
U S E R ’ S G U I D E

TDGEN
Version 3.4

Test Data Generator

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored
in a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

Documentation: Ann Kuchins

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight, and Xvirtual are
trademarks or registered trademarks of Software Research, Inc. Other trademarks
are owned by their respective companies. METRIC is a trademark of SET
Laboratories, Inc. and Software Research, Inc. and STATIC is a trademark of
Software Research, Inc. and Gimpel Software.

Copyright  1995 by Software Research, Inc
(Last Update November 19, 1997)

documentation/user-manuals/unix/advisor/97advisor.book/advisor.book/97tdgenux.b

625 Third Street
San Francisco, CA 94107-1997
Tel: (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com
http://www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface . VII
Audience .. VII
Format of Chapters .. VIII
Identifying Special Text ... IX

CHAPTER 1 The Template File. 1
1.1 File Structure .3

1.1.1 Descriptor Format -- Field Name .3
Descriptor Format -- Format Specification 4
Pre-defined Descriptors .5
Escapes .6

CHAPTER 2 The Values File . 7
2.1 Sample Values File .7

2.2 File Structure .8
2.2.1 Field Name Specifications .9
2.2.2 Ranges of Values, Comments, Escapes, and Blanks 10

CHAPTER 3 TDGEN Calls. 13
3.1 Call Summary . 14

3.2 Specific Invocation . 15

3.3 Random Invocation . 17

3.4 Sequential Invocation . 18

3.5 Table Summary . 20

3.6 Invocation without template File 21

TABLE OF CONTENTS

iv

3.7 Calling TDGEN from a Script 22

3.8 Redirecting Output .23

3.9 TDGEN Menus .24
3.9.1 Invoking TDGEN. 25
3.9.2 Menu Tree. 26

 Issuing Commands . 27
Displaying Current Parameter Settings . 27
TDGEN Menu Stack . 27

3.9.3 Main Menu . 28
3.9.4 Actions Menu . 29
3.9.5 Files Menu . 30
3.9.6 Options Menu . 31
3.9.7 Saving Changed Options Settings . 32
3.9.8 Running System Commands . 33
3.9.9 TDGEN Configuration File . 34

CHAPTER 4 Graphical User Interface Tutorial 37
4.1 Invocation .37

4.2 Using TDGEN .39
4.2.1 Main Menu Options. 39

CHAPTER 5 Template, Values File Syntax Summary 51
5.1 Template File Syntax .51

5.2 Template File Definitions .53

5.3 Values File Syntax . .54

CHAPTER 6 TDGEN Samples . 57

v

List of Figures

FIGURE 1 Xtdgen Main Menu 37

FIGURE 2 STW/Advisor Invocation 38

FIGURE 3 Main Menu Help 39

FIGURE 4 Set Output file window 42

FIGURE 5 Set Value File Pop-Up Window 43

FIGURE 6 Set Sequential File Pop-Up Window 43

FIGURE 7 Set Output File Pop-Up Window 44

FIGURE 8 Summary Mode Output 45

FIGURE 9 Random Mode Output 46

FIGURE 10 Sequential Mode Output 46

FIGURE 11 Specific Mode Output 47

FIGURE 12 Set Editor Command Message Window 48

FIGURE 13 Edit Template File 49

FIGURE 14 Exiting Out of Template File 49

FIGURE 15 Edit Values File 50

FIGURE 16 Edit Sequential File 50

vi

VII

Preface
This preface explains how this user’s guide is organized.

Congratulations!

By choosing the TestWorks integrated suite of testing tools, you have
taken the first step in bringing your application to the highest possible
level of quality.

 Software testing and quality assurance, while becoming more important
in today’s competitive marketplace, can dominate your resources and
delay your product release. By automating the testing process, you can
assure the quality of your product without needlessly depleting your
resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TestWorks is the most complete solution available, with full-featured
regression testing, coverage analyzers, and metric tools.

Audience

This manual is intended for software testers who are using TDGEN tools.
You should be familiar with the X Window System and your workstation.

VIII

Format of Chapters

This manual is organized to aid you after installation has been completed.
(See the Installation Instructions if you are trying to install.)

This manual is divided into the following sections:

Chapter 1 THE TEMPLAT FILE describes TDGEN’s template
file, particularly its file structure, including details on
the descriptors’ format specifications.

Chapter 2 THE VALUES FILE provides TDGEN with the data to
be supplied to the generated file output file.

Chapter 3 TDGEN CALLS describes how TDGEN is invoked
from either the command line, ASCII menus or the X
windows system’s GUI (Graphical User Interface).

Chapter 4 GRAPHICAL USER INTERFACE TUTORIAL demon-
strates using TDGEN in the OSF/Motif style X Win-
dow System environment.

Chapter 5 TEMPLATE, BALUES FILE SYNTAX SUMMARY
shows the proper syntax for both TDGEN’s template
and values files.

Chapter 6 TDGEN SAMPLES provides examples that show sev-
eral kinds of TDGEN use.

TDGEN User’s Guide

IX

Identifying Special Text

This section explains the typographical conventions that are used
throughout this manual.

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for man-
ual, chapter, and book titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with spe-
cial meanings may also be set apart with double quo-
tation marks the first time they are used.

courier Indicates system output such as error messages, sys-
tem hints, file output, and CAPBAK/X’s keysave file
language.

Boldface Courier

Indicates any command or data input that you are di-
rected to type. For example, prompts and invocation
commands are in this text. (For instance, stw invokes
TestWorks.)

X

1

CHAPTER 1

The Template File
This chapter describes TDGEN’s template file, particularly its file structure, including
details on the descriptors’ format specifications.

TDGEN offers a potent system commands capability via the command
descriptor format {%! <command> }.

The template file tells TDGEN how to format the generated output file.
Field names found in the template file should have a counterpart and
appropriate entries in the values file, or else be one of the four pre-
defined descriptors. Otherwise, if that field name is called for, an error
message occurs. Execution will not halt, however; the field descriptor will
simply not be reproduced in the output file, and the error message goes to
stderr , leaving the output untarnished. This is the only format error in
TDGEN that does not result in an immediate exit from the program.

TDGEN offers a potent system commands capability via the command
descriptor format {%! <command> }.You can use a myriad of utilities
available on the UNIX system to process the output file. You could also
conceivably have a series of commands appending the template file to the
output file and then calling TDGEN on that output file.

A sample template file follows below.

A line with an octal {%o i:normal } value.
A line with a floating number: {%8 f:spe-
cial }
Here is a brace { in the sentence.
A system command goes here: {%! echo
hello}.
A right-adjusted integer {%11 i:special }
only.
A string of blanks follows:{% blanks}.
A left-adjusted string {%-14 s:string }.
Floating point numbers {% f:normal}, {%-10
f:special}.
A: {%25 s:string } {%c comment in tem-
plate file }
 B: {%-3 i:special }

CHAPTER 1: The Template File

2

 C: {% f:special }
D: {% s:string }
 E: {%14 i:normal }

 F: {%-7 f:normal }
End of example to "tdgen".

TDGEN User’s Guide

3

1.1 File Structure

The template file is a regular text file with variable fields called descrip-
tors; these descriptors may be replaced by other text as specified by the
user. Actual text is reproduced verbatim, and various descriptors of the
form:

{%[<format spec>] <field name>}

are used to denote fields that may take on various values as enumerated
in the values file. Sample entries in the template file may look like this:

Employee {% Employee# } is the person in
charge.
The job number is {% Job#}.

In the sample above, Employee# and Job# are both the field descriptors.
Other text is reproduced verbatim in the output.

Any {% sequence, except in comments, is expected to conform to the for-
mat required of descriptors. The closing brace is mandatory.

1.1.1 Descriptor Format -- Field Name

The field name must be preceded by at least one blank, and may contain
up to 40 characters. The permitted character set is any printing character.
There is no embedded white space allowed in the field name except for
new lines preceded by a backslash. Neither the backslash nor the new line
appears in the output. A field name must appear in every descriptor
except in the case where a system command is specified by the presence
of the ! character immediately following the {%.

CHAPTER 1: The Template File

4

1.1.1.1 Descriptor Format -- Format Specification

The format specification <format spec> has the following composition:
[field length] [conversion]

or:
system command

or:
comment

You can specify right or left alignment of the output, minimum field
width, and octal or hexadecimal conversion of decimal integer input.

In addition, there is a mechanism provided for comments and system
command execution. Here is a summary of the various components:

Field Length
Syntax:[-]d

Here, d represents a decimal integer. A preceding minus sign forces left
alignment of the field; the default is right alignment. Examples of correct
syntax:

{%5 name}
{%-10 name}

Conversion
Syntax: d, o, or x

Here d , o and x are decimal, octal or hexadecimal conversion respec-
tively. If o or x is specified, then the input integer must be an unsigned
decimal; otherwise the results of the conversion will be unpredictable.
Some examples of correct syntax:

{%x hexnum}

{%10o i:normal}

System Command
Syntax: ! <system call>

Any sequence of characters after the ! and before the closing brace }
will be regarded as a system call. Its output will go to stdout unless an
error is encountered. Some examples of correct syntax:

{%! ls}
{%! echo hello}

Comment
Syntax: c <command>

TDGEN User’s Guide

5

All characters after the c will be ignored; scanning will start again after
the closing brace } is found. Comments are excluded from the output file.
They may contain an embedded new line if it is preceded by a backslash.
An example of a comment is:

{%c This is some comment.}

1.1.1.2 Pre-defined Descriptors

There are four pre-defined descriptors which, when used, should not be
identified in the values file. If they are identified in the values file, they
will be processed as user-defined descriptors. An example of each of the
four descriptors is given below:

{%-10 ascii 4}

{% alpha 150}

{% decimal 160}

{% real 3.6}

Pre-defined descriptors have the following form:
{%[<format spec>] <field name> <field
size>}

Here is a summary of the various components:
<format spec>

As with user-defined descriptors, the field name may be preceded by a
format specifier. The d , o and x options are not allowed.

<field name> : ascii, alpha, decimal or
real

The ascii set includes all printable characters. The alpha set includes
the characters <a-z>,<A-Z> and <0-9>. The decimal and real sets
include the characters <0-9>.

<field size>

For alpha , ascii , and decimal the valid field sizes are 1 through 254.
For real , the valid field size takes the form of ‘‘n.m’’ where ((n+m) <
254)) and (n >= 0) and (m > 0).

CHAPTER 1: The Template File

6

1.1.1.3 Escapes

Arbitrarily long lines can be produced by escaping the new line character;
this is done by preceding it with a backslash. Both the new line and the
backslash are ignored. The backslash receives no special handling other-
wise.

For example, if this line appeared in the template file:
{%-10 retailer} {%-10 cost} {%-10 retail}
{%-10 net} \
{%-10 discount} {%-10 date}

the output would be on one continuous line, and the backslash would be
omitted.

7

CHAPTER 2

The Values File
The values file provides TDGEN with the data to be supplied to the generated output file.

2.1 Sample Values File

The field names that appear in the values file should only appear once.
There is no error checking for uniqueness. If a field name should appear
twice, only the first occurrence and its associated values will be consid-
ered. The maximum allowable number of distinct field names is 1024. A
sample values file follows below.

{%c Sample values file.}

i:normal{%r 1..100}
i:special0 1 2 3 4 5
f:normal2.1753.1244.765
f:special99E09-8E101
s:stringa ab abc abdc abcde
blanks{%1} {%2} {%3} {%5}

CHAPTER 2: The Values File

8

2.2 File Structure

The TDGEN values file is a regular text file containing field names and
their potential values. You have a number of options for giving values in
the TDGEN values file. TDGEN uses a data table to associate particular
values to field names that you write into the template file. Sample entries
in the values file may look like this:

<field names><values>

Job#1001 1002 1003 1004 1005
Employee#5006 5007 5008 5009 5010 5011.

All field names, for example, Job# , Employee# , must be unique.

TDGEN User’s Guide

9

2.2.1 Field Name Specifications

The field names are assumed to begin with the first non-white character
that follows a new line, and to terminate with blanks or tab characters. If
all the values associated with a field name cannot be written on one line,
then the new line character must be preceded by a backslash. The only
exception to this new line rule is the format for comments, detailed in Sec-
tion the section on that topic (See Section 3.2 - “Specific Invocation” on
page 15.).

Embedded white space in field names is not allowed. Each field must
have at least one value following it; otherwise, an error occurs. Individual
values are separated by white space; the only mechanism by which white
space can be considered part of a value is if it is preceded by a backslash
(See Section 3.2 - “Specific Invocation” on page 15.).

The field names contained in the values file should have a counterpart in
the template file. Otherwise, if a value is specified for that field on a call to
TDGEN, an “unknown type” error message occurs. An example of what
might be in the template file corresponding to the example for the values
file given previously is:

Employee : {%-20o Employee# }
Job : {%10d Job#}

Field names in the template file always start with {% and end with} . All
other text is reproduced in the output verbatim.

CHAPTER 2: The Values File

10

2.2.2 Ranges of Values, Comments, Escapes, and Blanks

TDGEN provides ways to handle blanks and other white space charac-
ters, and also provides for comments.

Ranges of Values
Syntax:name {%r n1..n2}

The user can save time and effort using the range specification for integer
values. This format generates TDGEN values starting at n1 and incre-
menting by 1 until n2 is reached. An example is:

number {%r 1..9}

which is equivalent to
number 1 2 3 4 5 6 7 8 9.
 Comments
Syntax:{%c ...<comment text>...}

values file may contain comments, and the individual values may contain
blanks. It may contain new line characters only if they are escaped with a
backslash. Comments may not be embedded in the field name or data. An
example is:

{%c Here are some \
comments}

Escapes

The backslash “\\’ is considered special if it appears prior to these char-
acters:

" "- escape blank
"\"- output a backslash

Other than in those cases listed above, and in the case where it is embed-
ded in a field name, the backslash has no effect and is not reproduced in
the output. Some examples are:

{%\ name}{%\ midname}

 Blanks

Syntax:{%d}

A blank or tab within a value item can be escaped with “\\’; this appears
on the value as " " and circumvents the use of white space as the separa-
tor. The sequence {%d}, where d is a positive integer, expands to a value
that contains exactly d blanks. This allows the possibility of having a
string of blanks as an item. An example is:

TDGEN User’s Guide

11

{%5}

which gives five blanks.

CHAPTER 2: The Values File

12

13

CHAPTER 3

TDGEN Calls
This chapter describes how TDGEN is invoked from either the command line, ASCII
menus, or the X windows system’s GUI (Graphical User Interface).

There are several different ways to invoke TDGEN. You can select values
from the values file specifically or randomly. You can also invoke TDGEN
sequentially, generating every possible combination of the given values.
You can use TDGEN either with command line options, with ASCII
menus, and with X Window System graphical user interfaces (GUI). The
menus are described at the end of this chapter. The GUIs are described in
.(See CHAPTER 4 - Graphical User Interface Tutorial” on page 37.)

You can tabulate the number of possible test data combinations that
TDGEN generates. You can then study the table to see if you want to
adjust the number of combinations before actually running TDGEN by
making necessary modifications to the values file. TDGEN further gives
you the option of invoking it as many times as you wish. Invoking it
repeatedly allows you to automatically run a specified number of combi-
nations of the test. TDGEN may also be invoked to access standard input
in place of the template file. Default output is standard output. You can
specify output to go to a file, if you wish.

CHAPTER 3: TDGEN Calls

14

3.1 Call Summary

tdgen values <template> n1 n2 n3 n4...nn
tdgen -r values <template>
tdgen -R <number> values <template>
tdgen -s values <template> sfile
tdgen -S <number> values <template> sfile
tdgen -T <-r> values <template>

There is one global switch, -g file , that must appear as the last argu-
ment on the command line. The -g switch, along with all other switches,
is explained later in this section.

TDGEN User’s Guide

15

3.2 Specific Invocation

The values for all or some of the descriptors are specified by integers fol-
lowing the template filename. The same examples from the first parts of
of later chapters, reprinted here, help illustrate an instance of a specific
invocation. The example template file and values file follows.

This is an example template file for
“tdgen”.

A line with an octal {%o i:normal } value.
A line with a floating number: {%8 f:spe-
cial}
Here is a brace { in the sentence.
A system command goes here: {%! echo
hello}.
A right-adjusted integer {%11 i:special}
only.
A string of blanks follows:{% blanks}.
A left-adjusted string {%-14 s:string}.
Floating point numbers {% f:normal}, {%-10
f:special}.
A: {%25 s:string} {%c comment in tem-
plate file}
 B: {%-3 i:special}
 C: {% f:special}

D: {% s:string}
 E: {%14 i:normal}

 F: {%-7 f:normal}

End of example to "tdgen".

{%c Sample values file. }

i:normal{%r 1..100}
i:special0 1 2 3 4 5
f:normal2.1753.1244.765
f:special99E09-8E101
s:stringa ab abc abdc abcde
blanks{%1} {%2} {%3} {%5 }

Using these two files, type:
tdgen values template 10 1 3 4 5 6 7 8 9 10
1 2 3 4

The integer in position 10 refers to the first descriptor found in the tem-
plate file: i:normal . TDGEN looks under i:normal in the data table,
and outputs the 10th value listed, 10. In this case, the value will be con-

CHAPTER 3: TDGEN Calls

16

verted to octal, as indicated by the o after the ’%’ sign in the template
file. Likewise, the integer in position 1 refers to the second descriptor in
the file, f:special . The first value is output, 99E09.

Descriptors with the same field name may appear more than once in the
template file but not in the values file. For example, f:special appears
three times in the template file but only once in the values file.

If there are more integers in the invocation than there are descriptors in
the template file, the unmatched integers will be discarded. Similarly, if
there are less integers in the invocation than there are descriptors, then
the extra descriptors will be treated as regular text and output verbatim.

If the value of any integer exceeds the number of total possible items
associated with the descriptor, the last item will be output.

Note that pre-defined descriptors are not listed in the values file. There-
fore, any number may be used to specify the inclusion of one in the spe-
cific invocation of TDGEN. The descriptor is randomly generated.
Continuing with the same example, the generated output file is shown
below.

This is an example template file for
‘‘tdgen’’.

A line with an octal 12 value.
A line with a floating number: 99E09
Here is a brace { in the sentence.
A system command goes here: hello.
A right-adjusted integer 3 only.
A string of blanks follows: .
A left-adjusted string abcde .
Floating point numbers 4.765, -8E101.
A: abcde
 B: 5

C: 99E09
 D: ab
E: 3
 F: 4.765

End of example to "tdgen".

TDGEN User’s Guide

17

3.3 Random Invocation

The correct syntax for the random option is:
tdgen -r values <template>
tdgen -R <number> values <template>

The -r or -R switch notifies TDGEN to take one value from each field in
the values file at random. For each field name encountered in the tem-
plate file, a uniformly distributed random number is used to select a par-
ticular value from those corresponding to that field name. The
distribution can be weighted towards certain values by enumerating
them several times in the values file. For example, an entry in the values
file such as:

cost 2.50 3.75 1.25 1.25 1.25

makes “cost” three times more likely to be 1.25 than 2.50.

The -r option invokes TDGEN once. The -R option invokes TDGEN
repeatedly, as defined by <number> switch. The default is 1, so that

tdgen -R values template

invokes TDGEN once.

An additional switch, -R 0 , runs TDGEN indefinitely, until you interrupt
it. See a later section for omitting the optional template file (See Section
3.6 - “Invocation without template File” on page 21.).

CHAPTER 3: TDGEN Calls

18

3.4 Sequential Invocation

Use the sequential invocation repeatedly to generate exhaustively distinct
data sets. There are two ways to invoke TDGEN sequentially:

tdgen -s values <template> sfile
tdgen -S <number> values <template> sfile

sfile is a user-supplied file that lists integers. Integers should be sepa-
rated by a space.

The sfile contains the integers n1 ... nn. If you give a non-existent file
name, TDGEN acts as though it has been given a file of 1’s for all the
descriptors found in the template file. It will then write the next sequence
of integers into that file according to the following scheme:
1. Start with the left-most integer.
2. Increment the integer.
3. If this value is larger than the number of values associated with the

first descriptor found in the template file, TDGEN will replace it with
a 1 and increment the next integer.

4. Steps 2 and 3 are repeated until either some value has been incre-
mented or all the integers are exhausted.

Continuing with the same example from a later section (See Section 4.2 -
“Using TDGEN” on page 39.), when you invoke TDGEN with the -s
option, using the following values in sfile :

100 2 3 4 1 1 1 1 1 1 1 1 1 1

After execution, sfile reads:
1 3 3 4 1 1 1 1 1 1 1 1 1 1

This shows how TDGEN “increments” the sfile to remember the
inputs for the next invocation of the system.

If sfile is non-existent, TDGEN acts as though it had been given a file
of 1’s; it also creates a file, sfile , containing the next sequential call, as
described above.

The sequential option can be used repeatedly to generate exhaustively
distinct data sets. Note that TDGEN expects only digits in the sfile ;
other text, if present, will produce unpredictable results. The -s option
invokes TDGEN once, and the -S option invokes TDGEN repeatedly, as
defined by <number> switch. The default is 1, so that:

tdgen -S values template

invokes TDGEN once. An additional switch, -S 0 , runs TDGEN until
you interrupt it. See the section that describes omitting the optional tem-

TDGEN User’s Guide

19

plate file (See Section 3.6 - “Invocation without template File” on page
21.).

CHAPTER 3: TDGEN Calls

20

3.5 Table Summary

You may want to see how many combinations you have specified TDGEN
to generate before you generate actually them. The -T switch calculates
the number of combinations of all fields in the values file. The correct syn-
tax is:

tdgen -T (-r) values <template>

Continuing with the example from above, typing:
tdgen -T values template

would give you the following table:

The total number of combinations is 72,000 for <number> . If you use the
sequential invocation mode TDGEN will exhaustively generate and test
all 72,000 data combinations. You may not want to generate all combina-
tions at once, so you should make adjustments to the fields accordingly.

Field No. Table Entries Cumulative Total

 Combinations

% i:normal 100 100

% i:special 6 600

% f:normal 3 1800

% f:special 2 3600

% s:string 5 18000

% blanks 4 72000

TABLE 1 Field Values for TDGEN

TDGEN User’s Guide

21

3.6 Invocation without template File

If you invoke TDGEN without specifying a template file, standard input
is accessed. Possible invocations are:

tdgen -<s|S> values sfile

tdgen -<r|R> values

tdgen values 1 2 3 4 5 13 2 1 3 3 3

tdgen -T values

After you type in the invocation and press Return, TDGEN stops and
waits for you to type in the field descriptors. An example would be:

{% name}{% age} Press Return when you have
entered all desired field descriptors.
TDGEN processes the data, but you must
type the end-of-file character for your
system to terminate the session.

Not using a template file allows you to use piping, as shown in the fol-
lowing example:

capkey -f file | tdgen -r values | appli-
cation

CHAPTER 3: TDGEN Calls

22

3.7 Calling TDGEN from a Script

TDGEN also returns the number of values substituted into the field
descriptors. This simplifies some kinds of scripting. Here is an example in
the UNIX context:

tdgen -r values template -g temp
while test $? -gt 0
do
cp temp template
tdgen -r values template -g temp
done

This would have the effect of running TDGEN until it made NO conver-
sions, thus simplifying operation in some cases.

TDGEN User’s Guide

23

3.8 Redirecting Output

Default output goes to the screen. If you want output to go to a file, use
the -g file switch. The -g file switch must be the last argument on
the command line. Use it with any invocation of TDGEN. For example, if
you wanted output from a certain test to go to a file called File1 , type:

tdgen -r values template -g File1

CHAPTER 3: TDGEN Calls

24

3.9 TDGEN Menus

Menus help users in two ways: by providing a fixed structure for collect-
ing test coverage information, and by providing a convenient way to cus-
tomize a sequence of operations.

TDGEN User’s Guide

25

3.9.1 Invoking TDGEN

Start TDGEN’s menus with the command:
tdgen

TDGEN uses the default configuration file, tdgen.rc. You can change any
settings during an invocation of TDGEN. To save any changes you make
during a session, save the settings upon exiting TDGEN.

CHAPTER 3: TDGEN Calls

26

3.9.2 Menu Tree

The menu tree is shown below.

TDGEN

MAIN:
| Selects Actions, Files or Options menu
| Shows option settings
| Shows current execution statistics
| Saves option settings
| Exit from TDGEN
| On-line help frames
| !<system commands>
|
|____ACTIONS:
| Selects basic TDGEN operations
| Shows option settings
| Returns to prior menu
| On-line help frames
| !<system commands>
|
|____OPTIONS:
| Helps select all user-settable options
| Shows option settings
| Returns to prior menu
| Sets showmenu flag
| On-line help frames
| !<system commands>
|
|______FILES:

 Shows all current file settings
 Allows changing file settings
 Returns to prior menu
 On-line help frames
 !<system commands>

After TDGEN starts, you will see the title information, version con-
trol indication, and the prompt:TDGEN:.

To see available menu options, type from any prompt within TDGEN:
?

TDGEN User’s Guide

27

TDGEN then displays the available options for that menu. This feature
works for all menus throughout TDGEN.

The current menu is redrawn whenever you give an unrecognized com-
mand.

3.9.2.1 Issuing Commands

You can issue commands by typing the first few letters of each com-
mand’s name. The only requirement is that the letter sequence be unique
to that command. TDGEN will inform you when a command you issue
matches two or more possible commands.

To set variables [See the Files menu description(See Section 3.9.5 - “Files
Menu” on page 30.)], you must type the entire variable name. This is done
in order to be consistent with configuration file processing.

3.9.2.2 Displaying Current Parameter Settings

You can display the current settings of options and file names known to
TDGEN at any time using the settings command, get on-line help with
the help command, and exit the current menu using exit. The configura-
tion file read in the settings is automatically used.

3.9.2.3 TDGEN Menu Stack

When you move from the main menu to any other menu, TDGEN
remembers the sequence of your choice of menus in an internal “stack”.
The stack lets you return to the menu you were just in by typing the exit
command. This feature is provided to prevent you from entering conflict-
ing or incorrect data during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the main menu to exit TDGEN. That is, your moves
between the three subsidiary menus are “stacked” and must be
“unstacked” before returning to the main menu.

Pressing the Interrupt key returns you immediately to the main menu.

CHAPTER 3: TDGEN Calls

28

3.9.3 Main Menu

When you invoke TDGEN, the following menu is displayed:
TDGEN:MAIN:
Options:

release -- Show release and ver-
sion number

actions -- Go to the ACTIONS
menu

files -- Go to the FILES menu
options -- Go to the OPTIONS

menu

settings -- List the current
settings for TDGEN option

help [opt] -- Display HELP text
for a command

save -- Save the current
settings for TDGEN

exit -- Exit from TDGEN to
system

TDGEN User’s Guide

29

3.9.4 Actions Menu

The Actions menu is displayed below:
TDGEN:ACTIONS:
Options:

release --Show release and ver-
sion number

files -- Go to the FILES menu
options -- Go to the OPTIONS menu

go -- Execute TDGEN
infinite go -- Execute TDGEN until

interrupted
go <number> -- Execute TDGEN <num-

ber> of times
settings -- Display current runt-

ime settings
help [opt] -- Display HELP text for

command
exit -- Exit current level

CHAPTER 3: TDGEN Calls

30

3.9.5 Files Menu

The Files menu is displayed below:

TDGEN:FILES:
Options:
release -- Show release and version
number
actions -- Go to the ACTIONS menu
options -- Go to the OPTIONS menu

values<file>-- File for values (default
values)
template <file>--File for template
(default template)
sequence <file>-- File for sequence
information (default Seq)
output <file>-- File for output (default
standard output)
input <file>-- File for user values
(default standard input)

settings--Display current runtime set-
tings
help [opt]--Display HELP text for com-
mand

exit -- Exit current level

TDGEN User’s Guide

31

3.9.6 Options Menu

The Options menu is displayed below:

TDGEN:OPTIONS:
Options:

release -- Show release and version
number

actions -- Go to the ACTIONS menu
files -- Go to the FILES menu

random -- Use random generation
mode
sequential -- Use sequential genera-
tion mode
table -- Output the summary table
settings -- Display current runtime
settings.
help [opt] -- Display HELP text for
a command

exit -- Exit to the system

CHAPTER 3: TDGEN Calls

32

3.9.7 Saving Changed Options Settings

Before leaving TDGEN, you are prompted about saving the current set-
tings. Answer y to the prompt, and your settings overwrite the
tdgen.rc file.

You can also change current settings in the main menu with the save
command.

TDGEN User’s Guide

33

3.9.8 Running System Commands

You may issue a command directly to the operating system by using the !
symbol, as follows:

TDGEN: !<any system command>

TDGEN regains control after the command is executed. This feature is
useful for editing files and for other activity related to a TDGEN session.
For example,

! cat values

lets you view the values file.

CHAPTER 3: TDGEN Calls

34

3.9.9 TDGEN Configuration File

TDGEN reads the configuration file before beginning any processing. The
configuration file may contain modifications to the default settings of a
variety of TDGEN parameters.

TDGEN’s configuration file is a simple ASCII text file that you can modify
with an editor. You can also create a new configuration file with the Save
option in TDGEN’s main menu.

A typical example of TDGEN’s default configuration file is shown below.

Parameters

help="/usr/lib/tdgen/tdgen.hlp"
execute="tdgen"
values="values"
template="template"
sequence="Seq"
output=""
input=""
opts="-R"
times=1
noshowmenu

You can change any of the run-time parameters, except for help and
execute . Configuration file lines can contain any set of commands in
any order. Comment lines must begin with #. All white space, tabs and
blanks are ignored, except those appearing within quotes.

Configuration file entries are explained below, listed with default values.
<comment>

A line beginning with # is treated as a comment.
help="/usr/lib/tdgen/tdgen.hlp"

This parameter gives the path where the install script places the on-line
help frame.

execute="tdgen"

This parameter defines the command TDGEN accepts for execution. It is
equivalent to the go option in the Actions menu.

values="values"

This parameter names the user-supplied values file.
template="template"

This parameter names the user-supplied template file.
sequence="Seq"

TDGEN User’s Guide

35

This parameter names the file TDGEN calls when you use the sequence
option in the Files menu.

output=""

This parameter specifies where output goes. The default is standard out-
put. If you want output to go to a file, specify a filename. In successive
outputs, TDGEN overwrites the file unless you specify another filename.

input=""

This parameter specifies where the input comes from. The default is stan-
dard keyboard entry. If you want to use a file as input, specify that file-
name, which must be located in the current directory. The file has the
same function as the list of integers for field descriptors in the example

tdgen values 1 2 3 2 12 32.

opts=""

This parameter specifies the switch that TDGEN uses when you type go .
The default is null: TDGEN executes without any options.

times="1"

This parameter specifies the number of times TDGEN is executed at once.
It is equivalent to the number in the -R number switch.

noshowmenu

This parameter determines whether the entire menu is re-drawn on the
screen when a command is issued. You will probably prefer to use
noshowmenu after you are familiar with the program.

CHAPTER 3: TDGEN Calls

36

37

CHAPTER 4

Graphical User Interface
Tutorial

This chapter demonstrates using TDGEN in the OSF/Motif style X Window System envi-
ronment.

4.1 Invocation

To invoke type:
Xtdgen

The result is the main menu (See Figure 1 "Xtdgen Main Menu" on
page 37.). It has a window menu button (available for all windows) that
allows you to restore, move, size, minimize, maximize, or to lower the
window and to close the program. This menu button can be used at any
time during the X Window System program. The two buttons in the
upper right hand corner of the window allow you to maximize or to min-
imize the window.

FIGURE 1 Xtdgen Main Menu

CHAPTER 4: Graphical User Interface Tutorial

38

To invoke with STW/Advisor, click first on Advisor and then on TDGEN.
The TDGEN main menu pops up.

FIGURE 2 STW/Advisor Invocation

TDGEN User’s Guide

39

4.2 Using TDGEN

4.2.1 Main Menu Options

All TDGEN operations can be performed from the main menu.

1 For first time use, always read the help frames. Below is main menu’s
help frame, explaining TDGEN’s main functions.

NOTE: This is the only help frame available.

FIGURE 3 Main Menu Help

CHAPTER 4: Graphical User Interface Tutorial

40

2. TDGEN can be invoked with the following modes:
• “Summary Mode” provides data that can be generated for statis-

tics. (See Figure 8 "Summary Mode Output" on page 45.)

• “Random Mode” generates data randomly. (See Figure 9 "Ran-
dom Mode Output" on page 46.)

• “Sequential Mode” generates date sequentially. (See Figure 10
"Sequential Mode Output" on page 46.)

• “Specific Mode” generates date as specified in the “Specific Invo-
cation Integer” option (described below). (See Figure 11 "Specific
Mode Output" on page 47.)

3. TDGEN also offers the following options:
• “Display Output” displays the file output. You can move up,

down, and sideways in the display using the scroll bars. This
option is available for all invocation modes.

• “Invoke” allows you to choose how many sets of data are to be
generated. If no number is chosen, then it assumes only one set of
data is specified. This option is available for only “Random
Mode” and “Sequential Mode”.

• “Specific Invocation Integers” generates data according to what
integers you specify in this option. This option is available for
“Specific Mode” only.

TDGEN User’s Guide

41

Following is a step-by-step example.
4. Click on the “File” pull down menu and select the appropriate files.

• “Set Template File” must be set. Type in your new file in the
Selection Box or highlight (if you already have the template file in
the directory) and then click OK. If not selected, then you will be
unable to edit later. File filter allows you to specify the filtered
keysave files to be displayed. (See Figure 4 "Set Output file win-
dow" on page 42.)

• “Set Values File” must be set. Selection is made the same way as
the template file. (See Figure 5 "Set Value File Pop-Up Window"
on page 43.) If not selected, then you will be unable to edit later.

• “Set Sequential File” is only necessary for “Sequential Mode”. If
not selected, then you will be unable to edit later. The default is
set to sfile. (See Figure 16 "Edit Sequential File" on page 50.)

CHAPTER 4: Graphical User Interface Tutorial

42

• “Set Output File” is the file where everything is written to, so it
can be viewed later. This file can be set at any time during your
program. (See Figure 12 "Set Editor Command Message Window"
on page 48.)

FIGURE 4 Set Output file window

TDGEN User’s Guide

43

FIGURE 5 Set Value File Pop-Up Window

FIGURE 6 Set Sequential File Pop-Up Window

CHAPTER 4: Graphical User Interface Tutorial

44

FIGURE 7 Set Output File Pop-Up Window

5. Select the invocation mode. Only one at a time may be selected.
6. Select the appropriate options:

• Select “Display Output” if you want to display the output in the
window.

• “Invoke” can only be used for “Random Mode” and “Sequential
Mode”. If it is not selected, then it assumes you want to generate
only one set of tests.

• “Specific Invocation Integers” can only be used for “Specific
Mode”.

7. After selecting the mode and its corresponding options, click on the
Generate pull-down menu and click on ‘Generate Now. The output
should be displayed in the window.

TDGEN User’s Guide

45

FIGURE 8 Summary Mode Output

CHAPTER 4: Graphical User Interface Tutorial

46

FIGURE 9 Random Mode Output

FIGURE 10 Sequential Mode Output

TDGEN User’s Guide

47

FIGURE 11 Specific Mode Output

8. If you want to edit the template file, values file or sequential file, then
click on the Edit pull-down menu.

9. If you want to change the default vi editor to another editor, then
click on Set Editor Command. The message window below pops up.

CHAPTER 4: Graphical User Interface Tutorial

48

When finished changing the editor, click OK.

FIGURE 12 Set Editor Command Message Window

10. Click on the file you want to edit: Edit Template File, Edit Values
File, or Sequential File.

Note: All files must be set before editing under the File pull-down menu.

11. A window such as the one below pops up. You can edit just like you
normally would in vi.

12. In order to exit, type :wq (for save) or :q (for quit) or w (for write
only). Do not use the window’s menu button to close, as you may
possibly exit the entire program.

13. When finished, click on the File pull-down menu’s Exit.

At this point, you have successfully used TDGEN.

TDGEN User’s Guide

49

FIGURE 13 Edit Template File

FIGURE 14 Exiting Out of Template File

CHAPTER 4: Graphical User Interface Tutorial

50

FIGURE 15 Edit Values File

FIGURE 16 Edit Sequential File

51

CHAPTER 5

Template, Values File Syntax
Summary

This chapter shows the proper syntax for both TDGEN’s template and values files.

5.1 Template File Syntax

NOTE: In the definitions below, square brackets, [], signify optional
fields, and quotes, " ", signify literals.

Format {%[<format spec.>] <field name> [<field size>]}

<format spec.> [<field length>][<conversion>]
<command>
<comment>

<field length> [-]d | [-]dd

<conversion> "d" for decimal
"o" for octal
"x" for hexadecimal

<field name> Any string of characters (no embedded white space)
or in the case of <command>, any legitimate system
call.

<command> ! <system call’s output>

<comment> "c" followed by comment text

<field size> For pre-defined descriptors only.
n for "ascii", "alpha" and "decimal" where (0 < d <

CHAPTER 5: Template, Values File Syntax Summary

52

255).
n.m for "real" where ((n>=0) and (m > 0) and ((n+m)
< 254).

TDGEN User’s Guide

53

5.2 Template File Definitions

 - If used, the - must precede field length. Signifies left
justification within the specified field length. Absence
defaults toright justification.

<field length> The value specified will be the minimum field length
used. If the string or integer exceeds this value in
length, it will be written out in its entirety without
truncation.

<conversion> When one of these options is specified, the input val-
ue, i.e. the value read from the values file, must be a
decimal integer. The value will be converted and out-
put in the specified mode. For octal and hexadecimal
conversions, the integer must be unsigned.

The "d" option can be used to check if the input value
is a proper decimal integer.

<field name> Must always be present except when a system call
takes its place.

 "\\n" Escapes carriage return. If a carriage return is preced-
ed
by a backslash, both characters will be ignored.

CHAPTER 5: Template, Values File Syntax Summary

54

5.3 Values File Syntax

Format {<field name> <list of values>}

<field name> Any string of characters beginning with a non-white
character that follows a new line and terminating
with blanks or tab characters. Embedded white space
is not allowed. String must be unique.

<list of values> <ranges of values><blank values><values>

List of values for the particular
field name. Values can be any combina-
tion of the three types of values listed.
Values must appear on one line. If char-
acters do not fit on one line, use a back-
slash followed by a new line.

<ranges of values>{%r n..m}

Denotes range specification; n
and m must be integers with n < m. Spac-
es after r are optional. If a particular val-
ue is specified by an integer i, then the
value returned will be (n + i - 1); i must
not exceed (m - n + 1).

<blank values> {%n}
value is n blanks.

<values> Any string of characters. Special
characters must be escaped with a back-
slash if intended to be part of the values.

 \ Escapes blank, i.e., allows blanks
and tabs inside strings.

 \\n Escapes carriage return, i.e., ig-
nores both the backslash

and the carriage return.

 \\ Escape escape. For a backslash

TDGEN User’s Guide

55

character to appear in the output, it must
be preceded by another backslash.

Comment {%c...}
Denotes comment between curly

braces; carriage returns within com-
ments must be preceded by a backslash.

CHAPTER 5: Template, Values File Syntax Summary

56

57

CHAPTER 6

TDGEN Samples

Test data/file generators are:

• Useful in constructing test data automatically.

• A step in the right direction towards “fully tested software”.

• Useful in stress tests of compilers (example to follow).

• Versatile; they can generate data in a variety of formats.

• Useful additions to the software tool set.

The examples given next show several different kinds of TDGEN use.

Example: TDGEN fills in the “descriptors” in the template file, i. e., name,
surname, etc., with that descriptor’s associated data from the data file.
The numbers accompanying the fields specify the field width of the out-
put.

<template File>

{%-10 name}{%-15 surname}{%5 age}
{%-10 name}{%-15 surname}{%5 age}

<values File>

name Art David Saul Lamont John Jack\
Jill Laura Ruth Regina
surname Nguyen Rodriguez Steinberg Col-
lins\

CHAPTER 6: TDGEN Samples

58

McGrath Banducci Dumaine
age {%r 1..100}

<TDGEN Output>

David Rodriguez 29
John Dumaine 50

Example: By using a different data file in the above example, the output
from TDGEN can be another template file of greater complexity. In this
case, we will add another field to the original template - the middle name.

<template File>

{%-10 name}{%-15 surname}{%5 age}
{%-10 name}{%-15 surname}{%5 age}
<values File>

name{%-10\ name}{%5\ midname}.
surname Wong Nguyen Rodriguez Steinberg
Collins\
McGrath Banducci Dumaine
age{%r 1..100}

<TDGEN Output>

{%-10 name}{%5 midname}.Dumaine
61
{%-10 name}{%5 midname}.Wong
21

Example: Now if we take the output from the above example, and process
it through TDGEN with a different data file, we will have a finalized ver-
sion.

<TDGEN Output and template>

{%-10 name}{%5 midname}. Dumaine 61
{%-10 name}{%5 midname}. Wong 21
<values File>

nameArt David Saul Lamont John Jack\
Jill Laura Ruth Regina Janet
midname A B C D E F G H I J K L M N O P\
Q R S T U V W X Y Z
surname Wong Nguyen Rodriguez Steinberg

TDGEN User’s Guide

59

Collins\
McGrath Banducci Dumaine
age{%r 1..100}
<Final Output>

Ruth N.Dumaine 61
John B.Wong 21

As a more elaborate example, use TDGEN to select variables and expres-
sions to generate a pseudo-random Fortran program. This would be the
template file:

 {% symbol } = {% exprA}
 DO 50 {% symbol}={% symbol},{% sym-
bol},{% symbol}
50 CONTINUE
 IF {% exprL} THEN
 IF {% exprL} THEN {% symbol} =
{% exprA}
 DO 51 {% symbol}={% symbol},{% sym-
bol},{% symbol}
 IF {% exprL} THEN {% symbol} =
{% exprA}
51 CONTINUE
 ELSE
 {% symbol} = {% exprA}
 {% symbol} = {% exprA}
 ENDIF
 {% symbol} = {% exprA}
 {% symbol} = {% exprA}
 END

NOTE: This is a template file. The descriptors are: symbol , exprA ,
exprL . Descriptors are denoted by {%. TDGEN will replace the three
descriptors with tokens, arithmetic expressions, and logical expressions
respectively. Let’s look at the file that contains the data:

VALUES FILE

exprA ({%\ exprA}{%\ op}{%\ exprA}) {%\ d}
\
 {%\ l}{%\ d}{%\ l}
symbol {%\ l}{%\ d}{%\ l} {%\ l}
exprL ({%\ l}{%\ d}{%\ l}.{%\ lop}.{%\
l}{%\ d}{%\ l})

CHAPTER 6: TDGEN Samples

60

op+ - * / **
l I J K L M N
d {%r 1..9}
lop NE EQ LE GE GT LT AND OR

NOTE: In this case we have chosen to expand the descriptors into strings
that contain more descriptors. Arbitrarily complicated expressions will
result after repeated calls to TDGEN. Notice that we have chosen the
identifiers to consist of a digit sandwiched in between two letters. Also,
all variables created will be implicit integers since the letters permitted
range from I through N.

TDGEN User’s Guide

61

After the two files have been combined throughTDGEN, the output looks
like this:

OUTPUT

 {% l} = ({% exprA} {% op} {% exprA})
 DO 50 {% l}{% d}{% l}={% l}{% d}{%
l},{% l},{% l}{% d}{% l}
50 CONTINUE
 IF ({% l}{% d}{% l} .{% lop}. {% l}{%
d}{% l}) THEN
 IF ({% l}{% d}{% l} .{% lop}. {% l}{%
d}{% l})\
 THEN {% l}{% d}{% l} = ({%
exprA} {% op} {% exprA})
 DO 51 {% l}{% d}{% l}={% l}{% d}{%
l},{% l}{% d}{% l},\
{% l}{% d}{% l}
 IF ({% l}{% d}{% l} .{% lop}. {% l}{%
d}{% l})\
 THEN {% l}{% d}{% l} = {% d}
51 ELSE
 {% l} = {% d}
 {% l}{% d}{% l} = {% l}{% d}{% l}
 ENDIF
 {% l} = ({% exprA} {% op} {% exprA})
 {% l}{% d}{% l} = ({% exprA} {% op} {%
exprA})
 END

NOTE: The original template file has been expanded to include extra
descriptors. The output itself is another template file.

Consistent with Fortran syntax for integers, {% l} can be replaced only
by I through N, and {% d} can be replaced by digits 1 through 9. exprA
has been replaced with exprA op exprA .

To obtain more complicated arithmetic expressions, the output from the
first call to TDGEN is fed back to TDGEN. Here are the results:

 I = ({% d} / {% l}{% d}{% l})
 DO 50 J5N=M5L,L,K9I
50 CONTINUE
 IF (N9M .LE. K1L) THEN
 IF (M4N .EQ. L7I) THEN K5I = ({%
l}{% d}{% l} / {% d})

CHAPTER 6: TDGEN Samples

62

 DO 51 J9N=J8M,N6L,M2K
 IF (M1J .GE. M3N) THEN M1K = 1
51 CONTINUE
 ELSE
 L = 2
 I4M = J9M
 ENDIF
 K = (({% exprA} {% op} {% exprA}) * ({%
exprA} {% op} {% exprA}))
 K9J = (({% exprA} {% op} {% exprA}) **
{% d})
 END

NOTE: {% lop} will be replaced by Fortran logical operators. Notice
that some descriptors have already been filled in. The file is processed a
third time through TDGEN.

OUTPUT

 I = (3 / I2K)
 DO 50 J5N=M5L,L,K9I
50 CONTINUE
 IF (N9M .LE. K1L) THEN
 IF (M4N .EQ. L7I) THEN K5I =
(M6I / 5)
 DO 51 J9N=J8M,N6L,M2K
 IF (M1J .GE. M3N) THEN M1K = 1
51 CONTINUE
 ELSE
 L = 2
 I4M = J9M
 ENDIF
 K = (({% d} + ({% exprA} {% op} {%
exprA})) *\
 ({% d} / ({% exprA} {% op} {% exprA})))
 K9J = (({% d} / {% l}{% d}{% l}) ** 8)
 END

NOTE: Since there are still descriptors in this output, it will be processed
by TDGEN with a different data file next.

TDGEN User’s Guide

63

After the expressions have been sufficiently expanded, TDGEN will now
be invoked with a different data file to fill in the last descriptors. Here’s
the second data file:

VALUES FILE

exprA{%r 1..9}

op+ - * / **

l I J K L M N

d {%r 1..9}

lop NE EQ LE GE GT LT AND OR

NOTE: This data file contains only terminals, i. e., descriptors from the
template file will not be filled in with other descriptors. Therefore, after
an invocation with this data file, the Fortran file will be essentially com-
plete.

After TDGEN has been called with the second data file, the final output
looks like this:

--

OUTPUT

 I = (3 / I2K)
 DO 50 J5N=M5L,L,K9I
50 CONTINUE
 IF (N9M .LE. K1L) THEN
 IF (M4N .EQ. L7I) THEN K5I = (M6I / 5)
 DO 51 J9N=J8M,N6L,M2K
 IF (M1J .GE. M3N) THEN M1K = 1
51 CONTINUE
 ELSE
 L = 2
 I4M = J9M
 ENDIF

CHAPTER 6: TDGEN Samples

64

 K = ((2 + (6 ** 4)) * (7 / (1 ** 9)))
 K9J = ((3 / K9M) ** 8)
 END

--

65

Index

Symbols
51, 53, 54

! symbol 33
"\n" 53
`stderrfile' 1

A
Actions menu 29
ASCII text file 34

B
blanks 11
blanks and other white space characters 10

C
call summary 14
chapter organization VIII
command descriptor 1
commands, within menus 27
comment field 10
comments 10
configuration file 27, 34
Configuration file lines 34
configuration file, menus 34

D
data table 8
default configuration file 25
Default output 23
default output 13
default settings 34
descriptors 3

descriptors, field names 3
descriptors, format 4
distinct field names 7

E
Edit pull-down menu 47
Edit Template File 48
Edit Values File 48
Embedded white space 9
error checking 7
error message 9
escape characters 10
escapes 10
execute 34
exit commands 27

F
field descriptor 1, 16
field descriptors 21
field name 3
field name descriptors 3
Files menu 30
font

italics IX
italix IX

font, bold face IX
font, courier IX
format descriptors 4

G
-g file switch 23
Generate Now 44
Generate pull-down menu 44

INDEX

66

H
help command 27
help frames 39

I
input 35
install script 34
internal ‘‘stack’ 27
Interrupt key 27
invocation, from script 22
invocation, random 17
invocation, sequential 18
invocation, table summary 20
invocation, without template file 21

M
Main menu 37
manual organization VIII
menu 26
menu tree 26
menu, action 29
menu, files 30
menu, main 28
menus, using 25

N
noshowmenu 35

O
on-line help 27
operating system commands 1
Options menu 31
output 35
output file 1, 16
output, redirecting 23

P
pre-defined descriptor 16
pre-defined descriptors 1, 5, 16

R
-R switch 17, 21
-r switch 17, 20, 21
random invocation 17
Random Mode 40

random option 17
range values 10
re-defined descriptors 1
run 34
run-time parameters 34

S
-s option 18
-S switch 21
-s switch 21
save command 32
sequence 34
sequence file processing 18
Sequential File 48
sequential invocation 18, 20
sequential option 18
Set Editor Command 47
set variables 27
sfile 18
sfile example 18
special descriptor 16
special text IX
stack 27
standard input 13
stderr 1
STW 38
STW /REG 38
STW Advisor Invocation window 38
system command execution 4

T
-T switch 20
table summary 20
table summary switch 20
TDGEN calls 13
TDGEN main menu 38
TDGEN operations 39
tdgen values 35
tdgen.rc file 32
template 34
template file 1, 8, 15
Template File Definitions 53
text

"double quotation marks" IX
boldface IX
italics IX
special IX

text, boldface IX
text, courier IX
text, italix IX
times 35

STW User’s Guide

67

U
user-defined descriptors 5

V
value descriptors 3
values 34
values file 7, 8, 15, 17
values, range 10
variable fields 3
vi 48

X
X Window System 37

INDEX

68

