer-
enced. See the explanation under message 550 above
for a description of "access".

553 Undefined preprocessor variable Symbol,
assumed 0 The indicated variable had not previ-
ously been defined within a #define statement and
yet it is being used in a preprocessor condition of the
form #if or #elif . Conventionally all variables in
preprocessor expressions should be pre-defined. The
value of the variable is assumed to be 0.

555 #elif not K&R The #elif directive was used and
the K&R preprocessor flag (+fkp) was set. Either do
not set the flag or do not use #elif .

556 indented # A preprocessor directive appeared in-
dented within a line and the K&R preprocessor flag
(+fkp) was set. Either do not set the flag or do not in-
dent the # .

557 unrecognized format The format string supplied
to printf , fprintf , sprintf , scanf , fscanf , or
sscanf was not recognized.

CHAPTER 4: Messages

120

558 number of arguments inconsistent with
format The number of arguments supplied to
printf , sprintf , fprintf , scanf , fscanf or
sscanf was inconsistent with the number expected
as a result of analyzing the format string.

559 size of argument number Int inconsistent
with format The given argument (to printf ,
sprintf , or fprintf) was inconsistent with that
which was anticipated as the result of analyzing the
format string. Argument counts begin at 1 and in-
clude file, string and format specifications. For exam-
ple,

sprintf(buffer, %f , 371)

will show an error in argument number 3 because
constant 371 is not floating point.

560 argument no. Int should be a pointer The
given argument (to scanf, sscanf, or fscanf) should be
a pointer. Typically all arguments after the format
should be pointers to areas that are to be modified (re-
ceive the results of scan ning). Argument counts be-
gin at 1 and include file, string and format
specifications. For example

scanf(%f , 3.5)

will generate the message that argument no. 2 should
be a pointer.

561 (arg. no. Int) indirect object inconsis-
tent with format The given argument (to
scanf , sscanf , or fscanf) was a pointer to an ob-
ject that was inconsistent with that which was antici-
pated as the result of analyzing the format string.
Argument counts begin at 1 and include file, string
and format specifications. For example if n is de-
clared as int then:

scanf(%c , &n)

will elicit this message for argument number 2.

562 Ellipsis (...) assumed Within a function proto
type a comma was immediately followed by a right
parenthesis. This is taken by some compilers to be
equivalent to an ellipsis (three dots) and this is what
is assumed by STATIC. If your compiler does not ac-
cept the ellipsis but makes this assumption, then you
should suppress this message.

STATIC User’s Guide

121

563 Label Symbol (Location) not referenced The
Symbol at the cited Location appeared as a label but
there was no statement that referenced this label.

564 variable Symbol depends on order of eval-
uation The named variable was both modified and
accessed in the same expression in such a way that the
result depends on whether the order of evaluation is
left-to-right or right-to-left. One such example is: n +
n++ where there is no guarantee that the first access
to n occurs before the increment of n. Other, more
typical cases, are given in the section on Order of
Evaluation. (See Section 7.1 - “Order of Evaluation”
on page 167.)

565 tag Symbol not previously seen, assumed
file-level scope The named tag appeared in a
prototype or in an inner block and was not previously
seen in an outer (file-level) scope. The ANSI standard
is dubious as to how this tag could link up with any
other tag. For most compilers this is not an error and
you can safely suppress the message. On the other
hand, to be strictly in accord with ANSI C you may
place a small stub of a declaration earlier in the pro-
gram. For example:

struct name;

is sufficient to reserve a place for name in the symbol
table at the appropriate level.

566 Inconsistent or redundant format char
'Char' This message is given for format specifiers
within formats for the printf/scanf family of functions.
The indicated character found in a format specifier
was inconsistent or redundant with an earlier charac-
ter found in the same format specifier. For example a
format containing %ls will yield this error with the
character 's' indicated.This is because the length
modifier is designed to be used with integral or float
conversions and has no meaning with the string con-
version. Such characters are normally ignored by
compilers.

567 Expected a numeric field before char
'Char' This message is given for format specifiers
within formats for the printf/scanf family of
functions. A numeric field or asterisk was expected at
a particular point in the scanning of the format. For

CHAPTER 4: Messages

122

example: %-d requests left justification of a decimal
integer within a format field. But since no field width
is given, the request is meaningless.

568 unsigned is never less than zero . Compar-
isons of the form:

u >= 00 <= u
u < 00 > u

 are suspicious if u is an unsigned quantity. This is be-
cause unsigned quantities are always greater than or
equal to zero. See also message 775.

569 Loss of information (Context) (Int bits to
Int bits) An assignment (or implied assignment,
see Context) was made from a constant to an integral
variable that is not large enough to hold the constant.
Examples include placing a hex constant whose bit
requirement is such as to require an unsigned int into
a variable typed as int. The number of bits given does
not count the sign bit.

570 Loss of sign (Context) (Type to Type) An assign-
ment (or implied assignment, see Context) is being
made from a negative constant into an unsigned
quantity. Casting the constant to unsigned will re-
move the diagnostic but is this what you want. If you
are assigning all 1's to an unsigned , remember that
~0 represent all 1's and is more portable than -1 .

571 Suspicious Cast Usually this warning is issued
for casts of the form:

(unsigned) ch

where ch is declared as char and char is signed.
Although the cast may appear to prevent sign exten-
sion of ch , it does not. Following the normal promo-
tion rules of C, ch is first converted to int which
extends the sign and only then is the quantity cast to
unsigned. To suppress sign extension you may use:

(unsigned char) ch

Otherwise, if sign extension is what you want and
you just want to suppress the warning in this instance
you may use:

(unsigned) (int) ch

Although these examples have been given in terms of
casting a char they will also be given whenever this

STATIC User’s Guide

123

cast is made upon a signed quantity whose size is less
than the casted type. Examples include signed bit
fields (a possibility in the new standard), expressions
involving char , and expressions involving short
when this type is smaller than int or a direct cast of an
int to an unsigned long (if int 's are smaller than
long 's). This message is not issued for constants or
for expressions involving bit operations.

572 Excessive shift value A quantity is being shifted to the
right whose precision is equal to or smaller than the
shifted value. For example,

ch >> 10

will elicit this message if ch is typed char and
where char's are less than 10 bits wide (the usual
case). To suppress the message you may cast the shift-
ed quantity to a type whose length is at least the
length of the shift value.

573 Signed-unsigned mix with divide one of the
operands to / or % was signed and the other un-
signed; moreover the signed quantity could be nega-
tive. For example:

u / n

where u is unsigned and n is signed will elicit this
message whereas:

u / 4

will not, even though 4 is nominally an int . It is not
a good idea to mix unsigned quantities with signed
quantities in any case (a 737 will also be issued) but,
with division, a negative value can create havoc. For
example, the innocent looking:

n = n / u

will, if n is -2 and u is 2, not assign -1 to n but will as-
sign some very large value. To resolve this problem,
either cast the integer to unsigned if you know it can
never be less than zero or cast the unsigned to an in-
teger if you know it can never exceed the maximum
integer.

574 Signed-unsigned mix with relational The
four relational operators are:

> >= < <=

CHAPTER 4: Messages

124

One of the operands to a relational operator was
signed and the other unsigned; also, the signed quan-
tity could be negative. For example:

if(u > n) ...

 where u is unsigned and n is signed will elicit this
message whereas:

if(u > 12) ...

will not (even though 12 is officially an int it is obvi-
ous that it is not negative). It is not a good idea to mix
unsigned quantities with signed quantities in any
case (a 737 will also be issued) but, with the four rela-
tionals, a negative value can produce obscure results.
For example, if the conditional:

if(n < 0) ...

is true then the similar appearing:
u = 0;
if(n < u) ...

is false because the promotion to unsigned makes n
very large. To resolve this problem, either cast the in-
teger to unsigned if you know it can never be less
than zero or cast the unsigned to an int if you know
it can never exceed the maximum int .

577 Mixed memory model (option 'String') The indi-
cated option requested a change to the memory mod-
el after part or all of another module was processed.
The memory model option should be specified before
any module is processed. The most common cause of
this error is specifying the memory model after hav-
ing specified the standard library. This would be a
natural error to make if the standard library file were
specified via a LINT environment variable.

578 Redefinition of Symbol hides earlier dec-
laration (Location) A local symbol has the identical
name as a global symbol (or possibly another local
symbol). This could be dangerous. Was this deliber-
ate? It is usually best to rename the local symbol.

579 parameter preceding ellipsis has invalid
type When an ellipsis is used, the type preceding the
ellipsis should not be a type that would undergo a de-
fault promotion such as char , short or float . The

STATIC User’s Guide

125

reason is that many compiler's variable argument
schemes (using stdarg.h) will break down.

580 Redeclaration causes loss of prototype
for Symbol (Location) A declaration of a function
within a block hides a declaration in an outer scope in
such a way that the inner declaration has no proto-
type and the outer declaration does. A common mis-
conception is that the resulting declaration is a
composite of both declarations but this is only the
case when the declarations are in the same scope not
within nested scopes. If you don't care about proto-
types you may suppress this message. You will still
receive other type-difference warnings.

601 Expected a type, int assumed A declaration
did not have an explicit type. int was assumed. Was
this a mistake? This could easily happen if an intend-
ed comma was replaced by a semicolon. For example,
if instead of typing:

doubleradius,
diameter;

the programmer had typed:
doubleradius;
diameter;

 this message would be raised.

602 Comment within comment The sequence /* was
found within a comment. Was this deliberate? Or was
a comment end inadvertently omitted? If you want
STATIC to recognize nested comments you should set
the Nested Comment flag using the +fnc option.
Then this warning will not be issued. If it is your prac-
tice to use

 /*
 /* */

then use -e602 .

603 Symbol (Location) not initialized The address of
the named symbol is being passed to a function
where the corresponding parameter is declared as
pointer to const . This implies that the function will
not modify the object. If this is the case then the orig-

CHAPTER 4: Messages

126

inal object should have been initialized sometime ear-
lier.

604 Returning address of auto (Symbol) The ad-
dress of the named symbol is being passed back by a
function. Since the object is an auto and since the
duration of an auto is not guaranteed past the re-
turn , this is most likely an error. You may want to
copy the value into a global variable and pass back
the address of the global or you might consider hav-
ing the caller pass an address of one of its own vari-
ables to the callee.

605 Increase in pointer capability This warn-
ing is typically caused by assigning a (pointer to
const) to an ordinary pointer. For example:

int *p;
const int *q;
p = q; /* 605 */

The message will be inhibited if a cast is used as in:
p = (int *) q;

An increase in capability is indicated because the
const pointed to by q can now be modified through
p. This message can be given for the volatile qualifier
as well as the const qualifier and may be given for
arbitrary pointer depths (pointers to pointers, point-
ers to arrays, etc.). It may also be given for function
pointer assignments when the prototype of one func-
tion contains a pointer of higher capability than a cor-
responding pointer in another prototype. There is a
curious inversion here whereby a prototype of lower
capability translates into a function of greater trust
and hence greater capability (a Trojan Horse).

606 Non-ANSI escape sequence : '\String' - An es-
cape sequence occurred, within a character or string
literal, that was not on the approved list which is:

\’ \" \? \\ \a \b \f \n \r
\t \v \octal-digits \xhex-digits

607 Parameter substitution (Symbol) within
string - The indicated name appeared within a
string or character literal within a macro and happens
to be the same as the name of a formal parameter of
the macro as in: #define mac(n) printf(n = %d, , n); Is
this a coincidence? The ANSI standard indicates that

STATIC User’s Guide

127

the name will not be replaced but since many C com-
pilers do replace such names the construction is sus-
pect. Examine the macro definition and if you do not
want substitution, change the name of the parameter.
If you do want substitution, set the +fps flag (Param-
eter within String) and suppress the message.

608 Assigning to an array parameter An assign-
ment is being made to a parameter that is typed ar-
ray.For the purpose of the assignment,the parameter
is regarded as a pointer.Normally such parameters
are typed as pointers rather than arrays.However if
this is your coding style you should suppress this
message.

609 Suspicious pointer conversion An assign-
ment is being made between two pointers which dif-
fer in size(one is far and the other is near)but which
are otherwise compatible.

610 Suspicious pointer combination Pointers of
different size(one is far and the other is near)are
being compared, subtracted,or paired (in a condition-
al expression).This is suspicious because normally
pointers entering into suchoperations are the same
size.

611 Suspicious cast Either a pointer to a function is
being cast to a pointer to an object or vice versa. This
is regarded as questionable by the ANSI standard. If
this is not a user error, suppress this warning.

612 Expected a declarator A declaration contained
just a storage class and a type. This is almost certainly
an error since the only time a type without a declara-
tor makes sense is in the case of a struct , union or
enum but in that case you wouldn't use a storage
class.

614 auto aggregate initializer not constant
An initializer for an auto aggregate normally consists
of a collection of constant-valued expressions. Some
compilers may, however, allow variables in this con-
text in which case you may suppress this message.

615 auto aggregate initializer has side ef-
fects This warning is similar to 614. Auto aggre-
gates (arrays, struct s and union s) are normally
initialized by a collection of constant-valued expres-

CHAPTER 4: Messages

128

sions without side-effects. A compiler could support
side-effects in which case you might want to suppress
this message.

616 control flows into case/default It is possi-
ble for flow of control to fall into a case statement or
a default statement from above. Was this deliberate
or did the programmer forget to insert a break state-
ment? If this was deliberate then place a comment im-
mediately before the statement that was flagged as in:

case 'a': a = 0;
 /* fall through */
case 'b': a++;

Note that the message will not be given for a case that
merely follows another case without an intervening
statement. Also, there must actually be a possibility
for flow to occur from above.

617 String is both a module and an include file
The named file is being used as both an include file
and as a module. Was this a mistake? Unlike Error
306 (repeated module) this is just a warning and pro-
cessing of the file is attempted.

618 Storage class specified after a type A
storage class specifier (static , extern , typedef ,
register or auto) was found after a type was spec-
ified. This is legal but deprecated. Either place the
storage class specifier before the type or suppress this
message.

619 Loss of precision (Context) (Pointer to
Pointer) A far pointer is being assigned to a near
pointer either in an assignment statement or an im-
plied assignment such as an initializer, a return state-
ment, or passing an argument in the presence of a
prototype (Context indicates which). Such assign-
ments are a frequent source of error when the actual
segment is not equal to the default data segment. If
you are sure that the segment of the far pointer equals
the default data segment you should use a cast to sup-
press this message.

620 Suspicious constant (L or one?) A constant
ended in a lower case letter 'l ' . Was this intended to
be a one? The two characters look very similar. To
avoid misinterpretations, use the upper case letter 'L'.

STATIC User’s Guide

129

621 Identifier clash (Symbol with Symbol at Loca-
tion) The two symbols appeared in the same name
space but are identical to within the first count char-
acters set by option -idlen (count,option) . See -
idlen for other options (See Section 3.7 - “Modifying
the Report Options” on page 38.).

622 Size of argument no. Int inconsistent with
format The Int 'th argument to scanf , fscanf or
sscanf was a pointer whose size did not match the
format. For example,

int far *p;
scanf(%d , p);

will draw this warning (in the default memory mod-
el).

623 redefining the storage class of symbol
Symbol conflicts with Location An inter-module
symbol was a typedef symbol in one module and an
ordinary symbol in another module. This is legal but
potentially confusing. Is this what the programmer
intended?

624 typedef Symbol redeclared (TypeDiff) (Location)
A symbol was typedef 'ed differently in two differ-
ent modules. This is technically legal but is not a wise
programming practice.

625 auto symbol Symbol has unusual type modifier
Some type modifiers such as far , near , fortran
are inappropriate for auto variables.

626 argument no. Int inconsistent with format
The argument to a printf (or fprintf or
sprintf) was inconsistent with the format. Al-
though the size of the quantity was appropriate the
type was not. You might consider casting the quanti-
ty to the correct type. You could also suppress this
message, as more flagrant violations are picked up
with warning 559.

627 (arg. no. Int) indirect object inconsis-
tent with format The type of an argument to
scanf (or fscanf orsscanf) was inappropriate to
the format. However, the argument was a pointer and
it pointed to a quantity of the expected size.

CHAPTER 4: Messages

130

628 no argument information provided for
function Symbol (Location) The named function
was called but there was no argument information
supplied. Argument information can come from a
prototype or from a function definition. This usually
happens when an old-style function declaration indi-
cates that the function is in a library but no prototype
is given for the function nor is any argument informa-
tion provided in a standard library file. This message
is suppressed if you are producing a lint object mod-
ule because presumably the object module will be
compared with a library file at some later time.

629 static class for function (Symbol) is non
standard A static class was found for a function
declaration within a function. The static class is only
permitted for functions in declarations that have file
scope (i.e., outside any function). Either move the
declaration outside the function or change static to
extern ; if the second choice is made, make sure that a
static declaration at file scope also exists before the ex-
tern declaration. Though technically the construct is
not portable, many compilers do tolerate it. If you
suppress the message, STATIC will treat it as a proper
function declaration.

630 ambiguous reference to symbol Symbol If the
+fab flag is set, then if two structures containing the
same member name (not necessarily different kinds
of structures) are embedded in the same structure
and a reference to this member name omits one of the
intervening (disambiguating) names, this warning is
emitted.

631 tag Symbol defined differently at Location
The struct , union or enum tag Symbol was defined
differently in different scopes. This is not necessarily
an error since C permits the redefinition, but it can be
a source of subtle error. It is not generally a program-
ming practice to be recommended.

632 Assignment to strong type (Symbol) in con-
text: Context An assignment (or implied assign-
ment, Context indicates which) violates a Strong type
check as requested by a -strong(A ... option. (See
Section 3.7.7 - “Strong Typing Options” on page 61.)

STATIC User’s Guide

131

633 Assignment from a strong type (Symbol) in
context: Context An assignment (or implied assign-
ment, Context indicates which) violates a Strong type
check as requested by a -strong(X ... option. (See
Section 3.7.7 - “Strong Typing Options” on page 61.)

634 Strong type mismatch (type Symbol) in equal-
ity or conditional An equality operation (== or !=) or
a conditional operation (? :) violates a Strong type
check as requested by a -strong(J ... option. This
message would have been suppressed using flags Je .
(See Section 3.7.7 - “Strong Typing Options” on page
61.)

635 resetting strong parent of type Symbol,
old parent == Symbol The strong parent of the
given Symbol is being reset. This is being done with a
-parent option or by typedef ing one symbol with
the other. Note that this may not be an error; you are
being alerted to the fact that the old link is being
erased. See Section 14.7.7.

636 ptr to strong type (Symbol) versus another
type Pointers are being compared and there is a
strong type clash below the first level. For example,
/*lint -strong(J,INT) */
typedef int INT;
INT *p; int *q;
if(p == q) /* Warning 636 */

will elicit this warning. This message would have
been suppressed using strong type flags Je or Jr or
both.

 637 Expected index type Symbol for strong type
Symbol This is the message you receive when an in-
consistency with the -index option is recognized. A
subscript is not the stipulated type (the first type
mentioned in the message) nor equivalent to it within
the hierarchy of types. See flag +fhx (See Section
3.7.7 - “Strong Typing Options” on page 61.) (See Sec-
tion 3.7.2 - “Flag Options” on page 38.).

638 Strong type mismatch for type Symbol in
relational A relational operation (>= <= > <) vi-
olates a Strong type check as requested by a -
strong(J ... option. This message would have been

CHAPTER 4: Messages

132

suppressed using flags Jr. (See Section 3.7.7 -
“Strong Typing Options” on page 61.)

639 Strong type mismatch for type Symbol in
binary operation A binary operation other than
an equality or a relational operation violates a Strong
type check as requested by a -strong(J ... option.
This message would have been suppressed using flag
Jo . (See Section 3.7.7 - “Strong Typing Options” on
page 61.)

640 Expected strong type Symbol in Boolean
context A Boolean context expected a type speci-
fied by a -strong(B ... option. (See Section 3.7.7 -
“Strong Typing Options” on page 61.).

641 Converting enum to int An enumeration type
was used in a context that required a computation
such as an argument to an arithmetic operator or was
compared with an integral argument. This warning
will be suppressed if you use the integer model of
enumeration (+fie) but you will lose some valuable
type-checking in doing so. An intermediate policy is
to simply turn off this warning. Assignment of int 's
to enum 's will still be caught.

This warning is not issued for tagless enum 's without
variables. For example

enum {false,true};

This cannot be used as a separate type. STATIC recog-
nizes this and treats false and true as arithmetic
constants.

642 Format char ' Char ' not supported by
wsprint f This means that you are using an option of
the form: -printf(w ... and you are using a format
character not supported by the Microsoft Windows
function wsprintf . If you are not really using
wsprintf but are using the w flag to get far pointers
you should turn this message off.

643 Loss of precision in pointer cast A far
pointer was cast to a near pointer. Such casts have
had disastrous consequences for Windows program-
mers. If you really need to make such a cast, you can
do it in stages. If you cast to a long first (i.e., some in-
tegral type that can hold the pointer) and then into a
shorter value, we don't complain.

STATIC User’s Guide

133

644 Symbol (Location) may not have been initial-
ized An auto variable was not necessarily assigned a
value before use (See Section 7.11 - “Possibly Unini-
tialized” on page 180.).

645 Symbol (Location) may not have been initial-
ized An auto variable was conditionally assigned a
value before being passed to a function expecting a
pointer to a const object. See Warning 603 for an ex-
planation of the dangers of such a construct (See Sec-
tion 7.11 - “Possibly Uninitialized” on page 180.).

646 case/default within Kind loop ; may have been
misplaced A case or default statement was found
within a for , do , or while loop. Was this intention-
al? At the very least, this reflects poor programming
style.

647 Suspicious truncation This message is issued
when it appears that there may have been an unin-
tended loss of information during an operation in-
volving int 's or unsigned int 's the result of
which is later converted to long . It is issued only for
systems in which int 's are smaller than long 's. For
example:

(long) (n << 8)

might elicit this message if n is unsigned int ,
whereas

(long) n << 8

would not. In the first case, the shift is done at int
precision and the high order 8 bits are lost even
though there is a subsequent conversion to a type that
might hold all the bits. In the second case, the shifted
bits are retained.

The operations that are scrutinized and reported
upon by this message are: shift left, multiplication,
and bit-wise complementation. Addition and sub-
traction are covered by Informational message 776.

 The conversion to long may be done explicitly with
a cast as shown or implicitly via assignment, return,
argument passing or initialization. The message can
be suppressed by casting. You may cast one of the op-
erands so that the operation is done in full precision
as is given by the second example above. Alternative-
ly, if you decide there is really no problem here (for

CHAPTER 4: Messages

134

now or in the future), you may cast the result of the
operation to some form of int . For example, you
might write:

(long) (unsigned) (n << 8)

 In this way STATIC will know you are aware of and
approve of the truncation.

648 Overflow in computing constant for op-
eration: String Arithmetic overflow was detected
while computing a constant expression. For example,
if int 's are 16 bits then 200 * 200 will result in an
overflow. String gives the operation that caused the
overflow and may be one of: addition, unsigned
addition, multiplication, unsigned mul-
tiplication, negation, shift left, un-
signed shift left, subtraction, or
unsigned sub .

To suppress this message for particular constant op-
erations you may have to supply explicit truncation.
For example, if you want to obtain the low order 8 bits
of the integer 20000 into the high byte of a 16-bit int ,
shifting left would cause this warning. However,
truncating first and then shifting would be OK. The
following code illustrates this where int 's are 16 bits.

20000u << 8; /* 648 */
(0xFF & 20000u) << 8; /* OK */
(unsigned char) 20000u < 8; /* OK */

649 Sign fill during constant shift During the
evaluation of a constant expression a negative integer
was shifted right, causing sign fill of vacated posi-
tions. If this is what is intended, suppress this error,
but be aware that sign fill is implementation-depen-
dent.

650 Constant out of range for operator String
In a comparison operator or equality test (or implied
equality test as for a case statement), a constant oper-
and is not in the range specified by the other operand.
For example, if 300 is compared against a char vari-
able, this warning will be issued. Moreover, if char 's
are signed (and 8 bits) you will get this message if you
compare against an integer greater than 127. The
problem can be fixed with a cast. For example:

if(ch == 0xFF) ...

STATIC User’s Guide

135

if((unsigned char) ch == 0xFF) ...

If char is signed (+fcu has not been set) the first re-
ceives a warning and can never succeed. The second
suppresses the warning and corrects the bug. STATIC
will take into account the limited precision of some
operands such as bit-fields and enumerated types.
Also, STATIC will take advantage of some computa-
tions that limit the precision of an operand. For exam-
ple,

if((n & 0xFF) >> 4 == 16) ...

will receive this warning because the left-hand side is
limited to 4 bits of precision.

651 Potentially confusing initializer An ini-
tializer for a complex aggregate is being processed
that contains some subaggregates that are bracketed
and some that are not. ANSI recommends either min-
imally bracketed initializers in which there are no in-
terior braces or fully bracketed initializers in which
all interior aggregates are bracketed.

652 #define of symbol Symbol declared previously
at Location A macro is being defined for a symbol
that had previously been declared. For example:

int n; #define n N

will draw this complaint. Prior symbols checked are
local and global variables, functions and typedef 'ed
symbols, and struct , union and enum tags. Not
checked are members of struct 's and union 's.

653 Possible loss of fraction When two integers
are divided and assigned to a floating point variable
the fraction portion is lost. For example, although
double x = 5 / 2; appears to assign 2.5 to x it actually
assigns 2.0 . To make sure you don't lose the fraction,
cast at least one of the operands to a floating point
type. If you really wish to do the truncation, cast the
resulting divide to an integral (int or long) before as-
signing to the floating point variable.

654 Option String obsolete; use -width(W ,I)
The option -w is now used to set the warning level
and should no longer be used to specify the width of
error messages. Instead use -width with the same
arguments as before to set the width. To set the warn-

CHAPTER 4: Messages

136

ing level to 3, for example, use the option -w3 , not -
w(3) .

STATIC User’s Guide

137

4.7 Informational Messages

701 Shift left of signed quantity (int) Shifts
are normally accomplished on unsigned operands.

702 Shift right of signed quantity (int)
Shifts are normally accomplished on unsigned oper-
ands. Shifting int 's right is machine dependent (sign
fill vs. zero fill).

703 Shift left of signed quantity (long)
Shifts are normally accomplished on unsigned oper-
ands.

704 Shift right of signed quantity (long)
Shifts are normally accomplished on unsigned oper-
ands. Shifting long 's right is machine dependent
(sign fill vs. zero fill).

708 union initialization there was an attempt to
initialize the value of a union . This may not be per-
mitted in some older C compilers. This is because of
the apparent ambiguity: which member should be
initialized. The standard interpretation is to apply the
initialization to the first subtype of the union .

712 Loss of precision (Context) (Type to Type) An
assignment (or implied assignment, see Context) is
being made between two integral quantities in which
the first Type is larger than the second Type . A Cast
will suppress this message.

713 Loss of precision (Context) (Int bits to Int
bits) An assignment (or implied assignment, see
Context) is being made from an unsigned quantity to
a signed quantity, that will result in the possible loss
of one bit of integral precision such as converting
from unsigned int to int . A cast will suppress
the message. The number of bits given does not count
the sign bit.

714 Symbol (Location) not referenced The named ex-
ternal variable was defined but not referenced. This
message is suppressed for unit checkout (-u option).

715 Symbol (Location) not referenced The named for-
mal parameter was not referenced.

716 while(1) ... A construct of the form while(1) ...
was found. Whereas this represents a constant in a

CHAPTER 4: Messages

138

context expecting a Boolean, it may reflect a program-
ming policy whereby infinite loops are prefixed with
this construct. Hence it is given a separate number
and has been placed in the informational category.
The more conventional form of infinite loop prefix is
for(;;) .

717 do ... while(0) Whereas this represents a con-
stant in a context expecting a Boolean, this construct
is probably a deliberate attempt on the part of the
programmer to encapsulate a sequence of statements
into a single statement, and so it is given a separate er-
ror message. For example:

#define f(k) do {n=k; m=n+1;}
while(0)

allows f(k) to be used in conditional statements as
in

if(n>0) f(3);
else f(2);

718 Symbol undeclared, assumed to return int
A function was referenced without (or before) it had
been declared or defined within the current module.
This is not necessarily an error and you may want to
suppress such messages (See CHAPTER 11 - Com-
mon Problems and Applications” on page 199.). Note
that by adding a declaration to another module, you
will not suppress this message. It can only be sup-
pressed by placing a declaration within the module
being processed.

720 Boolean test of assignment An assignment
was found in a context that requires a Boolean (such
as in an if() or while() clause or as an operand to
&& or ||). This may be legitimate or it could have re-
sulted from a mistaken use of = for == .

721 Suspicious use of ; A semi-colon was found
immediately to the right of a right parenthesis in a
construct of the form if(e); . As such it may be
overlooked or confused with the use of semi-colons to
terminate statements. The message will be inhibited if
the ' ; ' is separated by at least one blank from the ')
'. Better, place it on a separate line. See also 548.

722 Suspicious use of ; A semi-colon was found
immediately to the right of a right parenthesis in a

STATIC User’s Guide

139

construct of the form while(e); or for (e; e; e); .
As such it may be overlooked or confused with the
use of semi-colons to terminate statements. The mes-
sage will be inhibited if the ' ; ' is separated by at least
one blank from the ') '. Better, place it on a separate
line.

723 Suspicious use of = A preprocessor definition
began with an = sign. For example:

#define LIMIT = 50

Was this intentional? Or was the programmer think-
ing of assignment when he wrote this?

 725 Expected positive indentation from Loca-
tion The current line was found to be aligned with,
rather than indented with respect to, the indicated
line. The indicated line corresponds to a clause intro-
ducing a control structure and statements within its
scope are expected to be indented with respect to it. If
tabs within your program are other than 8 blanks you
should use the -t option . See the section that de-
scribes indentation checking information (See Section
7.3 - “Indentation Checking” on page 168.).

 726 Extraneous comma ignored A comma followed
by a right-brace within an enumeration is not a valid
ANSI construct. The comma is ignored.

 727 Symbol(Location) not explicitly initialized
The named static variable (local to a function) was not
explicitly initialized prior to use. The following re-
marks apply to messages 728 and 729 as well as 727.
By no explicit initialization we mean that there was
no initializer present in the definition of the object, no
direct assignment to the object, and no address oper-
ator applied to the object or, if the address of the ob-
ject was taken, it was assigned to a pointer to const .
These messages do not necessarily signal errors since
the implicit initialization for static variables is 0.
However, the messages are helpful in indicating
those variables that you had forgotten to initialize to
a value. To extract the maximum benefit from the
messages we suggest that you employ an explicit ini-
tializer for those variables that you want to initialize
to 0. For example:

static int n = 0;

CHAPTER 4: Messages

140

For variables that will be initialized dynamically, do
not use an explicit initializer as in:

 static int m;

This message will be given for arrays, struct s and
union s if no member or element has been assigned a
value.

728 Symbol (Location) not explicitly initialized
The named intra-module variable (static variable
with file scope) was not explicitly initialized. See the
comments on message 727 for more details.

729 Symbol (Location) not explicitly initialized
The named inter-module variable (external variable)
was not explicitly initialized. See the comments on
message 727 for more details. This message is sup-
pressed for unit checkout (-u).

730 Boolean argument to function A Boolean was
used as an argument to a function. Was this intend-
ed? Or was the programmer confused by a particular-
ly complex conditional statement. Experienced C
programmers often suppress this message.

731 Boolean argument to equal/not equal A
Boolean was used as an argument to == or != . For ex-
ample:

if((a > b) == (c > d)) ...

tests to see if the inequalities are of the same value.
This could be an error as it is an unusual use of a Bool-
ean (see Warnings 503 and 514) but it may also be de-
liberate since this is the only way to efficiently
achieve equivalence or exclusive or.

Because of this possible use, the construct is given a
relatively mild ‘informational' classification. If the
Boolean argument is cast to some type, this message
is not given.

732 Loss of sign (Context) (Type to Type) An assign-
ment (or implied assignment, see Context) is made
from a signed quantity to an unsigned quantity. Also,
it could not be determined that the signed quantity
had no sign. For example:

u = n;
u = 4;

STATIC User’s Guide

141

where u is unsigned and n is not, warrants a message
only for the first assignment, even though the con-
stant 4 is nominally a signed int . Make sure that this
is not an error (that the assigned value is never nega-
tive) and then use a cast (to unsigned) to remove the
message.

734 Loss of precision (Context) (Int bits to Int bits)
An assignment is being made into an object smaller
than an int . The information being assigned is de-
rived from another object or combination of objects in
such a way that information could potentially be lost.
The number of bits given does not count the sign bit.
For example if ch is a char and n is an int then:

ch = n;

will trigger this message whereas:
ch = n & 1;

will not. To suppress the message a cast can be made
as in:

ch = (char) n;

You may receive notices involving multiplication and
shift operators with subinteger variables. For exam-
ple:

ch = ch << 2
ch = ch * ch

where, for example, ch is an unsigned char . These can
be suppressed by using the flag +fpm (precision of an
operator is bound by the maximum of its operands).
See the section on flag options (See Section 3.7.2 -
“Flag Options” on page 38.).

735 Loss of precision (Context) (Int bits to Int
bits) An assignment (or implied assignment, see
Context) is made from a long double to a double . Us-
ing a cast will suppress the message. The number of
bits includes the sign bit.

736 Loss of precision (Context) (Int bits to Int
bits) An assignment (or implied assignment, see
Context) is being made to a float from a value or com-
bination of values that appear to have higher preci-
sion than a float. You may suppress this message by
using a cast. The number of bits includes the sign bit.

CHAPTER 4: Messages

142

737 Loss of sign in promotion from Type to Type
An unsigned quantity was joined with a signed quan-
tity in a binary operator (or 2nd and 3rd arguments to
the conditional operator ? :) and the signed quan-
tity is implicitly converted to unsigned. The message
will not be given if the signed quantity is an unsigned
constant, a Boolean, or an expression involving bit
manipulation. For example,

u & ~0xFF

where u is unsigned does not draw the message even
though the operand on the right is technically a
signed integer constant. It looks enough like an un-
signed to warrant not giving the message. This mixed
mode operation could also draw Warnings 573 or 574
depending upon which operator is involved. You
may suppress the message with a cast but you should
first determine whether the signed value could ever
be negative or whether the unsigned value can fit
within the constraints of a signed quantity.

738 Symbol (Location) not explicitly initialized
The named static local variable was not initialized be-
fore being passed to a function whose corresponding
parameter is declared as pointer to const . Is this an
error or is the programmer relying on the default ini-
tialization of 0 for all static items? By employing an
explicit initializer you will suppress this message. See
also message numbers 727 and 603.

739 Trigraph Sequence ' String ' in literal (Qui-
et Change) The indicated Trigraph (three-charac-
ter) sequence was found within a string. This trigraph
reduces to a single character according to the ANSI
standard. This represents a "Quiet Change" from the
past where the sequence was not treated as excep-
tional. If you had no intention of mapping these char-
acters into a single character you may precede the
initial '?' with a backslash. If you are aware of the con-
vention and you intend that the Trigraph be convert-
ed you should suppress this informational message.

740 Unusual pointer cast (incompatible in-
direct types) A cast is being made to convert one
pointer to another such that neither of the pointers is
a generic pointer (neither is pointer to char , un-
signed char , or void) and the indirect types are

STATIC User’s Guide

143

truly different. The message will not be given if the
indirect types differ merely in signedness (e.g., point-
er to unsigned versus pointer to int) or in qualifica-
tion (e.g., pointer to const int versus pointer to
int). The message will also not be given if one of the
indirect types is a union .

The main purpose of this message is to report possi-
ble problems for machines in which pointer to char
is rendered differently from pointer to word. Consid-
er casting a pointer to pointer to char to a pointer to
pointer to word. The indirect bit pattern remains un-
changed.

A second reason is to identify those pointer casts in
which the indirect type doesn't seem to have the
proper bit pattern such as casting from a pointer to
int to a pointer to double . If you are not interested
in running on machines in which char pointers are
fundamentally different from other pointers then you
may want to suppress this message. You can also sup-
press this message by first casting to char pointer
or to void pointer but this is only recommended if
the underlying semantics are right.

741 Unusual pointer cast (function qualifi-
cation) A cast is being made between two pointers
such that their indirect types differ in one of the Mi-
crosoft qualifiers: pasca l , fortran , cdecl and
interrupt . If this is not an error you may cast to a
more neutral pointer first such as a void * .

742 Multiple character constant A character con-
stant was found that contained multiple characters,
e.g., 'ab ' . This is legal C but the numeric value of the
constant is implementation defined. It may be safe to
suppress this message because, if more characters are
provided than what can fit in an int , message number
25 is given.

743 Negative character constant A character con-
stant was specified whose value is some negative in-
teger. For example, on machines where a byte is 8
bits, the character constant ' xFF ' is flagged because
its value (according to the ANSI standard) is -1 (its
type is int). Note that its value is not 0xFF .

CHAPTER 4: Messages

144

744 switch statement has no default A switch
statement has no section labeled default: . Was this
an oversight? It is standard practice in many pro-
gramming groups to always have a default: case.
This can lead to better (and earlier) error detection.
One way to suppress this message is by introducing a
vacuous default: break; statement. If you think
this adds to much overhead to your program, think
again. In all cases tested so far, the introduction of this
statement added absolutely nothing to the overall
length of code. If you accompany the vacuous state-
ment with a suitable comment, your code will at least
be more readable. This message is not given if the
control expression is an enumerated type. In this case,
all enumerated constants are expected to be repre-
sented by case statements, else 787 will be issued.

745 function Symbol has no explicit type or
class, int assumed A function declaration or
definition contained no explicit type. Was this delib-
erate? If the flag fdr (deduce return mode, see the
section on flag options) (See Section 3.7.2 - “Flag Op-
tions” on page 38.) is turned on, this message is sup-
pressed.

746 call to Symbol not made in the presence of a
prototype A call to a function is not made in the
presence of a prototype. This does not mean that
STATIC is unaware of any prototype; it means that a
prototype is not in a position for a compiler to see it.
If you have not adopted a strict prototyping conven-
tion you will want to suppress this message with -
e746 .

747 Significant prototype coercion (Context)
Type to Type The type specified in the prototype dif-
fered from the type provided as an argument in some
significant way. Usually the two types are arithmetic
of differing sizes or one is float and the other inte-
gral. This is flagged because if the program were to be
translated by a compiler that does not support proto-
type conversion, the conversion would not be per-
formed. See also Elective Notes 917 and 918.

748 Symbol (Location) is a register variable used
with setjmp The named variable is a register vari-
able and is used within a function that calls upon

STATIC User’s Guide

145

setjmp . When a subsequent longjmp is issued the
values of register variables may be unpredictable. If
this error is not suppressed for this variable, the vari-
able is marked as uninitialized at this point in the pro-
gram. More information on messages 749-769 can be
found in Section 7.8. page 179 for weak definials in-
formation.

749 local enumeration constant Symbol (Location)
not referenced A member (name provided as
Symbol) of an enum was defined in a module but was
not otherwise used within that module. A ‘local'
member is one that is not defined in a header file.
Compare with messages 754 and 769.

750 local macro Symbol (Location) not referenced A ‘lo-
cal' macro is one that is not defined in a header file.
The macro was not referenced throughout the mod-
ule in which it is defined.

751 local typedef Symbol (Location) not refer-
enced A ‘local' typedef symbol is one that is not de-
fined in any header file. It may have file scope or
block scope but it was not used through its scope.

752 local declarator Symbol (Location) not refer-
enced A ‘local' declarator symbol is one declared in
a declaration which appeared in the module file itself
as opposed to a header file. The symbol may have file
scope or may have block scope. But it wasn't refer-
enced.

753 local struct, union or enum tag Symbol (Lo-
cation) not referenced A ‘local' tag is one not de-
fined in a header file. Since its definition appeared,
why was it not used? Use of a tag is implied by the
use of any of its members.

754 local structure member Symbol (Location) not
referenced A member (name provided as Symbol) of a
struct or union was defined in a module but was
not otherwise used within that module. A ‘local'
member is one that is not defined in a header file. See
message 768.

755 global macro Symbol (Location) not referenced A
‘global' macro is one defined in a header file. This
message is given for macros defined in non-library
headers. The macro is not used in any of the modules

CHAPTER 4: Messages

146

comprising the program. This message is suppressed
for unit checkout (-u option). See the section on
weak definials information (See Section 7.8 - “Weak
Definials” on page 176.).

756 global typedef Symbol (Location) not referenced
This message is given for a typedef symbol declared
in a non-library header file. The symbol is not used in
any of the modules comprising a program. This mes-
sage is suppressed for unit checkout (-u option).

757 global declarator Symbol (Location) not refer-
enced This message is given for objects that have been
declared in non-library header files and that have not
been used in any module comprising the program be-
ing checked. The message is suppressed for unit
checkout (-u).

758 global struct, union or enum tag Symbol
(Location) not referenced This message is given for
struct, union and enum tags that have been de-
fined in non-library header files and that have not
been used in any module comprising the program.
The message is suppressed for unit checkout (-u).

759 header declaration for Symbol (Location) could
be moved from header to module This message is
given for declarations, within non-library header
files, that are not referenced outside the defining
module. Hence, it can be moved inside the module
and thereby ‘lighten the load' on all modules using
the header. This message is only given when more
than one module is being run by STATIC .

760 Redundant macro Symbol defined identical-
ly at Location The given macro was defined earlier
(location given) in the same way and is hence redun-
dant.

761 typedef Symbol superseded by declaration
at Location A typedef symbol has been type-
def ’ed earlier at the given location. Although the
declarations are consistent you should probably re-
move the second.

762 Declaration Symbol superseded by decla-
ration at Location A declaration for the given sym-
bol was found to be consistent with an earlier

STATIC User’s Guide

147

declaration in the same scope. This declaration adds
nothing new and it can be removed.

763 Declaration for Symbol superseded by dec-
laration at Location A tag for a struct , union
or enum was defined twice in the same module (con-
sistently). The second one can be removed.

764 Header file FileName not directly used in
module String The given header file was not used in
the given module, however it, itself, included a head-
er file (possibly indirectly) that was used. An example
of this is os2.h an umbrella header serving only to
include other headers. Compare this message with
766.

765 external Symbol (Location) could be made static An
external symbol was referenced in only one module.
It was not declared static . Some programmers like to
make static every symbol they can,because this light-
ens the load on the linker. It also represents gooddoc-
umentation. On the other hand, you may want the
symbol to remainexternal because debuggers often
work only on external names. It's possible, using mac-
ros, to have the best of both worlds; see the section on
weak definials information (See Section 7.8 - “Weak
Definials” on page 176.).

766 Header file FileName not used in module
String The named header file was not used in process-
ing the named module. It contained no macro , ty-
pedef , struct , union or enum tag or component,
or declaration referenced by the module.

767 macro Symbol was defined differently in
another module (Location) Two macros processed
in two different modules had inconsistent definitions.

768 global struct member Symbol (Location) not
referenced A member (name provided as Symbol
) of a struct or union appeared in a non-library
header file but was not used in any module compris-
ing the program. This message is suppressed for unit
checkout. Since struct 's may be replicated in stor-
age, finding an unused member can pay handsome
storage dividends. However, many structures merely
reflect an agreed-upon convention for accessing stor-
age and for any one program many members are un-

CHAPTER 4: Messages

148

used. In this case, receiving this message can be a
nuisance. One convenient way to avoid unwanted
messages (other than the usual -e and -esym) is to
always place such structures in library header files.
Alternatively, you can place the struct within a
++flb ... --flb sandwich to force it to be consid-
ered library.

769 global enumeration constant Symbol (Location
) not referenced A member (name provided as
Symbol) of an enum appeared in a non-library header
file but was not used in any module comprising the
program. This message is suppressed for unit check-
out. There are reasons why a programmer may occa-
sionally want to retain an unused enum and for this
reason this message is distinguished from 768 (un-
used member). See message 768 for ways of selective-
ly suppressing this message.

770 tag Symbol defined identically at Location
The struct , union , or enum tag Symbol was de-
fined identically in different scopes. This is not an er-
ror but it is not necessarily good programming
practice either. It is better to place common defini-
tions of this kind in a header file where they can be
shared among several modules. If you do this, you
will not get this message. Note that if the tag is de-
fined differently in different scopes, you will receive
warning 631 rather than this message.

771 Symbol (Location) conceivably not initial-
ized The named symbol, declared at Location , was
initialized in the main portion of a control loop
(while , for , or do) and subsequently used outside
the loop. If it is possible for the main body of the loop
to not be fully executed, then the given symbol would
remain uninitialized resulting in an error. STATIC
does not do a great job of evaluating expressions and
hence may not recognize that a loop is executed at
least once. This is particularly true after initializing an
array. Satisfy yourself that the loop is executed and
then suppress the message. You may wish to sup-
press the message globally with -e771 or just for spe-
cific symbols using -esym . Don't forget that a simple
assignment statement may be all that's needed to sup-

STATIC User’s Guide

149

press the message (See Section 7.11 - “Possibly Unini-
tialized” on page 180.).

772 Symbol(Location) conceivably not initialized
The address of the named Symbol was passed to a
function expecting to receive a pointer to a const
item. This requires the Symbol to have been initial-
ized. See Warning 603 for an explanation of the dan-
gers of such a construct. See Informational message
771 for an explanation of "conceivably not initial-
ized".

775 unsigned quantities cannot be less than
zero An unsigned quantity is being compared for
being <=0 . This is a little suspicious since an un-
signed quantity can be equal to 0 but never less than
0 . The unsigned quantity may be of type unsigned
or may have been promoted from an unsigned type
or may have been judged not to have a sign by virtue
of it having been AND'ed with a quantity known not
to have a sign bit. See also Warning 568.

776 Possible truncation of addition An int
expression (signed or unsigned) involving addition
or subtraction is converted to long implicitly or ex-
plicitly. Moreover, the precision of a long is greater
than that of int. If an overflow occurred, information
would be lost. Either cast one of the operands to some
form of long or cast the result to some form of int .
See Warning 647 for a further description and an ex-
ample of this kind of error. See also 790 and 942.

777 Testing float's for equality This message
is issued when the operands of operators == and !=
are some form of floating type (float , double , or
long double). Testing for equality between two
floating point quantities is suspect because of round-
off error and the lack of perfect representation of frac-
tions. If your numerical algorithm calls for such test-
ing turn the message off. The message is suppressed
when one of the operands can be represented exactly,
such as 0 or 13.5.

778 Constant expression evaluates to 0 in operation:
String A constant expression involving addition, sub-
traction, multiplication, shifting, or negation resulted
in a 0. This could be a purposeful computation but
could also have been unintended. If this is intention-

CHAPTER 4: Messages

150

al, suppress the message. If one of the operands is 0
Elective Note 941 may be issued rather than a 778.

779 String constant in comparison operator:
Operator A string constant appeared as an argument
to a comparison operator. For example:

if(s == abc) ...

This is usually an error. Did the programmer intend
to use strcmp ? It certainly looks suspicious. At the
very least, any such comparison is bound to be ma-
chine-dependent. If you cast the string constant, the
message is suppressed.

780 Vacuous array element A declaration of an array
looks suspicious because the array element is an array
of 0 dimension. For example:

extern int a[][];
extern int a[10][];

will both emit this message but
extern int a[][10];

 will not. In the latter case, proper array accessing will
take place even though the outermost dimension is
missing. If extern were omitted, the construct
would be given a more serious error message.

781 Inconsistent use of tag Symbol conflicts
with Location A tag specified as a union , struct , or
enum was specified as some other type in another
module (location given by Location). For example, if
tag is specified as union in one module and is speci-
fied as struct in the current module you will get this
message. See also Warning 407.

782 Line exceeds Int characters An internal limit
on the size of the input buffer has been reached. The
message contains the maximum permissible size.
This does not necessarily mean that the input will be
processed erroneously. Additional characters will be
read on a subsequent read. However the line se-
quence numbers reported on messages will be incor-
rect.

783 Line does not end with new-line This mes-
sage is issued when an input line is not terminated by
a new-line or when a NUL character appears within
an input line. When input lines are read, an fgets is

STATIC User’s Guide

151

used. A strlen call is made to determine the num-
ber of characters read. If the new-line character is not
seen at the presumed end, this message is issued. If
your editor is in the habit of not appending new-lines
onto the end of the last line of the file then suppress
this message. Otherwise, examine the file for NUL
characters and eliminate them.

784 Nul character truncated from string Dur-
ing initialization of an array with a string constant
there was not enough room to hold the trailing NUL
character. For example:

char a[3] = abc ;

would evoke such a message. This may not be an er-
ror since the easiest way to do this initialization is in
the manner indicated. It is more convenient than:

char a[3] = { 'a', 'b', 'c' };

On the other hand, if it really is an error it may be es-
pecially difficult to find.

785 Too few initializers for aggregate The
number of initializers in a brace-enclosed initializer
was less than the number of items in the aggregate.
Default initialization is taken. An exception is made
with the initializer {0} . This is given a separate mes-
sage number in the Elective Note category (943). It is
normally considered to be simply a stylized way of
initializing all members to 0.

786 String concatenation within initializer
Although it is perfectly ‘legal' to concatenate string
constants within an initializer, this is a frequent
source of error. Consider:

char *s[] = { abc def };

Did the programmer intend to have an array of two
strings but forget the comma separator? Or was a sin-
gle string intended?

787 enum constant Symbol not used within
switch A switch expression is an enumerated type
and at least one of the enumerated constants was not
present as a case label. Moreover, no default case was
provided.

788 enum constant Symbol not used within de-
faulted switch A switch expression is an enu-

CHAPTER 4: Messages

152

merated type and at least one of the enumerated
constants was not present as a case label. However,
unlike Info 787, a default case was provided. This is a
mild form of the case reported by Info 787. The user
may thus elect to inhibit this mild form while retain-
ing Info 787.

789 Assigning address of auto (Symbol) to
static The address of an auto variable (Symbol) is
being assigned to a static variable. This is danger-
ous because the static variable will persist after re-
turn from the function in which the auto is declared
but the auto will be, in theory, gone. This can prove
to be among the hardest bugs to find. If you have one
of these, make certain there is no error and use -esym
to suppress the message for a particular variable.

790 Suspicious truncation, integral to
float. This message is issued when it appears that
there may have been an unintended loss of informa-
tion during an operation involving integrals the re-
sult of which is later converted to a floating point
quantity. The operations that are scrutinized and re-
ported upon by this message are: shift left and multi-
plication. Addition and subtraction are covered by
Elective Note 942. See also 647 and 776.

STATIC User’s Guide

153

4.8 Elective Notes

Messages in the 900 level are termed elective because they are not nor-
mally on. They must be explicitly turned on with an option of the form
+e9 ... Messages in the range 910-919 involve implicit conversions. Mes-
sages in the range 920-930 involve explicit conversions (casts).

911 Implicit expression promotion from Type to Type Notes
whenever a sub-integer expression such as a char , short , enum , or bit-
field is promoted to int for the purpose of participating in some arith-
metic operation or function call.

912 Implicit binary conversion from Type to
Type Notes whenever a binary operation (other than
assignment) requires a type balancing. A smaller
range type is promoted to a larger range type. For ex-
ample: 3 + 5.5 will trigger such a message because int
is converted to double .

913 Implicit adjustment of expected argument
type from Type to Type Notes whenever an old-
style function definition contains a sub-integer or
float type. For example:

int f(ch, x) char ch; float x; { ...

contains two 913 adjustments.

914 Implicit adjustment of function return
value from Type to Type Notes whenever the func-
tion return value is implicitly adjusted. This message
is given only for functions returning arrays.

915 Implicit conversion (Context) Type to Type
Notes whenever an assignment, initialization or re-
turn implies an arithmetic conversion (Context spec-
ifies which).

916 Implicit pointer assignment conversion
(Context) Notes whenever an assignment, initializa-
tion or return implies an implicit pointer conversion (
Context specifies which).

917 Prototype coercion (Context) Type to Type Notes
whenever an implicit arithmetic conversion takes
place as the result of a prototype. For example:

double sqrt(double);
... sqrt(3); ...

will elicit this message because 3 is quietly converted
to double .

CHAPTER 4: Messages

154

919 Implicit conversion (Context) Type to Type A
lower precision quantity was assigned to a higher
precision variable as when an int is assigned to a dou-
ble .

920 Cast from Type to void A cast is being made from
the given type to void .

921 Cast from Type to Type A cast is being made from
one integral type to another.

922 Cast from Type to Type A cast is being made to or
from one of the floating types (float , double ,
long double).

923 Cast from Type to Type A cast is being made either
from a pointer to a non-pointer or from a non-pointer
to a pointer.

924 Cast from Type to Type A cast is being made from
a struct or a union . If the cast is not to a compat-
ible struct or union error 69 is issued.

925 Cast from pointer to pointer A cast is being
made to convert one pointer to another such that one
of the pointers is a pointer to void . Such conversions
are considered harmless and normally do not even
need a cast.

926 Cast from pointer to pointer A cast is being
made to convert a char pointer to a char pointer
(one or both of the char s may be unsigned). This is
considered a ‘safe' cast.

927 Cast from pointer to pointer A cast is being
made to convert a char (or unsigned char) pointer
to a non- char pointer. char pointers are sometimes
implemented differently from other pointers and
there could be an information loss in such a conver-
sion.

928 Cast from pointer to pointer A cast is being
made from a non- char pointer to a char pointer. This
is generally considered to be a ‘safe' conversion.

929 Cast from pointer to pointer A cast is being
made to convert one pointer to another that does not
fall into one of the classifications described in 925
through 928 above. This could be nonportable on ma-
chines that distinguish between pointer to char and
pointer to word. Consider casting a pointer to pointer

STATIC User’s Guide

155

to char to a pointer to pointer to word. The indirect
bit pattern remains unchanged.

930 Cast from Type to Type A cast is being made to or
from an enumeration type.

931 Both sides have side effects Indicates when
both sides of an expression have side-effects. An ex-
ample is n++ + f() . This is normally benign. The
really troublesome cases such as n++ + n are caught
via Warning 564.

934 taking address of near auto variable
(Symbol) (Context) A source of error in writing DLL li-
braries is that the stack segment may be different
from the data segment. In taking the address of a near
data object only the offset is obtained. In supplying
the missing segment, the compiler would assume the
data segment which could be wrong. See also mes-
sages 932 and 933.

935 int within struct This Note helps to locate non-
portable data items within struct 's. If instead of
containing int 's and unsigned int 's, a struct were
to contain short 's and long 's then the data would be
more portable across machines and memory models.
Note that bit fields and union 's do not get com-
plaints.

936 old-style function definition for func-
tion Symbol An old-style function definition is one in
which the types are not included between parenthe-
ses. Only names are provided between parentheses
with the type information following the right paren-
thesis. This is the only style allowed by K&R.

937 old-style function declaration for func-
tion Symbol An old-style function declaration is one
which does not have type information for its argu-
ments.

938 parameter (Symbol) not explicitly declared
In an old-style function definition it is possible to let
a function parameter default to int by simply not pro-
viding a separate declaration for it.

939 return type defaults to int for function
Symbol A function was declared without an explicit
return type. If no explicit storage class is given, then

CHAPTER 4: Messages

156

Informational 745 is also given provided the Deduce
Return mode flag (fdr) is on. This is meant to catch
all cases.

940 omitted braces within an initializer An
initializer for a subaggregate does not have braces.
For example:

int a[2][2] = { 1, 2, 3, 4 };

This is legal C but may violate local programming
standards. The worst violations are covered by Warn-
ing 651.

941 Result 0 due to operand(s) equaling 0 in
operation ' String ' The result of a constant evalua-
tion is 0 owing to one of the operands of a binary op-
eration being 0. This is less severe than Info 778
wherein neither operand is 0. For example, expres-
sion (2&1) yields a 778 whereas expression (2&0)
yields a 941.

942 Possibly truncated addition promoted to
float An integral expression (signed or unsigned)
involving addition or subtraction is converted to a
floating point number. If an overflow occurred, infor-
mation would be lost. See also messages 647, 776 and
790.

943 Too few initializers for aggregate The ini-
tializer {0} was used to initializer an aggregate of
more than one item. Since this is a very common thing
to do it is given a separate message number which is
normally suppressed. See 785 for more flagrant abus-
es.

950 Non-ANSI reserved word or construct : '
String ' String is either a reserved word that is non-
ANSI or a construct (such as the // form of com-
ment). This Elective Note is enabled automatically by
the -A option. If these messages are occurring in a
compiler or library header file over which you have
no control, you may want to use the option -
elib(950) . If the reserved word is one which you
want to completely disable, then use the option -rw
(Word) .

157

CHAPTER 5

Libraries
In this chapter you will learn what library modules are, how they are used to describe
libraries, how to create a library module, and how to use the alternative library object
module.

5.1 Library Modules

STATIC facilities have traditionally described libraries through the use of
a Library Module. A Library Module usually begins with

/*lint -library */

or the equivalent. They are combined with other modules while running
STATIC. For example, if sl.c is a Library Module, we can test module.c for
conformance by running STATIC on sl.c and module.c.

The Library Module serves several purposes. For functions, the expected
argument list is described. Any object declared within a Library Module
is not expected to have a definition outside the module (message 526 is
suppressed). Also it is not required that it be used (message 714 is sup-
pressed).

Prior to the introduction of prototypes, a Library Module would contain
truncated definitions as, for example;

double sin(x) double x; { }

to describe function arguments. Since the introduction of prototypes, our
standard library modules contained the equivalent prototypes instead:

double sin(double);

Once compilers began introducing prototypes in standard header files, it
seemed silly to have a separate set of prototypes in the Library Module
and so the Library Modules were modified to merely contain

#include <stdio.h>

CHAPTER 5: Libraries

158

#include <math.h>

But as the size of header files grew, the time to process the Library Mod-
ule became excessive. Also the processing became somewhat redundant
since the header files were being #included in the programmer's own
modules. STATIC recognizes some headers as library headers(See Section
3.7.2 - “Flag Options” on page 38.). Objects declared within these headers
needn't be defined or referenced. If they contain prototypes, then the
library is fully described. As a result, for ANSI compilers, our standard
library description file has been eliminated. For example, the Microsoft
standard library file, sl-msc.c, has been replaced by a file containing just
options co-msc.lnt.

5.1.1 The Current Role of Library Modules

For non-ANSI compilers, the Library Modules serve the same role as
ever. For ANSI compilers, they may be used to describe libraries whose
header files do not contain prototypes.

5.1.2 Creating a Library Module

Assume you are provided with a graphics library g.lib and a header file
g.h describing the library. Ifg.h contains prototypes, you don't need a spe-
cial Library Module. Just make sure that g.h is recognized as a Library
Header. (See Section 3.7.2 - “Flag Options” on page 38.).

If g.h does not contain prototypes, you can usually prepare them from a
textual description of the library provided by the vendor. If you have
source for the library, you can generate prototypes using -od option. For
example, if files g1.c through g25.c are the 25 source modules of the
library all contained in a single directory, go into that directory and run
STATIC with the following options: -u -od(gproto.h). See the section for
more information on the -u and the -od options (See Section 3.7.7 -
“Strong Typing Options” on page 61.).

This will output declarations (including prototypes) for all functions and
data objects found, to the file gproto.h. These declarations will not include
struct definitions, however.

STATIC User’s Guide

159

5.2 Library Object Modules

If you have source code for a library, an alternative procedure (to produc-
ing a library module as in the previous section) is to create a lint object
module directly. Assuming we have the same modules g1.c, g2.c, ... g25.c
as in the preceding section, create the file g.lnt containing:

g.lnt
 -u
 -library g1.c
 -library g2.c

.

.

.

 -library g25.c
 -oo(glib.lob)

Then run STATIC on g.lnt. The resulting object module, glib.lob, may be
used in conjunction with other modules i.e. select glib.lob program.c with
the Load Multiple File option.

The advantage of this approach is that diagnostic information will be
directed to the precise location within the original library source. You
may or may not also wish to produce a glib.h file. Note that this method
ofusing list objects does not imply that STATIC can likewise implement
external script files. However, if you indeed need to use script files, use
STW/SMARTS to set up your procedures.

Note that this method of using lint objects does not imply that STATIC
can likewise implement external script files. However, if you indeed need
to use script files, use STW/SMARTS to set up your procedures

Please also see the appropriate chapter for more information on Lint
Object Modules (See CHAPTER 6 - Lint Object Modules” on page 161.).

CHAPTER 5:

160

161

CHAPTER 6

Lint Object Modules
This chapter defines Lint Object Modules, how they are used, and how to produce one.

6.1 What is a Lint Object Module (LOB)?

Note: Lint Object Modules are recommended for large programs con-
sisting of 25,000 lines (1 million bytes) or more of code. If your programs
are more modest, you may safely skip this chapter.

A Lint Object Module is a summary (in binary form) of all the external
information within a C module (or modules). STATIC can then use this
information to compare with other modules for consistency. For example,
if module alpha.c consists of:

alpha.c
 void beta(x)
double x;
{
gamma(3);
}

then the associated object module for alpha.c (call it alpha.lob) will con-
tain information that beta was defined with a double argument returning
void and gamma was called with an int constant argument. The object file
will retain the name of the original module, line number information and
the names of all included header files.

6.2 Why are LOBs Used?

Lint Object Modules are used to speed up the processing of multi-module
programs. Consider the figure on the following page which shows a pro-
gram consisting of 9 modules a1.c through a9.c . Rather than running
STATIC on all the source modules together, the programmer has run
STATIC on the modules separately producing a Lint Object Module for
each source module. A typical command might be using the options -u

CHAPTER 6: Lint Object Modules

162

and -oo together. See the correct section for more information on these
options (See Section 1.2 - “Language Definition” on page 3.).

This produces a1.lob . The -u (unit checkout) option should always be
used when producing a Lint Object Module. All the usual messages will
be produced, appropriate to unit checkout.

(You may need the option -zero or -zero(500) to insure producing
the object module in spite of error messages.) See the correct section for
more information on the -zero option (See Section 1.2 - “Language Defi-
nition” on page 3.).

After the Lint Object Modules are produced, they must then be run
together to make sure they are all consistent with one another. This is also
shown in the figure. This can be done by running STATIC on *.lob”

This produces the inter-module messages. If a single change is made to
any source module, say to a1.c then only one object module needs to be
regenerated. This is then combined with all of the other Lint Object Mod-
ules. The time required to process the collection of Lint Object Modules is
typically short, on the order of processing just one source module and so
the time savings is substantial. The observant reader will note that this
process lends itself to incremental staticing through a make facility. This
is discussed later.

FIGURE 33 LOB

a1c

STATIC

a1.lob

STATIC

STATICSTATIC

a2.lob

a9c

a3.lob

a2c
...

...

STATIC User’s Guide

163

FIGURE 34 LOB-2

Another way to use Lint Object Modules is shown in the figure (See
Figure 34 "LOB-2" on page 163.). Here a project consists of modules b1.c
through b25.c . We assume our programmer is only responsible for
modules b1.c through b5.c with other members of a team responsible
for other modules. Accordingly a summary of the external information of
modules b6.c through b25.c is captured in the Lint Object Module
b.lob .

This is then used when running b1.c through b5.c as is shown in the
figure (See Figure 34 "LOB-2" on page 163.). This dramatically improves
the speed of running STATIC. It is instructive to compare this approach
with that of producing function prototypes for all the functions in b6.c
through b25.c . Function prototypes can be produced with the -od
option (output declarations). Function prototypes do not contain infor-
mation such as what line of what file contains information inconsistent
with another file. It does not indicate which variables have been initial-
ized or accessed or which objects have been referenced. The information
in .lob files is, therefore, more complete and indicative than prototype
information, as well as quite fast.

b6.c b7.c b25.c

STATIC

b.lobb5.cb2.cb1.c

STATIC

...

...

CHAPTER 6: Lint Object Modules

164

6.3 Producing a LOB

The option -oo [(filename)] (See Section 1.2 - “Language Definition” on
page 3.) will cause binary information for all modules on the command
line to be output to the named file. The “oo “ stands for “output object”. If
filename is omitted, as in the option:

 -oo

then a name is formed from the first module name using an extension of
“.lob “ (a name ending in “.lob ” is recommended since STATIC uses
this extension on input to determine that the file is an object module and
not a source module). For example:

lint -u alpha.c -oo

will output binary external information about alpha.c into the file
alpha.lob.

6.4 Make Files

Lint Object Modules are well adapted for use with a make facility. For
example, a make script which follows the Unix make conventions can be
of the following form. (Note: if you are following the Microsoft make con-
ventions place the directive starting with “project.lob” at the end of the
script).

 c.lob:
 llint -u make.lnt $* -oo

project.lob: module1.lob module2.lob
module3.lob
 llint make.lnt *.lob

module1.lob: module1.c

module2.lob: module2.c

module3.lob: module3.c

where make.lnt contains
 6

make.lnt
 -os(temp) +vm std.lnt

STATIC User’s Guide

165

Here a program consists of three modules: module1.c , module2.c and
module3.c .

If any of these modules is altered, the command on the 2nd line is exe-
cuted. If no flaws are found, the option -oo will cause object module i
.lob to be written.

The second request within the make file seems to suggest that project.lob
is created during that step. project.lob is a fictitious name which
forces this command to take place. We could have produced a
project.lob with -oo(project.lob) but it wouldn't be particu-
larly useful. The file make.lnt houses options used for running STATIC
within a make file. The -os (filename) option (See Section 3.7.8 - “Other
Options” on page 78.) has the effect of redirecting the messages (much as
filename). Unlike redirection, the option can be placed within an indirect
file as shown here.

A Lint Object Module will normally not be produced if as much as one
error message is produced. If you want the make script to go on in spite
of some messages, then you may use the option: -zero to force an exit
code of zero. You probably don't want to use the -os() option in this
case since your messages will be overwritten by the next command. Use
>>temp on the command line instead. Alternatively, you may want to
parameterize the -zero option. An option of -zero(2n) , as in -zero
(700) , will have the effect of not counting messages whose message
number is equal to or higher than the specified number n, 700 in this
example. This is much like a compiler producing warnings but going on
to produce an object module as well.

6.5 Library Modules

Library modules (See Section 5.1 - “Library Modules” on page 157.) are
used to describe libraries and are usually for non-ANSI compilers. They
contain the option /*lint -library*/ or its equivalent. These can
also be in object form. For compilers that support ANSI prototypes,
library modules are becoming obsolete because a header file (or files)
describing the library is generally all that STATIC needs to determine
whether function calls are compatible with a library. For compilers that
do not support prototypes, it is necessary to have an extra module that
describes arguments to library functions. Call this sl.c. For large library
modules it makes sense to produce an object version of this module. The
command llint co.lnt sl.c -oo (where co.lnt is a compiler
options file) will produce the file sl.lob . Declarations of objects that are
not referenced are not normally a part of a Lint Object Module. But, in

CHAPTER 6: Lint Object Modules

166

this case, where the only input modules are library modules, an exception
to this rule is made. For example suppose sl.c contains:

 sl.c
/*lint -library */

double sin(double);

Since sin is neither defined nor referenced within the module (it is only
declared) it would not normally be retained in an object module. But
because this is a library module and because there are no non-library
modules being presented to STATIC, all library declarations are retained.

6.6 Options for LOB's

To conserve on space, Lint Object Modules do not, by default, contain
objects that have merely been declared (but not referenced or defined).
The option fod (Object module receives all Declarations) overrides this
default behavior. Also, by default, library objects unless referenced or
defined are not normally included, again to save space. fol forces all
library symbols to be included in the module. This option is not normally
needed because when making an object module from only library mod-
ules, the flag is automatically thrown on. (See Section 5.2 - "Library Object
Modules on page 159.).

6.7 Limitations of LOB's

To conserve on space, macros are not placed within Lint Object Modules.
This affects Informational messages 755 (global macro not referenced)
and 767 (macro was defined differently in another module). For this rea-
son you will occasionally want to run STATIC on all your source files
together even though your normal modus operandi is to use Lint Object
Modules.

167

CHAPTER 7

Special Features
This chapter discusses how STATIC checks for the following: out-of-order expressions,
formats, indentations, consts, and volatiles. It also discusses prototype generation, header
file regeneration, parameter matching, weak definials, global variables, and function
mimicry.

7.1 Order of Evaluation

Expressions whose value depends on the order-of-evaluation are flagged
with Warning 564.This is a very infamous problem with C but very few
compilers will diagnose it. In general, the compiler is not obligated to
evaluate expressions left-to-right or indeed in any particular order. For
example,

n++ + n

is ambiguous; if the left hand side of the binary + operator is evaluated
first, the expression will be one greater than if the right hand side is eval-
uated first. Some other, more common examples are:

a[i] = i++;
f(i++, n + i);

In the first case, it looks as though the increment should take place after
computing the array index. But, if the right hand side of the assignment
operator is evaluated before the left hand side, the increment is done
before the index is computed. Although assignment looks as though it
should imply an order of evaluation it does not. The second example is
ambiguous because the order of evaluation of arguments to a function is
not guaranteed. The only operators that imply an order of evaluation is
Boolean AND (&&), Boolean OR (||), conditional evaluation (?:), and the
comma operator (,). Hence:

if((n = f()) && n > 10) ...

works as expected and you don't get a warning, whereas:

if((n = f()) & n > 10) ...

will elicit a message.

CHAPTER 7: Special Features

168

In general, for every binary operator that does not have an implied order
of evaluation, the set of variables modified by each side is compared with
the set of variables accessed by the other side and a warning is issued for
each common member. A variable is considered modified if it is subject to
autoincrement or autodecrement or is assigned to.

7.2 Complete Format Checking

STATIC completely checks for printf and scanf (and family) format
incompatibilities. For example,

printf("%+c", ...)

will draw a warning (566) because the plus flag is only useful for numeric
conversions. There are over a hundred such combinations that will draw
this warning and compilers do not normally flag the inconsistencies.
Other warnings that complain about bad formats are 557 and 567. We fol-
low the formatting rules established by ANSI C.

Perhaps more importantly we also flag arguments whose size is inconsis-
tent with some format (Warnings 558, 559, 560 and 561). Thus, with %d
format, both integers and unsigned int are allowed but not double and
not long if these are larger than int. Similarly, scanf type formats require
that the arguments be pointers to objects of the appropriate size. If only
the type of the argument (but not its size) is inconsistent with the format
character, Warnings 626 or 627 will be given.

The -printf and -scanf options allow a user to specify functions that
resemble a member of the printf or scanf family.

7.3 Indentation Checking

Indentation checking can be used to locate the origins of missing left and
right braces. It can also locate potential problems in a syntactically correct
program. For example, consider the code fragment:

if(...)
if(...)
statement
else statement

Apparently the programmer thought that the else associates with the first
if whereas a compiler will, without complaint, associate the else with the
second if. STATIC will signal that the else is negatively indented with
respect to the second if.

There are two forms of messages; Informational 725 is issued in the case
where there is no indentation (no positive indentation) when indentation

STATIC User’s Guide

169

is expected and Warning 525 is issued when a construct is indented less
than (negatively indented from) a controlling clause. Of importance in
indentation checking is the weight given to leading tabs in the input file.
Leading tabs are by default regarded as 8 blanks but this can be overrid-
den by the -t# option. For example -t4 signifies that a tab is worth 4
blanks. See the -t# option (See Section 3.7.8 - “Other Options” on page
78.).

Recognizing indentation aberrations comes dangerously close to advocat-
ing a particular indentation scheme; this we wish to avoid. For example,
there are at least three main strategies for indentation illustrated by the
following templates:

if(e) {
statements
}

if(e)
{
statements
}

if(e)
{
statements
}

Whereas the indentation methods appear to differ radically, the only real
difference is in the way braces are handled. Statements are always
indented positively from the controlling clause. For this reason STATIC
makes what is called a strong check on statements requiring that they be
indented (or else a 725 is issued) and only a weak check on braces requir-
ing merely that they not be negatively indented (or else a 525 is issued).
case, and default undergo a weak check. This means, for example, that

switch() {
case 'a' :
break;
default:
break;
}

raises only the informational message (725) on the second break but no
message appears with the case and default labels. The while clause of a

CHAPTER 7: Special Features

170

do ... while(e); compound undergoes a weak check with respect to the do,
and an else clause undergoes a weak check with respect to its correspond-
ing if.

An else if () construct on the same line establishes an indentation level
equal to the location of the else not the if. This permits use of the form:

if()
statement
else if()
statement
else if()
statement
.
.
.
else
statement

Only statement beginnings are checked. Thus a comment can appear any-
where on a line and it will not be flagged. Also a long string (if it does not
actually begin a statement) may appear anywhere on the line. A label
may appear anywhere unless the il flag is given (See Section 3.7 - “Modi-
fying the Report Options” on page 32.) in which case it undergoes a weak
check.

7.4 const Checking

const is fully supported. We recommend that you incorporate the use of
const in your programming style as there are several unexpected benefits
from using this new keyword. Consider the program fragment:

char *strcpy(char *, const char *);
const char c = 'a';
const char *p = &c;

void main()
 {
 char buf[100];

 c = 'b';
 *p = 'c';
 strcpy(p, buf);
.
.

STATIC User’s Guide

171

.

This will draw four separate messages. Clearly c and *p, since they are
const should not be modified (Error 111). Also, passing p as a first argu-
ment to strcpy draws a warning (605) because of an increase in pointer
capability. Finally, passing buf as the second argument draws a warning
(603) because buf hadn't been initialized and a function expecting a
pointer to a const value will not do the initialization. If your compiler
does not support const you may wish to use:

#ifdef _lint
#define CONST const
#else
#define CONST
#endif

at the head of your source code. Then use CONST rather than const
throughout.

7.5 volatile Checking

volatile has only modest error checking properties. A variable declared
volatile should not be used twice in the same expression (order of evalua-
tion problems) and declarations containing the keyword are checked for
consistency. Pointers declared as pointing indirectly to volatile objects
may not be used indirectly twice in the same expression and functions
declared to return volatile values may not be called twice in the same
expression. (They receive Warning 564). For example:

volatile char *p;
volatile char f();

n = (f() << 8) | f(); /* Warning 564 */
n = (*p << 8) | *p; /* Warning 564 */

The reason the warning is given is that it is presumed that each access of a
volatile object or function produces a potentially different value and that
the order of evaluation cannot be guaranteed.

You may declare functions to be volatile if they have side effects such as
returning the next character of an input stream or global string. A pointer
may be pointing to a volatile object if it is used for memory mapped I/O.
If your compiler doesn't support volatile, you may want to hide this from
your compiler using the method described for const (See Section 7.4 -
“const Checking” on page 170.).

CHAPTER 7: Special Features

172

7.6 Prototype Generation

The option:

-od[s][i][f][width](filename)

outputs declarations to filename and is frequently employed to gener-
ate a set of prototypes for the functions defined within a module. Please
also refer to the correct section for further information on this option (See
Section 3.7 - “Modifying the Report Options” on page 32.). For example
using the -od(alpha.h) on alpha.c produces a header file to be #included
by routines that use the services provided by alpha.c.

A prototype will be generated for functions defined “old-style” as in:

int f(x) int x; {return x;}

as well as for functions defined “new-style” as in

int f(int x) {return x;}

The same prototype, i.e.,

int f(int);

is generated in each case. If there is a clash between the declaration and
the definition, the definition wins. This is to make it possible to regenerate
header files . If the variable-arguments flag

+fva

has been set for the function when declared or defined, then no list of
parameter types is generated. Thus:

/*lint +fva */
int f();
/*lint -fva */

int f(int x) {return x;}

results in:
int f();

STATIC User’s Guide

173

being generated. If a limit on the number of arguments to be checked is
provided as in:

/*lint +fva1 */
int g();
/*lint -fva */

int g(x,y) int x,y; {return x+y;}

then the output of the -od file will contain:
int g(x,...);

7.6.1 Header File Regeneration

We have designed the generation of declarations (-od) in such a way that
header files can be regenerated after a modification is made to the origi-
nal module. For example, assume module alpha.c is part of a larger
project. To generate a header file for alpha use the following option on
alpha.c:

-u -od(alpha.h)

and then include alpha.h in every module using the facilities provided by
alpha.c as well as alpha.c itself. If we change a definition within alpha.c
the clash between the header file and the module will be noticed by either
your compiler or STATIC.

Although messages will be issued reporting the inconsistencies, alpha.h
will be rewritten using the information from the definitions within
alpha.c rather than the declarations within alpha.h. To confirm this, run
STATIC on alpha.c with only the -u option.

7.6.2 -odi (static functions)

Prototypes for static functions (i.e., functions with internal linkage) are
not automatically generated with -od. This is consistent with the idea that
prototype output is intended for inter-module communication. To get
prototypes for static (internal) functions, as well as external objects, use: -
odi(filename).

7.6.3 -odf (only functions)

If f is specified as in -odf , output is limited to functions (no data declara-
tions).

CHAPTER 7: Special Features

174

7.6.4 -ods (structs)

Consistent with the idea that you are starting with a program that already
is properly header'ed, so that different modules already “see” all the
structs, unions and enums that they need, we do not normally generate
definitions of these objects as part of -od, If you want them, use -ods(file-
name).

7.6.5 -odwidth

Prototypes are broken (with a new-line character) after spaces, commas
and semicolons whenever the current width exceeds the specified width
(default width is 66).

7.6.6 Precautions with Prototypes

Prototypes do not play just the passive role of enabling compilers and lint
processors to more intelligently diagnose errors. They also play an active
role in silently converting arguments. Message 747 will detect flagrant
conversions. You may also want to detect subtle conversions by turning
on Elective Notes 917 and 918 (with the options +e917 +e918).

7.6.7 typedef Types in Prototypes

It is possible to produce prototypes containing typedef names. See Sec-
tion 3.7.7 on page 61.

7.7 Exact Parameter Matching

Types of function parameters are not always taken literally. If a parameter
is typed array, for example, this is considered a stylistic way of indicating
pointer. With old-style function definitions, parameters of type char,
unsigned char, short, unsigned short, and float are quietly promoted for
the purpose of matching up with arguments. (However, for subsequent
use within the function the original type is used). For example:

int f(ch, sh, fl, a)
char ch;
short sh;
float fl;
int a[10];
{
. . .

is the start of an old-style function definition (i.e., a definition that does
not place type information between the parentheses). For the purpose of
detecting type conflict, STATIC will promote the types of ch and sh to

STATIC User’s Guide

175

int , fl to double , and a to pointer to int . If, for example, a char
argument is passed as the first argument to f() this argument is also
promoted by the rules of C to type int so that no mismatch is reported.
But it can be argued that some valuable type information is lost in this
way. If an int is accidentally passed as first argument to f() the mis-
match would go unreported. For this reason several flags are available to
inhibit the usual promotion rules for parameters of this type:

+fxa eXact Array matching
+fxc eXact Char matching
+fxf eXact Float matching
+fxs eXact Short matching

These flags are effective only if the formal parameter is the one that is nor-
mally promoted. Consider:

char ch;
int g(i)
int i;
{ . . . }
 . . . g(ch);

Here, the actual argument ch is considered matched against the formal
parameter i even if the fxc flag is set. On the other hand passing an int to
the first argument of f() (previous example) would be flagged. (In a
beta release we gave a message in both instances but this rendered the
flag almost useless). With exact array matching, for example, only an
array of 10 int's may be passed as fourth argument to function f() (pre-
vious example). Pointers may not be passed to array parameters but, as
indicated above, array arguments may be passed to pointer parameters.

With char and short exact matching, the argument must be the exact
type declared or a compatible constant. However, if the argument is an
expression involving an operation other than the conditional (?:), the
operation is assumed to be carried out with at least int precision. It will
not match a char or short parameter. To be compatible with a parame-
ter typed char or short, constants need to be able to fit within the type
without loss of precision. For example, 0 is compatible with char and
short as well as with int .

When STATIC encounters calls to a function prior to seeing a definition
(or a prototype) there is a slight problem. For example, if it sees:

f(513, 'a');
. . .
f('b', 814);

Then what should STATIC record with regard to the arguments being
passed to f() ? Remember that no error should be reported if the param-

CHAPTER 7: Special Features

176

eters are subsequently discovered to be typed int. A worst case argument
is saved, i.e., one that will match the fewest subsequent types. In this case
it will be recorded that f() had been passed two int 's. If the definition:

void f(i, c)
int i;
char c;
{ . . . }

is later discovered, then a mismatch is reported for the 2nd parameter.
Unfortunately the position information of the offending argument will be
lost because the information about the arguments had been derived from
two different places. You will see “location unknown” in the message. If
you can't find the position by just searching, reorder the modules so that
the definition appears first. It may be more convenient to place a trun-
cated definition in a dummy module before all the other modules. The
fxc and fxs options may be useful if you are matching old-style func-
tion definitions with new-style prototypes. For example:

void g(char);

void g(c) char c; { . . . }

is considered erroneous by STATIC since by the rules of ANSI the first
char does not get promoted but the second one does. On the other hand,
if the second char is changed to read int then the Microsoft compiler
reports a type mismatch. Perhaps this is fair since ANSI C considers both
sequences to be erroneous since a new-style prototype is being mixed
with an old-style definition. A way to get around this difficulty and still
retain the old-new confrontation is to use the fxc .

Note: Although STATIC does not complain about the argument differ-
ence it will complain because g() is retyped (type difference = promo-
tion). To get STATIC to completely ignore this, it is necessary to also use
the option: -etd(promotion) .

With float exact matching the considerations are similar to the case of
char and short exact matching. Only constants that are float (such as
1.2f) are considered compatible with a float parameter. The previously
cited STATIC Microsoft conflict does not occur with the float type so that
the use of fxf may not be as compelling as with the other flags.

7.8 Weak Definials

The weak definials consist of the following:
• macro definitions

STATIC User’s Guide

177

• typedef's
• declarations
• struct, union and enum definitions and members

They are compile-time entities and for this reason, perhaps, they are not
used as carefully or as scrupulously as run-time objects. Their definitions
may be redundant or may lay around unused. Sometimes they are
defined inconsistently across modules. Because they are only compile-
time entities, they are referred to as weak. The word definial means sim-
ply that which is defined. It has the benefit of no prior use and hence
semantic neutrality in C. Where there is no possibility of confusion, we
will use the word definial as an abbreviation for the term weak definial.

The weak definials are important because they represent those entities
normally placed into header files to provide communication for the many
modules that comprise a program. To determine whether a header file is
unused or not depends upon whether any of its weak definials have been
used.

Informational messages in the range 749-769 are reserved for the weak
definials. STATIC is able to report on unused header files, (764 and 766),
definials within (non-library) header files that are not used, (755-758, 768),
non-header definials that are not used (750-573), redundant definials
(760-763) and conflicting definials. If you run STATIC on some previously
untouched source code, you may well want to turn these messages off.
However, if you just want to see header anomalies, you might want to
try:

llint -w1 +e749 +e75? +e76? ...

Whether a header file is used or not depends on whether any of its defini-
als have been used by any other file. The operative word here is ‘other'.
For example, let the complete contents of hdr.h be:

hdr.h
typedef int INT;
extern INT f();

Assume a single module includes this header file but makes no use of
either f or of INT. The definial INT would be considered used by virtue of
its appearance within the declaration of f and f would be reported
unused. The header file would be reported unused by the module
because the only use of any of its definials was a self reference, a reference
to INT from within the same header file. If the declaration of f were
removed, then INT would be reported as unused and hdr.h would also be
reported as unused. Consider the following example:

CHAPTER 7: Special Features

178

hdr.h
typedef int INT;
alpha.c
#include "hdr.h"
typedef int INT;
INT x = 0;

Is the definial INT within hdr.h being used or not? Is the header file hdr.h
being used? Since we have two identical declarations for INT it is hard to
say. What we do in this case is report that the second typedef is redun-
dant. We then act as if the second never appeared and so the header file
appears to have been used. If the second typedef were a different type, an
error would be reported, and the first typedef would be considered
unused.

A special message (759) is issued for objects declared in headers but then
not referenced outside the module that defines them. (This message is
automatically suppressed if there is only one module being processed). If
a declaration is used by only one module, it can be removed from the
header file thereby reducing its size. Header files have a tendency to
become big and fat; compilers are always indicating when something has
to be added but hardly ever indicate when something can be deleted; this
produces unidirectional growth. Message 759 is intended to combat this
tendency. A related message (765) is the identification of all objects that
are ‘file-scopable'; i.e., external objects that may be tagged static and
hence not placed into the pool of external names. A programmer may not
at all be interested in staticizing everything because modern debuggers
sometimes depend critically on such external symbols. However you
may wish to employ the following technique:

#if debug && !defined(_lint)
#define LOCALF
#define LOCALD extern
#else
#define LOCALF static
#define LOCALD static
#endif

LOCALD stands for local Declaration.

LOCALF stands for local deFinition.

These are used as:
LOCALD double func();

STATIC User’s Guide

179

.

.

.
LOCALF double func() {return 37.5; }

For debugging (and provided we are not running STATIC)

the function func is external and its name is available to the debugger.
Otherwise it is made static. The macros provide good documentation and
STATIC enforces compliance.

7.9 UNIX Lint Options

The following options are available for compatibility with other lint 's,
in particular with the original UNIX lint . They may be embedded
within C code, where they appear as a comment. They are all of the form:

/* Optional-blanks Keyword Optional-
blanks */

LINT LIBRARY This is equivalent to /*lint -library */. (See Section 5.2
- “Library Object Modules” on page 159.)

ARGUSED Inhibits complaints about function parameters not
being used for the duration of a single function. It is
placed just before a function definition. It is equiva-
lent to: /*lint -e715 */ placed before a function
definition and restored with /*lint -restore */
afterward.

VARARGS [N] When this option is placed before a function declara-
tion (or definition) it has the effect of /*lint
+fva[N] */ for just one function. Like ARGSUSED,
it has an automatic reset feature.

NOTREACHED This option is equivalent to /*lint -unreachable
*/

NOSTRICT This inhibits certain kinds of strict type-checking for
the next expression. The type differences that are re-
laxed are those denoted as nominal, signed/un-
signed, ellipsis, promotion and ptrs to incompatible
types.

The equivalent STATIC option is:
/*lint -etd(nominal,signed/unsigned,ellip-
sis)
 -etd(promotion,"ptrs to incompatible
types") */
... expression...

CHAPTER 7: Special Features

180

/*lint -restore */

(See TypeDiff in Chapter 11).

7.10 Static Initialization

Traditional lint processors do not flag uninitialized static (or global) vari-
ables because the C language defines them to be 0 if no explicit initializa-
tion is given. But uninitialized statics, because they can cover such a
large.ix uninitialized statics scope, can be easily overlooked and can be a
serious source of error. STATIC will flag static variables that have no ini-
tializer and that are assigned no value. For example, consider:

int n;
int m=0;

There is no real difference between the declarations as far as the C lan-
guage is concerned but STATIC regards m as being initialized and n not
initialized. If n is nowhere assigned a value, a complaint will be emitted.

7.11 Possibly Uninitialized

This section has to do with messages 644, 645 (“may not have been initial-
ized”) and 771, 772 (“conceivably not initialized”), and 530 (“not initial-
ized”).

STATIC we take into account flow-of-control in our “not initialized” mes-
sages. For example:

if(a) b = 6;
else c = b;
a = c;

assume that neither b nor c were previously initialized. STATIC reports
that b is not initialized (when its value is assigned to c) and that c may not
have been initialized (when its value is assigned to a). In earlier versions
(and in conventional lint's) a single unintelligent sweep is taken which
would regard b and c as having been initialized prior to use.

while loops and for loops are not quite the same as if statements. Con-
sider, for example, the following code:

while (n--)
{
b = 6;
.
.
.
}
c = b;

STATIC User’s Guide

181

assuming that b had not earlier been initialized, we report that b is “con-
ceivably not initialized” when assigned to c and give a lighter Informa-
tional classification. The reason for distinguishing this case from the
earlier one is that it could be that the programmer knows the body of the
loop is always taken at least once. By contrast, in the earlier case involv-
ing if statements, the programmer would be hard-pressed to say that the
if condition is always taken, for that would imply, at the least, some
redundant code which could be eliminated.

The switch is more like an if then a while . For example:
switch (k)
{
 case 1: b = 2; break;
 case 2: b = 3;
 /* Fall Through */
 case 3: a = 4; break;
 default: error();
}
c = b;

Although b has been assigned a value in two different places, there are
paths that might result in b not being initialized. Thus, when b is
assigned to c a possibly-uninitialized message is obtained. To fix things
up you could assign a default value to b before the switch. This quiets
STATIC but then you lose the initialization detection in the event of sub-
sequent modifications. A better approach may be to fix up the case's for
which b has not been assigned a value. We will show this below. If the
invocation of error() is one of those instances which “can't occur but
I'll report it anyway,” then you should let STATIC know that this section
of code is not reachable. If error() does not return, it should be marked
as not returning by using the option -function(exit,error).

This transfers the special property of the exit function to error. Alterna-
tively, you may mark the return point as unreachable as shown in the fol-
lowing fixed up example:

switch (k)
{
 case 1: b = 2; break;
 case 2:
 case 3: b = 3; a = 4; break;
 default: error();
 /*lint -unreachable */
}
c = b;

CHAPTER 7: Special Features

182

Don't make the mistake of placing the -unreachable before the call to
error() as this property is not transmitted across the call. If there is a break
after the call, make sure the directive is placed before the break. Code
after a break, is never considered reachable, so the directive placed after
the break would have no effect. Another way to get the “not initialized”
message is to pass a pointer variable to free (or to some function like free
(See Section 7.12 - “Function Mimicry (-function)” on page 183.). For
example:

if(n) free(p);
.
.
.
p->value = 3;

will result in p being considered as possibly not initialized at the point of
access. Forward goto 's are supported in the sense that the initialization
state of the goto is merged with that of the label. Thus, if b is not yet ini-
tialized, the code:

if (a) goto label;
b = 0;
label: c = b;

will receive a possibly-uninitialized message when b is assigned to c .
However, backward goto's, since they do not reduce the initialization
state, are ignored. When checking for possibly uninitialized variables is
first applied to a large mature project, there will be a small number of
false hits. Experience indicates that they usually involve code that is not
especially well structured or may involve some variation of the following
construct:

if(x) initialize y
.
.
.
if(x) use y

For these cases simply add an initializer to the declaration for y or use the
option -esym(644,y).

STATIC User’s Guide

183

7.12 Function Mimicry (-function)

This section describes how some properties of built-in functions can be
transferred to user-defined functions by means of the option -function.

-function(Function0, Function1[,
Function2]...)

specifies that Function1, Function2, etc. are like Function0 in that they
exhibit special properties normally associated with Function0. The special
functions (Function0) are as follows:

abort This is treated like exit below.

exit Statements immediately following a call to exit are
considered unreachable.

free The first argument is a pointer which is subsequently
regarded as uninitialized.

longjmp This is like exit.

realloc This is similar to free; the first argument is a pointer
which is considered possibly freed and hence possi-
bly uninitialized.

For example, if you have a function called my free that disposes of the
storage associated with a pointer, you may use the following option:

-function(free,myfree)

Then the following code sequence will draw a complaint:
.
.
.
myfree(p);
x = p->y; /* not initialized */
.
.
.

If the argument of your free function that bears a pointer to be freed is not
the first, you may use functional notation to indicate which argument
applies. For example if free2 frees two pointers (first and second argu-
ments) you may use the pair of options:

-function(free,free2(1))
-function(free,free2(2))

or combine them into a single option:
-function(free,free2(1),free2(2))

CHAPTER 7: Special Features

184

If you wish to erase this special meaning associated with free you may do
so by supplying no subsequent function names. For example, the follow-
ing removes the built-in meaning of free.

-function(free)

Please note that function return values and arguments are still governed
by declarations and definitions as they appear in the source code. The
special meanings assigned or removed by this operation are those
described above and no others. It is in this sense that we can say that real-
loc is like free.

Function0 can have a subscript as well as Function1, etc. In fact it is even
more correct to say:

-function(free(1),myfree(1))

This says that whatever special meaning is associated with the first argu-
ment of free should also be associated with the first argument of myfree.
Since there are no other arguments of free with special meaning and since
free has no special return meaning, omitting the subscripts works fine.

To transfer the return meaning of exit to another function you may use
one of:

-function(exit,myexit)

or
-function(exit(0),myexit(0))

The zero subscript refers to the return value.

It is common to mix the special return meaning with the -printf meaning.
Thus

-function(exit,print_and_exit)
-printf(1,print_and_exit)

says that print_and_exit accepts a format and doesn't return.

185

CHAPTER 8

Language Extensions
This chapter describes generally-accepted, non-K&R extensions to the C language which
have been optionally incorporated into STATIC. These features, for the most part, are
included in the new ANSI C Standard

8.1 ANSI Extensions

8.1.1 The void Type

void is a reserved word (unless the flag -fvo is set) and is treated in a
manner consistent with ANSI C. Functions declared as void are assumed
to return no value. Inconsistencies in this regard, obtained from either
return statements or calls, are flagged. A pointer to void is considered a
universal pointer, i.e., one that can be assigned or compared freely to any
data pointer without an error report.

Finally, to invoke a function that returns a value in order to obtain only its
side effects, one may precede that function with a void cast as in:

(void) f();

Helpful Hint: If your compiler does not support the void type you might
consider a definition such as:

#ifdef _lint
#define CALL (void) /* quiets STATIC down
*/
#else
#define CALL
#endif

which you would use as:
CALL f();

if you were interested only in a function's side-effects.

8.1.2 Function Prototypes

Function declarations may optionally contain, within parentheses, type
information that indicates the number and the expected types of the argu-

CHAPTER 8: Language Extensions

186

ments. Such a parenthesized construct is called a prototype. Dummy
names of parameters may be included for clarity. An ellipsis indicates
that an indefinite number of other arguments of arbitrary types may fol-
low the last argument.

For example:
char *strcpy(char *, char *);

void printf(char * format, ...);

designate respectively that strcpy() is to be called with two character
pointers as arguments (and is to return a character pointer) and
printf() is to be called with at least one argument (a character pointer)
and this may or may not be followed by additional arguments. To give an
explicit indication that no arguments are allowed, the void keyword is
used. For example:

int status(void);

indicates that status() expects no arguments. Had void been omitted,
no parameter type information would have been inferred. Function pro-
totypes may also be used for function definitions. Thus:

double sum (double x, double y)
 {
 return x + y;
 }

is a valid function definition. (See Section 7.6 - “Prototype Generation” on
page 172.)

8.1.3 Enumerations

The enum data type is supported by STATIC. In this description, we
assume a basic familiarity with this facility. An enumerated data type
must first be declared. For example

enum primary { red = 1, yellow, blue };

declares an enumerated type named primary. Then, the type is used to
define enumerated data objects as in: .

enum primary x, *px;

Finally, these data objects can be used. Use is generally limited to assign-
ment, argument passing and testing for equality.

Enumerated types are processed at one of three levels, strict, loose and
intermediate. In the strict model, enumerated type values may only be
assigned to variables, passed to parameters, or compared with values of
the same enumerated type. At the loose level, which is the model

STATIC User’s Guide

187

employed by the ANSI C Standard, an enumerated type value is
regarded semantically as an integer. It may be employed in any context
that expects an integer and enumerated type variables may be assigned
any integral value. This may be done at the strict level only through the
use of casts. An intermediate level is to allow use of enum 's as integers
but to disallow assignment of integers into enum 's. For example:

enum food { pear, bread, milk } food1,
food2;

food1 = pear;
food1 = 25;
food2 = food1 + 1;
food2 = (enum food) ((int) food1 + 1);
food2 = (enum food) (food1 + 1);

In the loose interpretation (the integer model), all five of the assignment
statements are correct. In the strict and intermediate models, the second
and third are flagged. The fourth represents the modifications made to
the third to make it adhere to the strict model. The fifth is a modification
to the third to make it adhere to the intermediate model. The default
model is the strict model. The intermediate model is obtained by inhibit-
ing Warning 641 (-e641). The loose model is obtained by enabling flag fie
(integer model for enumerations).

8.1.4 signed

If character data is by default unsigned (see the flag fcu) then, to obtain a
signed byte you need to use the signed reserved word as in

signed char x;

8.1.5 const and volatile

The identifiers const and volatile are reserved words. const identifies
data (possibly through indirection) as not modifiable. A judicious use of
const can provide important clues to STATIC as to how data is being
used. (See Section 7.4 - “const Checking” on page 170.) (See Section 7.5 -
“volatile Checking” on page 171.)

8.1.6 Trigraphs

For systems that do not have the full ASCII character set, the ANSI stan-
dard defines the following correspondence:

CHAPTER 8: Language Extensions

188

These translations are supported in both string and character constants as
well as source code. A message (739) is issued if the sequence occurs
within a constant.

In addition to the L (or l) suffix, the U or u suffix is supported to iden-
tify a constant as unsigned. For example 50000u is typed unsigned .

8.2 Non-ANSI Extensions

8.2.1 // Comments

The sequence // introduces a comment that extends up to and not
beyond the end of the line. For example:

n = 0; // zero n

This construct is permitted by a number of compilers but is not strictly
ANSI and may be disabled using the -A option.

8.2.2 Memory Models

Memory models have been introduced into a number of C compilers to
support the Intel 8086 through 80286 chips and, in some cases, the 80386
and 80486 chip. If you are not concerned with the segmented architecture
of these chips you can ignore this section.

There are four distinct memory models and these can be selected by one
of the -m ... options described in that section (See Section 3.7.7 - “Strong
Typing Options” on page 61.).

Trigraph Char Trigraph Char

??= # ??< {

??([??)]

??’ ^ ??> }

??! | ??- (tilde)

TABLE 1 Translations for ANSI standards

STATIC User’s Guide

189

In addition to selecting a memory model, it is possible for a programmer
to override the default for any particular pointer. For example:

char far *p;

indicates that p is a pointer to a far char and is hence a far pointer. In a
similar way, pointers can be declared to be near and huge (huge is taken
as a synonym for far). Data objects and functions can also be declared as
having the property of near or far and pointers to such objects automati-
cally become near or far as appropriate.

It suffices to say that STATIC supports the Microsoft conventions for the
use of these keywords and that these can be enabled (if they are not pre-
enabled in your implementation) by selecting the option +rw(*ms). This
requests all the Microsoft reserved words. You may prefer to turn on just
one or two of these reserved words. For example: +rw(near,far)
enables just near and far.

It is also possible to disable these reserved words. by using the option -
rw(*ms). The -A option serves to flag such constructs.

Your version of STATIC is configured to have the system default sizes for
near and far pointers to program and data. For cross-staticing these can
be set explicitly using a variation of the -sp

-sp N # Indicates that the size of near pointers (both of pro-
gram and data) is # bytes.

-sp F # Indicates that the size of far pointers (both program
and data) is # bytes.

-sp FD # Indicates the size of a far data pointer.

-sp FP # indicates the size of a far program pointer.

-sp ND # Indicates the size of a near data pointer.

-sp NP # Indicates the size of a near program pointer.

option model name
data
pointers

program
pointers

default small near near

-mD large data (compact) far near

-mP large program (medium) near far

-mL large far far

TABLE 2 Memory Models

CHAPTER 8: Language Extensions

190

8.3 Additional Reserved Words

Because of their wide-spread use under MS-DOS, the Microsoft key-
words: near , fa r, huge , pascal , fortran , coddle , and inter-
rupt (as well as these same keywords preceded by ' _ ') are supported by
default. The meanings of these keywords reflect those of the Microsoft C
compiler.

191

CHAPTER 9

Preprocessor
This chapter discusses STATIC ANSI and non-ANSI as well as include processing.

9.1 Preprocessor Symbols

 NOTE: _lint is used so that STATIC is compatible with the standard Lint
program.

 _lint The special preprocessor symbol _lint is pre-defined
in case it is necessary to determine whether STATIC
is processing the file.

For example, if you have a section of code that is unacceptable to STATIC
for some reason, you can use _lint to make sure that STATIC doesn't see it.
Thus,

#ifndef _lint
...
Unacceptable coding sequence
...
#endif

 will cause STATIC to skip over the elided material. The following pre-
defined identifiers begin and end with double underscore and are ANSI
compatible.

__TIME__ The current time
__DATE__ The current date
__FILE__ The current file
__LINE__ The current line number
__STDC__ Defined to be 1 if pure ANSI-com-
patibility is needed (-A); else is
defined to be 0. See Section 10.7.7.

CHAPTER 9: Preprocessor

192

9.2 include Processing

1. When a #include “filename “ directive is encountered There is first an
attempt to fopen the named file. If the fdi flag is OFF the name
between quotes is used. If the fdi flag is ON, the directory of the
including file is prefixed to filename. The directory of the including
file is found by scanning backward for one of possibly several sys-
tem-related special characters. If the fopen fails, we go to step 2.

2. There is an attempt to prepend (in turn) each of the directories associ-
ated with options of the form:

-i directory

in the order in which the options were presented. If this fails we go to
step 3.

3. There is an attempt to fopen the file by the name provided. If the
include directive is of the form #include filename then the processing
is the same except that step 1 is bypassed.

9.3 ANSI Preprocessor Facilities

The preprocessor facilities described in this section follow the ANSI C
Standard. They are automatically available within STATIC. However, if
the K&R preprocessor flag is set (fkp) their use will be flagged.

9.3.1 Initial White Space

Preprocessor directives (those beginning with #) may optionally be pre-
ceded with blanks and/or tabs.

9.3.2 #elif expression

The #elif (else if) directive can be used within a #if ... #endif to avoid mul-
tiple #if levels. Any number of #elif 's may be used at the same level fol-
lowed optionally by a #else.

For example:
#if x
 text 1
#elif y
 text 2
#elif z
 text 3
#else
 text 4
#endif

STATIC User’s Guide

193

 can be used in place of a much more complex sequence ending in three
#endif 's.

defined(name)

The expression defined(name), when used in a #if statement (or #elif
statement), is considered true (=1) if the name had been previously
defined; otherwise it is considered false (=0). Thus:

#ifdef alpha

is equivalent to
#if defined(alpha)

However, the defined construct is considerably more flexible. Consider:
#if defined(alpha) || n
 text 1
#elif defined(beta)
 text 2
#endif

This may be done with purely K&R constructs but at a considerable loss
in clarity and brevity.

9.3.3 #include name

If name is some pre-defined name whose value is a quoted (or <t> brack-
eted) filename then the named file is included. Thus:

#define alpha "abc.h"
#include alpha

causes file abc.h to be included.

9.3.4 #pragma

is a construct that allows users to pass compiler-dependent information
to particular compilers without complaint from other compilers. STATIC
simply doesn't complain.

9.3.5 #error

This construct is used to halt compilation and to print the information fol-
lowing error on the line. If you set the continue-on-error flag (fce) pro-
cessing will continue.

9.3.6 #

A single # on a line by itself is a no-op.

CHAPTER 9: Preprocessor

194

9.3.7 ## Pasting operator

The ANSI ## Pasting operator is supported.
#define variable(n) var ## n

will, for variable(1), return var1. This means that macros can “manufac-
ture” identifiers. The only way to do this earlier was via a construct of the
form: VAR()n where VAR() would return var. The Unix-style pasting pro-
cedure (employing a comment to perform pastes) is also supported. For
example:

#define variable(n) var/* */n

works the same as above.

9.3.8 # Stringize operator

The # Stringize operator is supported. For example:
#define display(var) printf(#var " =
%d\n" , var);

serves to display a variable. Both the name and the value of the variable
passed to the macro are printed. The construct #var produces “var”; note
that successive string constants are treated as a single string constant.

This is ANSI and is needed to make the # stringize operator effective.

9.4 Non-ANSI Preprocessing

9.4.1 #assert

#assert is supported to conform with Unix V Release 4. Thus
#assert predicate (token-sequence)

will assume the truth of the predicate when tested against the indicated
token-sequence in a preprocessor conditional. Without the parenthetical
expression, predicate is established to exist. For example,

#assert machine(pdp11)

makes
#if #machine(pdp11)

true.

A #unassert preprocessor directive with the same syntax as #assert
undoes the effects of #assert and is compatible with Unix. See also option
-a # (See Section 3.7.6 - “Compiler Customization Options” on page
58.)

STATIC User’s Guide

195

9.5 User-Defined Keywords

 STATIC might stumble over strange preprocessor commands that your
compiler happens to support. For example, some Unix system compilers
support #ident.

Since this is something that canNOT be handled by a suitable #define of
some identifier we have added the +ppw(command-name) option (Pre-
Processor Word). For example, +ppw(ident) will add the preprocessor
command alluded to above, recognizes and ignores the construct. (See
Section 3.7.7 - “Strong Typing Options” on page 61.).

CHAPTER 9: Preprocessor

196

197

CHAPTER 10

Additional Notes
This chapter discusses how the size of scalars may affect your report results.

10.1 Size of Scalars

Since the user of STATIC has the ability to set the sizes of various data
objects. See the size options in the section that describes them (See Section
3.7.4 - “Size Options” on page 51.), the reader may wonder what the effect
would be of using various sizes.

Several of the loss of precision messages (712, 734, 735 and 736) depend
on a knowledge of scalar sizes. The options -ean and -epn only sup-
presses long / int / short mismatches if they are the same size. Similarly,
options -eas and -eps depend on the sizes of data items. The legiti-
macy of bit field sizes depends on the size of an int . Warnings of format
irregularities are based in part on the sizes of the items passed as argu-
ments.

One of the more important effects of type sizes is the determination of the
type of the result. The types of integral constants depend upon the size of
int s and long s in ways that may not be obvious. For example, even
where int s are represented in 16 bits the quantity:

35000

is long and hence occupies 4 (8-bit) bytes whereas if int s are 32 bits the
quantity is a four byte int . If you want it to be unsigned use the u suffix
as in 35000u or use a cast.

Here are the rules: (these ANSI rules may be partially suppressed with
the fis flag) the type of a decimal constant is the first type in the list
(int , long , unsigned long) that can represent the value. The maxi-
mum values for these types are taken to be:

Largest is 1 less than 2 raised to the power:

int sizeof(int)* bits-per-byte - 1

unsigned sizeof(int)* bits-per-byte

CHAPTER 10: Additional Notes

198

long sizeof(long)* bits-per-byte - 1

unsigned long sizeof(long)* bits-per-byte

The quantities sizeof(int) and sizeof(long) are based on the -si
and -sl # options respectively. The type of a hex or octal constant,
however, is the first type on the list (int, unsigned int, long,
unsigned long). For any constant (decimal, hex or octal) if it has a u
suffix, one selects from the list (unsigned int, unsigned long). If
an L suffix, the list is (long, unsigned long). If both suffixes are used
then the type must be unsigned long .

The size of scalars enters into the typing of intermediate expressions in a
computation. Following ANSI, STATIC uses the so-called value-preserving
rule for promoting types. Types are promoted when a binary operator is
presented with two unlike types and in passing function arguments. For
example, if an int is required in an operation and if an unsigned short is
presented, then this is converted to int provided that an int can hold
all values of an unsigned short ; otherwise, it is converted to
unsigned int . Thus the signedness of an expression can depend on the
size of the basic data objects.

10.2 !0

If you are using
#define TRUE !0

you will receive the message:
506 -- "Constant Value Boolean"

when TRUE is used in an arithmetic expression. (For C, TRUE should be
defined to be 1. However, other languages use quantities other than 1 so
some programmers feel that !0 is playing it safe.) To suppress this mes-
sage for just this context you can use:

#define TRUE /*lint -e506 */ (!0) \\
/*lint -restore */

Note: The use of the () 's around !0 are needed to force parsing of
!0 to end before the ' -restore '.

199

CHAPTER 11

Common Problems and
Applications

This chapter is split into two main parts. The first part describes how to handle common
problems and the second part describes how to use STATIC in a practical manner.

11.1 Common Problems

11.1.1 Too Many Messages

It should be emphasized that suppressing a message does not alter the
behavior of STATIC other than to suppress the message. For example,
inhibiting message 718 (function used without a prior declaration) does
not inhibit other messages about the function such as inconsistent return
value or inconsistent parameters. It is as if you had edited the output file
and removed all references to message 718.

To set a warning level, use option -w .

11.1.2 Warning 516

A surprising diagnostic (surprising to at least some programmers) is
issued for the following:

int f(char);
...
int f(c) char c; { ...

This results in Warning 516 f has argument type conflict
with This is an example of mixing a new-style function prototype
(the first declaration above) with an old-style function definition (the sec-
ond declaration above). With an old-style function definition, the com-
piler adjusts the parameter's type from char to int . See, for example,
K&R, 1st edition, page 205; K&R, 2nd edition, page 202, or Harbison &
Steele, 1st edition, page 231 or 2nd edition page 228. The ANSI standard
addresses this issue in another chapter (See CHAPTER 8 - Language
Extensions” on page 185.). A prototype, on the other hand, has no implicit
promotion associated with it.

CHAPTER 11: Common Problems and Applications

200

There are several ways around the problem. Since old-style function defi-
nitions are now deprecated by ANSI C, you could use the new-style defi-
nition:

int f(char c) { ...

If you're worried about portability to not-yet-ANSI compilers (in which
case only STATIC should be looking at the prototype), you can change the
prototype to:

int f(int c);

If you're worried about the type discrepancy you can use a special type
for this purpose, say XCHAR, for eXtended char. You would then have

typedef int XCHAR;
int f(XCHAR);
int f(c) XCHAR c; { ...

There are also two additional means available to cope with this problem.

-eai suppress complaints about sub-Integer type mismatches. (See Sec-
tion 3.7.1 - “Error Messages Options” on page 32.)

Also, flags fxc and fxs can be used to turn char and short parameter
declarations into exciting new type-checks. For example, the fxc flag
(eXact Character flag) takes the char declaration within the old-style
function definition literally. Then all arguments passed to function f()
must resemble the exact un-promoted type of the argument. See the sec-
tion that describes exact parameter matching information (See Section 7.7
- “Exact Parameter Matching” on page 174.).

11.1.3 Error 123 Using Min or Max

Some Microsoft C users have been confused about getting error 123 when
all they do is have a declaration of the form:

int min; OR int max;

Actually, somewhere in the module is an include of “stdlib.h” which
defines macros min() and max() . If you do not want STATIC to com-
plain about this dual use (because they're used all over the place), simply
suppress the message with -e123 or -esym(123,min,max) . See the
section that gives further information on using error message options
(See Section 3.7.1 - “Error Messages Options” on page 32.).

11.1.4 LONG_MIN Macro

STATIC will occasionally issue a warning (501 and/or 569) when using
the LONG_MIN macro from your compiler's limits.h header file. We

STATIC User’s Guide

201

have found the following variations in the definition of LONG_MIN
among several different compiler vendors.

#define LONG_MIN -2147483647 /* OK
*/
#define LONG_MIN 0x80000000L /*
Warning */
#define LONG_MIN (-2147483647-1) /* OK
*/
#define LONG_MIN ((long)0x80000000L) /* OK
*/
#define LONG_MIN -2147483648L /*
Warning */
#define LONG_MIN (-(2147483647L)-1) /* OK
*/
#define LONG_MIN -2147483648 /*
Warning */

For those that we issue a warning, the quantity is typed unsigned long
and if you used this type as in:

if(n > LONG_MIN) ...

you would find that the test which should almost always succeed would
almost never succeed. Perhaps you should alert your compiler vendor.

11.1.5 Plain Vanilla Functions

By a plain vanilla function (or canonical function) we mean a function
declared without a prototype. For example:

void f();

Not too many programmers realize that such a function is incompatible
with one that is prototyped with a char , short , or float parameter or
has an ellipsis. We warn you (type difference = 'promotion ' or 'ellip-
sis ') but the warning can cause confusion if you do not realize the differ-
ence.

When a call is made to such a function the compiler must decide which, if
any promotions to apply to the arguments. Since the declaration said
nothing about arguments, a standard (i.e., canonical) set of promotions is
applied. According to ANSI, char's and short's are promoted to int, and
float's are promoted to double. Also the argument list is presumed fixed
so that registers may be used to pass arguments.

Prototypes can inhibit such promotions; if f was declared:
void f(char, short, float);

CHAPTER 11: Common Problems and Applications

202

All three promotions would be inhibited. For this reason this declaration
is incompatible with the earlier declaration and you receive a warning. If
f was declared:

void f(int, ...);

we again warn you because the canonical declaration allows the compiler
to pass arguments in registers and the ellipsis forces the compiler to pass
arguments on the stack.

This is all in the ANSI standard.

11.1.6 Strange Compilers

You may want to run STATIC on programs that have been prepared for
compilers that accept strange and unusual constructs, and for which there
is no custom compiler options files. There are a number of options you
can use to get STATIC to ignore such constructs. Chief among these are
the -d , +rw and +ppw (See Section 3.7.7 - “Strong Typing Options” on
page 61.). But also check the section that describes customization Facili-
ties (See Section 3.7.5 - “Compiler Vendor Options” on page 54.) for addi-
tional options to help cope with the truly extraordinary.

11.2 Real-Life Applications

The comments in this section are suggestive and subjective. They are the
thoughts and opinions of only one person and for this reason are written
in the first person.

When you first apply STATIC against a large C program that has not pre-
viously been run, you will no doubt receive many more messages than
you bargained for. You will perhaps feel as I felt when I first ran a Lint
against a program of my own and saw how it rejected perfectly good C
code; I felt I wanted to write in C, not in STATIC.

Stories of its effectiveness, however, are legendary. STATIC was, of
course, passed through itself and a number of subtle errors were revealed
in spite of exhaustive prior testing. I tested a public domain grep that I
never dared use because it would mysteriously bomb. STATIC found the
problem-- an un-initialized pointer.

It is not only necessary to test a program once but it should be continu-
ously tested throughout a development/maintenance effort. Early in
STATIC's development, we spent a considerable effort, over several days,
trying to track down a bug that STATIC would have detected easily. We
learned our lesson and were never again tempted to debug code before
running STATIC on it.

But what do you do about the mountain of messages?

STATIC User’s Guide

203

Separating wheat from chaff can be odious especially if done on a con-
tinuing basis. The best thing to do is to adopt a policy (a policy that ini-
tially might be quite liberal) of what messages you're happy to live
without. For example, you can inhibit all 700 level messages (informa-
tional messages) by the option -e7?? (See Section 3.7.1 - “Error Mes-
sages Options” on page 32.)or -w2 (See Section 3.7.7 - “Strong Typing
Options” on page 61.). Then work to correct only the errors associated
with the messages that remain.

The policy can be automatically imposed by incorporating the error sup-
pression options in a batch file and/or .lnt file (examples shown next)
and it can gradually be strengthened as time or experience dictate.

Experience has shown that running STATIC at full strength is best applied
to new programs or new subroutines for old programs. The reasons for
this is that the various decisions that a programmer has made are still
fresh in mind and there is less hesitancy to change since there has been
much less ‘debugging investment' in the current design. Decisions such
as, for example, which objects should be signed and which unsigned ,
can benefit from checking at full strength.

11.2.1 An Example of a Policy

An example of a set of practices with which I myself can comfortably live
is as follows.

I make frequent use of C's ability to test the result of an assignment by
using a construct such as:

if(a = value)
{ ...

So I routinely suppress error message 720 by the option:
-e720

Someday, if I have the time and if I become convinced that I won't lose
efficiency, I might convert all these to:

if((a = value) != 0)
{ ...

but for now I'll take my chances.

But note that recent converts from the Pascal community should perhaps
choose the latter construct and not inhibit 720.

At one time I would have suppressed pointer-pointer messages with the
-epp option. This was to avoid the need for excessive casting. For exam-
ple the statement:

p = malloc(n);

CHAPTER 11: Common Problems and Applications

204

would usually require a cast since malloc() would normally be
declared as returning a pointer to an object of different type than what p
was pointing to. Similar remarks could be made regarding:

free(p);

Excessive casting is not a good idea because otherwise suspicious con-
structs are not reported on. With the introduction of void * much of the
casting can be avoided. malloc() should be declared as returning a
void * and free() should be declared as accepting void * . Hence I
no longer use -epp .

As an example of a particular coding style, I frequently mix unsigned and
signed quantities. Hence, I use the message suppression options:

-e502 -e713 -e737 -eau

 (502 involves applying ~ to a signed quantity, 713 involves assigning
unsigned to signed , 737 is loss of sign, and eau suppresses messages
based on the fact that an argument and a parameter disagree in that one is
signed and the other is unsigned). Some signed/unsigned mes-
sages are left ON, such as Warnings 568 comparing unsigned in certain
ways to zero and 573, and 574 (mixing signed/unsigned in certain
operators).

A message suppressed with some sense of guilt is 734 (sub-integer loss of
precision). This message can catch all sorts of things such as assigning
ints to shorts when int is larger than short, assigning oversize ints into
chars, assigning too large quantities into bit fields, etc. However, in too
many instances one is assigning an int to a char in the normal course of
coding. C encourages chars to be kept in ints because EOF is -1 . How-
ever, if you want the additional checking inherent in not suppressing
message 734 then do the following. After a character is read into an int
and checked to be not EOF immediately assign the value to a char via a
cast.

I suppress messages about shifting ints (and longs) left but I want to
be notified when they are shifted right as this can be machine-dependent
and is generally regarded as a useless and hazardous activity. Therefore, I
use -e701 -e703 .

I routinely employ functions without a prior declaration allowing them to
default to int. Therefore I use option -e718 (function not declared).

I tend not to call in the presence of a prototype. Calling with a prototype
in scope is not yet completely portable and can cause quiet unintended
conversions. Hence I routinely use option -e746 to suppress the “not
called with a prototype” message. I place my list of favorite error-sup-
pression options in a file called options.lnt. It looks like this:

-e720// test of assignment

STATIC User’s Guide

205

-e502 -e713 -e737 -eau // unsigned-signed
-e734// sub-integer loss of info
-e701 -e703// shifting int left is OK
-e718// undeclared function
-e746// allow calls w/o prototypes

11.2.2 The Setup

I will place my reference to options.lnt along with my compiler options
file within an indirect file called std.lnt. std.lnt looks, in its simplest form,
like this:

// Standard lint options
co-xxx options.lnt

This std.lnt is placed in a globally accessible directory. I then refer to
std.lnt from within a command script file. The advantage of doing the
double indirection is that for special projects I will use a special std.lnt
that may include options in addition to those within options.lnt . The
specialized std.lnt is placed within the project directory. All this is to
be done using the same basic command script file.

11.2.3 Using Lint Object Modules

For large projects (more than several source modules), I use Lint Object
Modules (See CHAPTER 6 - Lint Object Modules” on page 161.). My
make file set up is similar to that described in Section 6.4. A typical make
file has the form:

c.lob:
lint -u make.lnt $* -oo

 m1.lob: ml.c

 m2.lob: m2.c

 m3.lob: m3.c

 m4.lob: m4.c

 m5.lob: m5.c

 project.lob: m1.lob m2.lob 0. . .7
m5.lob
lint make.lnt *.lob

CHAPTER 11: Common Problems and Applications

206

In the above, make.lnt contains those things that the batch file lin.bat
(described earlier) provided. In particular it contains:

-ic:\\lint\\
std.lnt
-os(temp)
+v

11.2.4 Summarizing

In summary, establish procedures whereby STATIC may be conveniently
accessed for a variety of purposes. Use STATIC on small pieces of a
project before doing the whole thing. Establish an error-message suppres-
sion policy that may initially be somewhat relaxed and can be strength-
ened in time. Use STATIC at full strength on new projects.

207

References

1. Kernighan, B. and D. Ritchie;
The C Programming Language,
Prentice Hall, 1978 (First Edition),Englewood Cliffs,NJ;
1988 (Second Edition).

2. ANSI Standard X3.159-1989

American National Standards Institute,
New York, 1989.

3. Harbison, S.P. and G.L. Steele, Jr.;
A C Reference Manual,

Prentice Hall, Englewood Cliffs NJ;
1984 (First Edition), 1988 (Second Edition).

4. Plum, Thomas;
Notes on the Draft C Standard,
Plum Hall Inc.,
Cardiff NJ 08232.

5. Ward, Robert;
Debugging C,

Que Corporation, Indianapolis IN, 1986.
6. Jaeschke, Rex;

Portability and the C Language,

Hayden Books, Indianapolis IN, 1989.

208

Index

Symbols
- 56
#include file 40
#machine(pdp11) 59
-$ 82
-zero 86
(filename) 83
-oo 83
) 38, 82
+fod 83
+fol 83
-strong(flags 63
error option, +etd (TypeDiff 38
error option, -etd (TypeDiff 38
error option, -efile (n,file 37
-idlen (count 82
+ppw(word1 83
-ppw(word1 83
...) 37, 63, 83

A
-a# predicate(token-sequence) 59
analyzing the report 10
angle 49
ANSI 1
ANSI C 3, 42
ANSI header files 50
ANSI standard 62
argument type mismatch 34

B
binary 76
Boolean contexts 65
Boolean operator 76
Boolean type 61

Borland C 57
Borland C++ 57

C
chapter organization xii
-cibmc2 56
-clc6 56
comma operator 76
commenting out code 42
Compiler Customization Options 58
Compiler Option Set 58
completing a session 15
configuration file 87
-ctc 57
-ctsc 57
-cwc 57

D
-d Name()= Replacement 59
dialog box 8
Directories selection window 19
directory, demos 6
Display Error and Warning Messages Only -

w2 80
Display Error Messages Only -w1 80
Display No Messages -w0 80

E
-e7?? 38
enumeration 41
error inhibition by file 37, 38
error inhibition by symbol 37
error inhibition in library headers 37
error option, +e# 34

INDEX

210

error option, +esym (n,Symbol],Symbol]...) 37
error option, -e# 34
error option, eai 35
error option, ean 35
error option, eas 35
error option, eau 35
error option, -elib # 37
error option, -epletter 36
error option, -epn 36
error option, epp 36
error option, eps 36
error option, epu 36
error option, Error Number 34
error option, -esym (n,Symbol],Symbol]...) 37
error option, Message # in Library Header 37
error option, Message for Type Difference 38
error option, Message N for Symbol 37
error option, Pointer to Type Mismatch 36
Error Options window 12, 33
-esym option 83
Exit option 15, 22

F
83

File pull-down menu 8, 28, 31
file selection dialog boxes 19
file, static.ksv 5
file, xcalc.c 6
file.p 79
error option, +efile (n,file 37
Files selection window 19
Filter entry box 19
Flag B 65
flag b 65
flag option, Abbreviated Structure 39
flag option, Anonymous Union 40
flag option, Char is unsigned 40
flag option, Continue on Error 40
flag option, Deduce Return Mode 41
flag option, Directory of Including File 40
flag option, Exact Array 45
flag option, Exact Char 46
flag option, Exact Float 46
flag option, Exact Short 46
flag option, fab 39
flag option, fan 40
flag option, fce 40
flag option, fcu 40
flag option, fdi 40
flag option, fdl 41
flag option, fdr 41
flag option, ffd 41

flag option, ffo 41
flag option, fhg 41
flag option, fhs 41
flag option, fhx 41
flag option, fie 41
flag option, fil 42
flag option, fis 42
flag option, fkp 42
flag option, flb 42
flag option, Float to Double 41
flag option, Flush Output Files 41
flag option, fnc 42
flag option, fod 43
flag option, fol 43
flag option, fpc 43
flag option, fpm 43
flag option, fps 44
flag option, frb 44
flag option, fsa 44
flag option, fsu 44
flag option, ful 44
flag option, fva 44
flag option, fvo 45
flag option, fvr 45
flag option, fxa 45
flag option, fxc 46
flag option, fxf 46
flag option, fxs 46
flag option, fzl 46
flag option, fzu 46
flag option, Hierarchy Graphics 41
flag option, Hierarchy of Strong Indexes 41
flag option, Hierarchy of Strong Types 41
flag option, Indentation Check on Labels 42
flag option, Integer Model for Enum 41
flag option, Integral Constants Are Signed 42
flag option, K&R Preprocessor 42
flag option, Library 42
flag option, Nested Comments 42
flag option, Output Declared Objects 43
flag option, Output Library Objects 43
flag option, Parameters Within Strings 44
flag option, Pointer Casts Retain lvalue 43
flag option, Pointer Difference is Long 41
flag option, Precision Limited to Max. of Arg 43
flag option, Read Binary 44
flag option, Sizeof is Long 46
flag option, String Unsigned 44
flag option, Structure Assignment 44
flag option, Unsigned Long 44
flag option, Variable Arguments 44
flag option, Varying Return Mode 45
flag option, Void Data Types 45
Flag Options window 38

STATIC User’s Guide

211

flags 63
font

italics xiii
italix xiii

font, bold face xiii
font, courier xiii
Func0 82
FuncN 81
function definition 47
function mimicry 82
-function(func0(, funcN) 81
Function0 81

H
Harbison & Steele 3
header file cascading 78
help dialog frame 22

I
83

-i directory 82
-ident (String) 82
-ident($) 82
-idlen 83
INCLUDE environment variable 82
-index 62
indirect file 28
integer model 41
International Standards Organization 3
Introduction to STATIC 1
invocation window 6
invoking from STW 25
invoking STATIC 7

K
K&R 1, 3

L
language definition 3
Library flag 65
library header file 47
linkers 82
lint object module 43
Load Single File dialog box 8
Load Single File option 8, 28

M
M_I86 57
Main window 7, 25
manual organization xii
message 516 34
message dialog boxes 23
messages 10
Microsoft C 57
Microsoft C compiler 84
Microsoft keywords 85
modifications, activating 14
Modify option 33
Modify submenu 12, 38

N
n +vhm 74
nominal type 61
nonstandard constructs 58
nreachable 86

O
-od option 77
Option c 83
Option p 83
Option x 83
Options pull-down menu 12, 33, 38
OSF/Motif style GUI 19
Other Toggles Options window 78
Output Declarations 77

P
Parent and Child type names 73
Pascal 61
pointer differences 36
pointers 69
pointers to the Strongly Indexed type 69
preprocessor conditional 42
preprocessor symbols 83
preprocessor, K&R 42
-printf 85
printf 3
processing a source code file 26
pull-down menus 24

Q
Quick Start 5

INDEX

212

R
reactivate 90
reactivate error messages 90
return mode 41
run-time checks 61

S
-od 83
Save Analysis of File(s) option 31
Save static results as window 31
saving report 31
scalar 61
-scanf(N{, nameN}) 85
-scanf(1,scanf) 85
scroll bars 19
Search option 22
selecting a keysave file, general purpose 19
selecting a source code file 8, 28
Selection entry box 19
setting up 6
shift operator 76
single file selection dialog box 28
sitype 68
softeners 65
special text xiii
static checks 61
STATIC GUI Operation 19
static.err file 87
static.rc 87, 90
stdio.h 47
Strictly ANSI Processing -A 79
strong indexes 41
-strong option 62, 68
Strong Option Set window 62
strong type hierarchy tree 73
Strong type matching 73
Strong Type Options 62
strong types 41
Strong Typing Options 61
-strong() 77
-strong(AJXbf,Bool) 68
strongly indexed pointers 69
Strongly Indexed type 68
struct/union tags 83
STW 25
STW/Advisor 25
suppress error messages 90
suppressing error messages 12
Symbol 37

T
-t# 85
tab size 85
text

"double quotation marks" xiii
boldface xiii
italics xiii
special xiii

text, boldface xiii
text, courier xiii
text, italix xiii
TopSpeed C 57
Turbo C 57
Turbo C++ 57
type checking 61
type hierarchy 64
typedef 61
typedef-based type-checking 62

U
-u Name 85
underlying type 61
Unit Checkout -u 78, 79
using a file selection dialog box 21
using message dialog boxes 23
using pull-down menus 24
using the help frame 22

W
Watcom C 57
83

wild card 34

X
Xstatic command 25
xterm window 6

