S-S E E E R EgEEER

TestWorks

from Software R 97éar¢:h

Software TestWorks
Ny
W

STW/Coverage Tool Suite for C
(Book 1 of 2)

TCAT: Test Coverage Analyzer

S-TCAT: System Test Coverage Analyzer

*\
NS¢

This document property of:

Name:

Company:
Address:

Phone

*\
N IE¢

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT
Fax: (415) 957-0730

E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update July 17, 1995)

Table

of Contents

PART I: TCAT USER’S GUIDE

CHAPTER 1: TCAT Overview..........ccuurseeeasecncnsasssssssssssananas SRRRSRRI—— |
1.1 The QA Problem ... ceecrerrs e secsssne s s e s s sna e s e s ssnmnannes 1
1.2 The SOIUION ccimsusssssmussssessssmmms TS I GRS AR SR RN LR SRR R RS VNS 1
13 SR'S SOIULION ... 2
14 Testing @nd TCAT ... s ene s s 3
15 Software Test MethOtS v sssrsssusmunssssmusnsnssssunsasiasssssssmasnssasssasssnssesnine 6

Mantial AnalySis: «ucumusssrsmsmsssosmessmimms s o ovesmsymim s s o s 6
SHALC ANAIYSIS ..uiiiiiiiiiiiiiie et 6
DYNamic ANAIYSIS: wsssseosssmmssssnssusns smuesnss sissssasassssmsooms sose s pansvavsonioof asenmnssssmanes 6
1.6 Single- and Multiple-Module Testingccocvimiirmrmmmeesssncsinniseereneanne. 7
BOtOM-Up Lo 8
TOPDOWN ssssmeravess svnssssmesssns somss s sms e o T e RS A P SR ars 8
1.7 TCAT'S Cost BeNetits ..c...cccccissinissnismnassssssnsassisnninsonasssossssssnensnnunuussnissss 8
Improved Error Detection ::sumsmsmsmsmissssmominsssmessa isinse st soissaimss snvsaanissnes i 8
Earlier Error Detectionoooviiiiiiiii 9
More Efficient TESHNGoovviiiiiiiie e 10
Minimal TeStSEt «.:uuusminesmssraasmsvswsvsmssas s o e vE s e s S 11
Assessment Of Progresscccoiiiiiiiiiiiiiiiiiiiiii 11

CHAPTER 2: Quick Start......ccccceeiiiiiiieinsmnnesscsssssssssssnsssssssssssssssssnnes 13

241 Recommendations .smsissssmsisssminiimmsmisscisnssismissiamamssis 13
211 STEP 1: Starting Up TCAT ...t 14
2.1.2 STEP 2: INVOKING TCAT ...oiiiiieiiiie ettt 16
2.1.3 STEP 3: Opening the Instrument Windowccccovvveieeiieeniinecenieeen, 18

;

Table of Contents

2.1.4 STEP 4: Choosing a Target Programccccevuiiiiveiiiiniiiiieeeniiinnnnen, 20
2.1.5 STEP 5: Running the PreproCessorccuuuieeiiiiiiiieeieiiineeee e 22
2.1.6 STEP 6: Instrumenting the Application............ccccocoiiiiieiiiiniii 24
2.1.7 STEP 7: Opening the Execute WindOW............c.cccoeeviiiiieiiiiieiniiicieen, 26
2.1.8 STEP B: COMPINING wxsssvvcaovesssonsuasssvsn s mssussimsmnssmmsnsnsstsoss s ssssmsnssas 28
2.1.9 STEP 9: Choosing a Runtime Version.............ususssssessmsmsmmsissamsmseiismsnsnss 30
2.1.10 STEP 10: Linking the Applicationccccciiiiiiiiiiiiiiiereeeececcen 32
2.1.11 STEP 11: Running the Application - Part 1........c.ccccciiiiiiiiiiiiiiinne, 34
2.1.12 STEP 12: Running the Application - Part 2cccccccceeeiiiiiiniicnnicnnne, 36
2.1.13 STEP 13: Opening the Analyze WIiNdOWcccccciiiiiciininiiiiiecniinnennne 38
2.1.14 STEP 14: Choosing a Trace Fileccccooeiiiiiiiiiieiiiiieiiinieeeeeee e 40
2.1.15 STEP 15: Choosing Coverage Reports.........cccccuumvieriimminmiiiriiiiiieieeeeeeeen 42
2.1.16 STEP 16: Viewing the Coverage Reports........c.ccccvmriieiiriiiiineciciiciinnnn, 44
2.1.17 STEP 17: Selecting a Digraph of a Module.............cccceeeiiiiiiiieiciiiiinnnnn, 46
2.1.18 STEP 18: Viewing a Logical Branch's Source Codecccceeveerinnnnn 48
2.1.19 STEP 19: Sign Off and Cleanupcoooieiiiiiiiiiiiiiiiiie e 50
2.2 SUMIMATY a=ssrswsinsirmssstssssars ansm i sasiss e sasiTatus siinnsh e aue aiaiis s aisssses aras 52
CHAPTER 3: System INtroduction ...c..ccsssssesssussassenssnsnsnsunnsens WU, - -
3.1 (0 1V7=T VA T=ATIV o i 07 N 53
3.2 HOW 10/ USE: TOAT .:-uxumsosnssnenssnssssunsassmsnbnssonsnssssssansssnssussenisassussssasusassiseas 53
3.2.1 Preprocessing Source Code.......q:ummisvemnsmmipisnmmsmsrssie 57
3.2.2 Instrument Program COdeceviiieiiiiiieiiiieeiiiieiives e aeareeveee e e saeeas 57
3.2.3 Compile and LinKk COAEueeeiiiiiiiiieiiiieiee e 73
3.2.4 Execute Program and Generate Trace File.............ccccccooiiiiiniiinnn. 73
3.2.5 Generate Coverage REPOMScuuuvuuuiiiiiiiiiiiiiei e ee e e e eeeeaaannninenens 73
33 CONCIUSI N mn s s e e R T TS SRR AL e AR 87
CHAPTER 4: GUI Operation............... APRERRE— EER——— 89
4.1 USOr INEITACE . cvw.iuserssimsuanmnsissssssemmssumsimsssisssmsssesissis s RaasRasRssas¥es 89
4.1.1 File SelOCHOMN BOX i iuirerisv-ctmsnnmrarssssassiisminesanmensnssssnns sonsossmosomrsssssamsnasnsss 89
412 Help BOXES ...oouvviiiiiiiieiiiieeeiececeeee e s e e mmmasm o o e kA 91
4.1.3 MeSSAJE BOXES ..ccoiiiiiiiiiiie e 92
4.1.4 OPHON MENUSuuiiiiiiiiiieiiiie et e e e et e e e e e e e e eeeee e e e e aeaeaaees 93
4.2 INVOKINGITCAT s s s e ey i es Sy aeievsteasciasaass 96
421 Selecting Main Window OptionS........cccooviiiiiiiiiiiiiiieee e 97
4.2.2 Exiting the Main WINAOWuuiiiiiiiiiiiiiiiiee e 98
4.3 INStrUMENtING s rin e asasasmassrssessssiasiomaivass 98
4.3.1 Selecting the Application Name..........ccccooviiiiiiiiiiiiiiiiiie e, 99
4.3.2 | SOHNG OPUOINS . usssssnsnssnnssmnssnsysssunssonsse s assees s oSS ST LS EaPE 100

i

STW/Coverage/C User’s Guide

Preprocessing Option MeNUcccvuiiiinmiiiieiciieee e 100
Preprocessoroutput suffix.....uusssrnmsmninmsmisasn i i 101
Preprocessor COMMANG umussessussmssssssssson i smsusmvs o s ms s ess i osioisamavassis 101
PreproCessSor OPHIONSuiiiiiiii s 101

Instrumentor COMMEANA..........ocoiiiiiiiie e 101

INSEAUMBNTOT OPtIONS susisssssusvisusines suusssmmniss sosssnssmssisses s donpasnsshesssans aFeaTs easbar s 101

4.3.3 Preprocessing YOUr Program........c.cccecereerneersisnenenessnrnescnesssssensssoneessns 102
Preprocessing IRESUNS: .sussrissss sssmsms imavsniisssmisnes snsas snsssnnsns 55345555540 b ansamnssns 103

4.3.4 Instrumenting YOUr Program.........ccccueiieiiiiiiieeeie et 104
Instrumenting RESUIScciiimiiiiiiniiimiommnmeonesensessenssaneresssnsonessassaes 104

4.3.5 Exiting the Instrument WindOWccccoeiiiiiiiieiieiiiicc e 105
4.4 Running Your Programccccccmiiisiicsnsscssissssssessssssssesssssssssnsssssesnns 106
4.4.1 Invoking the Execute WINAOWcooeiiiiiiiiieiieiiicciiecce e 106
4.42 Setting OPHIONSciiiiiiiiiie e 107
4.4.3 Compiling the Instrumented Program.........ccccceeeveiiiviiiiiiiiineee e 108
Compilation ROSURS: v uswmumssmsssmimimssrmimssoo o ssmes ways s s s 108

4.4.4 Selecting a Runtime Object Modulecccoiiiiiiiiiiiiiiiiiccice 108
445 LINKING oot e e e e e e e e e e e anne 109
Linking RESUIScoiiiiiiiiii e 109

4.46 Running Your Applicationcceouiiieeiiiiiiiiiiieire e 110
Running ROSURS :ivsiu.cmsoos sisivmmmmanssisvimn dissons sossasssasssnssssinsibibaoatsishasnsnsssnn 110

4.47 EXxiting the Execute WIiNOWc.cuueiiiiiiiiiiinee e 111
4.5 Using make FIlesccasiicsiisssissssasmiseinansmnsanssanssssssmsssssnssiss isasivasis 11
4.5.1 Preprocessing, Instrumenting, Compiling............uuevueiiieieieeeeeieiiiiiinnas 111
4.5.2 Linking Object MOAUIESccoviiiiiiiiiieiiiiiiie e 112
453 Example Make FileSccccciiiiiiiiiieiiice i 113
4.5.4 Running Your Make Filecccocoiiiiiiiiiiiiii e 115
4.6 Obtaining Coverage Reports..........cccevcuemmmmmmmmmmmeneenennnnsesssssse s ssnnnnnes 116
4.6.1 Invoking the Analyze WINdOW............cocoiiiiiiiiiiiiiiiiiieeceiie e 117
46.2 Selecting the Trace File Name:c.cvvusecininssmsnminessssassissessssmmsasias 118
4.6.3 Selecling REPONS .cusuinssswmmisssossssumsnsssiomsmssissssssmasiss s s masasssis 118
4.6.4 Selecting Coverage Analyzer OptioNS..........cuuuveieiiiieiiieiaereiiesieiiiiinnanns 121
4.6.5 Running the Coverage Analyzer...........cccocociiiiiiiiiiniiiieiiicccicc 122
4.6.6 Looking at Coverage RepOmMS.......ccoiiviiiiiiiiiiiiiiiiieieeee e 122
4.6.7 Exiting the Analyze WINAOWc.ouiiiiiiiiiiiieee e 123
CHAPTER 5: GUI Reference. . . uwmsisnisssassisssisnsinsmssssissoss 125
5.1 TCAT MENUSeeeiiiniiriisressnssssssses s s ne s e ssnsessssnsssssnesesnnssesssnsessnnnenean 125
5.2 L1V T T AT T o S 126
' Bt el N R ——————————————————— 127
5.2.2 HOIP BUON.......cooivueemuossssnsnersssnssasnsassssssssnssnsrssssnssnsssnssnssassasnonssiant —

iii

Table of Contents

5.3 Instrument Window ... sssssssssssssessssssmssssssssssnsas 129
5.3.1 File PUll-DOWN MENUcoouiiiiiiiiieeciii et 130
5.3.2 Action PUll-DOWN MENUcoiviiiriiiiiiiiiee et 131
5:3.8 Help BUON umsmmsmmimmsmmmsummmsssssmnssmsss s e o0 smsrasm 131
5.3.4 Preprocessing Option MEeNUcoooieiiiiiiiiiiiiiiiee e 132
5.3.5 Preprocessor output suffix Specification Regionccccccecvvivininnnnnn. 132
5.3.6 Preprocessor command Specification Region............cccccvvevriiiniiennenn. 132
5.3.7 Preprocessor options Specification Region................cceeeeiiiiiniinnninnnns 132
5.3.8 Instrumentor command Specification Region.............cccccoviiiiiiniiiinnnnnns 132
5.3.9 INStrumentor OPtONScoivuiiiiiieiieeiie e 132

Recognize _exit as keyword Buttoncccociiiiiiiiiiiii i 132
Do not recognize _exit as keyword Button..............cccceiiiiiiiiiiiiiiiiciicie 133
Do not instrument functions in file BURON......cvwsieimmmmsisismmmomsimessssizenses 133
Specify maximum file name length Buttococcciiiiiiiiii e 133
Specify maximum function name length Buttoncccccviiiiiiiiniiiiies 134

5.4 Execute WIiNdOWcccciiiiiiimmmmecesiiniiiissnsesssssssssssmnenmsanssssssses 135
5.4.1 File PUll-DOWN MENUccoiiiiiiiiiiiiiiiiiiiiee et 136
5:4.2 ACHON PUll=DOWN MO coossmiwsssmmssssmsssssss s menmsmssissssisssiansmsmymysomssss 137
548 Help Bllton: .o omsaserss visrosassss s s s ms s 138
5.4.4 Compiler command Specification Region.........cccccoeveviiiiiiiiiiiiiiiinne 139
5.4.5 Compiler options Specification Region..........ccccovvvevvreeeiiiiinninicceciinn 139
5.4.6 Linker Command Specification Regionc...ccccveiriiiiiininiinniineneen. 139
5.4.7 Linker options Specification Regioncoooeviiiiiiiiiiiiiiniee e 139
5.4.8 Make command Specification Regionccocccceviiiiiiiiiininiiiineenn, 139
5.4.9 Make file name Specification Regioncccccevviiiiieieiiiiiiiiiee e, 139
5.4.10 Application name Specification Regionccccccccrriiiiiiiiiiiniiiiinnn, 140
5.4.11 Application argument............cooeiiiiiiiiii s 140

5.5 ANalyze WINAOWcciiiieeeeirimeeniiiinirssnensnesnsnssnssesssssssnsn e sasssasessssssssssnens 141
5.5.1 File PUll-DOWN MENUuiiiiiiiieieieiit et e e nanes 142
55.2 Action Pull-DoWn MENW :.u.uvasvsmmsssssmsmessimmsmimsmss s smmessyssnssss 143
5:5.83 HEIP BURON uoussurisssssmssmssusmsmunyors v ovssesmssnsssamasyss dasivaes sissssvsses sssss s uaesass 144
5.5.4 Past tests Check BUON ..cisussusevsssmsasmmmsmmsvsssiamissssrus s sassessaes 145
5.5.5 Cumiulative tests Check BUtOn uswmsammaimsmsssinmnnasrmsmssvismmeas 146
5.5.6 Hit CRECK BUMON .cvviirinminmeasrioingisonbinsionnsnmmsmennmssmnsebmnssonsesssssis id saaassonss 147
5.5.7 Not Hit Check BUONcooieeeee e 148
5.5.8 Newly Hit Check BUttOn ... 149
5.5.9 Newly missed Check BUutton.............iiiiiiiiiiieiiiir e 150
5.5.10 Log histogram Check BUttoncccoooiiiiiiiiiiiiiiiiii e 151
5:5.11 Linear histogram Check BUONcow s snsmspsssisvopsnsvaasos 152
5.5.12 [Reference listing Check BUtton .suse s sssumsvsnmsssssmsssssssssnasossnssus sasmsovess 153
5.5.13 Do not report function in file Check Button........c..ccccceevviiniiiiiiiiiiiinnnnn, 154
5.5.14 Generate list of functions with C1> Check Buttoncccccvvvinnenns 154
5.5.15 Generate list of functions not included in report Check Button............. 154

iv

STW/Coverage/C User’s Guide

5.5.16 Do not update archive file Check Buttoncccccoiviiiiiiiiiiiiiieeees 155
5.5.17 Old Archive name Check BUttonccccciiviiiiiieeiiiiiiiiic e 155
5.5.18 New Archive name Check BUttoNn...........cceeevviiiiiiieiiiiiiiiec e 155
5.5.19 Rename the report file to: Check BUttonc.ccccceeviiiiiiiiiiiiiiieeeees 155
5.5.20 Change the report width to: Check Button..............c.coooeeiiiiiiiiiiiiiinnee, 155
5.5.21 Sort report by module name Check BUttoncccccceevviiiieiiiciiiineecn, 156
CHAPTER 6: Command-Line Activation.........ccccccummmmmmemmnemeneeeeecnnee. 157
6.1 Command Line USage.......ccovmerrnrsinsnnnrsinnssnesisesssemnee s sesssssnesseesssnnnes 157
6.2 KICAt! COMMBNG :.comusismsssinsmsssonssnssnsvinssssnnmsesssssinssussmssss AR R 157
Options: and Paramelers: .. s ssiiussimasssass s s i e e 157

6.3 ic Instrumentor Command........cccccerriiiiinninniinnsnnrenes s e csseneeas 157
Options and Parameters: i ssssammmimsssonses e issmss s s aseis s 158

6:3.1 Flle SUMMATY oo rosssasmss vomssmmvoss v s s s s s asmin s s amnmmn 161
6.3.2 Instrumentation DireCtivecoooiiiiiiiiiiiii e 162
Application Of DIr€CHVEcccuuiiiiiiiiiiiiieeei e 162

Proper DifeCtiVe PlaCeMiONT . qu s evssmusnommusssovssmmsssyssn s s sasshupasin 43 162

Improper Directive Placementcccccooiiiiiiiiiiiiiicc 166

AdAItIONA] NOTES ..o e e 166

6.4 cover ComMmaNd ..ciccciassinsenisssussssinssisssisissiiiiissss s siasaiimes 167
Options and Parameters...........eoiiiiieiiieiiir et 167

6.4.1 File SUMMANY ..ccoiiiiiii e e e e e e 173
6.4.2 Trace File Argumentoouiiiiiiiiiiieeieie et s 173
B6.4.3 AIChIVE FilES coovuiiiii i e 173
6.5 ‘mkarchive’ Uity :cosssmsmmmmcinmommmasimtassiiisiritimiisis oo issinn 174
6.6 Command SUMMANYccccciiemeriissnsseneminsmnsii s sssesa———— 174
6.6.1 Instrumentation, Compilation and LinKingccccevviiiiiiiiiiiiiiiieeeeeeees 174
StaANA-AIONE FlES ..oeeiiiiiiiiii e 175

Systems With make Files:.:awussmmmmmvmmmmmimens R R R SRR AR R 175

make Files With cc Called In DireCtiveS.........cooeviiiiiiiiiiiiiiee e 175

A System Which Does Not Use make Filecccooiiiiiiiiiiiiiiiniicce 176

6.6:2 Program EXeCUtON ... aimmmmis s s s sim s 176
6:6:3 Coverage ANAlYSIS. umes s raiseiinss iassesssss ssaissasi o nmiisnm e nimmmmssinnens 176
CHAPTER 7: Runtime Features.........cccommriiirmemecininncessesseccessnssesnens 177
7.1 Runtime Descriptionscccccccmmrimeeinnniiimiminie s ssssssesesenssnnnes 177
7.2 Special RUNtIMES.......eerrreeerrrrr s e 178

Table of Contents

CHAPTER 8: Customizing TCATccccccviiiiscnmnnmmmnsnnsenns R—— 179

PART II: S-TCAT
CHAPTER 9: Introduction.....ccccccceiinienn. SRR ——— ERRpS— e 183
9.1 AUAIENCO civiimsisisssmmmnmsssinsssasissnsiasssnuisssinsisssaseissinsvsnssssasaaisssumianssssnssasss 183
9.2 PUNPOSE ...cocorinnminmssiinssasmsssnsnsnssssssss iuassssssasssstssassssssnsassnassanmnsssansssanamitins 183
9.3 Manual Organizationccccceiiiinnininnine s 184
CHAPTER 10: OVervieWwiiiccsnnennnsnsssnsssnsssnsensnns SR | - 1
10.1 Why System Test Coverage AnalySisS?.......ccccceerrnemrrissnmesnnssssssasnnnss 185
10.2 QA Problems AdAreSsedccs cssiciisssmssinsasssssnissonsssssasssisansisss 185
10.3 Cost Benefit Analysis.......cscinnnmimiisinminssminmnisnamssiins 186
10.3.1 Improved Error Detectioncceeeeiieiiiiieieieeeeecccceeee e 186
10.3.2 Earlier Error Detectioncooovuiiiiiiiiiiiiiieieee e 187
10.3:3 More ETHCIENT TESHUNG «.omuunimsmsmssmovesnssssaviassansssisasssassvissusssaisassayes 188
10.3:4 MiniMal TOSt SO ..:ouvmivnsnmmmmminvmsisisvimimissmrinm i o d s 188
10.3.5 AsSessSMeNt Of Progress.......ccovuiiiieiiiiiieieiiee e eeecccceie e e eee e 188
10.4 Software Test Methods.........cccecveiiiiicmiieicnerc e nee e 189
10.4.1 Manual INSPECHONcciiiiiiiiiiiiieecccce e e erare e e e 189
10.4.2 Dynamic ANAIYSIS suisssissssmsssmosissasvssmssmsssss svvivsivmissivsssinsinaimsgivesss 189
10.5 Multiple-Modiile Testing . ::xsusicasssussnswsessissassssisssmssssssrassamasisanssinies 190
10.6 Hierarchy of Coverage Metrics........cccoooeirierrccmmninsssnsssssssssesssssssnns 190
10.7 ST MOASUIe . ::icicicusmsisssnsvsssimsissmisissssissassissrsissssu ssvarsssiviuminanassasasnsiesvs 191
10.8 How Does S1 Relate to C172...... i cccceeereccererseeesrcsses s ssssssensseeeees 191
10.9 Advanced Coverage MetriCscccvirciicmerrriceeneneeeec e e e csenneeenas 192
CHAPTER 11: Instrumentation............... SO — 195
1.1 VBT VIOW s:4susessmsesnnsususinssonssssisasnnnssnssinssuossonsussssaos sssmeuaNRvmaRERRS RERRRORHIS 195
11.2 INSErUMBNEAION civicissiisasmissiniiiminssnssassnssinisssaussssinssnssssssssssisnissamusanmmsg 195
1122:1 The IRStUMENTON smasusmuminsamsmss smmsasmss o smnmnmnpmss jasw s eisin sosnnb oy unssiinin s siss 196
11.2.2 Excluding Function Calls from Instrumentationccccccvvvvieeeeeenns 198
1.3 DOS Instrumentation.......iiasisisaiisssissssassisisssmessssssssasssssss 200
1.4 UNIX Instrumentation.........cccccimmmmmmeesininnnnininsss e 200
11.4.1 Instrumenting With ‘'make’ FileS.......ccccooiiiiiiiiiiiiiieere e 200
11.4.2 Example ‘MaKe' FileS......coouuuiiiiiiiiieeeeee e 202

vi

STW/Coverage/C User’s Guide

1.5 File SUMMATY cii..c.cosmvisissssmmvimmssvisiisimsamsmimimimsiissis s 209
11.6 Embedded Systems ... 210
CHAPTER 12: Compiling, Linking and Executingcccocccunnennnee. 211
121 Runtime Descriptionsccccimiimiiiiiiiccinccsc s 211
crun0 - Raw Tracefile (“quiet” runtime).........cccccoviiiiiiiiiiiicccc e 212

cruni - Standard Tracefilecooviiiiiiiiiiii e 212

MS:-DOS RUNLMOS .cusvuvisssmssssssiusmossasssmovsamsassinismessisssssasss smvinssss s ssaisassssns asasiavis 212

12.2 Special Runtimes (for UNIX only).......cccciciiiimeimennccceseecccseesessessnens 213
crun2 - In-Place ReAUCTIOccovciviiiiiiiiiiiiieeece e e 213

Erund = MUltiple PrOCESSES ..c.u:uruisunsusssussssssnisessnsssmsonsisassssuessssssisiviammivsvsinsosss 213

cruna - Multi-Tasking (or forking runtimesccccooiiiiiiiiiieee e, 214

Crunc - Cross DeVEIOPMENTcoiiuiiiiiiie e 214

123 Executing the Instrumented Program..........ceccecemmrrrccnnernssccsencnennnn. 215
Performance Considerationscooviiiiiiiiiiiiie e 215
CHAPTER 13: Coverage Reporting and Analysis.......ccccerrminssssnnnnns 217
13.1 Producing RePOTES ...i.ucumussssmsnsennsnisssssssssusssssssisssssssnmsissssssisssssssissss 219
1311 BEPOITt TYPBS sinausmsn comsssssomemmminmsnenssnssimanssiss issfinmss seossssnininrsissinsnnriassnannns 219
13.1.2 Trace File Argumentouiiiiiiiiiiiiic e 219
13.1.3 ArChiVe FilES ... aeenes 220

LT I =ToTo) V=T S g | = . O SPPPRPRRRRRN 220
13.2 ‘mksarchive’ Utilitycocciiiriircsr s nececceenee e en e 225
13.3 File SUMMArY ...t 227
CHAPTER 14: Menus............... S ——— —— ssmsassssisanss OB
141 S=TCAT/C ASCI MENUS .:icsissssssmssssssisvssasssssmsassasssisssmmmnssnasesiaeasiss 229
1411 INVOKING ST AT ...ttt e e e aee e e e e e e esanans 229
14.1.2 S-TCAT MENU TrEE....cciiiiiiiiiiiiiii et 230
ISSUING COMMBNGS v cosssrivsmaiss sissiiviesinisssinns iasnneessansmasnasnanssssmsssasss anssssenssnnsaves 230

Displaying Current Parameter Settingsccccceeviuiiiieciiieiceeccee e 231

S:TCAT MENU "STACK' wissuivuisssnisissssasunsssasismsmissssissinsnnsessnnnos sasnsmsasssssssans asssnsne 231

T4.1.3 MAIN MENU. ..ottt e e e e e e e e e e e e e e e e 231
1414 AGCTIONS: MBI s usisussenssumvssssssmssnssmsssissosismssssssmss e s osis i cins s s msine 232
FILES MONU w.civ0ss0sssussmsssusnesssssissunsres ssmansssusssesinssissassssssassssesnsavassas sysass s soiansassss 232

14.1.5 OPTIONS MENU ..coviiiiiiiiiiie ittt e et ae e e e e naaaeas 233
14.1.6 Saving Changed Option Settingsc..cocurueiuiieciuciicieicirceeeineens 233
14.1.7 RuUnnIng Systermn COMMENG . mimsssssmmmmm s s mim ey 234

vii

Table of Contents

14.2 S-TCAT Configuration File.......ccecerremerrrreicercsrrnercneesn e ssneeeaes 234
14.2.1 Configuration File SYyntaxcccoeviiviiiiiieiieiiece e 234
14.2.2 Sample S-TCAT Configuration File..........ccccooooviviiiiiieeieiiiiieee e, 236
CHAPTER 15: Command Summary: MS-DOS, OS/2.........cccccerrrnnnee 237
15.1 Instrumentation, Compilation and Linkingcccccuvivemeeriiniinnnnennnnns 237
15.1.1 Stand-AlONe FlESovviiiiiiiiieeee e 237
15.1.2 Systems With ‘make' FilesS...........uuuiiiiiiiiiiiiiiiiiciieee s 238
15.1.3 ‘make’ With ‘Cl', ‘MSCoiiiiiiee e 238
15:1.4 Systems Without ‘make' FileS .xusumssamseensmsmmmimssrss sy 238
15.1.5 Program EXECULIONccccuiiii et 239
15.2 Coverage AnNalySiscccuvuerirsssnerssisemssisnssnsssssssssssssssssssssssssssssnssenses 239
CHAPTER 16: Command Summary-UNIXccccererrnn. SR §
16.1 Instrumentation, Compilation and Linkingccccceriniimninineccnnnnes 241
16.1.1 Stand-AloNe FIlESociiiiiiiiiiiieeieiie e 241
16.1.2 Systems With ‘make’ Files....uumsmmsssiminnmsismssssinsmsismesismsmms 241
16.1.3 ‘make’ files with cc called in directives.........cccuvivvieiiiiiiiiiniie, 242
16.1.4 A system which does not use ‘make’ filescccccveeveieiieeiiiiiiciiciie, 242
16.2 Program EXeCUtioN.......ccccueeemmmmmemecmmericemrs s s s e s s s ensannnsnansanes 242
16.3 Coverage ANalySiscccceervrrenmeriimmiissssnssinn s sssss e s ssssessss s 243
CHAPTER 17: Full S-TCAT Example........ccceeeeeeeeenenees creresernnsnsssnssanen 245
171 INtrOAUCHON ccissvisissssssnsusmssssssssmninssassenniussnsasissvosvssitsrsenssrasResETsosvaRamRES 245
17.2 Preprocess, Instrument, Compile and Linkcccooeiiiiimnnnncenennee. 249
17.3 Reference LiSting cccccccmiiiiiiiicnnaenisisiiccneencninsisencnasnesssesaenssnssenes 254
17.4 Instrumentation Statisticsccvviicemeiircicsi e, 259
17.5 Call-Pair LiStingcccviiiiimcrsninineissscsssnsssesessne s serssssssssssssssssensnsssns 260
17.6 Reading S-TCAT Reports.....cccciuisssnisnsasssnssssanisasssntssssnssssssiassainsssins 261
17.6.1 Cumulative REPOIt........ouiiiiiiiieii e e 261
17.6.2 Past REPOMot aa e 263
T7.6:3 NOUHIt BepOri.........coccommmmemmnrasmssansnssnnssnsisansineos sananssioniissp sssiimvissmssmi 263
17.6.4 HIt REPOM ..ot eeeeeeeeeee et ee et e s e e s s s st esesessas s e nnnenenas 265
17.6.5 Newly Hit ROPOM.........occivimeiemssommsisissssssmassammsemssmsimsim s smnmmes 266
17.6.6 Newly Missed REPOH...............cossassininasmssasssaissms s mss s 266
17.6.7 Linear HiStOgramuuuuiiiiiiieiee e eeeeee e e s e e e e e e e e e e eesnnnns 267
17.6.8 Logarithmic Histogram..........ccccoiiiiiiiiiiniiiiii e 269
17.6.9 Reference Listing S1 Reportccoociiiiiiiiniiiiccin e, 270

viii

—

STW/Coverage/C User’s Guide

17.7 SUMMATY 55 asitaasiieuaississsisaisss S aatistrasasisnssssssnnsns ancssss 273
CHAPTER 18: Graphical User Interface (GUI) Tutorial...........cccuueeee 275
18.1 L NVZ T o= (' o SRR 275
18.2 USING S=TCAT/Ccivssuscinsurissnassunnisisnnnssonssnsonsorssssssnsmssavssasvsmmsssnaosninsss 276
18:2:1 |NSIRIMBIAL. ... crrmnmsnnansansmmsvnssnmanssissmmsasersssnsnmmmsnsmnsmsrrasssiass ieasrassaasnsronenrans 277

18.2.2 EXECULE....uuiiiiiiiiiiiitieee et 279

18.2.3 ANAIYZE ..o e 283
CHAPTER 19: Testing Guidelines: S-TCAT/C.....coeeeeemmemeeenneeenns 293
CHAPTER 20: System Restrictions and Dependencies.................. 295
CHAPTER 21; ROIarantes «cmmummsusmssarssnsasmsmnsansssivismimumsnmissmss 297

PART III: SOURCE-VIEWING UTILITIES

CHAPTER 22: Xdigraph Utyc.cccumunssnmsomsssssssssssssansass 299
221 PULDOSO ssvisssenssnsssssssnmsssssssnassssssnississsiassiimaassams saisismin sty svavvieissss 299
22.2 Xdigraph File FOrmat.....c.ssusasessssinassssssssassassosscvssssmssssssisasissscammmnansen 299

P2 02 W Bo |1 = To] B || (=1 LAPSUSERSEES———————————v————E— N —————— 299
22.2.2 Miultiple: digraphfilEsT i mmussvissiinmnissssmminmmaeraraisiisasiimissbnnmsnsnions 299
223 INvOking Xdigraph ::ccsesssissssssssssssssssssissssssnss ssnissssasnssis sssnsssnsssnsnnssnis 300
224 Xdigraph Main WiNAOWciciimiiniiesiinnssenerssesssssesssssssssessnsenes 302
2241 Fle.ueiiieiiieee ettt e e e e et e e e e s e annae e e enanes 302
P2 © | o) (o] o E= PP 302
P R I A To 12 o 1 | o E PR 302
22.4.4 ZOOM OUL..coiiiiiiiiiiiie et e e e e e e e 303
22.4.5 VIBW SOUICE.....uuiiiiiiiei ittt e e e e e e e e e e s 303
22.4.8 STAISHCS ..uveeiiiiiiiiiei e 303
22.4.7 PIINT oottt e a e e e e 303
2248 ANNORAYON urvvvssssssssvssmsssvemuimivsmisssnssemsisissssesmmsss sy staimmis i isves 303
22.4.9 HEID sssivisssvissssasiimmsinsnmons i ssnss s miss sions iasvssannsasansssnssnmssavsnsesussrsssasssssaosennes 303
225 File PUll-DOWN MENUccceeiiiinrriiieriseesessesessssnnesssnsesessnssesnsssssssesans 304
22.5.1 LoAd NEW Graphooeiiiiiiiiiie et e e e 304
2259 LOAd NEW MOGUIE.......cociiiiiieee e 304
22.5.38 St ATCRIVE. ...civoscissssssssinsnnsasenesssasd ifiFF8slsasiisssmssnssiaivsmmiis visisvisssssisanes 305

ix

I—

Table of Contents

22.5.4 EXil.cooiiiiiiiiiiiie et 305
22.5.5 Digraph File Message BOXccccvieiiiiiiiieeiiiieeeiie e 306
P T | (= TR 306
P2.5.7 DITCCUOTICS: sunsvmsnsssnninioos s s s ias i ik {55565 R a0 5 A S RS 306
22.5.8 FIlBS coeiiiiiiiiciei e 307
22.5.9 SIECHON ... it e 307
22.5. 10 OK oottt e e e e e e e e e e e e e e n e e e e aaaaaas 307
22.5.11 Filter BUNON cuusssisivi masvosnmovunnsinssssissisisiss st i insisssvvses oy siussssmsons 307
22.5. 12 CANCEI c.ocvviiieee et e as 307
22.6 OPtioNs WINAOWcccciiiiiemmininnssesrnisssessse s cssssssssssssssssssssssssssenas 308
22.6.1 ZOOM SCAILccoeeeeieeeeeeeiiie et e e e e e e e 308
22:6.2 Node Characteristics . i:. s s smsm s st 308
T o Ry 309

Y72 TSRS P UUPURR 309

Vertical SPaCINgccooviiiiiiiii i s 309

ASPOCE FATIO ... conennsnmmnmisomnnnmsnnssmsnions 55 snh 755 T5m e SaiE TS AR RPN S A SRR RS AR TSRS 309

22.6.3 Edge CharacteriStiCScccoeeeiiiiiiiiiiie e e e 309
Unhighlighted Edge’ caua- s s mams e s s iy 309

ECCONTHCHY" i:vussnussesnmmommnimusimmssssssimassossminsssomess s senssumamessessyeasiuiiaeo sy (yasasissssssns 309

(D11 7= 1011 07 oY SRS OSSPSR 309

LOW-IBVEI COl0OT ... e 309

NOTMANCOIOF xusvusovsmsnsismsmsmnsmnsiasssessssmsomaes oy s s R Ao T e e 309

High:=lovel COlOr ..;u.siiausimmmssumsmomnssssmsssmimsssoimrasssesiussssssmsismmasssnims sy 310

AADPIY et re e eaae s 310

[(=TT =] O RRRSSPPRPPN 310

[Ty am——— 310

HEID ottt 310

22.7 Zoom InfZoom Out WINAOW :....ccsussssssisssscsisasammssnsirsamsussssnasinsisssnssss 311
22.8 View Source WindOW.......ccceeeeeeuiiiirmmmmminmmmmmemmscesssmsmmsssmisssssesnessssannes 312
22.9 Statistics WiNAOW......ccccvmmiemmmmemennimimininncssnnnsnsssessesssssssssssssssessssenssnsnnes 313
22.9.1 FlE@ NAME ..o e e e e e e e e e e e e e saaans 314
22.9.2 Node and Edge COoUNt...c.sswmmsivessssmiamssmvsssasssmissio s e sessosssass 314
22.9.3 Cyclomatic Number (Cyclomatic Complexity)cccccoovimiiiiiiirinnnnnn. 314
22.9.4 Average, Minimum and Maximum Path Lengths.............ccccccie, 314
22.9.5 Path Count by Heration Groups :.:sswwsmssmmvarsesrmssmsessrasmisss 314
22.10 Print WINAOW ...ccunusvssuninsssissssssssississssssmrsssaiisnssssassssaseessigsassussunnsnn 315
22101 Paper Sizé INfOrmation cmssmmomsmimismssmsimmmsaissmmm e i 315
o] o = Lo e 315

Left MArgGin ... 315

Page Width........oooiiiiiii e 316

BOttO: WVATGIN ssvssusnssnsvessumammssoosassin e imsessasss s s i 0e0as s s nians ssus ppamss e ssvess 316

BRUGHE METGIN covassmssssisisumpmmmmssssmespmmsves s st nimmnrssiasssnssasnsn srurinasasmsssshpas soas sasssa 316

STW/Coverage/C User’s Guide

Page HEIght ..o 316

22.10.2 Enlargement FactOrsoccuuieiiiiiiiiiiic e 316
WIdEh/HEIGNT ... 316

22.10.3 Font Informationooooviiie e 317
FONt N@ME/FONT SIZE ..vvvviiieiicic e 317

22.10.4 Print IoCatOr oo e 317

Lo T 1= PSR 317

Lo TN 2 1101 (= S SRR 317

22.11 Annotation WindOW.........iiiiiiiicccccceccsseneer e sannnens 318
P22 b T T I o =1 T o I < 2 TSR 318
22,112 NORE wuusnsusissssissssammnmsmsassims sisiein o i 05558 aios nasesssms sunns pnnesns sessasassns 319
P2 I T N 1) €T 319

P I N S 319
P22 B B 0] 4 411 (= () Y 319
P2 B T AN (0] (=T T 319
22,1717 INNTIOS wovssnsnnsnmmvmnnn sams s G 15 5o 495530000 50 £ P 0 s mmmm s s S it 319
22,11 .8 USI oottt aas 319
22,1719 HIghlight.....oeieiieiieee e e e e e e e e e e 320

22 171.10PAIN Fll.eunn e 320

P g Y O 320
22T T2 BBEBY: o cxsvvmsnmsssainss £hia sindh F5ANR nibrinamn smosinamaas s somms s s s sem s s tm e Fam s sma s 320
22,1 T8 CI0SE ..t e et ————— 320

22 10 TAHEID e eas 320
P22 b B 151 o] (o] £ TSRS 320
22.12 Quick Reference Guide to Xdigraph Annotations..........cccceeeemeeenns 322
CHAPTER 23: Xcalltree Utilityccccciiirmmmiiiinineccnnnnnnssssssnnssscnnnes 323
23.1 o[} (TR D 1 5] o (RS —— 323
23.2 Xcalltree File FOrmaticsssiissismuminsissssmirismasissssrsmisrissammssmsi 323
23.3 INVoking XCalllree ..« usususemmmsssssmsmsssssmmsmsssansisvssassssssissssaissavins 324
234 Xcalltree Main WindoW.........ccoicceeiiiimecesccesnrnessseessssssessesssssssersenmnnssns 325
P22 T B I 1 R 325
2B.4.2 OPHONS .ot 325
P2AC T G T Ao o o o N | o 1SN 326
P2AC R Ao To o 4 I © 11 | G 326
2B.4.5 ViIEW SOUICE......cutiiiiiiiieiiiieie e e et s e aeaanaaeaeeeaeeas 326
2B.4.6 SHALISHCS oooieeiii e s 326
2847 PN e ——————— 326

b I XC . (5 0 [0) 111 [o] o [Ruump——————————— Y R 326
BB HIBIP socnucssssessosorssessicassonsssssissss i sswessais s ecssmnans e s assnessassassmssncesamnreeems 326
235 File PUI-DOWN MENUucerueeeeeracenrascesssseesensssssssessssesasssasssssssssasssaes 327
Xi

Table of Contents

23.6

23.7

23.8
23.9

23.10

23.1

23.5.1 Load NEW Graphcoooiuiiiiieiieeiciiieee et e e 327
23.5.2 Load NeW MUl GEADPH :uuxssssmsmssmssnsumsmimsasmsnssssasisimmvainsissisessmssarises 327
P I o . (o 1V I —— 327
28.5.4 EXIb.uiiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e a e nane 328
Calltree File Selection Dialog BOXccccccimninmuenmmninnisnsenennenissnnnes 329
e (I 1 329
28.6.2 DITECIOTIOS: s e imevvrssununvosivsn s svwuswswsss ia 43 e samt b s Ra NS R AN ST VA ARG 329
28i0.3 BHIES .. cveierecirarmeransssssnsenansssinsssnrsmmmsmsssnsnnsssssssminsss Siabains sams s snossssssd v ERATH 329
28.6.4 SEIECHON .. .uuiiiie e e e e e e n e 330
23165 TOK . suonimsvsnonsvosinmsnmsnis wmeisss 155 ss ey s o mes s 4 ey SOy S FA A SR SHES 330
23.6.6 FltOr.iiivccssusnss suvsvuensississuosuunsissssnssssomusassansnsesi oo savsns svenssn susvsnmssassaes snsvssde 330
23.6.7 CANCEI ..ottt e e e e e e e e e e e e e e e 330
OPtioN WINAOWccoevceincenersirinsssnsnin s ssssssssssssnssssssssensssssssnses 331
2371 ZOONN SCBIC usuesmmsmusseisssmersssnmmesonsmesonssmesriissssssssssn s s s s s SRR 331
23.7.2 Horizontal SPaCiNG .vewsssssssssesssmmmnssvsnonimssosmm it @i 331
2373 DEPIR civicinnmonnoosnissssonimsmmssmsmnsisnsisiinssmmadine i By F S R N AT RR R 331
23.7.4 ROOENGIME ...ouiiiiiiiiiiei e e e e s eeesaenanans 332
23.7.5 Edge CharacteriStiCsuuuieeeeiiiiiiiiieieeeiiiiee e 333
[=Lo [0 T=I 7] o] QPP PT SRR 333
Unhighlighted EAgeccuuiiiiiiiiii s 334
Display MOAe .ciassuirisimsassinsiisnssiissmmmsssiossarimsssesisiisi sttt minmis 334
23.7.6 Node CHaracteriSteEs .iiammammsnanmammsmmisisiassevasssiamim s o 334
S L e 334
ASPECE RALIOciiiiiiiiiiiiiie e 334
Default ColOr ...ttt e 334
LOW=IBVE CBIBT sisusunpisusmnninssssmismssiss suns eiom s asi Haa st s 3N aas e SRR RS RN RI SR H3 334
NOIMAI COl0 ..t e e e e e e e e e e aeaesaas 334
High-level Color: . uwssmmmismummmmnianomssnism i i s i 334
PPV 505 c0sssnsnssssnsssconsasssesmsinsvoss nisssvsnsssssssns s ss ianssnenss e smsasssssn amess ssssass a3 vaamssavanssi 335
Zoom In & Zoom Out OPLioNScceeeeiiiicrcrisiisrcscrs s 335
View Source WiNAOW........cuueeeeericiiieinnennensnnsseessessennsssssssssssssssssseesnes 336
23.9.1 Description of Solrce Code VIBWING ...-.x:wssusmsssismssssemsnssnssassonsnsmnss 336
Statistics WINAOW ...ccciuiiesssissmmssinmsassisnsssmsssinissansanssssssassnsisassssvanassuingns 337
28:10:1 LINKS cusvemssesnsssvimumrsmvn sviommmi asse s s mmasssasnssm s ss avsisindsnsnss ssinsimasns ssnin sminis 337
28.70:2 CAll PAITS......ovnuronsinsasrminsssnanssommsamrenssanssinmnsnsssnsssosanamsmiassnenssmvmbndssigisnmns 337
23.10.3 ModUIES/DEPLh ... e et 337
23.710.4 RECUISIVE.....uuuiiieeieie e e i e et e saneaeeeeeesesannnnns 338
Print WINAOW.....ccouicascereacsersssnssssnsnssnnainsissnsinssssssasassisssnssnsnsinsisssavonsasins 338
23.11.1 Paper Size INformationccccccocoimermncinsiississconsiaseenmmmnanossscsarassasasasass 338
TOP MATGIN, -....numeonnossssmsmmsrmmssnssssmnmsss sesnepssss i s B EvET o IR RR AR T T S o RS oo 338
LBt MATGINT <cnsssssismsssmsmossmmsssoommiyiniess e snssse s s s aniaas sosssssines casntisss ssssunonsssas 339
PAGE WIGMN .o rivesimnismssmsnnamims ssmmmmseessisosssvnsamms asnsansssmaser snasssmsss snsssmmtsnomssaransans 339

Xii

STW/Coverage/C User’s Guide

BOHOM MATGIN! «ssesssrsessonssmsmsns s iissnmsssmmansossisssiissis sinnme s ssmasmarsis ie e ssaasssmi s assng 339

RiQht MAFGIN «.0coocenvemmsssismsssmvisssomsmmesvmsssverssmses s sum s i svivsiigsion 339

Page Height ...t 339

23.11.2 Enlargement Factorscooiiiiiiiiiiiiiiec e 339

WIAth/HEBIGNT ..o e e e 339

23.11.3 Font INfOrmation iiiie e 340

FONt NAME/FONE SIZE ...ocooiiiiiiiee et eaae e 340

23.11.4 Print [OCAOr oo 340

O Il v uinassinsmssvninsassrsnnssosunsarinasusns sinssanamsonnens ssisiss svnnins vessss aessssi seosa sssssassnniorsss 340

T P O scsrs15ms v st ansamemesmsmnasmssss snsssanmmsnnss sssnsnssasss ssosmmssansns snsrmsrnsans sonsuens avssnwasasesd 340

23.12 Annotation WINAOW. ... sssssssessessessssnnsnsssenns 341

23.12.1 Threshold 1 & Threshold 2oovviiiiiieee e 341

28122 NONE ..ttt e e et e e e e e et taetetrtr e e aaaae 342

P2 T 2 T O PR 342

23124 NINVOKES s sunssvsss st aisinssssfossswiisssin dranssinsn usinmn s e apssssinsssnes sosind SHeais 342

2.2 TR0 2 T 342

2320 O siions exvannsimnn sosoms somssiwgnssipsass s s rsmestis 55w s i oA £ RSO A SS9 342

23.12.7 CYCI0 ettt ettt ettt 342

23.12.8 INSEUS scsusnmumsnssmmensmmnmunves s vmnmms 5350 wess aws v v 1vasgeasis s asa s ssvavsssrisnessss 342

23 129 NDBULS 1555555655555 0wnimmsrmnnsmnsmmssunsissaiisni nnssnng nsenssnsnsvsnss ixiwssmanssvsnsmansansassass 342

2312 10NINES .ttt et e e e e aa e eaaaa e aaaan 342

28 1 2. TTNIOKENS ...t e e e e e e e e e e e e e aaaaes 343

e 10 2700 Fod 1] -1 = e N O 343

2R W (28 G B 1~ -1 M S USRI PR 343

23.12 1A C ONN BT OIS s csmwvsissnmm s s ssmsen s s TR S R TS A S e s aT s 343

2312 1D AP PIN s smsvwsmanumvmmnuvionnmmsnesms s s 63 ommess s amme 5 s s s des s e TR 343

2812, VORESBY sunsns vowoumssinsss s ssiisnsn s eniinn 555 1888 55 e bnmm msmmem s i i Sl o 0 S S 343

2B A2 NTCIOSE wuinvvrassavswsnssmmismmsmmssnnsss sHwsnsn s s35ais szt sssannannnnsnsssssssasasssnasaibnsnsassons 343

2BA2NBHOID: cinsriniusinsmmintummmmssicisnimisiosivassisiitnnsnnnnssnnsnsssnenessssmommissssiunssinnonnsrse 343

23.13 Quick Reference Guide to Xcalltree Annotations.........ccccceeeerenncnnns 345

CHAPTER 24: IndeX Of TEermsSccucivieeiimeeirensiiesnnssssssessesssnsssssssssnnnes 347
NOTE: Documentation for TCAT-PATH and T-SCOPE, the
accompanying products in the STW/COVERAGE tool set, is

included in STW/COVERAGE/BOOK II.
Xiii

Table of Contents

Xiv

List of Figures

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

© 0O N O g s~ WON =

N NN = = b ok b b b b o

STW/Coverage DependencyChart 3
STW/Coverage SystemChart........................ 5
Stages in Software Testing. 7
CostBenefitAnalysiscooiiiiiiiiinnnnn, 9
Increase in Cost-to-fix Throughout Life-cycle 10
Setting Up the Display (Initial Condition) 15
INVOKING TOAT < oz v w55 5 e 7.8 S Fios) S a b o o 17
Initializing the Instrument Window 19
Selectinga TargetProgram 21
Preprocessing Your Program................c00unnn 23
Instrumenting YourProgram 25
Initializing the Execute Window. 27
Compiling the Instrumented Program................ 29
Selecting a Runtime Object Module 31
Linking ObjectModulesiunnn. 33
Namingthe TraceFile...............ot 35
Running the Application.o00vnnt. 37
Initializing the Analyze Window..................... 39
Selectinga Trace FileName........................ 41
Selecting the Reference ListingFile................. 43
Looking at Coverage Reportsc0uuun 45
Selectinga Module cmwsswamssneswamassasmses 47
LookingatSourceCode.............ccvvviiinnn.. 49
Completinga TCAT Session.cvvvinnnnnnnn. 51
SampleCProgramc.iiiieriinnnnneennns 57
Instrumented Programcciiiiinnn. 63

XxXv

7

List of Figures
FIGURE 27 Reference Listing.cciiiiiiininnnns 68
FIGURE 28 Instrumentation Statistics Sample................... 70
FIGURE 29 Segment Count ListingSample 71
FIGURE 30 Directed Graph Listingcoiuiiinnn.. 71
FIGURE 31 Directed Graph Display..............ccoiiiiinnnn. 72
FIGURE 32 ErroriLiSting s is c s aiom s m e wdoh oinm don & o 5 5 Sum 73
FIGURE 33 Using a File Selection DialogBox 90
FIGURE 34 Using the Help DialogBoxc0iviinnnnn 92
FIGURE 35 UsingaDialogBoxciiiiiiiiiinnennnn, 93
FIGURE 36 UsinganOptionMenu.cciiiiiinnnnn 94
FIGURE 37 UsingaPull-downMenu.............ccoviinnnnennns 95
FIGURE 38 Invoking the MainWindow 96
FIGURE 39 Invoking TCAT from the STW Tool Suite.............. 97
FIGURE 40 Exiting the MainWindow.conuatn 98
FIGURE 41 Invoking the Instrument Window.................... 99
FIGURE 42 Selecting the Program FileName. 100
FIGURE 43 Exiting the Instrument Window 105
FIGURE 44 Invoking the Execute Window 106
FIGURE 45 Selecting the Runtime Object Module......... o 4 109
FIGURE 46 Exiting the Execute Window. 111
FIGURE 47 Uninstrumented UNIX Make File 114
FIGURE 48 Instrumented UNIX Make File...................... 115
FIGURE 49 Obtaining Coverage Reportsc00unnn 117
FIGURE 50 Invoking the Analyze Window 117
FIGURE 51 Selecting the Trace FileName 118
FIGURE 52 Reference Listing File Selection 120
FIGURE 53 Looking at CoverageReports. 123
FIGURE 54 Exiting the Analyze Window. 124
FIGURE 55 MBI WINGOW o wix i wim msism o in o mis w8 w0 8 30 53 50 50w 508 8 0 8 126
FIGURE 56 System Pull-Down Menu..............coiviuinnn.. 127
FIGURE 57 Help Window for the Main Window 128
FIGURE 58 InstrumentWindowciiiiiinnnt, 129
FIGURE 59 Set File Name DialogBox............coiiinininnnns 130
FIGURE 60 FilePull-DownMenucciniiiunnrnnnnnnnns 130
FIGURE 61 ActionPull-DownMenu.cooiiiininnnnn.. 131
FIGURE 62 Help Window for the Instrument Window 131
xvi

‘

STW/Coverage/C User’s Guide

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

63
64
65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

Execute WINoOwWevcpssvimsnmminsinsminss i 135
Set Runtime Obj. Module Selection Dialog Box. 136
FilePull-DownMenu........... ..., 137
ActionPull-DownMenucovviiiiinenn.. 138
Help Window for the Execute Window 138
Analyze WINAOW ...convivssosvnsmansessnsssasssins 141
Set Input Trace File Name Selection DialogBox 143
FilePull-DownMenu.coiiiiiiiiinnnnn, 143
Action Pull-DownMenuccviviiiennn. 144
Help Window for the Analyze Window 144
Past REPOrtcocvemusvsmnnspeonesmsessnesnsms 145
CumulativeReportot 146
HIEREPOE: i aoiwis 555 55 w5 e id 505 5 50 om0 w06 el 147
NotHit Report ..o nesmswemaivssninnmesminsssss 148
Newly Hit Report . .. ccovvvevssssmmsunessnsneimaes 149
Newly MissedReportcciviiiiinnnn. 150
Log Histogram Report, 151
Linear Histogram Report 152
Reference Listing File Selection 153
Reference ListingReport......................... 154
TCAT resource flle. . « s s s s i 555 5immem are e nie o ae 180
CostBenefitAnalysis............................ 186
Increase in Cost-to-fix Throughout Life-cycle 187
Stages in Software Testing. 190
Uninstrumented DOS Make File. 203
Instrumented DOS Make File...................... 205
Uninstrumented UNIX Make File 207
Instrumented UNIX Make File...................... 208
SystemComponents.cciiiiiinnnnnn 218
Sample “C"Program.c.ciiiriiinnnnnnnnnns 248
Instrumented Program Segment 253
Reference Listing, 258
Instrumentation Statistics Sampl 259
Call-Pair ListingExample......................... 260
Cumulative CoverageReport...................... 262
Not Hit Report 5108 e i A8 i e R e i e A 264

XVii

I——

List of Figures
FIGURE 99 HICBEPOTE . 1 o5 5 o s 0205 5 00 5 09 0 0 9 6 0 0 w008 0 8 50 s 0 8 0 265
FIGURE 100 NewlyHit Reportcoressvimmensmsressnanssnsns 266
FIGURE 101 Newly Missed Report..............ccoiiiiinnnnnn 267
FIGURE 102 Linear HISTOQramL. . « «.c « s osis s 00 s w0 06 0 15 008 @ 000 10 i o 268
FIGURE 103 Logarithmic Histogram 270
FIGURE 104 Reference ListingS1Report....................... 273
FIGURE 105 MAINIMENY w5 55 @ 2% o0 5 25 & 5 5 5 808 50 2 578 [0 08 @ 400 i o 302 275
FIGURE 106 STW/COVinvocation............c.coiviiiennnnnnns 276
FIGURE 107 Main/Menu Help.. < s s as m s wsm s sis o v @ 5 55 5 26 ® 8% 277
FIGURE 108 InstrumentMenuccoieiiieeninnnens 278
FIGURE 109 InstrumentHelpMenu.cciiviiinnunn. 278
FIGURE 110 Flle POP-UP MeNUl . . oo o vinin viw s acm a0 win 00 niw miw o e s mim 279
FIGURE 111 Execute MenU: s siswmmmsnsivinnessasasssmnnnsi 280
FIGURE 112 ExecuteHelpMenuciiiiiiinnnnn. 281
FIGURE 113 Runtime Object Module Pop-Up Screen 282
FIGURE 114 Analyze Menu............iiiiiiiinnenrnnnnnnans 283
FIGURE 115 AnalyzeHelpMenuciiiiiiinnnnnns. 283
FIGURE 116 Set Input Trace File Name Pop-Up Window. 286
FIGURE 117 Reference Listing Pop-Up Window 287
FIGURE 118 PastTestReport.............cciiiiiiiiinnnnnn., 287
FIGURE 119 Cumulative Report.cciiiiiiiiiiiieennn 287
FIGURE 120 HitReport....icicvriciiosimnvsmsmesavannrsssnen 288
FIGURE 121 Linear Histogram...........ccviiiinnrnnennnnnnss 288
FIGURE 122 Reference Listing(Part1of2) 289
FIGURE 123 Reference Listing (Part2of2) 289
FIGURE 124 Source Viewing Pop-Up Window 290
FIGURE 125 SOUICE VIOWING .« «iwis 5 e v s wis v o e 8 51600 41 5 506 08 9 w06 8 291
FIGURE 126 Program edges as represented in a digraph.......... 301
FIGURE 127 Xdigraph MainWindowcoviiiiinnnn. 302
FIGURE 128 Digraph File Pull-DownMenu.c00vunnn 304
FIGURE 129 Digraph File MessageBoxo0vinnnn 306
FIGURE 130 Xdigraph Options Window 308
FIGURE 131 Zoom In featureiillustrated 3N
FIGURE 132 View Source OptionWindow 312
FIGURE 133 Statistics OptionWindowc0vuenn. 313
FIGURE 134 Print DialogWindowciiiinnnnn. 315
Xxviii

*

STW/Coverage/C User’s Guide

FIGURE 135 Annotation Thresholds Window 318
FIGURE 136 Sample Annotation for User Threshold. 321
FIGURE 137 Xcalltree Main Windowcoiiiiiinnnnnn. 325
FIGURE 138 FilePull-DownMenu.............cciiiiiinnnnnnns 327
FIGURE 139 Calltree File Selection DialogBox.................. 329
FIGURE 140 Option WINOW . ..o cvvmvurvsscumssnsssnsmssss s 331
FIGURE 141 Root Name Selection Window Example 1............ 332
FIGURE 142 Root Name Selection WindowExample2 333
FIGURE 143 Zoom In Optioniillustrated 335
FIGURE 144 ViewSourceWindowccvvivnevncnnn 336
FIGURE 145 Statistics WINdOW .« v ccnmiesrnsmmenmsmimsesmmesns 337
FIGURE 146 PrintWindowttt 338
FIGURE 147 Annotation Window., 341
FIGURE 148 “NOT DEFINED in reference file” message box. 344

Xix

XX

List of Figures

USER’S GUIDE

TCAT

Test Coverage Analyzer

Ver 8.1

flr

ST

SOFTWARE RESEARCH, INC.

This document property of:

Name:

Company:
Address:

Phone

*\
N

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT
Fax: (415) 957-0730

E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

CREDITS: Programming: Linh Dang, Tjiu Oh; Documentation: Deborah Steiner,
Brian Kluepfel; Design: Rebekkah Graves.

Copyright © 1995 by Software Research, In¢c
(Last Update: July 10, 1995)

CHAPTER 1

TCAT Overview

This chapter explains the basic concepts behind coverage tools, and tells how they can
save you time and money in your development process.

1.1

1.2

The QA Problem

It is a sad fact of the software engineering world that, on average, without
coverage analysis tools, only around 50 percent of the source is actually
tested before release. With little more than half of the logic actually cov-
ered, many bugs go unnoticed until after release. Worse still, the actual
percentage of logic covered is unknown to SQA management, making
any informed management decisions impossible.

Questions such as when to stop testing or how much more testing is
required are not answered on the basis of data but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with

the quality of the released software and make plans based on inadequate
data.

A related problem is that test case development is done in an inefficient
manner; that is, many test cases are redundant. Cases testing the same
logic clutter test suites and take the place of other cases which would test
previously unexplored logic. Often testers are unsure of the direction to
take and can waste SQA time devising the wrong tests.

The Solution

The primary purpose of testing is to ensure the reliability of a software
program before it is released to the end user. To ensure a reliable and solid
software product, the software should be thoroughly tested with a variety
of input to provide statistically-verifiable means of demonstrating reli-
ability. In other words, a suite of test cases should cover, in some way, all
the possible situations in which the program will be used.

Although a worthy goal, imagining every possible use, as well as devel-
oping test data and running them, is extremely complicated and time-
consuming. A more realistic goal is to test every part of the program.
According to industry studies, achieving this goal yields significant

CHAPTER 1: TCAT Overview

1.3

improvement in overall software quality. Coverage analysis improves the
quality of your software beyond conventional levels.

SR's Solution

Software Research, Inc. offers a solution: STW/Coverage. STW/Coverage
ensures tests are more diverse than those which are chosen by reference
to functional specification alone or based on a programmer's intuition.
STW/Coverage ensures tests are as complete as possible by measuring
against a range of high quality test metrics:

e (1, or branch/segment coverage, measures module testing at the
unit or module testing level; it accesses the completeness of indi-
vidual modules or small groups of module testing.

e Sl1, or call-pair coverage, measures all the interfaces of a complex
system to be exercised.

e Ct, or equivalence class coverage, measures the number of times
each path or path class in a module is exercised.

With the three test metrics, STW/Coverage ensures tests are as complete as
possible. STW/Coverage includes the following products:

e TCAT does coverage at the logical branch (or segment) level and
the call-graph level. It employs the C1 metric. You can choose to
test a single module, multiple modules or the entire program
using the C1 metric.

e S-TCAT does coverage at the call-pair level. It employs the S1
metric. After individual modules have been tested, you can test
all the interfaces of the system using the Slmetric.

e TCAT-PATH does coverage at the logical path level. It employs
the Ct measure. It can easily be programmed to include or to
exclude the program's modules from analysis. This allows you to
emphasize certain critical modules, once these are identified.
TCAT-PATH allows you to extract and display the logical condi-
tions that will cause that particular path to be exercised. Based on
these conditions, you can design new test suites to exercise the
path.

e T-SCOPE provides dynamic visualization of test attainment dur-
ing unit testing and system integration. Itis a companion tool for
TCAT, S-TCAT and TCAT-PATH. While these tools report the
status of modules after-the-fact, T-SCOPE visually demonstrates
such things as segments and call-pairs hit or not hit while it is
happening.

TCAT for the C language is the focus of this manual. For complete infor-
mation on use of the other STW/Coverage products, please consult the
proper User Manuals.

TCAT/C User’s Guide

FIGURE 1
1.4

Below isa STW /Coverage flow chart. Boxes with darkened backgrounds
represent the main components of STW/Coverage.

TCAT

TCAT-PATH

—— Reports

——® Archive File

_

STW/Coverage Dependehby Chart
Testing and TCAT

TCAT takes your program and automatically instruments it. During
instrumentation, TCAT inserts function calls (special markers) at every
logical branch (segment) in each program module. Instrumentation also
creates a reference listing file, which is a version of your program which
has logical branch marking comments added to it in a manner similar to
the code added to the instrumented version. Extensive logical branch
notation and sequence numbers are also listed.

This instrumented program is then compiled and run. By running it, you
are exercising logical branches in the program. The more tests in your test
suite, the higher the coverage. This test information is then written to a
trace file. From the information stored in the trace file, you can generate
coverage reports. In general, the reports give the following information:

CHAPTER 1: TCAT Overview

* Reports included in the current report.

e A summary of past coverage runs.

e Current and cumulative coverage statistics.

e A list of logical branches that have been hit.

e Bar charts of the frequency of execution of each logical branch.
You should try to obtain >85 percent coverage. If the reports indicate that
you have less than 85 percent coverage (the recommended amount), you
can identify unexercised logical branches by looking at the entire refer-
ence listing report, or you can look at the reference listing code for a par-

ticular logical branch. When you identify the troubled areas, you can then
create new test cases and re-execute the program.

TCAT can help you reach your goal: creating the most extensive test cases
possible.

The diagram in the following figure illustrates the TCAT process. You
should study this diagram carefully so that you see the natural structure
and rhythm of TCAT use.

——*

TCAT/C User’s Guide

Source
Program

Preprocess [Reference Listing

&
Instrument

v

Instrumente
d

v

Compile
Instrumented

Y

Link

Object i

Run Cover-
age Analyzer

v

<@ Generates |-t

Run
Application

]

-y

Generates Archiv
File

FIGURE 2

;//

Cumulative Past
Report Report

Segment Count

Directed Graph

Creates Executable

o O\

Generates \
Reports
N \

Linear Histogram Logarithmic His-
Report togram Report

STW/Coverage System Chaﬂ

Newly Hit Newly Missed
Report Report

Reference
Listing

CHAPTER 1: TCAT Overview

1.5

Software Test Methods

Coverage analysis as implemented through TCAT is a powerful testing
technique which can save you much money and time, in addition to
greatly improving software quality. Plainly, it is not the only testing tech-
nique in existence, and we recommend that you use it along with other
techniques.

Testing methods vary from shop to shop, but most successful techniques
fall into a few general categories. The most common ones, which are usu-
ally performed in their natural sequence, are described below.

Manual Analysis

Programs are manually inspected for conformance to in-house rules of
style, format, and content as well as for correctly producing the antici-
pated output and results. This process is sometimes called “code inspec-

"o

tion", “structured review", or “formal inspection".

Static Analysis

Once a program has passed through manual testing steps, it can be tested
in more depth. Automated tools are used to check the design rules
applied in a program. Static analysis validates the software allegations
about the program's static properties, such as the global properties of its
data structures and the application of variable type rules. Such testing can
remove 20 to 30 percent of the latent software defects in your program.
There are many static analyzers. For instance, static analyzers include
tools for detecting data element misuse and complexity measurement
tools, which estimate the difficulty of testing and help identify hard to
test modules with a statistic, or finally, conformance measure tools, which
flag confusing or inefficient code.

Dynamic Analysis

This approach tests the dynamic properties of the software under real or
simulated operating conditions. The software is executed under con-
trolled circumstances with specific expected results. It is important in this
phase to test as many paths and branches in the program as possible.
Doing so assures that the tests you have run have the greatest diversity,
hence the best chance of uncovering defects.

To obtain statistics on the program parts that have been covered by your
tests can often be very difficult. Dynamic analysis can uncover 85 percent

———

TCAT/C User’s Guide

FIGURE 3

1.6

Supporting
Documents

to 90 percent of the potential remaining software defects. SR's TCAT-
PATH, for instance, will produce data on what has been validated and
what has been left out of your testing.

Source
Program

Manual
Analysis

Static
Analysis

Archived
Test Files

Archived Test
Documents

Dynamic
Analysis

Stages in Software Testing
Single- and Multiple-Module Testing

Another consideration in getting the most out of TCAT involves deter-
mining the scope of your tests: whether a single program module, multi-
ple modules, or even an entire system should be tested. You can prepare,
or “instrument”, many modules with logical branch markers and run
tests on them as a group. TCAT keeps track of each module by name.

There are two approaches to multiple-module testing: bottom-up or
top-down. Because TCAT is able to track many modules simultaneously,
it will support either approach. The route you choose depends on your
individual needs and on your own testing style.

CHAPTER 1: TCAT Overview

1.7

Bottom-Up

In the bottom-up approach, testing begins at the lowest level in the sys-
tem hierarchy; that is, modules that invoke no other module. Each bot-
tom-level module is tested individually with special test data. Modules at
each subsequent level of the hierarchy are tested using already-tested
lower-level modules. The process continues until all modules have been
thoroughly exercised. Thus, you can control testing carefully as you
progress up the system hierarchy.

Top-Down

In the top-down approach, testing begins at the highest level in the sys-
tem hierarchy. Sometimes module “stubs" are used to simulate invoked
modules to check the high-level logic of the program. As an alternative to
using module stubs, use a complete program with only a few selected
modules instrumented. TCAT ignores uninstrumented modules as it
traces test coverage through the program.

In top-down analysis, the tester is chiefly concerned with the combination
of modules to form a larger system. TCAT focuses specifically on function
calls within the system, so that the tester can verify each interconnection.

TCAT's Cost Benefits

TCAT will save your organization much time and effort. As a matter of
fact, the economics of coverage analysis are extremely favorable. Here are
some ways it can save you money.

Improved Error Detection

TCAT provides increased error detection. Software Engineering literature
indicates that an average error rate is 40 defects per 1,000 lines of code
(KLOC). With no coverage analysis, 50 percent of the code is exercised,
leaving the product with 20 defects per KLOC. Assuming a uniform dis-
tribution of errors throughout the source code, the simple act of raising
the coverage rate can uncover many errors. According to the experience
of SR in advanced industrial projects and reports from customers, cover-
age analysis can eliminate another 75 percent of the errors.

TCAT/C User’s Guide

FIGURE 4

Without TCAT With TCAT
40 defects/KLOC 40 defects/KLOC

50% Coverage 85-90% Coverage
20 defects/KLOC 5 defects/KLOC

Cost Benefit Analysis

The economic value of the increased error detection will vary from orga-
nization to organization. One estimate of the worth of coverage analysis
comes from what software consulting firms charge to find and remove
errors, a price established in the open market. The software testing indus-
try, sized at $50 million in 1986 by Fortune magazine, typically charges
$1,000 per error fixed.

Applying this to TCAT, you could save $15,000 or more per thousand
lines of code. In practical terms, this means that a large project with over
20,000 lines of code might save $300,000.

Earlier Error Detection

Not only are more errors detected with TCAT, they are also discovered
earlier. It's a well accepted truth in Software Development that the earlier
you catch and fix an error, the cheaper. Over and over, managers, vendors
and gurus have shown us figures and charts that detail how much less it
costs to rectify an early detected defect. A classic example of this is the
following by Barry Boehm (see Chapter 21, "References"):

CHAPTER 1: TCAT Overview

FIGURE 5

1000
500
200
100

50
20
10

Larger Software r I | |
IBM-
SSD
— 80%
Median
20%
"""" Smaller Software ‘
Requirements Design Code Dev. Tests Acceptance Tests Operation

Phase in which error was detected and corrected

Increase in Cost-to-fix Throughout Life-cycle

Your organization can reduce its cost-to-fix ratio by a factor of ten by
using TCAT to find errors before system integration. In the diagram, it
costs $5,000 to $15,000 to fix errors after they have left the developer. The
developer or the Software Quality Engineer (SQE) can identify and fix
problems much more inexpensively than the beta site or independent
testing organization. This is not to say that beta sites or IV&V (indepen-
dent verification and validation) are not needed, but instead there is a
great cost advantage in letting detailed unit-testing find more errors for
less cost.

More Efficient Testing

Using TCAT, you can gain in guiding test case development. In general,
the tool may be used to identify features that have been missed by exist-
ing test suites. The missing items can direct the addition of new test cases.

For example: a software test engineer from a super-minicomputer manu-
facturer used TCAT to reduce the time to test by a factor of eight. As
detailed in a technical article available from SR ("References" # 2- 3), he
was in charge of testing a C compiler and used TCAT to identify the fea-
tures missed by commercially-available test suites. He specified the lan-
guage elements that were not tested to a software engineer, who

10

TCAT/C User’s Guide

completed the test suite. Overall, the compiler was fully tested in six
weeks, rather than the expected one year.

Minimal Test Set

TCAT can be used to develop the minimal covering test suite for a system.
It is useful for a tester to have the smallest test suite that will exercise all
the logic of a system, since test sets require much time and resource to
run.

We recommend the use of SMARTS, CAPBAK, and EXDIFF to automate
test suite execution, evaluation and analysis steps. These tools can signifi-
cantly reduce the cost of test suite execution and analysis. TCAT can be
used to identify and eliminate redundant test cases. With the coverage
reports described in this manual, it is possible to determine how much
each new test case adds to the total coverage of a test suite.

If a new test adds under a certain specified coverage threshold, say five
percent, for example, it might be reasonable to discard it. Having done so,
the tester will end up with a better and easier-to-run test suite.

Assessment of Progress

Coverage analysis with TCAT can be valuable to important SQA deci-
sions, such as when to ship a product or how much further product test-
ing is needed. A coverage value of C1 > 85% has been the traditional
threshold for proper coverage. Generally, one should stop improving test
coverage when the marginal cost of adding a new test is greater than the
cost to visually and rigorously inspect the associated code passage. Other
considerations you may weigh are the added test cost and the risk of
defects.

Coverage analysis data is important for reliability modeling and predict-
ing error rates. By tracking error rates and number of errors discovered as
a function of overall test effort it is possible to predict eventual product
latent defect rates. We encourage SQA managers to keep careful records
of errors found and corresponding coverage values.

11

CHAPTER 1: TCAT Overview

12

CHAPTER 2

Quick Start

This tutorial chapter gives a quick demonstration of TCAT functions.

2.1

Recommendations

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This will give you a feel for how the
system is organized and will permit you to perform coverage analysis
testing.

For best results, follow the instructions very carefully.When you have
completed this chapter, you should be familiar with the main activities
involved in using TCAT, including instrumenting, compiling, linking and
running the target program, and finally, looking at resulting coverage
reports.

If you are a first-time TCAT user, this chapter is best used if you make ref-
erence to Chapter 3 for an overview of what is happening at each stage
and to Chapter 4 for in-depth operational instructions. If you are an inter-
mediate user, this chapter is best used if you make reference only to those
menu definitions which need further explanation (see Chapter 4 and
Chapter 5 for further information).

13

CHAPTER 2: Quick Start

2.1.1

STEP 1: Starting Up TCAT

Before you begin, make sure you are in the X Window System running a
window manager (e.g. mwm, olwm, etc.) You should start with the screen
organized in a particular way, as shown in Figure 6.

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command xterm & from an existing window.
The xterm window will serve as the TCAT invocation window.

Move the window to the upper left of the screen. Go to the $SR/demos/cov-
erage/C/tcat.C directory. The demos directory is supplied with the product
and it consists of an example C program, example.c.

This application allows you to select from several types of foods. By
selecting various foods, you are actually exercising various logical
branches (or segments) of the example program. The goal is to achieve
the highest amount of C1 (logical branch) coverage possible for this pro-
gram through your input. The more selections you make, the higher the
coverage.

14

‘

TCAT/C User’s Guide

When initiating this quick start session, your display should look like
this:

FIGURE 6

Setting Up the Display (Initial Condition)

15

I ——

CHAPTER 2: Quick Start

2.1.2

STEP 2: Invoking TCAT
Now, invoke TCAT.

1.

Position the mouse pointer, so that it is located in the invocation win-
dow.
Activate it by clicking the mouse pointer on it. This window becomes
the main control window. During your session, all status messages
and warnings are displayed in this window.
To invoke TCAT, type in

Xtcat
Xtcat is the GUI-version of TCAT. See Chapter 8 for command line
instructions.
When you type in this command, the TCAT invocation window pops
up.
Move the TCAT invocation window to the upper right of the screen.
You can move a window by clicking on its title bar and dragging it.
If you want to start over, you can terminate TCAT from the TCAT
invocation window, by clicking on the System pull-down menu and
selecting Exit.

16

ﬁ

TCAT/C User’s Guide

When invoking TCAT, your display should look like this:

N A T

FIGURE 7

Invoking TCAT

17

7—-—

CHAPTER 2: Quick Start

213

STEP 3: Opening the Instrument Window

With the Instrument window, TCAT can automatically instrument the
example.c program. TCAT modifies the source program so that special
markers are positioned at every segment in each program module. To
invoke:

1. Click on the TCAT invocation window's Instrument button.
2. The Instrument window pops up.

3. Use the mouse to drag the window below the TCAT invocation win-
dow.

18

TCAT/C User’s Guide

After initializing the Instrument window, your display should look like
this:

FIGURE 8

Initializing the Instrument Window

19

CHAPTER 2: Quick Start

2.1.4

STEP 4: Choosing a Target Program

To instrument the supplied example program, you must first select the
source file name:

1.

2
3.
4

Click on the File pull-down menu.

Select the Set File Name option.

A file selection dialog box pops up.

To select the file, do one of three things:

e Double click on example.c in the File selection window.

e Highlight example.c in the File selection window or type in the
file name in the Selection entry box and click on OK, or

e Highlight or type in example.c and press the <ENTER> key.

20

TCAT/C User’s Guide

When selecting a target program, your display should look like the one
below:

FIGURE 9

Selecting a Target Program

21

CHAPTER 2: Quick Start

2.1.5

STEP 5: Running the Preprocessor

Before passing the application to the instrumentor, you must first prepro-
cess it.

1. Click on the Action pull-down menu.

2. Select Preprocess.

3. As TCAT preprocesses the source file, TCAT's windows will appear
stippled, the mouse pointer changes into a wristwatch symbol and
the options gray out. This signifies a time-out period, in which you
are unable to select any options until TCAT finishes preprocessing.
Preprocessing creates an output file named example.i.

When the mouse pointer symbol returns, preprocessing is complete.

NOTE: If the Preprocessing button in the upper-left corner of the Instru-
ment window is already toggled to On, you may skip this step and pro-
ceed to Step 6.

22

TT——

TCAT/C User’s Guide

When preprocessing your program, your display should like this:

E:
&
L L
4 4
= o i
bel
o
Pregrocessor command:
Instrumentcr command:
Instrumenter options:
d Fecognmze _erit & hegurd
d To ot 122 ecit & reword g -
O Ie not 1nstrument functicns in fales | BEINSTRU.4r
| 0 Specify navinum file nawe ley
£ -
- O Specifu mazimum function name length:
- Z T RS =

FIGURE 10 Preprocessing Your Program

23

I—

CHAPTER 2: Quick Start

2.1.6 STEP 6: Instrumenting the Application
After preprocessing, the application is ready for instrumentation. Instru-
mentation parses the candidate source code, looking for logical branches,
or segments. When one is discovered, the instrumentor inserts a function
call (a special marker) in the instrumented version of the source code.
Instrumentation produces the following files:
* basename.i.c an instrumented version of your “C" program, base-
name.
* basename.i.A--a Reference Listing.
* basename.i.S--an Instrumented Statistics file.
e basename.i.L--a Segment Count Listing file.
e modulename.dig--a Directed Graph Listing file. Each module
should have its own.dig file.
e basename.i.E--an Error Listing file.
Instrumenting your application will not change its functionality. When it
is compiled, linked and executed, the instrumented application will
behave as it normally does, except it will write coverage data to a trace
file.
Click on the Action pull-down menu.
Select Instrument.
3. Like the preprocessing stage, the mouse pointer changes into a wrist-
watch symbol and the options gray out.
4. When the mouse pointer returns, the following message should
appear in the invocation window:
---> TCAT analysis of 'example' complete, no errors. <---
At this point, instrumentation is complete.
5. Close the Instrument window by clicking on the File pull-down
menu and selecting Exit.
24

TCAT/C User’s Guide

After instrumenting your program, your display should like this:

o/ le,
R

10/28/% 1,
. HLL RIGHTS RESERVED.

FIGURE 11

Instrumenting Your Program

1 Specafy macimum function name lenath:

IE INSTR. 7

25

CHAPTER 2: Quick Start

217

STEP 7: Opening the Execute Window

Once instrumentation is done, you need to compile the instrumented ver-
sion of your program, link the program's object code to TCAT /C's object
modules, or runtime routines, and run the program. This can all be done
with the Execute window.

To invoke the Execute window:

1. Click on the TCAT invocation window's Execute button.

2. The Execute window pops up.

3. Use the mouse to drag the window below the TCAT invocation win-
dow.

26

TCAT/C User’s Guide

After initializing the Execute window, your display should look like this:

=l

File Hetaor

FIGURE 12 Initializing the Execute Window

27

CHAPTER 2: Quick Start

2.1.8 STEP 8: Compiling

To compile the instrumented version of the example.c program:
1. Click on the Action pull-down menu.
2. Select Compile.

3. The mouse pointer changes into a wristwatch symbol and the options
gray out until instrumentation is complete.

28

TCAT/C User’s Guide

When compiling the instrumented program, your display should look
like this:

demoz e

cat. dewnc e

marual

atement not reached
atement not resches

Compiler comnand:

Linker command: e o

Make command: nab e

File name:

a.out Feplication arq

A weplication

FIGURE 13

29

CHAPTER 2: Quick Start

21.9 STEP 9: Choosing a Runtime Version

In this step, you need to specify the SR-supplied runtime object module

you will use to link with your instrumented application's object modules.

SR supplies three runtime object modules:

e crun0.0 quiet runtime (see the note in STEP 11)
e crunl.o
e cruna.o

Each runtime object module can change the behavior and the perfor-

mance of your application. For the purpose of this demonstration, how-

ever, use crunl.o. To select it:

1. Click on the File pull-down menu.

2. Select the Set Runtime Object Module option.

3. A file selection dialog box pops up.

4. The three runtime objects modules should be listed in the Files selec-
tion window.

5. Select crunl.o by double-clicking the mouse button on it and then
clicking on OK. You can also highlight or type in the file name then
click on OK or press the <ENTER> key.

30

TCAT/C User’s Guide

When selecting a runtime object module, your display should look like
this:

FIGURE 14

Selecting a Runtime Object Module

31

CHAPTER 2: Quick Start

2.1.10 STEP 10: Linking the Application
Now, you are going to link the runtime object module you just selected
with the instrumented application's object modules. Linking will create
an executable. What you're doing is linking the instructions in the exam-
ple program to SR's object modules, which records program behavior
during execution.
To link:
1. Click on Action pull-down menu.
2. Select the Link option.
3. The mouse pointer will change into a wristwatch symbol and the
options gray out until linking is complete.
32

TCAT/C User’s Guide

When linking the runtime object module to the program's object modules,
your display should look like this:

FIGURE 15

Linking Object Modules

33

CHAPTER 2: Quick Start

2.1.11 STEP 11: Running the Application - Part 1
During instrumentation, TCAT inserted function calls at each logical
branch it found. In order to later see what the C1 coverage is, you must
run the application.
This application is designed to ask you which type of food in the San
Francisco, CA area you would like to eat. By selecting particular types of
food, you are actually exercising program segments. The more times you
run the application and the more types of food you select during each
run, the more segments you will hit. This information is then written to a
trace file.
To run the application:
1. Click on Action pull-down menu.
2. Select the Run application option.
3. The mouse pointer will change into a wristwatch symbol and the
options will gray out.
4. The application will then prompt you,
Name of tracefile:
[default is Trace.trc]
Type in quick.trc and then press the <ENTER> key.
5. The invocation window will prompt you,
Trace descriptor:
Activate the window, type in quick start test, and then press
the <ENTER> key.
Here, the application is asking you to put in a comment about the
test. This is particularly useful when you are planning on running
several test. For smaller tests, however, it is quickest just to press the
<ENTER> key, without typing anything.
Here the application is asking you what trace file name you want
your information saved to. Although it is not required, it is important
that you set the file to the suffix .trc, so you can easily recognize the
file as a unique trace file.
NOTE: If you had chosen the quiet runtime crun0.o, your test run infor-
mation would have automatically defaulted to the file Trace.trc. You
would have not been prompted with the questions in 4 and 5.
34

TCAT/C User’s Guide

When naming the trace file, your display should look like this:

FIGURE 16

Naming the Trace File

35

CHAPTER 2: Quick Start

2.1.12

STEP 12: Running the Application - Part 2

After specifying the trace file where test run information will be written
to, follow these steps:

1.

After specifying the trace file name and pressing the <ENTER> key,

the example.c program should appear in the invocation window. It

asks you,

“What type of food would you like?''

In order to get the most coverage from this run, type in
123456738

for the eight types of food listed.

Press <ENTER>.

Eight restaurants that reflect the eight types of food you selected will

be displayed.

The following message will prompt you,

“Do you want to run it again?'’'

During an ordinary testing situations, you would normally run the

application a couple of times, selecting various combinations of food

types. For now, however, just type in n for no. You'll soon have plenty

of opportunities to execute several runs of your own application!

The wristwatch symbol will change to the familiar pointer symbol.

Close the Execute window by clicking on the File pull-down menu
and selecting Exit.

36

TCAT/C User’s Guide

When running the application, your display should look like this:

T

FIGURE 17 Running the Application

37

CHAPTER 2: Quick Start

2.1.13

STEP 13: Opening the Analyze Window

All the information from the run of the application is stored in the trace
file. From the trace file, coverage reports are produced. The Analyze win-
dow allows you look at several reports, which tell you which segments
have or have not been hit.

Here's how to open the Analyze window:

1. Click on TCAT invocation window's Analyze button.

2. The Analyze window pops up.

3. Use the mouse to drag the window below the TCAT invocation win-
dow.

38

‘

TCAT/C User’s Guide

After initializing the Analyze window, your display should look like this:

FIGURE 18

Initializing the Analyze Window

39

I—

CHAPTER 2: Quick Start

2.1.14 STEP 14: Choosing a Trace File

Before looking at coverage reports, you must first select the trace file you

specified when running the application, quick.trc. Here's how:

1. Click on the File pull-down menu.

2. Select Set Input Trace File Name.

3. A file selection dialog box pops up.

4. The quick.trc file should be listed in the Files selection window.

5. Select it by double clicking the mouse button on it and then clicking
on OK. You can also highlight or type in the file name then click on
OK or press the <ENTER> key.

40

TCAT/C User’s Guide

When selecting a trace file name, your display should look like this:

FIGURE 19

Selecting a Trace File Name

41

CHAPTER 2: Quick Start

From the Analyze window, you can look at several different kinds of cov-
erage reports. In general, the Cumulative, Not Hit, and Reference List-
ing reports are the most frequently looked at coverage reports.

The Cumulative report lists each module by name and indicates the num-
ber of segments. It tells you how many times each module was invoked,
how many times its segments were hit, and its resulting C1 coverage.

The Not Hit report shows which segments were not hit. It gives you the
module name and identification number for each segment not hit in the

To identify the actual code not executed and plan new test cases, you can
look up the segment in the Reference Listing report.

1. To select these three reports, simply click on the accompanying check

2. In the case of the Reference Listing report, a file selection dialog box
pops up when you click on the check button.

3. A file named example.i.X should be listed in the Files selection win-
dow. This file was created during instrumentation. (Please see STEP 6

4. Select it by double clicking the mouse button on it and then clicking
on OK. You can also highlight or type in the file name, then click on

2.1.15 STEP 15: Choosing Coverage Reports
current test.
boxes.
for a full explanation.)
OK or press the <ENTER> key.
42

TCAT/C User’s Guide

When selecting the reference listing file, your display should look like
this:

FIGURE 20

L e uw e ®me LR

u

Selecting the Reference Listing File

43

CHAPTER 2: Quick Start

The mouse pointer changes into a wristwatch symbol and the options
gray while TCAT reads in the trace file and the reference listing to cre-

During this period, the following message appears in the invocation

reports.For this demonstration, only three (the ones selected) of the

tains the Cumulative report, the Not Hit report, and the Reference

When finished studying the reports, click on the Action pull-down

2.1.16 STEP 16: Viewing the Coverage Reports

To look at the Cumulative, Not Hit, and Reference Listing reports:

1. Click on the Action pull-down menu.

2. Select Run Coverage Analyzer.

3.
ate a report format you can understand.
window:
Processing date from trace file: quick.trc]...
When the information is read in, the mouse pointer returns.

4. Click on the Action pull-down menu and select View Report.

5. A Report window pops up. It first lists a selection status of all the
nine possible reports were selected. After this status listing, it con-
Listing.

6. Move the window below the invocation window.

7. Use the scroll bars to move side/side and up/down.

8.
menu and select Exit.

44

TCAT/C User’s Gur!

When looking at coverage reports, your display should look like this:

™ L UL L WL wL
(TR 7 T VT I AR ST -

FIGURE 21 Looking at Coverag;e Reports

45

- CHAPTER 2: Quick Start

2.1.17 STEP 17: Selecting a Digraph of a Module

Besides looking at coverage reports after using the Run Coverage Ana-

lyzer option, you can also look at the source code for a particular seg-

ment. To do this, you are first going to select one of the program's
modules and then look at the source code for one of the selected module's
segments (see STEP 18 for this part).

Here's how:

1. Click on the Action pull-down menu.

2. Select View Source.

3. A file selection dialog box pops up.

4. The three modules for the application are listed: chk_char.dig, main.dig
and proc_input.dig. Each of these modules consists of several seg-
ments. For this demonstration, select module main.dig.

5. Select it by double clicking the mouse button on it and then clicking
on OK. You can also highlight or type in the file name and then click
on OK or press the <ENTER> key.

46

—

TCAT/C User’s Guide

When selecting a module to graphically view, your display should look
like this:

FIGURE 22

Selecting a Module

47

I

CHAPTER 2: Quick Start

2.1.18 STEP 18: Viewing a Logical Branch's Source Code

In this step you are going to look at the source code for a particular seg-
ment of the module you selected in STEP 17.

1. After selecting the module, a window pops up visually displaying
the module. This display is called a directed graph. Its circles repre-
sent nodes, or true/false decision points, and the curved lines repre-
sent segments.

Move the window to the lower left of the screen.
3. Click on the View Source pull-down menu.

4. A View Source window pops up, which contains the source code for
the module.

5. Move the View Source window over the Analyze window.

6. For this demonstration, you are going to look at the source code for
Segment 17. To do so, position the mouse pointer on Segment 17 and
press the mouse button.

7. TCAT automatically locates the source code for Segment 17 and dis-
plays it in the View Source window.

8. Feel free to use scroll bars to move up/down or side/side.

When you are finished looking at the source code, click on View
Source's Action pull-down menu and select Exit. The window closes.

10. To exit the digraph, click on File pull-down menu and select Exit. The
window closes.

48

TCAT/C User’s Guide I

When looking at source code, your display should look like this:

o
[
.‘.‘ I i 5 ¢ W-‘;A -.‘ B ‘v ,“i
° 4]
o
-0
le B B
“T‘G :‘ e
: | | e
e | g oo

FIGURE 23 Looking at Source Code

49

l CHAPTER 2: Quick Start

2.1.19 STEP 19: Sign Off and Cleanup

After looking at the source code, follow these steps to complete the ses-

sion:

1. Close the View Source file selection pop-up window by clicking on
the Cancel button.

2. Close the Analyze window by clicking on the File pull-down menu
and selecting Exit.

3. Close the TCAT invocation window by clicking on the System pull-
down menu and selecting Exit.

50

‘

TCAT/C User’s Guide

When completing your test session, your display should look like this:

FIGURE 24 Completing a TCAT Session

51

I

CHAPTER 2: Quick Start

2.2

Summary

If you successfully completed the preceding 19 steps, you've seen and
practiced the basic skills you need to use TCAT productively. In this chap-
ter you should have learned how to invoke TCAT, how to instrumenting,
compile and link, and execute a program, and how to look at coverage
reports.

For best learning, you may want to:

e Repeat STEPS 1 - 19 without the manual and experiment by run-
ning the application several times and looking at the amount of
coverage your test input receives.

e Repeat STEPS 1 - 19 with your application.

e Turn to the chapters on system operation reference and GUI ref-
erence where you had difficulties. The table of contents and the
index can help you locate the topic you want.

52

CHAPTER 3

T—

System Introduction

This chapter is an overview of the TCAT system, which explains the overall operation of
TCAT and shows how code is affected at each stage.

LEVEL: If you are an advanced TCAT user, you may skip this chapter, which is intended
for beginning and intermediate users.

3.1

3.2

Overview of TCAT

TCAT takes your program and automatically instruments it. During
instrumentation, TCAT inserts function calls (special markers) at every
logical branch (or segment) in each program module. Instrumentation
also creates a reference listing file, which is a version of your program
which has segment marking comments added to it in a manner similar to
the codeadded to the instrumented version. Extensive logical branch
notation sequence numbers are also listed.

This instrumented program is then compiled and run. By running it, you
are exercising logical branches in the program. The more tests in your test

suite, the higher the coverage. This test information is then written to a
trace file.

From the information stored in the trace file, you can generate coverage
reports. If the reports indicate that you have less than 85 percent coverage
(the recommended amount), you can identify unexercised logical
branches by looking at the entire reference listing report or you can look
at the reference listing code for a particular logical branch.When you
identify the troubled areas, you can then create new test cases and re-exe-
cute the program.

TCAT can help you reach your goal: creating the most extensive test cases
possible.

How to Use TCAT

To obtain coverage for your program, you should follow these steps:

Preprocess.
5. Instrument Program Code (marking logical branches).
6. Compile and Link Code (recording and counting markers).
7. Execute Program and Generate Trace File.

53

CHAPTER 3: System Introduction

8. Generate Coverage Reports (reporting logical branches hit).

To explain the various stages, we wrote a simple program namedexam-
ple.c. This program asks you questions about which type of cuisine in the
San Francisco, CA area you would like to eat. If you went through the
Chapter 2, you may already have a feel for the program.

This program consists of three function modules: main, proc_input and
chk_char. Please take note of the following points:

Point A Marks the #include statement that imports the stan-
dardinput-output stdio.h code. This willalso be in-
cluded in the instrumented C program file as well as
in the Reference Listing file.

Point B Indicates the main function with its argc and argv ar-
guments.

Point C Refers to the two function names, proc_input and ch-
k_char.

/* EXAMPLE.C --example file for use with TCAT, STCAT, TCAT-PATH. */

| #include "stdio.h" | A

R e R e +

#include <ctype.h>

#define INPUTERROR -1

#define INPUTDONE 0
#define MENU_CHOICES 13
#define STD_LEN i)

#define TRUE 1
#define FALSE O
#define BOOL int
#define OK TRUE
#define NOT_OK FALSE

char menu[MENU_CHOICES] [STD_LEN] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",
" wWhat type of food would you like?\n",

"\n",

L] i American 50s \n",

» 2 Chinese - Hunan Style \n",

" 3 Chinese - Seafood Oriented \n",

" 4 Chinese - Conventional Style \n",
» 5 Danish \NB®;

. 6 French Nm®,

L 7 Italian NE;

n 8 Japanese \n",

"\n\n"

54

<———--Illllllllllllll

TCAT/C User’s Guide

main(argc,argv) /* simple program to pick a restaurant */
int argc;
char *argv[]
{
int 1, choice, c,answer;

g 2]) ;

for(i = 0; i < MENU_CHOICES; i++)
me

while(choice =

switch(choice)
case 1:

1300 Battery 982-2000 \n")

printf ("\tHunan Village Restaurant 839 Kearney 956-7868

printf ("\tOcean Restaurant 726 Clement 221=3351 \n");

1449 Lombard 771-9326 \n");

intf("\tGrifone Ristorante 1609 Powell 397-8458
NEE® &

Oakland \n");

55

I—

CHAPTER 3: System Introduction

ol
printf("\ts>> %d:

for(ask = TRUE; ask;) {

printf ("\n\tDo you want

while((answer = getchar
switch (answer) {
case 'Y"
case 'y':
ask = FALSE;
char_index = 0;
break;
case 'N':
case 'n':
ask = FALSE;
repeat = FALSE;
break;
default:
break;
} Y} 1}
|int proc_input (in_str) (@
char *in_str;
{
int tempresult = 0;
char bad_str[80], *bad_input;
BOOL got_first = FALSE;
bad_input = bad_str;
while(isspace(in_str[char_

char_index++;

Hh

or(; char_index

switch(in_str/|

case '0':
case '1l'

case '2':
case '3':
case '4':
case '5':

case '6':

case '7':
case '8':
case '9':

/* process choice */
tempresult = tempresult

got_first = TRUE;

break;

hoice != INPUTERROR)

not

*

10

A7

56

a valid choice.\n", choice);
it again? ");
\Nat) {
(in_str[char_index] 0 B
—

. . "- . - .

T——

TCAT/C User’s Guide

default:

if (chk_char (in_str([char_index])) {

return(tempresult)

break;
else
*bad_input++ = in_str[char_index];
char_index++;
*bad_input = '\0';
printf("\t>>> bad input: %s\n", bad_str);

}

BOOL chk_char (ch) c
char ch;
if(isspace(ch) || ch == '\0"'")
return (OK) ;
else

return (NOT_OK) ;

FIGURE 25 Sample C Program

3.2.1 Preprocessing Source Code

Most often, you must check your program for syntax errors by prepro-
cessing. When you preprocess, your source code file basename.c is auto-
matically copied to a file named basename.i which is where the
preprocessing takes place.

3.2.2 Instrument Program Code

The second step in analyzing test coverage with TCAT is to instrument
the source code. TCAT modifies the program so that special markers are
positioned at every logical branch in each program module. Later, during
program execution, these markers will be tracked and counted by TCAT

57

I

CHAPTER 3: System Introduction

to provide data for coverage analysis. Instrumentation does not affect a
program's logical behavior, although it increases test execution time and
code size by about 20 percent.

During instrumentation, TCAT generates several files:

example.i.c -- an Instrumented Version of your C program.
example.i.A -- Reference Listing, showing where

TCAT has placed each logical branch marker and how they are
numbered.

example.i.S -- Instrumented Statistics Listing.
example.i.L -- Segment Count Listing.
modulename.dig -- Directed Graph Listing for each module.

example.i.E -- Error Report.

Examples of the above files are shown next.

When you instrument basename.i, your instrumented program is automat-
ically copied to a file named basename.i.c, which is where the instrumenta-
tion markers are placed. In the case of example.c, the file name becomes
example.i.c

The effect of instrumentation on the example.c program are displayed in
boxes and shown in bold face on the following pages. Please take note of
the following points:

Point A

Point B
Point C
Point D
Point E

Marks the specific header information for this copy of
TCAT. Included are the system release number and
information on the copyright and licensing agree-
ment.

Refers to the runtime modules.
Traces the start of the program.
Traces the start or entry of a function.

Traces a segment. The number identifies the branch
number; this number is transmitted to the trace file
when the instrumented program is run.

Traces the exit of the function.

Traces the exit of the program.

|-- Cl1 instrumentation by TCAT instrumenter: |

58

TCAT/C User’s Guide

| A
|-- (c) Copyright 1990 by Software Research, Inc. All Rights Reserved. |
-- This program was instrumented by SR proprietary software, |
== for the SR package |
-- Use program software |
= 1 ment .
*
|extern
extern |
|lextern | B
|extern I
|extern ExtMod() ; |
T 4
char menu(13]([79] = {
ESEARCH'S RESTAURANT GUI
type of food would you .
" 1 American 50s \n",
o 2 Chinese - Hunan Style \n",
" 3 Chinese - Seafood Oriented \n",
2 4 Chinese - Conventional Style \n",
" 5 Danish N ;
o 6 French \n*,
" 7 Italian \n*,
" 8 Japanese \n”;
“xp\n*
4 char_index; -

main(argc, argv)
int argc;

char *argvl(];

int i, choice, c,answer;

|

59

CHAPTER 3: System Introduction

ntrMod (27, "main",-1); D

repeat = 1;

{ while(repeat) { SegHit (2);
{
printf ("\n\n\n"); {

for(i = 0; i < 13; i++) { SegHit (3):;

printf("%$s", menuli

ile(choice = proc_input (str)) { SegHit (5);

{ switch(choice)

case 1: SegHit (6);
printf ("\tFog City Diner 1300 Battery 982-2000 \n");
break;

case 2: SegHit (7);
printf ("\tHunan Village Rest.839 Kearney 956-7868 \n");
break;

case 3: SegHit(8);
printf ("\tOcean Restaurant 726 Clement 221-3351 \n"):
break;

case 4: SegHit (9);
printf ("\tYet Wah 1829 Clement
break;

w

8

~

-8056 \n");

case 5: SegHit (10);

printf ("\tEiners Danish Rest 1901 Clement 386-9860 \n");

break;
case 6: SegHit (11);

printf ("\tChateau Suzanne 1449 Lombard 771-9326 \n");
break;

case 7: Seg (12);
printf ("\tGrifone Ristorante 1609 Powell 397-8458 \n");
break;

case 8: SegHit (13);
printf ("\tFlints Barbecue 4450 Shattuck, Oakland \n");
break;
default: SegHit (14);
if (choice != -1) { SegHit (15);
printf ("\t>>> %d: not a valid choice.\n", choice);
} else SegHit (16);
break;
} } })} SegHit(17); 1};

{ for(ask = 1; ask;) { SegHit (18);

{

60

|

‘

TCAT/C User’s Guide

printf ("\n\tDo you want to run

while((answer = getchar()) !=

{ switch (answer)

]
ST}

| Ftrace(0); G
A e R SR T s S S +
}

int proc_input (in_str)

char *in_str;

{
int tempresult = 0;
char bad_str[80], *bad_input;
int got_first = 0;
EntrMod (24, "proc_input",-1)

(
SegHit (1) ;

{ while(isspace(in_s

char_index++;

{ for(; char_index <= strlen(in_str); char_index++) { SegHit (4);

char_index])

case '0':
case '"1':
cage '2':
case '3'

61

CHAPTER 3: System Introduction

case '4'
case '5'
case '6':
case '7'
case '8':

tempresult = m] * 10 + (in_str[char_index] - '0');

{ {ExtMod("proc_input");

return(tempresult); }

else { SegHit (17);

if (char_index > 0 && got_first)

char_index--; }

{ while(char_index <= strlen(in_str)) { SegHit (20);

{
if (chk_char (in_strchar_index])) { SegHit (21);

break; }
else { SegHit (22);
*bad_input++ = in_str(char_index]; }

*bad_input = '\0'
printf ("\t>>> bad input: %s\n", bad_str);
char_index++;
{ ExtMod("proc_input");
return(-1); }
} o}
} o}

} } SegHit (24); };

{ ExtMod ("proc_input") ;
return(0); }

ExtMod ("proc_input") ;

t chk_char (ch)

char ch;

{
EntrMod (3, "chk_char",-1);
SegHit (1) ;

if (isspace(ch) || ch == '\0') { SegHit (2); { Ext
return(l); } }

else { SegHit (3); { ExtMod("chk_char");

return(0); } }

=R

od ("chk_char") ;

62

EEEEEEEEEEEEEEEEDRN

~——--.I..IIIIIIII

TCAT/C User’s Guide

FIGURE 26

ExtMod ("chk_char");

}

Instrumented Program

The Reference Listing file is a version of C program which marks pro-
gram segments corresponding to logical branch outcomes. This file is use-
ful when you later look at a Not Hit report to see which logical branches
were not hit. You can then cross-reference with the Reference Listing
report. This report has the same information as the Reference Listing file,
except it identifies the coverage for each module, the number of times
each logical branch was hit and which branches were not hit.

During instrumentation the Reference Listing file is named basename.i.A.
For the example.c program the file name becomes example.i.A. The effect
of instrumentation on the example.i.A file are displayed in boxes and
shown in bold face on the following pages. Please take note of the follow-
ing points:

Point A Marks the title and header information.

Point B Shows where function main execution begins.

Point C Shows where function proc_input begins.

Point D Shows where function chk_char begins.

Point E Indicates the number and/or statement type of each

logical branch.

,,,

) Copyright 1990 by Software Research, Inc. ALL RIGHTS
-- SEGMENT REFERENCE LISTING

| -- Instrumentation date: Tue May 4 15:06:02
1993 | A

char menu([13]([79] = {

63

I—

CHAPTER 3: System Introduction

"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",

N What type of food would you like?\n",

XA ;
= 1 American 50s \n*,
" 2 Chinese - Hunan Style \n",
» 3 Chinese - Seafood Oriented \n",
= 4 Chinese - Conventional Style \n",
" 5 n",
" 6 \zi®,
" 7 \n",
L 8 \n"
"An\z®
}:
int char_index;
main(argc,argv)
intargc;
char*argv(];
{
int 1, choice, c,answer;
char str(79];
int ask, repeat;
| /** Module main **/ B
Som mcewn v e "
int proc_input () ;
R S
|/** Segment 1 <> **/ | E
s S s R e s -
¢ = 33
repeat = 1;
while(repeat) {
/** Segment 2 <start while> **/
printf (*\n\n\n");
for(i = 0; 1 < 13; i++)
/** Segment 3 <start for> **/
printf("%s", menu[i]);
/** Segment 4 <end for> **/
gets(str);
printf("\n");
while(choice = proc_input (str)) {

/** Segment 5 <start while> **/
switch(choice) ({
case 1:
/** Segment 6 <case alt> **/
printf("\tFog City Diner1300 Battery
break;

case 2:

64

982-2000

\n*y

TCAT/C User’s Guide

/** Segment

7868 \n");

/** Segment

\n") ;

/** Segment

/** Segment

/** Segment

/** Segment

/** Segment

/** Segment

/** Segment

/** Segment

}
/** Segment
for(a
/** Segment
pr

sk = 1; ask;) {
1

/

7 <case alt> **/

printf ("\tHunan Village Restaurant 839 Kearney 956=

break;
case 3:

8 <case alt> **/

rintf ("\tOcean Restaurant 726 Clement 221-3351

break;
case 4:
les *%y

("\tYet Wah 1829 Clement 387-8056 \n");

9 <case

th

case 5:
10 <case alt> **/
rintf ("\tEiners Rest 1901 Clement 386-9860 \n");

break;

case 6:

11 <case alt> **/
printf ("\tChateau Suzanne 1449 Lombard 771-9326 \n");
break;

case 7:

> **/

1E
\tGrifone Ristorantel609 Powell 397-8458 \n");

case 8:
13 <case alt> **/

printf ("\tFlints Barbecue 4450 Shattuck, Oakland \n");

break;
default:
14 <case alt> **/

if (choice != -1)
15 <if> **/

printf("\t>>> %d: not a valid choice.\n", choice);

16 <implied else> **/

break;

<end while> **/

1

8 <start for> **/

intf ("\n\tDo you want to run it again? ");

while((answer = getchar()) != '\n') {

/** Segment

J** Cegmant

19 <start while> **/
switch (answer) ({

case 'Y':

20 <case alt> **/

case 'y':

65

CHAPTER 3: System Introduction

/** Segment 21 <case alt> **/

ask = 0;
char_index = 0;
break;

case 'N':

/** Segment 22 <case alt> **/
case 'n':
/** Segment 23 <case alt> **/
ask = 0;
repeat = 0;
break;
default:
/** Segment 24 <case alt> **/
break;
}r Yo}
/** Segment 25 <end while> **/
/** Segment 26 <end for> **/
/** Segment 27 <end while> **/
int proc_input (in_str)
char *in_str;

8

int tempresult =

char bad_str(80],

| /** Module proc_input **/ C

| /** Segment 1 <> **/ E
S i i +
bad_input = bad_str;

while(isspace(in_str[char_index]))
/** Segment 2 <start while> **/
char_index++;
/** Segment 3 <end while> **/
for(; char_index <= strlen(in_str); char_index++)
/** Segment 4 <start for> **/
switch(in_str[char_index]) {
case '0':
/** Segment 5 <case alt> **/
case 'l':

/** Segment 6 <case alt> **/

case '2':

/** Segment 7 <case alt> **/
case '3':

/** Segment 8 <case alt> **/
case '4':

/** Segment 9 <case alt> **/

66

«——--IIII.l.lIIIIIIIII

TCAT/C User’s Guide

case '5':
/** Segment 10 <case alt> **/

case '6':

/** g

a; *%x /
alt> **/
algss **y
tempresult = tempresult * 10 + -
oA T
got_first = 1;
oreak;
ault
/ % % *x%* /

<Case

if (chk_char(in_str([char_index]))
/** Segment 16 <if> **/

return(tempresult) ;

else {
/** Segment 17 <else> **/

if (char_index > 0 && got_

/** Segment 18 <if> **/
char_index--;

1 else> **/

_index <= st

/** Segment 20 <start while> **/

if (chk_char(in_str[char_index]))
/** Segment 21 <if> **/

/** Segment 23 <end while> **/

("\t>>> bad input: %s\n", bad_str);
char_index++;

return(-1);

* % /

67

I—

CHAPTER 3:

System Introduction

FIGURE 27

e 5 e o e £
| /** Module chk_char**/ D
Sl SIS S ST T E e B R R = e +
{
S —— +
| /** Segment 1 <> **/ E
A S S A "

if (isspace(ch) || ch == '\0")

else
/** Segment 3 <else> **/
(0);

return

-~ TCAT/C, Release 8.2

-- END OF TCAT SEGMENT REFERENCE LISTING

Reference Listing

The instrumentor also produces an Instrumented Statistics file. Statistics
are organized module-by-module. The file is named basename.i.S. In the
case of the example.c program it is automatically named example.i.S.

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

-- INSTRUMENTATION STATISTICS
-- Instrumentation date: Tue May 4 15:06:02 1993

MODULE 'main':
statements = 42
compound statements = 7

branching nodes = 10
segments instrumented = 27

conditional statements (if, switch) = 3
if statement = 1

68

To——

TCAT/C User’s Guide

else statement added = 1

iterative statements (for, while, do) = 5
for statements = 2
while statements = 3

do statements = 0

0
b
P
(
0]
ct
[}
ct
o
3
0}
3
1
I
o

branching nodes = 9

segments instrumented = 24

ments (if, switch) = 4

tatement cases = 11

statement added = 0

iterative statements (for, while, do) = 3

branching nodes = 3

segments instrumented = 3

conditional statement (if, switch) = 1
if statement = 1
nt added = 0

switch st

switch statement ca

(0]
I
o

o

default statement added =

iterative statements (for, while, do) = 0

69

CHAPTER 3: System Introduction

FIGURE 28

for statements = 0
while statements = 0

do statements = 0

exit statement = 0

return statements = 2

- END OF TCAT INSTRUMENTATION STATISTICS

Instrumentation Statistics Sample

During instrumentation, a Segment Count Listing file is automatically
created (basename.i.L). This file contains a complete count of all the mod-
ules and their logical branches in the program being tested. This file can
be used with the mkarchive utility to create a null archive file. Please see
Section 6.5, “mkarchive Utility".

70

TCAT/C User’s Guide

FIGURE 29

FIGURE 30

Module # Segment
main 27
proc_input 24

The Directed Graph Listing shows the relationship between nodes and
logical branches. Below is the example.c program's Directed Graph Listing.
The first two columns show the node numbers and the third column
shows the branch number. To first row reads like this: Segment 1 connects
nodes 1 and 2. You can also visually looks at this file using the Analyze
window's View Source option, or the Xdigraph utility.. Below is the
visual representation of chk_char.dig's directed graph.

"

digraph for 'chk_char.dig' in file "example"
2 1
2 3 2
2 3 3

Directed Graph Listing

71

CHAPTER 3: System Introduction

File

digraph

7 (1

/oM

/product
e

Options Zoom In Zoom Out View Source Statistics Print Annotation Help

{c} Copyright 1990-94 Software Research, Inc,

<]

e

FIGURE 31

Directed Graph Display

Instrumentation errors are generally the result of typing mistakes. The
instrumentor will stop at the first unrecognized character and display
that line and several lines of code leading up to the point of failure. Dur-
ing instrumentation, the error file is automatically named basename.i.E. In
the case of the example.c program it is named example.i.E.

-- TCAT/C, Release 8.2

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

72

T ——

TCAT/C User’s Guide

FIGURE 32

3.2.3

3.24

3.25

-- ERROR LISTING

-- Instrumentation date: Tue May 4 15:06:02 1993

Error Listing

Compile and Link Code

After instrumentation, you need to compile the modified program. When
you compile the instrumented program, a file name basename.i.o is cre-
ated. This file is the object code of the instrumented program. You then
must link the instrumented program's object code with one of TCAT
runtime module files. TCAT's runtime modules define all the functions
inserted by the instrumentor.

Execute Program and Generate Trace File

Once the program has been instrumented, compiled and linked with the
appropriate TCAT runtime module, the next step is to run the program.

In your test run, TCAT will initially prompt you to make a comment for
the current test run and to name a trace file. The trace file is where exe-
cuted test information is written. If you think this takes up too much time,
you can avoid this by selecting TCAT's quiet runtime, crun0.0, which
automatically defaults to the file name Trace.trc for a trace file.

At this point, the instrumented program will run as usual. Enter informa-
tion to exercise the system control structure thoroughly.

During testing, information about branch coverage is recorded in the
trace file without any work on your part. Note, however, only the latest
run is stored in the trace file. Older runs are automatically stored in a file
named Archive when you run the coverage analyzer (cover). This file
serves as the archive library for all test runs.

Generate Coverage Reports

Once the test program has been executed and a trace file created, you can
analyze branch coverage coverage with easy-to-read coverage reports. In
general, these reports show you which logical branches have been hit or
ignored during your test run.

You first select the kind of report you want (listed and described on the
following pages) and then uge the GUI Run Coverage Analyzer option

73

CHAPTER 3: System Introduction

or the command line cover command. Depending on the type of report
you select, TCAT will gather information from the trace file and the
Archive file.

In general the reports give the following information:

1. Reports included in the current report.

A summary of past coverage runs.

Current and cumulative coverage statistics.
A list of logical branches that have been hit.
A list of logical branches that have been missed.

oo s w N

Bar charts of the frequency of execution for each branch.

These reports are useful for performance analysis and also for “hot spot"
tuning.

TCAT offers the following coverage reports:

The Cumulative report charts branch coverage for the current test cumu-
latively, and for each module in the total system: its module name, num-

ber of branches, number of invokes, number of branches hit, and C1
coverage.

TCAT: Coverage Analyzer. [Release 8.2]

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

o e e o o o S e e S e e e D S S e i P e e - -
-+

| I Current Test Cumulative Summary

| S b RS SIS EaASES RS as S *
| | No. Of | No. Of |
| Module Number Of | No. Of Segments C1% | No. Of Segments C1%

| Name: Segments: | Invokes Hit Cover | Invokes Hit Cover
e e - e bt S R e S S S A SIS R +
| | | I
| main 27 | 1 17 62.96 | 2 17 62.96

| proc_input 24 | 6 15 62.50 | 12. 15 62.50

| chk_char 3 | 6 2 66.67 | 12 2 66.67 |
e ————— e e +
| Totals 54 | 13 34 62.96 | 26 34 62.96

e et i e P o i e o i e +
Current test message(s) (saved in archive):

Runtime vers 4.9, last updated 12/4/88

The Past Test report resembles the Cumulative report, but lists informa-
tion from the stored archive data. It summarizes the percentage of logical
branches in each module listed, giving the C1 value for each module and
the program as a whole.

74

TCAT/C User’s Guide

TCAT: Coverage Analyzer. [Release 8.2]

(c) Copyright 1990 by Software Research, Inc.

,,,,,,,,,,,,,,,,,,,,,,,,,,,, e e e
| Current Test Cumulative Summary |
S S S S S N e +
| | No. Of | No. Of
Module Number Of No. Of Segments Cl% | No. Of Segments Cl1%
| Name: Segments: | Invokes Hit Cover | Invokes Hit Cover
e e e i o T e T e B e e S e L S S S +
main 27 | 1 18 66.67 | il 18 66.67
| proc_input 24 | 12 14 58:33 | 12 14 58.33
chk_char 3 12 2 66.67 | 12 2 66.67 |
e e e +
| Totals 54 25 34 62.96 25 34 62.96
e B e bbbt R S L S R s e +
Current test message(s) (saved in archive):

Runtime vers 4.9, last updated 12/4/88

The Hit report identifies all of the logical branches which were exercised
in the present and past tests. It analyzes information from both the
archive and the trace file. It includes: module names, identification num-
ber for each logical branch hit so far, the number of logical branches hit,
the total number of logical branches, and the resulting C1 coverage value.

TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

Cl Segment Hit Report.

No. Module Name: Segment Coverage Status:
1 main
1 2 3 4 5 7 9 13 14
15 17 18 19 21 23 25 26 27
2 proc_input
1 3 4 6 7 8 9 10 11
12 13 14 15 16
3 chk_char
1 2
Number of Segments Hit: 34
Total Number of Segments: 54
Cl Coverage Value: 62.96%

75

CHAPTER 3: System Introduction

The Not Hit report indicates untested branches. This report charts, for the
current test and includes the following information: branch coverage sta-
tus (100% or specific branch not hit), total number of branches hit, total
number of branches in the system, and C1 coverage value. You can use
this information to add tests to your test suite for more comprehensive
testing.

TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

Cl Segment Not Hit Report.

No. Module Name: Segment Coverage Status:
1 main
6 8 10 o 12 16 20 22 24
2 proc_input
2 5 17 18 19 20 21 22 23
24
3 chk_char
3
Number of Segments Not Hit: 20
Total Number of Segments: 54
Cl Coverage Value: 62.96%

The Newly Hit report shows which logical branches (by module) were hit
in the current execution that were not hit previously. This information
gives you an assessment of the value of the most recently added test(s).
This shows what the current test gained.

76

TCAT/C User’s Guide

TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

Cl Segment Newly Hit Report.

No. Module Name: Segment Coverage Status:
1 main

1 2 3 4 5 7 9 13 14

15 17 18 19 21 23 25 26 27
2 proc_input

3 4 6 7 8 9 10 11

12 13 14 15 16
3 chk_char

1 2

The Newly Missed report shows which branches (by module) that were
not hit in the current execution that were hit previously. This information
gives you an assessment of the loss of the most-recently added test(s).
This shows what the current test “lost". This report is complimented by
the above Newly Hit report.

TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

Cl Segment Newly Missed Report.

No. Module Name: Segment Coverage Status:

None found.

The Logarithmic Histogram and the Linear Histogram reports demon-
strate the frequency distribution of branches exercised in each module.
These reports combine the current trace file and includes archive data.
The Linear Histogram graphs a mark for each branch hit during testing;
the Logarithmic Histogram translates this data into logarithms making
the graph more readable for varying branch hit levels.

Both histograms include the following information: module name,
branch numbers, number of executions, frequency distribution of exer-
cised branches, graph scale, average hits per executed branch and module

Clvalue.

4

CHAPTER 3: System Introduction

On the next two pages are examples of both histograms for example.c's
main module. Below is a Linear Histogram report.

TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

Segment Level Histogram for Module: main

| Number of Executions, Normalized to Maximum

| (Maximum = 78 Hits) X = One Hit
| (Scale: 1.282 Each X = 1.560 Hits)
Segment Number Of |
Number Executions >-1------- S 40———==- Ef = 80---100
______________________ e T i A o e e B S S S
|
1 1 |
2 6 | XXX
3 78 |
5.9.0:0.9:9.0.9.9:9.9.0.9.9.9.9.9,0.9.9.0.9.9.9.9.0.9.0.0.0.9.0.9.9.9.9.9.9.9.9,9.9.9.0.9.0.9.0.0.0.4
4 6 | XXX
5 6 | XXX
6 * |
7 1 |
8 ® |
9 1 |
lo * |
ll * |
12 % |
13 2 | X
14 2 | X
1.5 2 | X
16 * |
17 6 | XXX
18 | XXX
19 6 [XXX
20 * |
21 5 | XXX
22 * |
23 1 |
24 % |
25 6 | XXX
26 6 | XXX
27 1 |
|
T P e T T S M ST A I N ST SR T I O T T B T s o o e e e i S o0 +
(* = Zero Hits)

78

TCAT/C User’s Guide
Average Hits per Executed Segment: 7.8889
Cl Value for this Module: 66.6667
Below is a Logarithmic Histogram report.
TCAT: Coverage Analyzer. [Release 8.2]
(c) Copyright 1993 by Software Research, Inc. ALL RIGHTS RESERVED.

Segment Level Histogram for Module: main

Segment Number Of
Number Executions
i S S R
1 if | XXXXXXXXXXXXX
2 6 XXX XXX XXXX XXX XXX XXX XKXXX
3 78
).9.9:9.9.9.0.9.9.9.9.9.0.9.9.0.0.9.0.9.9.0.0.6.0.0.0.0.0.0.0.9.0.0.0.0.0.0.9.0.0.0.0.0.0.9.0.0.9.4
4 6 XXX XX XXX XXX XXX XXX XXXKXKXX
5 6 [XXXXXXXXXXXXXXXXXXXXXXX
6 * |
7 1 XXX XXXXXXXXXX
8 *
9 1 XXXXXXXXXXXXX
10 * |
11 %
12 * |
13 2 XXX XXX XXXXKXXKXXXXX
14 2 XXX XXKXKXXXXKXXXKXXXX
15 2 | XXXXXXXXXXXXXXXXX
16 L |
17 6 | XXXXXXXXXXXXKXXXXXXXKXXXX
18 6 P:9.9.9.0.9.9.9.9.9.9.0.9.9.9.9.0.9.9.9.9.0.0.¢
19 6):9:9.9.9.9.9.0.9.0.9.0.9.9.0.9.9.9.9.9.0.9.0.¢
20 *
24 5).9.9.9:9.9.9.0.0.9.9.9.9.0.0.9.9.0.9.0.0.0.4
22 *
23 1 | XXXXXXXXXXXXX
24 * |
25 6 0:9.9.9.9.9.9.9.9.9.9.0.9.0.9.9.9.0.9.0.0.9.0.4
26 6 [XXXXXXXXXXXXXXXXXXXXXXX
27 ik | XXXXXXXXXXXXX

79

CHAPTER 3: System Introduction

(* = Zero Hits)
Average Hits per Executed Segment: 7.8889
Cl value for this Module: 66.6667

The annotated Reference report shows the coverage level achieved for all
modules that are named in the specified reference listing. If a module is
tested but the name is not found in the supplied reference listing, then
that coverage is not reported. Similarly, if a name appears in the reference
listing but is not found in the archive or trace file, no coverage will be
reported.

On the following page is an example of reference listing report. Take note
of the following:

Point A Marks the reference listing file name.

Point B Shows the C1 coverage for the module.

Point C Indicates how many times a branches has been hit.
Point D Refers to an unexecuted logical branch.

TCAT: Coverage Analyzer. [Release 8.2]

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED.

o .
TCAT Coverage on Reference Listing Report, based on file [|exam-
ple.i.A|]. A

frm i e +

(Coverage values for all tests processed are reported in left-hand
column.

nx*x***xn" indicates not hits on corresponding segment. Extra names
not

part of this listing but in the Archive file are ignored.)

-- TCAT, Release 8.

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

-- SEGMENT REFERENCE LISTING

-- Instrumentation date: Sat Jun 16 15:53:06 1990

-- Separate modules and segment definitions for each module arg

80

——

TCAT/C User’s Guide

-- indicated in this commented version

—
o

the supplied source fi

externstru

cnt;

unsigned char*_ptr;
unsigned char*_base;
char_flag;

ch

_iob[60];

externstruct _iobuf*fopen(), *fdopen(), *freopen(), *popen(), *tmp-
file();

externchar*fgets(), *gets(), *ctermid(), *cuserid();

externchar*tempnam(), *tmpnam() ;
externvoidrewind(), setbuf()

externlongftell();

externunsigned char*_bu
externchar_ctypel];
char menu[13][79] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",
*\n",

" What type of food would you like?\n",
"\n";

B 1 American 50s xn"™ ,

L 2 - Hunan Style \n",

" 3 - Seafood Oriented \n",

L 4 - Conventional Style \n",

(o2 Q)]

<3

4 8 Japanese \n",

it i, choice, ¢;
char str([79], answer;

int ask, repeat;

ICl = 66.67|/** Module main **/ B
e +
r* Segment */

proc_input () ;

=z TR

(@]

1|/** Segm

81

CHAPTER 3: System Introduction

repeat = 1;

while(repeat) {

6/** Segment 2 <start while> **/
printf ("\n\n\n");

for(i = 0; 1 < 13; i++)

78/** Segment 3 <start for> **/
printf("%$s", menuli]);

6/** Segment 4 <end for> **/
gets(str);

i [&xar);

while(choice = proc_input (str)) ({

6/** Segment 5 <start while> **/
switch(choice) {

case 1:

xk*x*k | / Segment 6 <case alt> **/ D

rintf("\tFog City Diner 1300 Battery
break;
case 2:

1/** Segment 7 <case alt> **/

printf ("\tHunan Village Restaurant 839 Kearney

break;

case 3:

kk*xx / Segment 8 <case alt> **x/
printf ("\tOcean Restaurant 726 Clement
break;

case 4:

1/** Segment 9 <case alt> **/

982-2000 \n");

221-3351 \n*);

printf("\tYet Wah 1829 Clement 387-8056 \n");

break;
case 5:
**x%xxx /%% Segment 10 <case alt> **/

printf ("\tEiners Danish Restaurant 1901 Clement

break;

case 6:

x*kx%x /% Sogment 11 <case alt> **/
printf ("\tChateau Suzanne 1449 Lombard
break;

case 7:

*k*x*x /** Segment 12 <case alt> **/
printf ("\tGrifone Ristorante 1609 Powell
break;

case 8:

2/** Segment 13 <case alt> **/

printf ("\tFlints Barbeque 4450 Shattuck,
break;

default:

2/** Segment 14 <case alt> **/

82

771-9326 \n");

397-8458 \n");

Oakland \n");

956-7868

386-9860

‘

TCAT/C User’s Guide

}

6/** Segment 17 <end while> **/
for(ask = 1; ask;) {

6|/** Segment 18 <start for> ** (@

01
LVvi)

[N}

6/** Segment 19 <start while> **/
switch (answer) {

case 'Y':

**kxkx /%% Segment 20 <case alt> **/
case 'y':

5/** Segment 21 <case alt> **/

ask = 0;
char_index = 0;
break;

case 'N':

k%k*x / Segment 22 <case alt> **/
case '"n':

1/** Segment 23 <case alt> **/

ask = 0;

repeat = 0

break;

3

default:

***xkx | /** Segment 24 <case alt> **/ D

6/** Segment 25 <end while> **/

6/** Segment 26 <end for> **/

1/** Segment 27 <end while> **/

83

I—

CHAPTER 3: System Introduction

[Cl = 58.33|/** Module proc_input **/ B

/*
int got_first = 0;
12/** Segment 1 <> **/

First Segment*/

bad_input = bad_str;

while(((_ctype+l) [in_str[char_index]]&010))
**k*kkk /%% Segment 2 <start while> **/
char_index++;

+-—+

|12 /** Segment 3 <end while> **/ C

==

for(; char_index <= strlen(in_str); char_index++)

19/** Segment 4 <start for> **/

switch(in_str[char dex])

case '0':

""""" P

[xexk | f2k Segment 5 <case alts> **/ D

case '1':

1/** Segment 6 <case alt> **/
case '2':

3/** Segment 7 <case alt> **/
case '3':

3/** Segment 8 <case alt> **/
case '4':

4/** Segment 9 <case alt> **/
case '5':

4/** Segment 10 <case alt> **/
case '6':

4/** Segment 11 <case alt> **/
case '7':

4/** Segment 12 <case alt> **/
case '8':

6/** Segment 13 <case alt> **/

case '9':

=
=

7/** Segment <case alt> **/

tempresult = tempresult * 10 + (in_str[char_index]

got_first = 1;

break;

default:

12/** Segment 15 <case alt> **/
if (chk_char(in_str[char_index])) ({
12/** Segment 16 <if> **/

return (tempresult) ;

}

84

'0');

TCAT/C User’s Guide

else {

*kk*x*x /*k* Soqgment

if (ch

*k*xx k% /*x% Segment

_index >

char_index--;
*kkkk /kx Segment

wt

break;
else

*xkxxx /%% Segment 22 <else> **/
S

kxkk* / Segment 23 <end while> **/
*bad_input = '\0°

rintf("\t>>> bad input: %s\n", bad_str)

**x*xkx /x*x Segment 24 <end for> **/

return(0) ;

}

chk_char(ch)

ot

char ch;

if (((_ctype+1l) [ch]&010)

12/** Segment 2 <if> **/

return(l);

else
e +
| ***x%**x | /** Segment 3 <else> **/ D

-- TCAT/C, Release 8.2

85

CHAPTER 3: System Introduction

86

TCAT/C User’s Guide

3.3

Conclusion

From this chapter you should have learned the basic steps needed to use
TCAT: instrument and compile the program, execute the program and
generate a trace file and generate reports. In the examples shown
throughout this chapter, C1 coverage was only around 63 percent. Ideally,
you want to try for 85 percent coverage. In the case of this example, you
would re-run the program and execute new tests to achieve higher cover-
age.

TCAT can do a number of things for you: manageyour system testing
more objectively and effectively. It also finds latent software errors before
your customers do. Finally, TCAT demonstrates when testing is complete
with its easy-to-read reports.

87

CHAPTER 3: System Introduction

a6

CHAPTER 4

GUI Operation

This chapter covers the basic X Window System graphical user interface (GUI) operations
of TCAT. It demonstrates using TCAT from the OSF/Motif X Window System.

LEVEL: If you are an advanced X Window System TCAT user, you may skip this chapter,
which is intended for beginning and intermediate users.

4.1

411

User Interface

If you are familiar with the OSF /Motif style graphical user interface, you
can go on to the next section. This section demonstrates using file selec-
tion dialog boxes, help menus, message dialog boxes, and pull-down
menus.

File Selection Box

The Instrument, Execute and Analyze windows use file selection dialog
boxes, where you can select a new or existing file name.

Refer to the next figure for each of the dialog box's components:

Filter entry box Specifies a directory mask.When you click the Filter
push button, the directory mask is used to filter files
or directories that match this mask (or pattern).

Directories Lists directories in path defined in the Filter entry
box.

Files Lists files in path defined in the Filter entry box.

Scroll Bars Move up/down and side/side in the Directories and

Files selection windows. You use them to search for
the appropriate directory or file.

Selection entry box Selects and enters the file name.

Use the three push buttons at the bottom of the dialog box to issue com-
mands:

OK Accepts the file in the Selection entry box as the new
file or the file to be opened and then exits the dialog
box.

89

CHAPTER 4: GUI Operation

Filter Applies the pattern you specified in the Filter entry
box. It lists the directories and files that match that
pattern.

Cancel Cancels any selections made and then exits the dialog

box. No file is selected as a result.

nstrumentFile_popu

Filter

Inualsfcoverageﬁtcat/demosﬂ*.c

Directories Files

example.c
example.i,c

Selection

R

Ifmanuals/toverageftcatfdemosﬁ7

T

§F1lterl éEancelI

S o

FIGURE 33 Using a File Selection Dialog Box
To use a file selection dialog box, follow these steps:

1. You can restrict the file selection operation to a named region (direc-
tory path) by typing in a directory path name in the Filter entry box
or by clicking on a path name in the Directories selection window.
Then click on the Filter push button.

2. Select a file by clicking on an already existing file you want to over-
write in the Files selection window or type in a new file name in the
Selection entry box, with no limit on character length.

3. To select a file name, do one of these three things:

80

TCAT/C User’s Guide

4.1.2

¢ Double click on the file in the File selection window, Highlight
the file in the File selection window, or

e type in the file name in the Selection entry box and click OK, or
¢ Highlight or type in the file name and press the <ENTER> key.

Help Boxes

TCAT provides on-line help for its Main, Instrument, Execute, and Ana-
lyze windows. This on-line help will automatically bring up the text cor-
responding to where you invoke it at. In other words, if you invoke it at
the Main window, the Help window will automatically display informa-
tion pertinent to the Main window. Here's how to use a help frame:

1. Once it is invoked, the text should correspond to the window from
which it was invoked.

You can use the scroll bars to move up/down and side/side.

3. If you don’t see what you need, you can search for specific text:
e Click on the Action pull-down menu and select Search.
e A dialog box (shown below) pops up.

e Type in the pattern you want to search for and then click on OK
or press the <ENTER> key.

e If the pattern is found, the help frame will automatically scroll to
the location of the pattern.

4. If you select another Help option from another window, while the

current one is displayed, the Help window will automatically scroll
to the context of the new window.

5. To exit, click on Quit.

91

CHAPTER 4: GUI Operation

FIGURE 34

4.1.3

ram. using a varil Etl-j of 1nstr H
ptionz which you select with th i
" menu, i

H

ter instrumentation you
with the TCAT "un-

al alternatives f i

on step are handled by H

ides hi

newly hit

cumulati H
3, linear

coverage on

command,
segments, not hit
ments, newly m
test

: histograms § i
[< >

., log histograms,

Using the Help Dialog Box

Message Boxes

Pop-up message dialog boxes have three purposes:
1. They display warnings and error information.

2. They ask you to verify that you want to perform a task.

3. They ask to enter a command.

To remove a message box after you have read it or to tell TCAT to go
ahead with a command, click the OK push button. If you want to cancel a

command, click the Cancel push button.

92

TCAT/C User’s Guide

B

: Cancel

FIGURE 35

41.4

Using a Dialog Box

Option Menus

The Instrument, Execute and Analyze windows use an option menu. An
option menu includes selections from a list. Usually, only the default
menu option is visible. To use an option menu, follow these steps:

1.

o N

Click on the option menu.

After clicking on the menu, the list of choices are visible.
Drag the mouse to the menu option you want.

Let go of the mouse.

The new menu option should be visible, indicating that it is acti-
vated.

93

CHAPTER 4: GUI Operation

FIGURE 36

File FAction

Preprocessing : Preprocessor output suffix:

Preproces€or command: c —F i Preprocessor options:

Ing¥fumentor commands
Instrumentor options:
I Recognize _exit as keyword
21 Do not recognize exit as keyword
2l Do not instrument functions in file:
2 Specify maximum File name lengths

1 Specify maxinum function name length:

Pull-down menus are located within the menu bar. They often contain
several options. To use pull-down menus and their options, follow these

Move the mouse pointer to the menu bar and over the menu contain-
Hold the left mouse button down. This displays the items on the

While holding down the left mouse button, slide the mouse pointer to
the menu item you want to select. The menu item is highlighted in

Three dots at the right of the menu item indicates that selecting the

An arrow to the right of the menu item indicates that the item is a

To display the submenu, slide the mouse pointer over the arrow. You can

Using an Option Menu
steps:
1.
ing the item.
2.
menu.
3.
reverse shadow.
item will bring up a pop-up window.
submenu (or cascading menu).
then select an item on the submenu.
94

TCAT/C User’s Guide

4. Release the mouse button while the desired item is highlighted to
activate the command. To the function exit without selecting any-
thing, simply drag the mouse pointer off the menu before releasing
the mouse button to not activate anything.

instrument i i i

Preprocessor output suffix: [,1

Preprocessor options: I !

Instrumentor options:
2l Recognize _exit as keyword
21 Do not recognize exit as keyword

21 Do not instrument functions in files

DEINSTRU. fns

) Specify maximum file name length:

1 Specify maximum function name lengths

FIGURE 37 Using a Pull-down Menu

95

CHAPTER 4: GUI Operation

4.2 Invoking TCAT

To start TCAT from your working directory, type this command:
Stcat

The Main window (shown below) pops up.

wtoat/C Yer 8

Analyze

FIGURE 38 Invoking the Main Window
You can also invoke TCAT through the STW menu. First, type
stw
The STW window (shown below) pops up.

Click on the Coverage activation button.

The STW/Coverage window pops up.
Click on TCAT. TCAT 's Main window pops up.

PN

96

TCAT/C User’s Guide

?IGURE 39

4.2.1

Invoking TCAT from the STW Tool Suite

Selecting Main Window Options

The Main window has four push buttons that allow you to perform all of
TCAT 's operations, including, instrumenting your application, compil-
ing, linking object code, executing the program, generating a trace file
and looking at coverage reports or source code.

Instrument For preprocessing and instrumenting your applica-
tion. (See Section 5.3)

Txecute For compiling the instrumented version of your pro-
gram, linking the progtam's object code to TCAT 's

97

CHAPTER 4: GUI Operation

object modules, and running the application. (See
Section 5.4)

Analyze For generating coverage reports and visually looking
at the source code. (See Section 5.5 and the accompa-
nying documentation on the Xdigraph utility.

The following sections deal specifically with their usage.

4.2.2 Exiting the Main Window
The Exit option allows you to close TCAT.
Here's how:
1. Click on the System pull-down menu.
2. Drag the mouse to Exit, and then let go of the mouse button. TCAT
exits.
| Systenm Help
FIGURE 40 Exitng the Main Window
4.3 Instrumenting

To analyze your test coverage you must first preprocess your application
for syntax errors and then instrument it. During instrumentation, TCAT
modifies your application by placing special markers (function calls) at
every logical branch in each program module. These markers are later
tracked and counted by TCAT during your application's execution. This
is how coverage is obtained.
To begin the instrumentation process, invoke the Instrument window by
clicking on the Instrument activation button. The window below pops
up.

98

TCAT/C User’s Guide

FIGURE 41

4.3.1

NOTE: If you are instrumenting with make files, please refer to Section
4.5.

~instrument

’ Instrumentor commands
4 Instrunentor optionz:
Il Recognize _exit as keyword
21 Do not recognize exit as keyword

2l Do not instrument functions in file;

Specify maximun file name length:

Invoking the Instrument Window

Selecting the Application Name

You must first select an already existing program to instrument. To select
a file name:

1. Click on the File pull-down menu.

Select Set File Name.

A file selection dialog box like the one below pops up.

Select an existing program name, basenarme.

o Db

Select a file name by clicking on an already-existing program in the
Files selection window or typing in the file name in the Selection
entry box.

99

CHAPTER 4: GUI Operation

FIGURE 42

After selecting the application file name, you may adjust the Instrument
window's options. Listed next are the options and how to use them.
These instructions will also tell you how to change the defaults. If you
want a more permanent change, you can change any of the defaults in the
. Xdefaults file (see Chapter 8). For complete definitions on the options'

Most often you must check your program for syntax errors by preprocess-
ing. In these cases, you will simply leave the default ON switch on. Some-
times, however, you may already know there are no syntax errors and
want to skip the preprocessing step. In these cases, you will want to acti-

3. The accompanying Preprocessor command, Preprocessor output
suffix and Preprocessor options options gray out, becoming inactive.

Selecting the Program File Name
4.3.2 Setting Options
functions, please refer to Chapter 5.
4.3.21 Preprocessing Option Menu
vate the OFF switch. Here's how:
1. Click on the Preprocessing menu.
2. Select the OFF switch.
100

TCAT/C User’s Guide

4.3.2.2

4.3.2.3

4.3.2.4

4.3.2.5

4.3.2.6

Preprocessor output suffix

When you preprocess a program, normally the file name will change
from basename to basename. i, with an 7 suffix. If you want a different suf-
fix:.

1. Click inside the corresponding specification region.

2. When the cursor appears, you can type in the desired suffix.

Preprocessor command

The preprocessor command is defaulted to ce -P, a standard UNIX pre-
processing command. If you want to change it:

1. Click inside the corresponding specification region.
2. When the cursor appears, you can edit.

Preprocessor options

If you want to add additional compiler options for preprocessing:
1. Click inside the corresponding specification region.
2. When the cursor appears, you can edit.

Instrumentor command

The instrumentor command is defaulted to ic. This is the command that
instruments your C program. To change it:

1. Click inside the corresponding specification region.
2. When the cursor appears, you can edit.

Instrumentor options

This option provides several check buttons from which you can select.
These options will effect the instrumentation process in several ways. You
can select any of the following check buttons (by clicking once in the cor-
responding button). A check button is turned on if it darkened. If it is hol-
lowed, then it is turned off.

* Recognize _exit as keyword button. You turn this option on if
you want the instrumentor command (ic) to recognize the key-
word exit in your program.

* Do not recognize _exit as keyword button. You turn this option
if you do not want the instrumentor command (ic) to recognize
the keyword exit in your program.

¢ Do not instrument functions in file button. Use this option to
selectively de-instrument individual C functions, or modules.
TCAT will distegard these functions when they are found.

101

CHAPTER 4: GUI Operation

This option can effectively ignore entire modules from instru-
mentation. You should use this option when you don't want a
particular module's logical branches marked during instrumenta-
tion.

The default file is set to DEINSTRU.fns. If you want to de-instru-
ment certain functions, simply put the names of those functions
you want to de-instrument in this file. If you want to change the
name of the default file name, click inside the specification region
and begin editing when the cursor appears.

NOTE: You can also de-instrument parts of your code by placing direc-
tives in your source code file. Please refer to Section 6.3.2 for further infor-

mation.

Specify maximum file name length button. Use this option
when your system has a limit on the amount of characters a file
name can have. If the length exceeds the value, then the instru-
mentor output will be redirected to files named Temp.i.?. (See Sec-
tion 4.5.4 for a listing of the different kinds of instrumentor
output).

Type in the amount of characters in the accompanying specifica-
tion region.

Specify maximum function name length button. Use this option
when your system has a limit on the amount of characters a name
can have. If the length exceeds the value, then the instrumentor
will recognize only the first value characters of the function
name. For instance, a value of 5 will recognize only the first five
characters of a module as distinct. Characters beyond that point
will not be recognized for function name purposes.

This signifies a time-out period in which the TCAT is completely inac-

4.3.3 Preprocessing Your Program

After selecting the Instrument window's options, you are ready to pre-

process your program. Prior to instrumenting, it is often necessary to pre-

process your program for syntax errors. Here's how:

1. Click on the Action pull-down menu.

2. Select Preprocess.

3. The mouse pointer turns into a wristwatch symbol and the Instru-
ment window's options gray out until preprocessing is complete.
tive until preprocessing is complete.

102

TCAT/C User’s Guide

NOTE: If you turned the preprocessing OFF, you do not have to prepro-
cess.

Preprocessing Results

Preprocessing checks your program for syntax errors. If any are found,
messages are displayed in the invocation window.

When preprocessing is complete, TCAT writes its results to a file named
basename. i, where basename is the name of your program and 7 indicates it
as a preprocessed file.

103

CHAPTER 4: GUI Operation

After preprocessing your program, you are ready to instrument your pro-
gram. During this phase, TCAT will automatically insert function calls at
each logical branch. This marking is important. Later when you run your
application, you will be trying to hit these markers with your planned test
suite. This information is then written to a trace file, where you can obtain

This signifies a time-out period in which the TCAT is completely inac-

e basename. i.c --an instrumented version of your C program, base-

e basename. 1.S -- an Instrumented Statistics file, where various
kinds of statistics are listed for each module, including the num-
ber of statements, logical branches, conditional statements, etc.

e basename. i.L -- a Segment Count Listing file, which contains a
complete count of all the modules and their logical branches in

e modulename. dig -- a Directed Graph Listing file for each module,
which reports the logical branch relationship between nodes. You
can also visually look at a module's directed graph using TCAT 's

4.3.4 Instrumenting Your Program

coverage reports.

Here's how to instrument:

1. Click on the Action pull-down menu.

2. Select Instrument.

3. The mouse pointer turns into a wristwatch symbol and the Instru-
ment window's options gray out until preprocessing is complete.
tive until instrumentation is complete.

4. When instrumentation is complete and no errors are found, the fol-
lowing message appears in the invocation window:

---> TCAT analysis of ‘basename ' complete, no errors <---

5. If an error is found, it will appear in the invocation window.

NOTE: If you used any of the Instrumentor options, instrumentation

will be affected accordingly.

Instrumenting Results

Instrumentation produces the following files:
name.

e basename. i.A -- a Reference Listing, which has the logical
branches marked as Segment 1, Segment 2...
the program being tested.
Xdigraph utility (see Chapter 22, "Xdigraph Utility").
104

TCAT/C User’s Guide

4.3.5

* basename.i.E -- an Error Listing file, which contains all the errors
found during instrumentation.

To look at samples of the above files, please refer to Section 4.2.

Exiting the Instrument Window

The Exit option allows you to close the Instrument window. Here's how:
1. Click on the System pull-down menu.

2. Drag the mouse to Exit and then let go of the mouse button. The
Instrument window exits.

Preproce

Exit -
Feprocezzor command: | co Preproce

Inztrumentor command:
Instrumentor options:
2 Recognize _exit as keyword
I Do not recognize exit as keyword
2 Uo not instrument functions in file: TEINSTRU, frn
2 Specify maximum File name lengths

2 Specify maximum function name length?

FIGURE 43

Exiting the Instrument Window

105

CHAPTER 4: GUI Operation

4.4 Running Your Program

After instrumenting your source program, you need to compile the
instrumented version of your program, link the program's object code
with TCAT 's runtime object modules, and run your application.

As you know, instrumentation inserts function calls at each logical
branch/call-pair. When you eventually run the program, you will be try-
ing to “hit" these function calls. In order for TCAT to understand the
meaning of the instrumented program's object code, you must link the
code to a supplied runtime object module. This runtime module will
interpret the object code's instructions, creating an executable. After link-
ing, you can run your program (see Section 4.5.6).

This is all accomplished using the Execute window. This section demon-
strates the Execute window.

441 Invoking the Execute Window

Invoke the Execute window from the Main window. Simply click on the
Execute button. The window below pops up.

execute i i i ‘ w i

File HAction

Compiler commands: iCompiler- options:

Linker commands lcc -0 §Linker- options:
Make commands: |make gHaI-;e file names

; i i .
Application name: a,out iApplication arguments:
i

:

FIGURE 44 Invoking the Execute Window

106

TCAT/C User’s Guide

44.2

Setting Options

When using the Execute window, you may want to adjust the options.
Listed next are the options and their default settings. For complete defini-
tions on the options' functions, please refer to the Chapter 5.

To change any of the default setting for the following options: position
the mouse pointer so it in the specification region and then click the
mouse button. A cursor will appear and you can then edit:

e Compiler command & Compiler options. These two options
form the standard command to compile instrumented files. The
Compiler command default is set to cc-c and the Compiler
optionsissetto *.i.c. cc -cis the standard compiling com-
mand and *.i.c represents instrumented files.

e Linker Command & Linker options. These two options form the
standard command to link the program object code files with one
of TCAT 's object modules. The Linker Command default is set to
cc -oand Linker optionsissetto *i.o. cc -o. i *i.o
represents the input object code files, created during compilation.

e Make Command. This option invokes the make utility. The
default is set to make.

* Make file name. This option names the ‘make’ file. No default is
set.

e Application name. This names the instrumented executable. The
executable is the result of linking.

e Application arguments. This option lists arguments or switches
for the application.

NOTE: All defaults can also be changed by manually editing the .Xde-
faults file. Please refer to Chapter 8 for further information.

107

CHAPTER 4: GUI Operation

4.4.3

44.4

Compiling the Instrumented Program

You are now ready to compile you instrumented program. Follow these
steps:

1. Click on the Action pull-down menu.

2. Select Compile.

3. The mouse pointer turns into a wristwatch symbol and the Execute
window's options gray out until compilation is complete.

Compilation Results

Compiling checks your instrumented program for syntax errors. If any
are found, messages are displayed in the invocation window.

When compilation is complete, TCAT automatically writes object code
found in the instrumented program to a file named basename. i.0, where
basename is the name of your program and i.o signifies the instrumented
program'’s object code file. Eventually this file will be linked with one of
TCAT 's runtime object modules.

Selecting a Runtime Object Module

Before you link, you must specify the TCAT runtime object module. Each
runtime routine can change the behavior and performance of the instru-
mented system when it is run. Below are standard routines available from
TCAT. TCAT also offers several more. For more information on these,
please refer to Chapter 7. Here's how to select a runtime routine:

1. Click on the File pull-down menu.
2. Select Set Runtime Obj Module.

3. Afile selection dialog box like the one on the next page pops up. In
the Files selection window, there are three runtime object modules
from which to choose from:

e crun0.o or quiet runtime. There is no internal processing or
buffering. The trace file is the full, unedited trace of program
execution. There is no prompting for trace file name at the
start of your instrumented system's test run, so the trace file
name is automatically defaulted to Trace.trc.

e crunl.o This is the same as crun0.o, except it prompts you to
describe the test and the name of the trace file. There is no
processing or buffering. The trace file is the full, unedited
trace of program execution. This is the most commonly-used
object module.

108

TCAT/C User’s Guide

e cruna.o.This runtime object module is designed for analysis
of system calls such as spawn system command of C. A trace
file is produced for parent and child processes.

4. Select a runtime routine by clicking on one of them in the Files selec-

tion window or typing in the name of the object module in the Selec-
tion entry box.

execute

£f Make command:

File | Action

untime Obj Module...

ommana .

=% fpplication names

Compiler options:

Lirker options: s i i crunal++,o
crunal.o

Make file name:

1 Selection

{Application arguments:

i I /home/16/stw. 2, 6/product/lib/

FIGURE 45

4.4.5

Selecting the Runtime Object Module

Linking

Now, you are ready to link the program's object code to the object module
you selected. To link:

1. Click on the Action pull-down menu.

2. Select Link.

3. The mouse pointer turns into a wristwatch symbol and all the options
gray out until the object modules are linked.

Linking Results

After linking object files, an executable of the instrumented application is
created. The executable is defaulted to a.out.

109

CHAPTER 4: GUI Operation

The next step is to run your instrumented program and track which logi-

The mouse pointer turns into a wristwatch symbol and all the options

If you using the crunl.o or cruna.o runtime object modules, the invo-

Type in a description of the test run. Be as descriptive as you feel is
necessary. You can enter up to 80 characters of text in your message.
This message will be recorded in the trace file and used in coverage

If you using the crunl.o or cruna.o runtime object modules, the invo-

Type in any name. The system put the trace information under the
name you specify. You can also save trace information to the default

The trace file description and trace file name are useful in keeping
track of different test runs. Consistent, clear naming conventions are

prompted with the questions in 4 and 5. The trace file name is auto-

Run your program as you normally would, making sure to exercise

After exercising your test suite, all the test trace information is written to

4.4.6 Running Your Application

cal branches have been exercised by the test data you supply. TCAT

senses when segments are hit by monitoring the markers during instru-

mentation and by accumulating the results in a trace file. The trace file

becomes the basis for all subsequent coverage reports.

To run your application:

1. Click on the Action pull-down menu.

2. Select Run Application.

3.
gray out until you are finished running your application.

4.
cation window then prompts you:

Trace Descriptor:

reports. If you choose to enter no descriptive text, just press the
RETURN key.

5.
cation window prompts you:

Name of trace file [default is Trace.trc]:

trace file name, Trace.trc. To do this, press the RETURN key.
useful in organizing different groups of results. A recommended
practice is to identify trace files with the file name extension trc.
If you are using the crun0.o runtime routine, then you will not be
matically defaulted to Trace.trc.

6.
your test suite as thoroughly as possible.

Running Results

a trace file. From this file, coverage reports can be obtained.

110

TCAT/C User’s Guide

4.4.7 Exiting the Execute Window

The Exit option allows you to close the Execute window. Here's how:

1. Click on the File pull-down menu.

2. Select Exit. The Execute window exits.

2 A0000

Hctian

e KRR e A

unf ime I_Itl J Htldlllr-'+ .

EEampiler

////*' Fker commargy G ~0 :Linker o
Make command: mak.e %Hake fil
Application name: a,out >HPP11Lu

FIGURE 46 Exiting the Execute Window

4.5 Using make Files

Most often, TCAT will be used to develop test suites for systems that are
created with make files. Make files cut the time of constructing systems,
by automating the various steps necessary to build the system, including
preprocessing, instrumenting, compiling and linking. All of these steps
can be written in the make file.

4.5.1 Preprocessing, Instrumenting, Compiling

Fortunately, it is possible to add a few statements to most make files to
enable them to make an instrumented version of the system. The modifi-
cations fall into one category: cc for most UNIX compilers.

If the make file explicitly mentions the C compiler with a cc command
(for example), it is possible to add the ic command and an extra cc com-
mand for preprocessing, instrumenting and compiling, causing the make
script to instrument and compile the C files in questiof.

111

CHAPTER 4: GUI Operation

This section will discuss how to use TCAT and make files. Please refer to
Section 6.6.1 for more information on make file commands.

Make file lines such as:

sample.o:sample.c
cc -c sample.c

would be changed to:
sample.o: sample.c
cc -P $(CFLAGS) sample.c
ic sample.i
cc -c¢ $(CFLAGS) sample.i.c

mv sample.i.o sample.o

The other situation is where the compiler is not explicitly mentioned, but
given as a “built-in" rule. You can add the following “built-in" rule:

cc -P $(CFLAGS) $*.c

ie g, 4

cc -¢ $(CFLAGS) $*.i.c

mv $*.i.0 $*.0

object modules to the link statement. Below is a standard link statement:

You would add one of the supplied object modules, as shown below (the

At this point, your make file has accomplished the preprocessing, instru-
menting, compiling, and linking steps. All you need to do is run the make

4.5.2 Linking Object Modules
You can also link object modules by adding one of TCAT 's supplied
sample: $(Objects)
rm -f sample
cc $(Objects) $(LDFLAGS) $(Lextras) -o sample
object modules are shown in regular text):
sample: $(Objects) crunl.o
rm -f sample
cc $(Objects) crunl.o $(LDFLAGS) $(Lextras) -o sample
file (see Section 4.5.4).
112

TCAT/C User’s Guide
4.5.3 Example make Files

The make file below shows a typical UNIX/XENIX make file before mod-
ification.

S S S E R P P RS EE L E S R E R e S S e L

HH iy

##

S AMP L E MAKE FILE

#4

Make file example, no instrumentation.

4

UNIX, XENIX

##

HEEHEERAREBRRBEBREE BB BN ER R R R R AR R R R R R R R R

HH4H

Uses make's knowledge of lex, yacc, cc.
HHHH GG HHH AR HH A AR A HEH AR R H AR R R H AR AR R H R R R # S

HHHH

CCextras =

CFLAGS = -s ${CCextras} -DXENIX

YFLAGS = -d

LDFLAGS = -i -1y -11

LFLAGS = -v

Lextras =

Objects = sample.o sampley.o samplel.o tree.o init.o error.o

dotest.o log.o \\

ui.o premain.o preprocy.o preprocl.o pretree.o help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c error.c
dotest.c log.c \\

ui.c premain.c preprocy.c preprocl.c pretree.c sample.h \\
typedef.h error.h y.tab.h preproc.h help.c license.c license.h
UNIX version. Compiles and links.

sample: $(Objects)

rm -f sample

cc $(Objects) $(LDFLAGS) S$(Lextras) -o sample

#

sampley.c: sampley.y

vacc $(YFLAGS) sampley.y
mv y.tab.c sampley.c

cp y-tab.h ytab.h

#

samplel.c: samplel.l

lex S (LFLAGS) samplel.l

mv lex.yy.c samplel.c

#
preprocy.c: preprocy.y

vacc $(YFLAGS) preprocy.y

cat y.tab.c | sed -e 's/yy/xx/g‘ > preprocy.&
cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h

113

CHAPTER 4: GUI Operation

rm y.tab.c
#
preprocl.c: preprocl.l
lex $ (LFLAGS) preprocl.l
cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c

rm lex.yy.cC

lpr:
pr $(Sources) | lpr
license.o: license.c license.h

FIGURE 47 Uninstrumented UNIX Make File

The changes needed have been made in the modified make file shown

below. The modifications are shown in bold face.
HEHHHAAHAH B HHHA R AR R R R R R H 1
#i##
##
S AMPL E M A K E FPILE
#4#
Make file sample, with TCAT /C instrumentation
#4#
UNIX, XENIX
##
HAERHHHHAHHAAHHHARAAAH AR A A AR BB AR ARG H RS GH AR H AR B R R
HH##
Uses make's knowledge of lex, yacc, cc.
HHHGHHHH AR AR HAH AR AR AR AR SR HA AR H R B R F A B HH SRR SR SRS H SRR
HH#H#
CCextras =
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -1ly -11
LFLAGS = -v
Lextras =
Objects = sample.o sampley.o samplel.o tree.o init.o error.o
dotest.o log.o \\
ui.o premain.o preprocy.o preprocl.o pretree.o help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c error.c
dotest.c log.c \\
ul.c premain.c preprocy.c preprocl.c pretree.c sample.h type-
def.h error.h \\
y.tab.h preproc.h help.c license.c license.h
UNIX version. Compiles and links.

«+C.0O:
cc -P $§ (CFLAGS) $*.c
ic $*.1i
cc -c $(CFLAGS) $*.i.c.
mv $*.i.0 $*.0
114

TCAT/C User’s Guide

#

sample: $(Objects) crunl.o

rm -f sample

cc $(Objects) crunl.o $(LDFLAGS) $(Lextras) -o sample
#

sampley.c: sampley.y

yacc $(YFLAGS) sampley.y

mv y.tab.c sampley.c

cp y.-tab.h vytab.h

#

samplel.c: samplel.l
lex S (LFLAGS) samplel.l
mv lex.yy.c samplel.c

#

pPreprocy.c: preprocy.y
yvacc S (YFLAGS) preprocy.y
cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h
rm y.tab.c

#
preprocl.c: preprocl.l
lex $ (LFLAGS) preprocl.l
cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c
rm lex.yy.c
lpr:
pr S (Sources) | lpr
license.o: license.c license.h

FIGURE 48

454

Instrumented UNIX Make File

Running Your Make File

Now you are ready to run your program. Please follow these steps:

1. Invoke TCAT as you normally would (see Section 5.2).

2. Invoke the Execute window (see Section 5.3).

3. Make sure the Make command, which invokes the make utility, is set
to the command you need. The default is set to make. To change it,
position the mouse pointer in the specification region and then click
the mouse button. When the cursor appear, edit the region accord-
ingly.

4. You need to specify a make file name for the Makefile name option.
The make utility will use this file. Simply position the mouse pointer
50 it is in the specification region and then click on the mouse button.
When the cursor appears, type in the name of your make file.

115

CHAPTER 4: GUI Operation

116

4.6

Click on the Action pull-down menu.
Select the Make option.

This option will invoke the make utility, which will use the make file.
The preprocessing, instrumenting, compiling, and linking instruc-
tions are executed.

8. The mouse pointer turns into a wristwatch symbol and the Execute
window's options gray out until the make file's statements are exe-
cuted.

9. Run your make file like any other instrumented and compiled pro-
gram (see Section 5.4 for program running instructions).

Obtaining Coverage Reports

When you ran your program, all branch/call-pair coverage information
was written to a trace file, default Trace.trc or the trace file name you spec-
ified.

To obtain coverage reports, the specified trace file is inputted into the cov-
erage analyzer. The coverage analyzer generates coverage reports and an
archive file (named Archive), which can be used in the second run of the
coverage analyzer. The archive file is similar to trace files in its format and
content. The significant difference is that the archive file does not contain
information on the sequence in which logical branches were hit. It does,
however, contain all other data required for coverage analysis.

The archive file is useful if you run several subsequent test sessions and
want cumulative results. In such a case, both the archive file and the trace
file are inputted into the coverage analyzer. This is done automatically for
you.

Following is a diagram of how coverage reports are created.

TCAT/C User’s Guide

Coverage

Analyzer

Archive

File

Coverage

Reports

FIGURE 49 Obtaining Coverage Reports

4.6.1 Invoking the Analyze Window

Invoke the Analyze window from the Main window. Simply click on the

Analyze button. The window below pops up.

eport function in file:

M Cunulative tests £l Generate list of functions with C1

2 Log histogran 21 Rename the r

2 Linear histoaram

2l Reference listing 21 Sort report by module name

O Hit 1 Generate list of functions not included in report
B Hot hat B [0 not update archive files

2 Newly hit 21 01d Archive name:

21 Newly miszsed 21 Hew Archive name: f;

FIGURE 50 Invoking the Analyze Window

117

CHAPTER 4: GUI Operation

4.6.2

FIGURE 51

4.6.3

Selecting the Trace File Name

You must select the trace file you named when you ran the program.
Eventually the trace file will be fed into the coverage analyzer to create
reports. To select a file name:

1. Click on the File pull-down menu.

Select Set Input Trace File Name.

A file selection dialog box like the one below pops up.
Select an existing trace file name.

o b

Select a file name by clicking on it in the Files selection window or
typing it in the Selection entry box.

Filter

a1sﬁcoverage#tcatﬁdemos/*.trc2

Directories Files

at/demos/, - | Trace,trc =
:at/demos/, ,

Selection

|/manualsfcouerageftcat/demosﬁ§

! EFllter gEancell

Selecting the Trace File Name

Selecting Reports

Before you run the trace file through the coverage analyzer, you must
specify which reports you would like to see. The coverage analyzer will
only take the information you specify it take from the trace file (and the
archive file). For a detailed description of the below reports, please refer
to the Chapter 5.

118

TCAT/C User’s Guide

You can select any of the following check buttons by clicking once in the
corresponding box. A check button is turned on if it is darkened. If it is
hollowed, then it is turned off.

Past tests button. The coverage analyze will produce a Past
report. The Past Test report gives analysis of the archive file only.
It summarizes the percentage of logical branches hit in each mod-
ule, giving the C1 value for each module and the program as
whole. This button is defaulted off.

Cumulative tests button. The coverage analyze will produce a
Cumulative report. This report tells you how many times each
module was invoked, how many of its logical branches were hit,
and its resulting C1 coverage measure. It analyzes information
from both the trace file and the archive file. This button is
defaulted on.

Hit button. The coverage analyze will produce a Hit report. The
Hit report identifies all of the logical branches within each mod-

ules that were exercised during your test suites. This button is
defaulted off.

Not hit button. The coverage analyze will produce a Not Hit
report. The Not Hit report gives each module name and an iden-
tification number for each segment not hit in the current test. To
identify the actual code not executed, look up the segment identi-
fication number in the Reference Listing report. This button is
defaulted on.

Newly hit button. The coverage analyze will produce a Newly
Hit report. This report identifies which logical branches are hit in
the present test which were not hit in any prior test. This button is
defaulted off.

Newly missed button. The coverage analyze will produce a
Newly Missed report. This report shows which logical branches
were not hit in the current execution that were hit previously. The
button is defaulted off.

Log histogram button. The coverage analyze will produce a
Logarithmic Histogram report. This report demonstrates the fre-
quency distribution of branches exercised in each module. This
button is defaulted off.

Linear histogram button. The coverage analyze will produce a
Linear Histogram report. This report graphs a mark for each
branch hit during testing. This button is defaulted off.
Reference listing button. The coverage analyze will produce a
Reference Listing report. This report shows the coverage level

achieved for all modules that are named in the specified reference

119

CHAPTER 4: GUI Operation

FIGURE 52 7

listing, basename.i.A. The button is defaulted off. To obtain the
Reference Listing report, you must specify the Reference Listing
file. The coverage analyzer takes the information from the Refer-
ence Listing file and then creates a report.

Remember, the Reference Listing File is a version of your C program
which has logical branches marked. The Reference Listing report has the
same information, except it identifies the coverage for each module, the
number of times each logical branch was hit and which were not hit.
Here's how to specify the Reference Listing file:

1.

2
3.
4

Reference Listing File Selection

Click on the Reference Listing radio button like you normally would.

A file selection box like the one below pops up.
Select an existing reference listing file, basename. i.A.

Select a file name by clicking on an already existing file in the Files
selection window or typing in the file name in the Selection entry
box.

Filter

)) ik
alsfcaueragextcatfdemosf*.1‘H§

Directories Files

exanple.i A
demosd, i

Selection

/manuals/coverage/tcat/demos/ |

: gFilter iEancel

120

TCAT/C User’s Guide

46.4

Selecting Coverage Analyzer Options

Before you run the coverage analyzer you may want to select some of the
following options, which can effect the coverage reports in various ways.
For a detailed description of the below options, please refer to Chapter
55.

You can select any of the following check buttons by clicking once in the
corresponding box. A check button is turned on if it is darkened. If it is
hollowed, then it is turned off. If an option has a corresponding specifica-
tion region, simply position the mouse pointer in the specification region
and then click the mouse button. A cursor should appear and you can
edit accordingly.

* Do not report function in file button. Use this option if you don't
want the coverage analyzer to create coverage reports based on
certain modules. You must already have a de-instrument file,
defaulted to DEINSTRU.fns with the module(s) listed. Simply
type the file name in the specification region. This option is
defaulted off.

* Generate list of functions with C1> button. Use this option to
specify a threshold value. Any module with percentage coverage
greater than or equal to the threshold value (defaulted to 85) per-
centage will automatically be written to the de-instrument file,
DEINSTRU.fns. Type in the threshold number in the specification
region. This option is defaulted off.

¢ Generate list of functions not included in report button. Use
this option to see which modules are excluded from coverage
reporting. The list of excluded modules is printed at the end of
the coverage report. This option should be used with the Do not
report function in file option. This option is defaulted off.

¢ Do not update archive file button. Use this option to suppress
updating the archive file. This is useful if you want the archive
file to be the basis for past test information. This option is
defaulted on.

e 0Old Archive name button. Use this option to include data from
an old archive file in your reports. Type in the name of the old
archive file in the specification region. This option is defaulted
off.

¢ New Archive name button. Each time you run the Coverage
Analyzer, you will write over the contents of the archive file. If
you want to keep a coverage run's archive file results, you can
use this option. Simply type in a different file in the specification
region. If you don't include a file name, the accumulated test data

121

CHAPTER 4: GUI Operation

will automatically defaulted to the file name Archive. This option
is defaulted off.

e Rename the report file to button. When you run the Coverage
Analyzer, coverage reports are automatically written to a file
named Coverage. If you want a different report file, use this
option. Simply type in the new file name in the specification
region. This option is defaulted off.

e Change the report width to button. Normally the reports gener-
ated by the coverage analyzer are wide enough to accommodate
module names up to 21 characters in length. The internal limit on
name length is, however, 128 characters. You can use this option
to generate reports that are wide enough to accommodate the full
128 characters. Simply type in the width in characters in the spec-
ification region. This option is defaulted off.

e Sort report by module name button. Use this option to produce
output reports with module names sorted alphabetically. This
option is defaulted off.

4.6.5 Running the Coverage Analyzer

After selecting the kinds of reports and any coverage analyzer options,

you just need to run the coverage analyzer to obtain coverage reports.

Here's how:

1. Click on the Action pull-down menu.

2. Select Run Coverage Analyzer.

3. The mouse pointer turns into a wristwatch symbol and the Analyze
window's options gray out. During this time-out period the coverage
analyzer is taking information from the trace file (and the archive file)
and then creating a file named Coverage, which contains the coverage
reports you selected.

4. When the mouse pointer is returns, the coverage analyzer has com-
pleted creating coverage reports.

4.6.6 Looking at Coverage Reports

To look at coverage reports:

1. Click on the Action pull-down menu.

2. Select View Report.

3. A View Report window like the one below pops up.

4. It lists which reports you selected and each subsequent report fol-
lows.

122

TCAT/C User’s Guide

5. To look at reports, use the scroll bars to move up /down or side /
side.

6. When you are finished looking at the reports, you can close the View
Report window by clicking on the Action pull-down menu and
selecting Exit.

From the coverage reports you selected, you should be able to determine
which segments were exercised. We recommend that you try to obtain 85
percent coverage. If you report coverage is less than 85 percent, we rec-
ommended re-exercising your test suite. From the coverage information,
you should be able to determine which segments need to be exercised.

Cumulative
t His

port -
Report —— NO
-= N0

ead: 3
o overage Analyzer, [Yer 8,2 for SUN/UNIX (11/10/94)]
{c) Copyright 1930-94 by Software Research, Inc.

1 Current Test I Cumulative Summary

| No. Of | No, Of |
Hodule Number Of | No, Of Segments C1Z | No, Of Segments (1%

FIGURE 53

4.6.7

Looking at Coverage Reports

Exiting the Analyze Window

Before exiting the Analyze window, please note that you can also look at
the coverage information in a graphical display (see the accompanying
documentation on the Xdigraph utility), which can be quite useful in
identifying unexercised segments.

The Exit option allows you to close the Analyze window. Here's how:

1. Click on the File pull-down menu.

2. Select Exit. The Analyze window closes,

123

CHAPTER 4: GUI Operation

Set Input Trace File MName,,, Analyzer options:
set Module Mame, .,
_ i Do not report functi
M Cumulative tests 2 Generate list of fun
21 Hit o Generate list of fun
M Not hit M Do not update archiv
ol Newly hit 21 01d Archive name: I_
21 Newly missed & New Archive name: [
1 Log histogram 2l Rename the report fi

FIGURE 54 Exiting the Analyze Window

124

CHAPTER 5

GUI Reference

This chapter defines and explains the contents of the major X Window system windows
that make up the TCAT product, and is intended to act as a reference.
LEVEL: All users.

5.1 TCAT Menus

Once you have invoked TCAT, operations are initiated by using the fol-
lowing menus:

e Main window to initiate other windows.

e Instrument window to preprocess and instrument source pro-
grams.

e Execute window to compile the source program, link the pro-
gram’s object code to the TCAT object modules, and run the
application.

e Analyze window to generate coverage reports and to analyze the
control of program through graphical displays.

This chapter briefly describes the functions for each of these menus and
their commands. Information on how to use these menus and commands
can be located throughout Chapter 6.

125

CHAPTER 5: GUI Reference

5.2 Main Window
When TCAT is first invoked, the Main window is the place from which
you activate other windows.
FIGURE 55 Main Window
The window has two pull-down menus (located in the menu bar):
System The System pull-down menu allows you to exit
TCAT.
Help The Help button describes the basic functions of

TCAT.

The window has three push buttons:

Instrument

Execute

Analyze

This button activates the Instrument window, which
allows you to preprocess and instrument source pro-
grams.

This button activates the Execute window, which al-
lows you to compile the instrumented source code,
link the instrumented program’s object code with the
TCAT-supplied runtime object modules, and run the
application.

This button activates the Analyze window, which al-
lows you to analyze the thoroughness of your test

126

TCAT/C User’s Guide

suite through coverage reports and to look at graphi-
cal displays of the program’s control flow.

The two pull-down menus are described on the following pages and the
push buttons are described in the sections that follow.

5.2.1 System Pull-Down Menu

The Exit option allows you to exit TCAT.

T T T T

:: P A
Help

TS
S R

In=trument

[

aqstem

S S
A

Execute

;IGURE 56 System Pull-Down Menu

5.2.2 Help Button

The Help button provides you with a dialog box that explains the basic
operation of TCAT.

127

CHAPTER 5: GUI Reference

Action

Help for Xtcat Main Window

TCAT, Ver 8.2

when the
0%,
TCAT oper in thr tates:

Instrumen n, Execution, and Ana

FIGURE 57 Help Window for the Main Window

128

TCAT/C User’s Guide

5.3 Instrument Window

All functions necessary to preprocess and instrument source program are
accessible from this window. See Section 4.3 for use of this window.

cc =P

Instrumentor options:
b | Recognize _exit as keyword
I Do not recognize exit as keyword
o Do not instrument functions in file:

& Specify maximum file name length:

21 Specify maximum function name lenath:

FIGURE 58 Instrument Window
The window has three pull-down menus:

¢ File pull-down menu. You use it to select the source program, or
application name, and to exit the window.

e Action pull-down menu. You use it to preprocess and to instru-
ment the source application.

e Help button. This button provides you with an on-line help
menu for the Instrument window.
The window has an option menu:

» Preprocessing allows you to turn preprocessing on or off.

The window has the following specification regions.

e Preprocessor output suffix specification region allows you to set
the suffix for the output file created from preprocessing.

e Preprocessor options allows you to set additional compiler
options for preprocessing.

e Preprocessor command specification region allows you set the
preprocessor command.

129

CHAPTER 5: GUI Reference

¢ Instrumentor command allows you to set the command that
instruments the source application.

e Instrumentor options allows you to select a variety of options,
which effect instrumentation’s outcome.

Each of these options is described in the sections that follow.

5.3.1 File Pull-Down Menu

Selecting the Set File Name option opens up a file selection dialog box.
There you can select an application name you would like to preprocess
and then instrument.

Files

example, E (&

exanple,1,c i

e

| [ieer] [et] 8

FIGURE 59 Set File Name Dialog Box

The Exit option closes the Instrument window.

Pl)

O Do not 1nstrument functions in file: DEINSTRL. fre

O Specify maxinum File name |

J O Specify maxinum function name length:

FIGURE 60

File Pull-Down Menu

130

TCAT/C User’s Guide

532 Action Pull-Down Menu

Preprocess to preprocess the source program. Preprocessing checks your
code for syntax errors prior to instrumentation.

Instrument to instrument the source program. After preprocessing, you
instrument the source application. During this process, TCAT will auto-
matically insert function calls at each logical branch.

Preprod Preproc

- output suff

nstrument
s —
T command s

Preproc

Preprocessor options: [

Instrumentor commands

Instrumentor options:

|

ognize _exit as keyword

2 Do not recognize exit as keyword

FIGURE 61 Action Pull-Down Menu

5.3.3 Help Button

The Help button provides you with on-line help for the Instrument win-
dow.

You need to proc
that dynamic cow

First, you may need tI: pre-process the pro-
gram.

o run the TCAT instru-

FIGURE 62 Help Window for the Instrument Window

131

CHAPTER 5: GUI Reference

The Preprocessing option menu allows you to turn preprocessing on or
off. In most cases, you must check your program for syntax errors. In such

There are times, however, you may already know there are no syntax
errors and wish to forsake the preprocessing step. In these cases, select

After preprocessing a source program, the results are automatically writ-
ten to a file. The Preprocessor output suffix specification region defines
the suffix to that file where preprocessing results are written. The suffix is

The Preprocessor command defines the command your compiler will use
to compile the source program. The default is set to the standard UNIX

The Preprocessor options specification region allows you to add any
additional compiler options you may want. No options are specified for

The Instrumentor command defines the command that instruments the
source program. The default is set to ic, which is the TCAT standard

If you select any of the Instrumentor options buttons, instrumentation on
your source program will be effected. Below is a list of these options:

The Recognize _exit as keyword check button causes the instrumentor
(ic) to acknowledge exit as a keyword. This option is defaulted off.

5.34 Preprocessing Option Menu
cases, you will select the ON menu item.
the OFF menu item. The default is set to ON.

5.3.5 Preprocessor output suffix Specification Region
defaulted to .i.

5.3.6 Preprocessor command Specification Region
compiler command cc-P.

5.3.7 Preprocessor options Specification Region
the default.

5.3.8 Instrumentor command Specification Region
instrumentor command.

5.3.9 Instrumentor options
Recognize _exit as keyword Button

132

TCAT/C User’s Guide

Do not recognize _exit as keyword Button

The Do not recognize _exit as keyword check button causes the instru-

mentor (ic) not to acknowledge exit as a keyword. This option is
defaulted off.

Do not instrument functions in file Button

The Do not instrument functions in file check button causes the instru-
mentor to selectively de-instrument named functions in the file specified
in the specification region. This file name is defaulted to DEINSTRU.fns.
During the instrumentation process, the instrumentor will not mark the
segments for modules named in the file. This option is recommended if
you know certain modules have already been thoroughly exercised.

This option is defaulted off.

Specify maximum file name length Button

After instrumentation, the instrumentor creates the following files:

e basename.i.c -- an instrumented version of your “C” program,
basename.

e basename.i.A -- a Reference Listing, which has the logical
branches marked as Segment 1, Segment 2....

e basename.i.S -- an Instrumented Statistics file, where various
kinds of statistics are listed for each module, including the num-
ber of statements, segments, conditional statements, etc.

e basename.i.L -- a Segment Count Listing file, which contains a
complete count of all the modules and their segments in the pro-
gram being tested.

* modulename. dig -- a Directed Graph Listing file for each module,
which reports the segment relationship between nodes. You can
also visually look at a module’s directed graph using the TCAT
Xdigraph utility (see the accompanying Software Product Notes)

e basename.i.E -- a Error Listing file, which contains all the errors
found during instrumentation.

The Specify maximum file name length check button causes the instru-
mentor to put a limit on the amount of characters a basename file name
can have. If the length exceeds the value specified in the specification
region, then the instrumentor output files will be redirected to files
named Temp.i.?.

The default is turned off.

133

CHAPTER 5: GUI Reference

Use this option when your system has a limit on the length of file name
characters.

Specify maximum function name length Button

The Specify maximum function name length check button causes the
instrumentor to put a limit on the amount of characters a function name
can have. If the length exceeds the value specified in the specification
region, then the instrumentor will only recognize as distinct only the first
value characters of the function name. If you specify 5, for instance, then
only up to the first five letters of the function names are recognized.

The default is turned off.

134

TCAT/C User’s Guide

54

Execute Window

All functions necessary to compile source programs, link the programs’
object modules with the TCAT runtime object modules and run applica-
tions are accessible from this window. See Section 5.5 for use of this win-

dow.

File

Action

2 Application name: a,o0ut Application arguments:

Compiler command: {F Compiler options:

Linker commands cc Linker options:

Make commands: fake file name?

FIGURE 63

Execute Window

The window has three pull-down menus:

File pull-down menu. You use it to select the TCAT runtime
object module and to exit the window.

Action pull-down menu. You use it to compile the instrumented
program, link object files, and run the application.

Help button. This button provides you with an on-help of the
Execute window.

The window has the following specification regions:

Compiler command specification region allows you to set the
command to compile your instrumented program.

Compiler options allows you to specify the instrumented pro-
grams to be compiled.

Linker Command specification region allows you set the com-
mand to link the instrumented program’s object code with the
TCAT object modules.

Linker options allows you to specify the object code file needed
for linking.

Make command allows you to select the command that will
invoke the make utility.

Make file name allows you to specify the make file.

135

CHAPTER 5: GUI Reference

e Application name allows you to name the instrumented execut-
able.

e Application argument allows you to specify arguments or
switches for the application.

Each of these options is described in the sections that follow.

Selecting the Set Runtime Obj. Module option opens up a file selection
dialog box. There you can select a TCAT runtime object module. The runt-
ime object module you select is eventually linked with the instrumented

runtime routine can change the performance of the instrumented system.

5.4.1 File Pull-Down Menu
program’s object code, creating an executable for the application. Each
ile selection:
Filter
IS/stw.Z.G/productfl1bfcrun*.u%
Directories Files
ot | crun0++, o
‘lib/, . E |crunt.o
1ib/¥11RS {f | |crunl++.o
‘lib/sharedif [|crunl.o
E |crund.o
crunS,o
crunal++,o
crunal,o
Selection
[/home/lE/stw.E.Efproduct/l1b/§
: %Filter §Eancel
FIGURE 64 Set Runtime Obj. Module Selection Dialog Box
The Exit option closes the Execute window.

TT——

TCAT/C User’s Guide

FIGURE 65

5.4.2

et Buntime Obj Module,..
Elf
1nker commands e =0 Linker options:

 Canpiler options:

Make command: e Make file name:

Application name: Application arguments:

File Pull-Down Menu
Action Pull-Down Menu

Compile to check your instrumented program for syntax errors. When
errors are found, they are displayed in the invocation window. Compiling
also automatically creates an object file, basename.i.o, which contains

object code information. This file is later linked with one of the TCAT
object modules.

Link to link the program’s object code to one of the TCAT object modules.

Make will invoke the make the utility, which will use the make file you
specify in the the Make file name option. This file should contain instruc-
tions to preprocess, instrument, compile and link. Creating a make file
can save you a lot of time. Please refer to Section 5.4.9 for further informa-
tion.

Run application to execute the program. When you run a program, you
will be using your test suite to exercise module’s segments as thoroughly
as possible.

137

CHAPTER 5: GUI Reference

2

File : Action

Caompil
ompile A LLe - Compiler optic
inker Make = Linker optionz
lake cd Run application Make file name
Bovoncovoonoveoncasnossnosovccornsocd
pplication name: a,out Application ar

FIGURE 66 Action Pull-Down Menu

5.4.3 Help Button
The Help button provides you with on-line help for the Execute window.

cat Ver 8,2 (10/26/94) - Hel

Action

After instrumentation, you need to link
your compiled programs with the “runtime"
module, There are several different run—
time modules you can use, depending on
the particular features you want:

Level 0: Fixed trace file and no buffer-
ing.

Level 1: User-selected trace file and no
buffering, This iz the most commonly-used
version,

Level 2: User-selected trace file and
minimal buffering.

Level 3: User-selected trace file and
moderate buffering.

FIGURE 67 Help Window for the Execute Window

138

TCAT/C User’s Guide

5.4.4

5.4.5

5.4.6

5.4.7

54.8

5.4.9

Compiler command Specification Region

The Compiler command specification region specifies the command to
compile. The default is setto cc -c, which is the standard UNIX compil-
ing command.

Compiler options Specification Region

You must specify the instrumented files to be compiled. The Compiler
options specification region allows you to specify the instrumented pro-
grams’ suffix. Generally when programs are instrumented, the instru-
mented version of the source program is generally named basename i.i.c,
unless otherwise specified in the Instrument window’s Preprocessor out-
put suffix option. For this reason, the default is set to *i.c.

Linker Command Specification Region

The Linker Command specification region specifies the command to link
object files: a supplied SR runtime object module with object code files,
basename.i.o. The default is set to cc -o.

Linker options Specification Region

You must specify the input object files to be linked with one of SR’s object
modules. These input object files are created during compiling, generally
named basename.i.o. For this reason, the default for the Linker options
specification region is set to *i.o.

Make command Specification Region

The Make command specification region allows you to specify the com-
mand used for invoking the make utility. The make utility performs the
instructions defined in a make file. The default is set to make.

NOTE: This option is only necessary if you are using make files.

Make file name Specification Region

The Make file name specification region allows you to specify the file
names for the make file. There is no default set.

NOTE: This option is only necessary if you are using make files.

139

CHAPTER 5: GUI Reference

5.4.10

5.4.11

Application name Specification Region

When object files are linked, an executable is created. The Application
name specification region allows you specify the instrumented executable
name. The default is set to a.out.

Application argument

The Application argument specification region allows you to add
switches for the application. There is no default set.

140

TCAT/C User’s Guide

5.5 Analyze Window

All functions necessary to look at coverage reports and to view a mod-
ule’s directed graph are accessible from this window. See Section4.6.1 for
use of this window.

File

Action

i

i3 Feport types: Analyzer optiona:

B Cunulative tests) Generate list of functions with C1

o Hit Il Generate list of functionz not included in report
M ot hit M Do not update archive files

I Newly hit 21 01d Archive name:

2 Newly missed 21 New Archive name:

o Log histogram] Rename the report file tos

O Linear histogram I Change the report width to:

{1 Reference listing 2 Sort report by module name

I Do not report function in files

FIGURE 68 Analyze Window

The window has three pull-down menus:

File pull-down menu. You use it to select the trace file and to exit
the window.

Action pull-down menu. You use it to run the coverage analyzer,
view reports, and view source code for a program module’s seg-
ments.

Help button. This button provides you with an on-help of the
Analyze window.

The window has the following reports available:

Past tests check button.
Cumulative tests check button.
Hit check button.

Not Hit check button.

Newly hit check button.

Newly missed ¢heck button.

141

CHAPTER 5: GUI Reference

5.5.1

Log histogram check button.
Linear histogram check button.
Reference Listing check button.

The window has the following coverage analyzer options available:

Do not report function in file check button.

Generate list of functions with C1> check button.

Generate list of functions not included in report check button.
Do not update archive file check button.

Old Archive name check button.

New Archive name check button.

Rename the report file to: check button.

Change the report width to: check button.

Sort report by module name check button.

Each of these options is described in the sections that follow.

File Pull-Down Menu

Selecting the Set Input Trace File Name option opens up a file selection
dialog box. There you can select the trace file you named when you ran
the program. Remember that when a program is run, all segment infor-
mation is written to the trace file.

v

& tracefilename_poy

i Filter

als/coverage/tcat/demos/*, trc

|| AT S

i Selection

/manuals/coverage/tcat/demos/ | &

{ IFilter | Cancel l

142

TCAT/C User’s Guide

FIGURE 69

FIGURE 70

5.5.2

Set Input Trace File Name Selection Dialog Box

The Exit option closes the Analyze window.

Hction

: Set Hodule Name...

E

K1t

(== &

i Set Input Trace File Mame,.,

M Cunulative tests
1 Hit

M Mot hit

1 Newly hit

21 Newly missed

1 Log histogram

£l Linear histogram

£l Reference listing

Analyzer options:

2 To rot report function in file:

£l Generate list of functions with C1 >
2 Generate lizst of functions not included in rep

M Do rot update archive files

21 01d Archive name:

21 New Archive name:

File Pull-Down Menu

Action Pull-Down Menu

When you use TCAT, you first select the trace file, then the types of

reports you want and any coverage analyzer options. The Run Coverage
Analyzer reads in the information from these three sources. The coverage
analyzer then creates a file named Coverage, which contains the coverage

reports you selected.

The View Source option allows you select a module from the program,
look at its directed graph, and view source code for a particular segment.
Please see the accompanying documentation on theXdigraph utility for

usage.

143

CHAPTER 5: GUI Reference

FIGURE 71

5.5.3

File

Report Fun Coverage Analyzer

Yiew Report,,,

View Source...

M Cunulative tests
2 Hit

M Not hit

2 Newly hit

21 Newly missed

21 Log histogram

Z1 Linear histogram

l Reference listing

21 Do not report function in file:
Il Generate list of functions with C1 >

£l Generate list of functions not included in report

21 01d Hrchive name:
21 New Archive name:
1 Rename the report file to:

£l Change the report width to:

Analyzer options:

M Do not update archive files

1 Sort report by module name

Action Pull-Down Menu

Help Button

The Help button provides you with on-line help for the Analyze window.

Action

After you have executed your program you
need to analyze the C1
using the “cover” subsy
contral through the "analyze

menu,

Typically, you analuze one tr
tive to past test
“Archive File."

The "analyze" menu helps you select the
types of coverage reports you want, which
modules for functions) you want them to
apply to, and a variety of other options,
Please consult your User Manual for

verage obtained
em which you

ace file rela-

information stored in an
After determining cover-
age and making notes about what you might
wish to do next. you create
File, ‘You use this information for the
next “cycle” of testing,

new RArchive

144

TCAT/C User’s Guide

5.5.4 Past tests Check Button

The Past tests button tells the coverage analyzer to produce a Past report.
The Past Test report gives analysis of the Archive file only. It summarizes
the percentage of segments hit in each module, giving the C1 value for
each module and the program as whole. This button is defaulted off.

| {Archived) Past Tests

|
Module er Of | Number Of
Mo, Name Segments: | Irvocationz

Humber Of
Segments

Hit

1
proc_input 15
e.chk_char 3 15

21
15

31

t t
serage Analyzer, [Wer 8.2 for SUN/UNIX
ght 1990-34 by Software Research, Inc.

(11/10/343]

| Current Test

I Cumulative Summary

No, Of
Number OF | Mo, Of Segments

FIGURE 73

Past Report

145

CHAPTER 5: GUI Reference

5.5.5 Cumulative tests Check Button
The Cumulative test button tells the coverage analyzer to produce a
Cumulative report. This report tells you how many times each module
was invoked, how many of its segments were hit, and its resulting C1
coverage measure. It analyzes information from both the trace file and the
Archive file.
This button is defaulted on.
Coverage Analyzer, [Ver 8.2 for SUN/UNIX (11/10/94}]
pyright 1330-34 by Software Research, Inc,

| | Current Test | Cumulative Summary

|

| I No, Of | No, OF

| Module Number Of | Mo, Of Segments C1Z | Mo, Segments

| Names Segments: | Invokes Hit Cover | Invc Hit

| example.main 27 | 1 1 21

| example,proc_input 24 | 15 15 15

| example,chk_char 31 15 15 2

Totals 54 | 31 31 38
wed in archivels
ﬂ'«: fAnaluzer, [Ver 8.2 for SUN/UNIX (11/10/943]
Copyright 1930-34 by Software Research, Inc.
C1 Segment Not Hit Report,
No, Hodule Name: Segment. Coverage Status:
FIGURE 74 Cumulative Report
146

S

S

-

TCAT/C User’s Guide

5.5.6 Hit Check Button

The Hit button tells the coverage analyzer to produce a Hit report. The
Hit report identifies all of the segments within each modules that were
exercised during your test suites. This button is defaulted off.

C1 Segment Hit Repart,

Hodule Name:

exanple.main

example,proc_input

example,chk_char
Number of Segments Hit:
Total Mumber of Segments:
falues

e Analuzer, [Yer /UNTE (114107943
. Inc,

FIGURE 75 Hit Report

147

CHAPTER 5: GUI Reference

5.5.7 Not Hit Check Button

The Not Hit button tells the coverage analyzer to produce a Not Hit
report. The Not Hit report gives each module name and an identification
number for each segment not hit in the current test. To identify the actual
code not executed, look up the segment identification number in the Ref-
erence Listing report. This button is defaulted on.

H C1 Segment Not Hit Report.
Module Name: Segment. Coverage Status:
example,main
example.proc_input

exanple,chk_char

Number of Segments it 16
Total Mumber of Se ts: 54

70,37

qcover: Coverage Analyzer, [Yer 8,2 for SUN/UNIX (11/10/94}]
{c} Copyright 1330-34 by Software Research, Inc,

Module Name: Segment Coverage Status:

exanple,main

FIGURE 76 Not Hit Report

148

TCAT/C User’s Guide

5.5.8 Newly Hit Check Button
The Newly Hit button tells the coverage analyzer to produce a Newly Hit
report. This report identifies which segment are hit in the present test
which were not hit in any prior test.
This button is defaulted off.
1 Seament Newly Hit Report.
Module Nams: Segment Coverage Statuss
exanple,main
INI¥ {11/10/943]
Segment Newly Missed Report,
Module Name: Segment Coverage Status:
FIGURE 77 Newly Hit Report
149

CHAPTER 5: GUI Reference

5.5.9 Newly missed Check Button

The Newly missed button tells the coverage analyzer to produce a Newly
Missed report. This report shows which segments were not hit in the cur-

rent execution that were hit previously.

The button is defaulted off.

Segment Newly Missed Report,
Module Name: Segment Coverage Status:
H None found,

cover: Coverage Analyzer, [Ver 8.2 for SUN/UNIX (11/10/34
Copyright 1990-94 by Software Research. Inc,

ment Level Hiztoaram for Module: example.main

2]

| Number of Executions, Normalized to
| (Maximum = 39 Hits)
| {Scale; 2.564

ment Number Of

Haximum

ament
Number Executions

FIGURE 78 Newly Missed Report

150

TCAT/C User’s Guide

5.5.10

FIGURE 79

Log histogram Check Button

The Log histogram button tells the coverage analyzer to produce a Log
Histogram report. This report demonstrates the frequency distribution of
branches exercised in each module. This button is defaulted off.

i e . : e

! & SiewReporti o i
Hct

et Number OF |

& Executions -1 2 (= & 101

5 i O

| . 1

3 .

4 E] .

5 12

i 6 1

: -\ i |

4 9 2

: 10 1

: 1 2

o 12 11

12 2

5
R =

Log Histogram Report

151

CHAPTER 5: GUI Reference

Linear Histogram button tells the coverage analyzer to produce a Linear
Histogram report. This report graphs a mark for each branch hit during

ge Analyzer. [Yer 8.2 for SUN/UNIYE (
930-94 by Software Research, Inc.

t Level Histogram for Module: example,proc_input

Number of Executions. Normalized to Maximum

One Hit
0,540 Hits)

27 Hitsy X
(Scale: 3.704 Each X

>-1: 20 0 = bl 100

5.5.11 Linear histogram Check Button
testing. This button is defaulted off.
(Maximum =
Seqment MNumber Of
Number Executions
FIGURE 80 Linear Histogram Report

152

TCAT/C User’s Guide

5.5.12

FIGURE 81

Reference listing Check Button

The Reference listing button tells the coverage analyzer to produce a
Reference Listing report. This report shows the coverage level achieved
for all modules that are named in the specified reference listing, basename.
i.A. If a module is tested but the name is not found in the supplied refer-
ence listing file, then the that coverage is not reported. Similarly, if a name
appears in the reference listing but is not found in the trace file or the
Archive file, no coverage will be reports.

The button is defaulted off.

To obtain the Reference Listing report, you must specify the Reference
Listing file from a file selection dialog box (shown below). This file is a
version of your “C” program which has logical branches marked. The
coverage analyzer takes the information from the Reference Listing file
and then creates a report.

enceF i lename_popup

Filter

l als/coverage/tcat/demos/*, 1 A

Directories Files

example,i,A

&

Selection

[/manual s/coverage/tcat/demos/

l { iFilter | Cancel I

Reference Listing File Selection

153

CHAPTER 5:

GUI Reference

FIGURE 82

5.5.13

5.5.14

5.5.15

Action

/287940,

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RES

SEGMENT REFERENCE LISTING
-- Instrumentation date: Tue Jun 20 08:27:55 1935
-- Separate modules and segment definitions for each module are
indicated in this commented version of the supplied source fi

extern struct _iobuf {
int ~cnt:
unsigned char *_ptr:
unsigned char *_basze:
int _bufsizs
short _flag:
char _file:
¥ _iobl]1:
extern struct _1obuf *fapent)t
extern struct _iobuf *fdopent
extern struct _icbuf *treopent)

Reference Listing Report

Do not report function in file Check Button

The Do not report function in file button specifies the de-instrumenta-
tion file. This file lists the modules you do not want the coverage reports
to reflect. The default file is set to DEINSTRU.fns.

This option is defaulted off.

Generate list of functions with C1> Check Button

The Generate list of functions with C1> button specifies the module

threshold value. Any module with percentage coverage greater than or
equal to the threshold value (defaulted to 85) percentage will automati-
cally be written to the de-instrument file, defaulted to DEINSTRULfns.

This option is defaulted off.

Generate list of functions not included in report Check Button

The Generate list of functions not included in report button tells the
coverage analyzer to print the list of modules excluded from instrumenta-
tion to be printed at the end of the coverage reports.

This option is used with the Do not report function in file option. This
option is defaulted off.

154

TCAT/C User’s Guide

5.5.16

5.5.17

5.5.18

5.5.19

5.5.20

Do not update archive file Check Button

The Do not update archive file button check button suppresses the cover-
age analyzer from updating the Archive file for the current run. This is
useful if you want the Archive file to be the basis for past test informa-
tion.

This option is defaulted on.

Old Archive name Check Button

Use this option to include data from an old Archive file in your reports.
You must specify the name of the old Archive file.

This option is defaulted off.

New Archive name Check Button

Each time you run the Coverage Analyzer, you will write over the con-
tents of the Archive file. If you want to keep a coverage run’s Archive file
results, you can use this option. You must specify the new Archive name
in the specification region. If you don’t include a file name, the accumu-
lated test data will automatically defaulted to the file name Archive.

This option is defaulted off.

Rename the report file to: Check Button

The Rename the report file to: button automatically allows you to specify
a file where coverage reports are written. This file is generally named
Coverage. If you want a different report file, use this option.

This option is defaulted off.

Change the report width to: Check Button

The Change the report width to: button allows you change the report
width, which is defaulted to 80 characters. Normally the reports gener-
ated by the coverage analyzer are wide enough to accommodate module
names up to 80 characters in length. The internal limit on name length is,
however, 128 characters. You can use this option to generate reports that
are wide enough to accommodate the full 128 characters.

This option is defaulted off.

155

CHAPTER 5: GUI Reference

5.5.21 Sort report by module name Check Button

The Sort report by module name button tells the coverage analyzer to
produce output reports with module names sorted alphabetically.

This option is defaulted off.

156

CHAPTER 6

Command-Line Activation

This chapter describes in detail the various command-line switches which perform tasks
similar to the X Window System graphical user interface (GUI).

LEVEL: If you are a beginning or intermediate TCAT user, you can skip this section on
first reading; it is intended for advanced users.

6.1 Command Line Usage

This chapter describes the main operating modes of TCAT. After working
with the GUI, you may want to work with the command line. Many of the
available command line options are equivalent to functions that can oth-
erwise be performed by choosing commands from the TCAT graphical
user interface. For experienced users it can mean more efficient testing.

6.2 ‘Xtcat’ Command

You invoke the Xtcat system with the command:

Xtcat [-L lang]

Options and Parameters:

No Options Invokes Xtcat for the “C” language interactively.
-L lang Specifies the language. The following languages are
supported:

e -L C Supports the “C” language. This is the default.
e -L C++ Supports the “C++” language.

e -L Ada Supports the Ada language.

e -L F77 Supports the FORTAN language.

6.3 ic Instrumentor Command

TCAT instruments the source code of the system to be tested, that is it
inserts function calls at each logical branch. The instrumentation will not
affect the functionality of the program. When it is compiled, linked and
executed, the instrumented program will behave as it normally does,
except that it will write coverage data to a trace file. There is some perfor-

157

CHAPTER 6: Command-Line Activation

mance overhead due to the data collection process. The trace file is pro-
cessed by a report generator.

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
C1 coverage at every stage of testing while behaving logically equivalent
to the original program.

In its operation, TCAT’s instrumentor parses your candidate source code,
looking for logical branches. When one is discovered, the instrumentor
inserts a function call in the instrumented version of the source code. It is
important to note that the resulting source code file is still a legal program
written in C, as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remem-
ber, the instrumented version will otherwise function as the uninstru-
mented version.

The complete syntax for command line calls to ic, or the instrumentor, is
listed below.

Options and Parameters:

ic [option[s]] basename .i
[option[s]]

-ce

-cw

-di|-DI file

-fn number

-fl number
-h -help

-I

,1:

-m

-mé6

=

-u

-w

The ic command instruments submitted C language files. It takes a base-
name.i file produced from preprocessing and produces an instrumented
version of the source called basename .i.c .

It is required that you first preprocess the source file through a C prepro-
cessor before passing it to ic . The preprocessing command is:

158

TCAT/C User’s Guide

cc -P filename .c

The following options may be used to vary the processing and reports
generated by the instrumentor. The options are listed in alphabetical

order.

file.ext [file.ext]

-ce

-Cw

-DI file

-£1 number

- fn number

File(s) to be instrumented. ext canbe ¢ or i.If there
are multiple files, then each is processed in the order
presented.

Conditional Expression Processing Switch. If this
switch is present, the instrumenter will process con-
ditional expressions of the form ? a:b found in the
submitted programs.

Conditional ~Expression Warning Suppression
Switch. Normally, conditional expressions are not
processed and the following warning is issued to the
user that a conditional expression was found:. ** Con-
ditional Expressions Not Processed Warning " mes-
sage. (See the -ce switch explanation.)

When this switch is present, the instrumenter does
not warn you when a conditional expression is
found, and does not process it. When this switch is
not present, the instrumenter warns you instruments
the logical predicate associated witha ?a:b type ex-
pression.

De-instrumented Switch. Allows you to specify a line
of modules that are to be excluded from coverage re-
porting. Only the list of module names found in the
specified file is to be excluded from coverage report-
ing. The module names can be specified in any for-
mat. White space (tabs, spaces) is ignored.

Allows you to specify the maximum length of file
name characters that are allowable on the system. If
the length of a generated file name exceeds the num-
ber , then the instrumentor output will be redirected
to files named Temp.i.? . These files can be used in
subsequent processing.

The Flexname Switch. Allows you to specify the max-
imum characters of function names the instrumentor
recognizes. If the function name exceeds the number,
then the instrumentor will recognize as distinct only
the first number characters of the function name. For

nstance, -fn 5 will recognize the first five charac-
ters as distinct. Characters beyond that point, howev-

159

CHAPTER 6: Command-Line Activation

-15

-m

=

-w

-X

er, will not be recognized for function name
purposes.

Help Switch. Forces output to show a summary of
available switches. Note : This is also the output pro-
duced by an illegal command.

Ignore Errors Switch. In certain rare cases, when the
underlying C compiler supports non-standard op-
tions and constructs, it may be desirable to ““force’” in-
strumentation to occur regardless of errors found.
This is done with the -I switch.

CAUTION: When instrumentation is forced using
this switch, there is a chance that the instrumented
software will not compile. For example, if you use the
-I switch to “instrument” a file of text material, you
would not expect the output to be compilable (and it
probably won’t be), even though it may have been
“instrumented”’.

Process Set-Jump, Long-Jump Switch. If present, pro-
cesses setjmp and longjmp statements found in the
submitted C programs. If this switch is not present,
these statements may cause an error during instru-
mentation. Applies only to UNIX.

Recognizes Microsoft C 5.1 keywords during the in-

strumentation process.

Recognize Microsoft C 6.0 keywords during the in-
strumentation process.

No Null Edge Instrumentation Switch. Normally, the
instrumentor finds empty edges and instruments
them. If this switch is used, then such extra instru-
mentation is suppressed. This will affect the instru-
mentation of if and switch statements that do now
have an else statement.

Recognize Turbo C keywords during the instrumen-
tation process.

Forces the instrumentor to recognize _exit as a
keyword.

Recognize Whitesmith C keywords during the instru-
mentation process.

Will not recognize exit asa keyword.

160

TCAT/C User’s Guide

6.3.1

~Z Recognize MANX/AZTEC C keywords during the
instrumentation process.

If there is an error, ic gives a response line, or usage line, indicating the
set of possible switches and options, which is the same as the -h output.

You can also look at the available options by entering ic -help. The
following will appear on your display:
TCAT/C Instrumenter/Analyzer, Release 8.2 for SUN (09/14/92).
Legal options are:

[-h] Show options

[-I] Ignore errors

[-m] Recognize Microsoft 5.1 keywords

[-m6] Recognize Microsoft 6.0 keywords

[-t] Recognize Turbo C keywords

[-u] Recognize “_exit” as exit

[-w] Recognize Whitesmith C keywords

[-x] Will not recognize exit as keyword

[-z] Recognize MANX/AZTEC C keywords

[-di file] Specify the file contains list of functions not to
instrument

[-1j] Recognize setjmp/longjmp as global goto

[-cw] Do not report warning message on conditional expression

[-ce] Allow instrumentation of conditional expression
[-n] Do not instrument empty edges (ie. “else” and “default”)

[-fl number] Specify the maximum file name length output will go
to Temp.i.*

[-fn number] Specify the maximum length of function names

File Summary

This section describes TCAT file naming conventions for the instrumen-
tor ic.

ic [optional switches] basename.i

Input:

basename .i Preprocessed source file
Produces:

basename .i.c Instrumented source

basename .i.A Segment reference listing
basename .i.E Error listing

basename .i.L Segment and count (Used by the mkarchive utility)

basename 1.5 Instrumentation Statistics

161

CHAPTER 6: Command-Line Activation

6.3.2

modulename.dig Module digraph file(s) (Used by Xdigraph source
viewing utility).

Please see Section 6.5 for further information on the mkarchive utility
and the supplied documentation on, the Xdigraph utility.

Instrumentation Directive

&
The TCAT system permits use o /special passive ”directives%in the
form of p/comment statemenifﬁ:;t can be used to turn the instrumenta-
tion process ON or OFF within a module’s boundary. These comment
statements control C1, S1, aﬂdrboth C1 and S1 instrumentation.

Because these comments are passive, they can safely be placed in the orig-
inal source code so that successive re-instrumentations will follow the
same non-interfering directives.

Application of Directive

You can use these directivift)o prevent instrumentation that would other-

wise produce too much output o%?)*i)lies to a passage that does not need
to belfurthey e

The de-instrumentation directive feature can, with some limitations (see
the examples on the following page), let you avoid instrumenting part of
aC module\ﬂ{o do this)bracket the passage of code with: /*TCAT OFF */
and /*TCAT'ON */ to turn off instrumentation for C1 and S1; /*TCAT
SCAN OFF */and /*TCAT SCAN ON */ tobypass all of the informa-
tion in the passage; /*TCAT C1 */ and /*TCAT C1 ON */ to turn off
instrumentation for C1;and /*TCAT S1 */and /*TCAT S1 ON */to
turn off instrumentation for S1.

Note that in addition to these directives, there is also an automatic de-
instrumentation feature (-di file) that allows for selective de-instrumen-
tation of individual C functions. With this option, you may specify the
name of a function that is not to be instrumented, and the TCAT process
will disregard that name if it finds it. This effectively ignores entire mod-
ules from the instrumentation process.

Proper Directive Placement

Basically, you have the capability to turn on and turn off entire C struc-
tures within the program. However, the directives can be placed only in
certain locations within your C program, as shown next.

162

TCAT/C User’s Guide

Processing of a file always begins with directive processing ON. There
can be as many directive instances in a program as you want. However,
they cannot span over a function definition boundary.

All the directives should be used in the same manner. Below are examples

of how you can use these directives:

1.

or

or

Between the body of function, that is between the {...} of a function, as

shown below.

procedure example ()

body
}

procedure example ()

{
/* TCAT OFF */
body

/* TCAT ON */
1

procedure example ()

{
body

7

procedure example ()

/* TCAT SCAN OFF */
body
/* TCAT SCAN ON */

}

procedure example ()

{
body

}

163

CHAPTER 6: Command-Line Activation

procedure example ()

/* TCAT Cl OFF */
body
/* TCAT C1l ON */

7

or

procedure example ()

body

}

procedure example ()
{

/* TCAT Cl 'OEF */
body

/* TCAT Cl ON */

2. Before the first statementofan if or while or for or switch
construct. In this case the placement has to be as shown in these
examples:

iE («:2) { body }

/* TCAT OFF */
if (...)
{ body }
/* TCAT ON */

.bp

or

if (+.s) { body

/* TCAT SCAN OFF */

164

TCAT/C User’s Guide

or

or

or

{ body

/* TCAT

}

SCAN ON

{ body

/* TCAT Cl1 OFF *

if (.
{ body
/* TCAT

)

}

Cl ON */

/* TCAT ON */

while (..

/* TCAT

while (..

SCAN OFF

DA

*

/

/

.) { body

*/

165

CHAPTER 6: Command-Line Activation

body
}
/* TCAT SCAN ON */

or
while (...) { body }
/* TCAT Cl OFF */
while (...) {

body
% TDCAT €1 ON */
or
while (...) { body }
/* TCAT S1 OFF */

while (...) {
body

/* TCAT S1 ON */

Improper Directive Placement

The placement of the directives cannot cross structural boundaries, and
the span froma /* OFF */ toa /* ON */ cannot cross a function
definition.

Below is an example of an illegal construction fora /* TCAT OFF */
\ON directive construction. This construction will result in compilation
errors:

/* TCAT ON */

if (...) /* TCAT OFF */ { body
while (...) {

/* TCAT ON */

body

Additional Notes

166

TCAT/C User’s Guide

6.4

You can have as many pairs of the directives in any one file as you want.
However, the directives’ pairs cannot span a function definition bound-

ary.

You can have multiple directives in any one function. In fact, you may
want to disable instrumentation in the innermost loops in a function that
is used a great deal as a way of keeping the instrumentation overhead
low.

cover Command

To get useful results from TCAT, you must analyze coverage reports. To
do this, the program cover is run to process the trace file and produce
several output reports. The cover command analyzes trace files produced
by instrumented programs and generates a set of coverage reports.

Reports generated by cover are stored by default in the file Coverage.
These reports are useful for performance analysis and also for “hot spot”
tuning. Depending on the options used, cover produces different
reports.

cover also archives the trace file information into an Archive file so that
the reports are cumulative.

The complete syntax for calls to cover is listed below. Items enclosed in
[..] are to be included zero or more times.

Options and Parameters

cover [tracefile[s]) [option[s]]
[option[s

-a file

-b file

-c

-d [name[s]]
-DI|-di file
-DL

-f file

-h name[s]]
-help

-H

-1 name [s]]
-n|-N

-NH

-nl file

-NM

-p

-q

167

CHAPTER 6: Command-Line Activation

|
"
Hh

ile

-T [#]
-w width

-z file

[tracefile[s]] is the name of the trace file(s) that you wish for the coverage
analyzer to process. If there are no trace files given, then cover looks for
data in the default trace file name, Trace.trc . If there are no names given
and Trace.trc is not present, If there are multiple trace files, each trace file
is processed in the order presented.

CAUTION: The list of trace files must be the first set of arguments. The
list is ended by the first symbol that appears with a “-”, i.e. by the first
optional switch.

The options are listed in alphabetical order .

-a file Old Archive File Name Switch. Allows you to include
data from an old archive file in your reports. On the
standard cumulative coverage report, this data will
be included in the ““Cumulative Summary”’ column
test results, but not under the column ““Current Test”’.
To test iteratively, progressing through a structured
series of tests towards higher C1 values, each run of
cover should include the cumulative archive file
from the previous test.

If you do not include an archive file, the “Cumulative
Summary”’ column figures will be the same as those
for ““Current Test”. Alternatively, if no -a option is
given, the file Archive is used by default. The -a op-
tion interacts with the other report options discussed
below.

-bfile Banner File Name Switch. This allows you to include
specific text, taken from the first line of the named file
as a title for your reports. A maximum of 80 charac-
ters is allowed for titles.

-c Cumulative Report Switch. This option prints the
Cumulative report only.

-d name|[s] Module Name Delete Switch. Deletes named mod-
ules from the generated Archive file, if found in the
current execution. Subsequently, cover will never
have heard about these names. This switch is useful

168

E B EEEEEEEEEEEEEES

TCAT/C User’s Guide

7 [ras

-DL

- £ file

-h namels]

-1 namels]

in updating an extensive test record that would oth-
erwise be lost due to the complexity of editing the Ar-
chive file.

De-instrumented File Switch. Allows you to specify a
line of modules that are to be excluded from coverage
reporting. Only the list of module names found in the
specified file is to be excluded from coverage report-
ing. The module names can be specified in any for-
mat. White space (tabs, spaces) is ignored. file is also
the file where new modules that pass the coverage
threshold value (see the -T switch) will be written to.

De-instrumented Module List Switch. Allows you to
see which modules are excluded from coverage re-
porting. This switch is used along with the -DI
switch. The list of excluded modules is printed at the
end of the coverage report.

New Archive File Name Switch. Places newly accu-
mulated test coverage data in the file you specify. If
you don’t include a different name with this switch,
the accumulated test data will be placed in the default
name Archive.

CAUTION: Each time you run cover),\you will write
over the contents of the Archive file unless you use
the -f switch to direct the Archive file to another
place. You may wish to remove the filename before
starting a new test sequence.

Linear Histogram Report Switch (-h).
Logarithmic Histogram Report Switch (-1).

These two options produce two histogram reports
that graph the frequency distribution of the logical
branches exercised in a single module. The histo-
grams provide a module-by-module analysis of test-
ing coverage, combining current trace file data with
archive date included through the -a option or us-
ing the default Archive file. If the optional name ar-
gument is present, then the corresponding histogram
for only the named module is produced; otherwise,
cover produces histograms for all modules found.
There can be multiple names in the argument if you
want histograms of several modules. Also, the names
can be mixed between linear and logarithmic histo-

grams.

169

CHAPTER 6: Command-Line Activation

-H

-help

-m

-N, -n

-NH

-nl file

Hit Report Switch. This option produces the Hit re-
port. It lists the segments that have been hit one or
more times in current or past tests. This report ana-
lyzes the cumulative effect of the current trace file
and any archive data included through the use of the
-a option or using the default Archive file.

Help Switch. Shows a summary of available switches.

Minimal Output Switch. When present, cover sup-
presses banner information, list of current options
and trace file descriptions. The coverage report con-
tains only the reports requested.

Not Hit Report Switch. This option produces the Not
Hit report which lists segments that have not been
exercised. This report analyzes the cumulative effect
of the current trace file and any archive data included
through the use of the -a option or using the default
Archive file.

Newly Hit Report Switch. This option produces the
Newly Hi treport. Shows the segments by module
that were hit in the current execution that were not hit
previously. Thus this gives you an assessment of the
value of the most-recently added test(s). This shows
what the current test ““gained”’. Output is the comple-
ment of the Newly Missed report.

Name List Switch. This switch specifies that only the
list of module names found in the specified file fileis
to be reported on in the current coverage report. Cov-
erage on other module names that may appear in the
archive or supplied trace files are ignored; however,
the data is accumulated in the archive file.

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

The following reports are affected by the existence of
a file:

e Cumulative Report

e Past Report

e Not Hit Report

e Hit Report

* Newly Hit Report

e Newly Missed Report

170

TCAT/C User’s Guide

-NM

-P

-r report

-SU

-T[#]

-w width

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro-
duced individual histogram reports.

Newly Missed Report Switch. This option produces
the Newly Missed report. Shows which segments, by
module, hit in any prior test but were not hit in the
current test. This shows what the current test “lost”.
This output is the complement of the Newly Hit re-
port.

Past Report Switch. This option produces the Past re-
port. This option should be used in conjunction with
the -a option when you want to analyze the overall
performance of a set of past tests.

Quiet Output Switch. Suppress printout of current
version and release information (this can be used to
facilitate running cover in batch mode).

Coverage Report File Name Switch. Normally the re-
port is written to the file Coverage (the default name),
but you can rename the file with this switch. CAU-
TION: You will overwrite any file you name with this
switch.

Sort Switch. This option produces output reports
with module names sorted alphabetically.

Suppress Update Switch. During processing, cover
will suppress updating of the archive file, either the
default Archive or the file named by the -f switch.
cover will read the data in the archive file to form the
basis for the ““past test’”” information.

Coverage Threshold Switch. # is a real number that
specifies threshold value. Any module with a cover-
age percentage greater than or equal to this threshold
value will be written to the de-instrumented file (see
the -DI file switch). If no # threshold is specified,
then the default value of 85 percent is assumed.

Report Width Switch. Normally the reports generat-
ed by cover are wide enough to accommodate mod-
ule names up to 21 characters in length. The internal
limit on name length is, however, 128 characters. You
can use this switch to force cover system to generate
reports that are wide enough to accommodate the full

138 character module names.

171

CHAPTER 6: Command-Line Activation

-2 file

The width factor is the number of additional charac-
ters to be added to the report. The default value is
zero. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con-
tain long lines and may not be suitable for printing di-
rectly.

Annotated Reference Listing Switch. cover will ana-
lyze the specified archive file, any specified trace files,
and will produce a report that shows the coverage
level achieved for all modules that are named in the
specified reference listing (files with a .i.A exten-
sion).

The reference listing must be one that is produced by
a current release of the TCAT instrumentor. Refer-
ence listings produced by earlier versions may not
necessarily work correctly with this switch.

If a module is tested but the name is not found in the
supplied reference listing, then that coverage is not
reported. Similarly, if a name appears in the reference
listing and is not one that exists in the archive file, no
coverage will be reported.

In case there is an error, cover gives a response line (usage line) indicat-
ing the set of switches and options. You can also look at the available
options by entering cover -help . The following will appear on your

display:

TCAT: Coverage Analyzer. [Release 8.2 for SUN/UNIX 12/17/92]

(c)

1990 by Software Research, Inc.

Syntax: [tracefile[s] [options]* = default

-a file 0ld archive(* Archive)-n|-NNot Hit Report

-b file Print title on report -NH Newly Hit Report

-c Cumulative Report -NM Newly Missed Report

-d [name[s]]Delete modules named -nl fileReported module list

-DI Deinstrumented file - Past Report

-DL List deinst modules -q Quiet Output

-f file New Archive filename -r fileReport file(* Coverage)
-help Print valid syntax =5 Sort report by module name
-h [name[s]]Linear Histogram -SU Suppress update to archive
-H Hit Report -T [#]Threshold value to deinst

-1 [name[s]]Logarithmic Histogram-w widthChange report width

-m

Suppress messages -Z fileAnnotated reference listing

172

TCAT/C User’s Guide

6.4.1

6.4.2

6.4.3

File Summary

This section describes TCAT file naming conventions for cover.
cover [optional switches] [tracefile]

Inputs:

Trace.trc (or other file named in execution of pro-

gram)
Old Archive files
Produces:
Coverage Coverage reports
Archive New archive file which merges latest trace informa-

tion into cumulative data.

Trace File Argument

The cover command can handle many trace files in the same run. For
instance, it is possible to issue the command:

cover *.bre =g =n =l ;.;"

to report on all the trace files in the directory with the extension .trc. Of
course, one could also issue a command to input data from only one trace
file:

cover Trace.trc -c¢ -n -1 ...”"
Finally, the Trace.trc file is a default, so the above command is equivalent
to the following;:

cover -c -n -1 ...

Archive Files

At the end of each run, cover also generates a new archive file that can be
used in the next run of cover. The default file name is Archive. The archive
files created by cover are similar to trace files in their format and content.
The significant difference is that they do not contain information on the
sequence in which segments were hit. They do, however, contain all other
data required for coverage analysis. cover allows you to perform a series
of incremental tests. By default, it takes the cumulative summary data
stored in the default archive file, Archive, produced by previous runs of
cover, and submits it as input to the current run of cover. This allows you
to add new test suites to exercise unhit segments without having to

173

CHAPTER 6: Command-Line Activation

6.5

6.6

6.6.1

include previous test suites. Thus, subsequent test suite size will be
smaller.

‘mkarchive’ Utility

The TCAT system also includes a utility program for creating null archive
files. This is mkarchive. This utility ensures that your coverage reports all
modules on your system whether or not they have been executed. Some-
times, when testing a subsystem, the initial tests do not touch every mod-
ule in the program. When this occurs, the C1 measure will start at an
artificially high level and, as the tests touch more modules, the C1 value
will decrease.

Although more segments are being hit, more modules are included in the
percentage calculation, so the resulting value is lower. If you are not cer-
tain that you can detect whether a module has been skipped over in a
lengthy program, it is wise to always use this utility to ensure that your
testing coverage data is complete and accurate.

The mkarchive utility reads the archive input table *.i.L (Segment Count)
file produced by the instrumentation process and creates a “null” archive
file containing a complete count of all the modules and their segments in
the program being tested. This is a normal archive file and can be used
with cover to ensure accurate results in generating coverage reports.

To include the mkarchive data in your coverage reports, run mkarchive
before beginning the report generation process with cover.

The syntax for mkarchive if you have a one file program is:

mkarchive < x.1i.L > null.arc

where x.i.L is the archive input table created during instrumentation, and
null.arc is the null archive file. To use mkarchive for multiple files pro-
gram, concatenate all *.i.L files into one file and execute mkarchive on
that one file. To include the null archive file in the coverage analysis step,
run cover with the -a option, as in the following example:

cover Trace.trc -a null.arc

where Trace.trc is the trace file.
Command Summary

This section summarizes commands you use with TCAT.

Instrumentation, Compilation and Linking

You are required to preprocess the source file through a C preprocessor
before putting it to ic instrumentor. The instrumented program is then
compiled and linked with the appropriate runtime modules. Depending

174

TCAT/C User’s Guide

on the size of your program and the development method that you use,
the following subsections describe how it is done.

Stand-Alone Files

The commands used are:

Preprocess cc -P basename .c To produce basename .i

Instrument ic basename .i To produce basename .i.c

Compile cc -c basename .i.c To produce basename .i.o

Link cc basename .i.o crunl.o To produce the executable
a.out

Execute Run your program as usual.

(Press RETURN twice to ac-
cept the default values for
trace file message and
name.)

Systems With make Files

1.

If you have make files where *.0 files are created with built-in rules,
add the following built-in rule before other targets:

Built in rule for TCAT instrumentation...
s 8 0%

ce S (CFLAGS) =P S*.c¢

ie &*.1

cc¢ S (CFLAGS) -¢ §*.i:.c¢

mv §*.i.0 $¥.0

sample.o: sample.c

The above will depend on which one invokes built in rules.
Add crun<level> .o to the list of linked object modules.

Then run the make file to produce the instrumented version of the
software.

make Files With cc Called In Directives

When cc is explicitly called in directives, then add ic commands to
thece commands within the make file.

1.

Replace cc w -P filename .c

ic filename .i

175

CHAPTER 6: Command-Line Activation

6.6.2

6.6.3

cc $(CFLAGS) -c filename .i.c

mv filename .i.o filename .o

Add crun <level> .o to thelist of linked object modules.

Finally, run the make file to produce the instrumented version of the
software.

A System Which Does Not Use make Files

(Or which will not allow make file changes)

Go to the directories that contain the source code. There, type the follow-
ing commands:

ce =P *.¢

ig ® i

ge ~g * . 4d.¢

e ¥ 1.0 Crun<?s .o

to create the instrumented source, objects and executable.

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented
program will add two prompts when the first instrumented code is exe-
cuted. You may fill in a value or press return each time. The prompts may
be suppressed by changing the provided runtime. Refer to Chapter 7 for a
more detailed description of runtimes available.

Coverage Analysis
Use the command:

cover [tracefile] -¢ -n -h -H -1 -NH -NM -p -2 filename .i.A
to analyze all reports.

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the C1 coverage value
you obtain is acceptable.

176

CHAPTER 7

Runtime Features

This chapter describes the available runtimes.
LEVEL: This chapter is intended for all users.

71

Runtime Descriptions

As mentioned, the test engineer using TCAT has a choice of many runt-
ime routines to change the behavior and performance of the instrumented
system under test. Different runtimes may be selected by linking in the
appropriate module.

Finally, you can write your own runtime package if you need to modify
TCAT to a particular situation, since the program that is needed is small.
For an embedded system where the target system has particular charac-
teristics, rewriting the runtime is a practical way to adapt TCAT.

There are a variety of runtime modules for each language.

The function of each runtime package is specified by the format of its
name as defined below:

<language>run<level>.o “
For Example:
crun0.o - C, level 0, UNIX
TCAT is supplied with three standard runtimes:

crun0 - Raw Trace file (“quiet” runtime)

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca-
tion of the program under test.

crunl - Standard Trace file

This is the same as crun0, but with prompts that ask the user for a test
descriptor and the name of the trace file. There is no internal processing
or buffering. The trace file is the full, unedited trace of program execu-
tion. This is the basic version.

177

CHAPTER 7: Runtime Features

1.2

cruna - Multi-Tasking (or forking runtime)

cruna provides for successful data collection when instrumented pro-
cesses run in parallel. cruna is designed for analysis of system calls such
as the spawn system command of C. A trace file will be produced for par-
ent and child processes.

Special Runtimes

NOTE: These runtimes are available as a separate purchase.

crun5 - In-Place Reduction

The C1 statistics of the entire program execution are accumulated in
memory. The trace file information is written after the program properly
exits.

crun5 allocates enough memory with dynamic memory allocation to do
full C1 reduction in place.

crunc - Cross Development

This is source code for runtime which you can cross-compile to use in
capturing executions of a cross-compiled executable on a target machine.

The tester will need to adapt the source code of runtime for his/her par-
ticular situation. For instance, one alternative with an embedded system
is to have the runtime write each trace file record to the development sys-
tem.

Another alternative is to have each record stored in a file on the embed-
ded system, which is then transferred to the development system.

178

CHAPTER 8

Customizing TCAT

This chapter explains where the setup information is stored and gives instructions on
changing it.

You customize TCAT by changing the X Window System resources or
setup files. This chapter explains where the setup information is stored
and gives instructions on changing it.

Resource files are text files. You can edit them with any standard UNIX
text editor. Most of the graphical user interface defaults are set in the SR
file supplied with the product. It needs to be put in the /usr/lib/X11/app-
defaults directory. If you install TCAT using the supplied installation
script, the contents of the SR file are automatically copied or concate-
nated to the SR file in that directory.

In the following figure is a list of the common GUI defaults. You can
change the set defaults by manually changing the SR file to avoid reset-
ting GUI parameters every time.

SR*geometry: +10+10

!

tcatC*instrument*instrumentFile.directory:

tcatC*instrument*instrumentFile.dirMask: *.c

tcatC*instrument *preprocessorCommand.value: cc -P

ons.value:

tcatC*instrument *preprocessorOpti
tcatC*instrument *preprocessorSuffix.value:
tcatC*preprocessSwitch: ON
tcatC*instrument*instrumentorCommand.value: ic
tcatC*instrument*_exitAsKeyword.set: False
tcatC*instrument*exitNotAsKeyword.set: False
tcatC*instrument*deinstrument.set: False
tcatC*instrument*deinstrumentFilename.value: DEINSTRU. fns
tcatC*execute*runtimeObj.directory:
tcatC*execute*runtimeObj.dirMask: crun?.o
tcatC*execute*compileCommand.value: cc -c
tcatC*execute*compileOptions.value: *.i.c
tcatC*execute*linkCommand.value: cc -o
tcatC*execute*linkOptions.value: *.i.o
tcatC*execute*makeCommand.value: make
tcatC*execute*makeOptions.value:

179

I—

CHAPTER 8: Customizing TCAT

tcatC*execute*applicationName.value: a.out
tcatC*execute*applicationArguments.value:
tcatC*analyze*traceFilename.dirMask: *.trc
tcatC*analyze*viewSource.dirMask: *.dig
tcatC*analyze*referenceFilename.dirMask: *.i.A
tcatC*analyze*pastTests.set: False
tcatC*analyze*cumulativeTests.set: True
tcatC*analyze*hit.set: False
tcatC*analyze*notHit.set: True
tcatC*analyze*newlyHit.set: False
tcatC*analyze*newlyMissed.set: False

tcatC*analyze*logHistogram.set: False
tcatC*analyze*linearHistogram.set: False
tcatC*analyze*referencelListing.set: False
tcatC*analyze*nonReportModule.set: False
tcatC*analyze*nonReportModuleFilename.value:
tcatC*analyze*thresholdReportModule.set: False
tcatC*analyze*thresholdReportModuleLevel.value: 85
tcatC*analyze*generateFunctionListNotInReport.set: False
tcatC*analyze*noUpdateArchive.set: True
tcatC*analyze*oldArchive.set: False
tcatC*analyze*oldArchiveName.value:
tcatC*analyze*newArchive.set: False
tcatC*analyze*newArchiveName.value:
tcatC*analyze*renameReport.set: False
tcatC*analyze*renameReportName.value:
tcatC*analyze*reportWidth.set: False
tcatC*analyze*reportWidthvalue.value:
tcatC*analyze*sortReport.set: False

FIGURE 83

180

USER’S GUIDE

S-TCAT

System Test Coverage Analyzer

Ver 8.1

12

SOFTWARE RESEARCH, INC.

This document property of:

Name:

Company:
Address:

Phone

*\
N4
)\

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT

Fax: (415) 957-0730

E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: June 21, 1995)

CHAPTER 9

Introduction

This User Manual is intended for both training and reference. It provides substantial
information on S-TCAT /C, the System Test Coverage Analysis Tool for the “C" language.
This first chapter describes how the User Manual is organized. S-TCAT/C, Release 8.2 or
later, is supplied with an OSF/Motifstyle graphical user interface.

9.1

9.2

Audience

The primary audience for this manual is the software quality assurance
tester or development staff who will use S-TCAT/C to test newly created
or modified software programs written in “C". S-TCAT/C is intended for
any of the following Software Engineering professionals:

1.

The Software Quality Analyst who intends to develop a complete set
of tests for a system released by Research and Development.This per-
son should also consider TCAT/C, a companion SR coverage analyzer
used for logical branch level testing. It measures C1 coverage.

The R&D Engineer who wants to test subsystems and module inter-
faces at the unit or branch level for the highest possible code coverage
before product release or submission to the SQA department.

The Software Metrics or Independent Evaluation Group that will
measure and evaluate the testing of either sub or entire systems. S-
TCAT/C enables this group to “test the testers".The coverage data
might be combined with bug reports, complexity metrics or other
data to guide software quality management.

Purpose

S-TCAT/C can be used for either:

1.

Unit testing, where the focus of attention is one or more intercon-
nected modules that will later contribute to a larger system.

Measurement of the completeness of a test suite for an entire system
consisting of a large number of modules.This is informally known as
the “big bang" testing approach. If you are already familiar with
some of the ideas of S-TCAT/C, you may skip to Chapter 11 for opera-
tion details.

163

CHAPTER 9: Introduction

9.3 Manual Organization

This User Manual is organized to aid the user, during implementation

and for usage.It is divided into the following four sections:

1. Chapter 10 gives a brief overview of S-TCAT/C principles. It explains
the theories behind S-TCAT/C and how it can better help in your test-
ing environment.

Chapters 11-14 explain how to use S-TCAT/C.

3. Chapters 15-16 explain the appropriate commands, depending on
your platform.

Chapter 17 displays a step-by-step full S-TCAT/C example.
Chapter 18 displays a step-by-step graphical user interface tutorial.
184

CHAPTER 10

Overview

This section provides an overview of coverage analysis principles and of S-TCAT/C. It
describes how S-TCAT/C will fit into the testing phase of the software life cycle.

10.1

10.2

Why System Test Coverage Analysis?

The primary purpose of system testing is to ensure the reliability of a soft-
ware system before it is released to the end user. Mostly, this means mak-
ing sure that the interfaces between system components are well-
exercised, so that latent defects can be removed.

Software should be thoroughly tested with a variety of input to provide
statistically verifiable means of demonstrating the product's reliability. In
other words, the testing process should cover, in some way, all the situa-
tions in which the program will be used. Although a worthy goal, imagin-
ing every possible use, as well as developing test data and running them,
is extremely complicated and time-consuming. A more realistic goal is to
test every interface between components within a system.

According to industry studies, achieving this goal yields significant
improvement in overall software quality. Hence, S-TCAT improves the
quality of your software beyond conventional standards.

QA Problems Addressed

Itis a sad fact of the software engineering world that, on average, without
coverage analysis tools, only around 40 percent of a system's interfaces
are thoroughly tested before release. With less than half the interfaces
actually tried many bugs go unnoticed, and are not revealed until after
release. Questions such as when to stop testing, or how much more test-
ing is required are not answered on the basis of data, but on ad hoc com-
ments and sketchy impressions. Software developers are forced to
gamble with the quality of the released software and make plans based
on inadequate data.

A related problem is that test case development is done in an inefficient
manner; that is, many test cases are redundant. Cases testing the same
interfaces over and over clutter test suites and take the place of other

185

CHAPTER 10: Overview

10.3

10.3.1

cases that would test previously unexplored areas. Often testers are
unsure of the direction to take and can waste SQA time devising the
wrong (i.e. ineffective) tests.

Cost Benefit Analysis

S-TCAT/C addresses the problems mentioned above, and can save your
organization much time and effort. As a matter of fact, the economics of
system interface coverage analysis are extremely favorable. Here are
some ways that the S-TCAT product can save you money.

Improved Error Detection

Primarily, S-TCAT/C provides increased error detection. Software Engi-
neering literature indicates that an average function call error rate is ~6
defects per 1,000 lines of code (KLOC). With no coverage analysis, 40 per-
cent of the function calls are exercised leaving the product with 2.4
defects per KLOC. Assuming a uniform distribution of errors throughout
the source code, the simple act of raising the interface coverage rate can
uncover many errors.

According to SR 's experience in advanced industrial projects and reports
from customers, comprehensive interface coverage analysis can eliminate
another 80 to 90 percent of the latent software errors.

Without S-TCAT With S-TCAT

40 defects/ KLOC 40 defects/KLOC

50% Coverage 85-90% Coverage

20 defects/KLOC 5 defects/KLOC

FIGURE 84

Cost Benefit Analysis

The economic value of the increased error detection will, of course, vary
considerably from organization to organization. One estimate of the
worth of coverage analysis is based on what some software consulting

186

S-TCAT User’s Guide

10.3.2

FIGURE 85

firms charge to find and remove errors, a price established in the open
market. The software testing industry, sized at $50 million in 1986 by For-
tune magazine, typically charges around $4,000 per function call error
fixed.

Applying this reasoning to S-TCAT/C use, you could save $9,600 or more
per KLOC! In practical terms, this means that a large project with over
20,000 lines of code might save as much as $192K.

Earlier Error Detection

Not only are more errors detected with S-TCAT/C, they are also discov-
ered earlier. It's a well-accepted truth in Software Development that the
earlier you catch and fix an error, the cheaper. Over and over, managers,
vendors and “software gurus” have shown figures and charts that detail
how much less it costs to rectify a defect detected early. A classic example
of this is the following, adapted from Barry Boehm's book (see figure
below):

1000 | | I I
500 Langer Softwikte
200
T
100 -
" A
(r— Median
o T
0 |
5 L e
| ESENS Smaller Software]
2 | =
Requirements Design Code Dev. Tests Acceptance Tests Operation

Phase in which error was detected and corrected

Increase in Cost-to-fix Throughout Life-cycle

Your organization can reduce its “cost-to-fix ratio" by a factor of 10 by

using S-TCAT/C and finding errors before system integration. In the dia-
gram, it costs $5,000 to $15,000 to fix errors after they have left the devel-
opet. The developer or the Software Quality Engineer (SQE) can identify
and fix problems much more inexpensively than the beta site or indepen-

187

CHAPTER 10: Overview

10.3.3

10.3.4

10.3.5

dent testing organization. This is not to say that beta sites or IV&V (Inde-
pendent Verification and Validation) work are not needed; instead, there
is a great cost advantage in letting detailed interface testing find more
errors for less cost.

More Efficient Testing

Using S-TCAT/C, you can gain in guiding test case development. In gen-
eral, the product may be used to identify features missed by existing test
suites. The missing items then direct the addition of new test cases.

Minimal Test Set

S-TCAT/C can be used to develop the minimal covering test suite for a
system. It is useful for a tester to have the smallest test suite that will exer-
cise all the function calls of a system, since such test sets typically will
require significant time and computing resource to run.

SR recommends use of SMARTS, CAPBAK, and EXDIFF to automate test
suite execution, evaluation and analysis steps. These tools can signifi-
cantly reduce the cost of test suite execution and analysis.

S-TCAT/C can be used to identify and eliminate redundant test cases.
With the system interface coverage reports described in this manual, it is
possible to determine how much each new test case adds to the total cov-
erage of a test suite. If a new test adds less than a certain specified mini-
mum coverage threshold, say one percent, for example, it might be
reasonable to discard it. Having done so, the tester will achieve a better
(i.e. smaller), and thus easier to run, test suite.

Assessment of Progress

Coverage analysis with S-TCAT/C can be valuable to important SQA
decisions, such as when to ship a product or how much further product
testing is needed. A coverage value of S1 > 95% has been set the recom-
mended threshold for proper system interface coverage. Generally, one
should stop improving test coverage when the marginal cost of adding a
new test is greater than the cost to visually and rigorously inspect the
associated code passage. Other considerations you may wish to take into
account are the added test cost and the risk of defects.

Coverage analysis data is important for reliability modeling and predict-
ing error rates. By tracking error rates and number of errors discovered as
a function of overall test effort it is possible to predict eventual product
latent defect rates. We encourage SQA managers to keep careful records
of errors found and corresponding coverage values.

188

S-TCAT User’s Guide

10.4

10.4.1

10.4.2

Software Test Methods

Interface analysis as implemented through S-TCAT/C is a powerful test-
ing technique, which can save you much time and trouble, and can
greatly improve software quality. However, it is plainly not the only test-
ing technique in existence. SR strongly recommends that you use S-TCAT
along with other techniques.

Testing methods vary from shop to shop, but most successful techniques
fall into a few general categories. The most common ones, which are usu-
ally performed in their natural sequence, are described below.

Manual Inspection

Programs are manually inspected for conformance to in-house rules
(standards) of interface style, format, and content as well as for correctly
producing the anticipated output and results.

This process is sometimes called “code inspection”, “structured review"
or “formal inspection".

Dynamic Analysis

This approach tests the dynamic properties of the software under real or
simulated operating conditions. The software is executed under con-
trolled circumstances with specific expected results.

It is important in this phase to test as many branches, function calls and
paths in the program as possible. Doing so assures that the tests you have
run have the greatest diversity-- and hence have the best chance of uncov-
ering defects.

To obtain statistics on the program parts that have been covered by your
tests can often be very difficult. Using automated coverage analysis tools
such as TCAT/C, S-TCAT/C, or TCAT-PATH/C will produce data on
what has been validated and what has been left out of your testing.
Dynamic analysis can in aggregate uncover 75 to 90 percent of the
latent remaining software defects.

189

CHAPTER 10: Overview

Source
Program

Manual
Analysis

Static
Analysis

Supporting
Documents

Archived
Test Files

Archived Test
Documents

Static
Analysis

module, multiple modules, or even an entire system. You can prepare, or
instrument, many modules with function call markers and run tests on
them as a group -- S-TCAT/C keeps track of each module's level of inter-

Up to now we have referred briefly to coverage analysis. Let us look more

results tell you? Interface coverage analysis provides a means of identify-
ing exactly which interfaces in your program systems have been hit, or

“exercised", by your tests. The goal is to run your program through a sim-
ulation of real operating conditions with many types and combinations of

FIGURE 86 Stages in Software Testing
10.5 Multiple-Module Testing
Another consideration in getting the most out of S-TCAT/C involves
determining the scope of your tests: whether to test a single program
face exercise by name.
10.6 Hierarchy of Coverage Metrics
closely at this phrase. What is being covered? What does analysis of
190

S-TCAT User’s Guide

10.7

10.8

test data, to explore as many parts of your program as possible. Analysis
of the results will lead to more thorough testing and, eventually, to a solid
and more reliable software product.

Coverage analysis can be performed at different levels. For example, you
can find out which program statements have been hit, or you can analyze
the structure of the program by testing which logical branches or seg-
ments have been hit. Statement coverage values can vary significantly
from logical branch coverage values, depending on properties of the pro-
gramming language and the programmers' style. TCAT/C measures logi-
cal branch coverage. An even more rigorous metric involves noting
which logical paths have been exercised. TCAT-PATH measures path cov-
erage.

When you complete unit level testing, it is appropriate to test system
interfaces. In particular, how thoroughly the function calls have been
exercised. S-TCAT/C provides a functional call completeness measure.

S1 Measure

The value that measures the level of call-pair coverage is S1. This ana-
lyzes program testing in terms of the number of function calls -- inter-
faces from a calling module to a called module -- that are exercised by a
test. The SI value can be the result of a single test or the accumulated
result of a series of combined tests on one or many modules. A definition
of 51 coverage percentage follows:

The percentage of a program's function calls that have been exercised
by one or more tests. An SI value of 95 percent is a practical mini-
mum coverage level, detecting approximately 75 percent of the then
discoverable errors. This high value is usually the accumulated result
of a series of tests, since coverage from a single test is only typically
30 percent to 40 percent.

A program is considered 100 percent interface-tested only when every
function call has been correctly exercised by at least one test. That is,
when S1 equals 100 percent.

How Does S1 Relate to C1?

CI means coverage means the percentage of logical branches exercised
during test. Logical segment coverage is an excellent way to measure the
completeness of individual module or small groups of module testing.
Function call or ST coverage describes completeness of the testing of all
the interfaces of a complex system. It is important to understand how S1
measures test completeness. Suppose, for example, that the subroutine
calling structure is like that given in the following picture:

191

CHAPTER 10: Overview

Sub-B
Sub-B
Sub-C
Sub-D
Sub-B

Sub-B:
Sub-C
Sub-C
Sub-C
Sub-D

We'll focus on the two topmost modules, Sub-A and Sub-B. Sub-A has
three different calls to Sub-B, plus calls to Sub-C and Sub-D. Sub-B has
three calls to Sub-C and one call to Sub-D. We will assume that Sub-C and
Sub-D do not have any function calls. Our complete system structure con-
tains a total of nine function calls. One test of this system might call Sub-
A, which might call Sub-B only and then return. S-TCAT/C reports on pre-
cisely which function calls are exercised by a test.

51 coverage analysis is particularly useful when a finished product has
been modified. In this case, the logical flow is usually well-tested,
although C1 testing of the modified modules is recommended. However,
it is difficult to take into account all the inter-related functions that a mod-
ification to the source code may incur.

By using the function tree graph capability of S-TCAT/C, (cg, Xcalltree
utility) one can quickly find which function calls need to be tested. By
using S-TCAT/C to monitor the actual testing, you can make sure the
proper modules are actually tested, thus eliminating errors and guess-
work as to whether the modification introduced new errors.

There are several other coverage metrics under investigation in industry
and research. These metrics incorporate logical segment level coverage
and include other logical divisions of the program under test. One metric
is “all segments and all boundary conditions for loops", another is “all
data paths", that is, all paths between the setting and using of data ele-

One metric is “all segments and all boundary conditions for loops”,
another is “all data paths”; that is, all paths between the setting and using

10.9 Advanced Coverage Metrics
ments.
of data elements.
192

S-TCAT User’s Guide

One metric that includes C1, boundary conditions, and all data paths is
called Ct. Ct measures the percentage of all logical paths that are exer-
cised. Ct is implemented by SR’s TCAT-PATH, and according to customer
feedback, is ten times more rigorous than TCAT/C. In simple terms, pro-
grams that have 90 to 100% C1 coverage typically have 10-15% Ct cover-
age. Please consult the TCAT-PATH User’s Guide for more information on
that utility.

193

CHAPTER 10: Overview

194

CHAPTER 11

Instrumentation

This and the next three chapters tell how to use S-TCAT/C to increase test coverage and
detect more software errors.

1.1

11.2

There are two ways to access S-TCAT: from the command line, and with
menus.The following command-line invocations are the focus of these
chapters.

1. Instrumentation (marking call-pairs)

2. Compiling and Linking with Runtime (recording and counting mark-
ers) and Executing

3. Path generation (generating complete path sets)
4. Coverage analysis (reporting call-pairs hit)

A description of how to use the menus appears in Chapter 14.

Overview

In brief, S-TCAT/C instruments the source code of the system to be tested,
that is it inserts function calls at each call-pair. The instrumentation will
not affect the functionality of the program.When it is compiled, linked
and executed, the instrumented program will behave as it normally does,
except that it will write coverage data to a trace file.There is some perfor-
mance overhead due to the data collection process.The trace file is pro-
cessed by a report generator described later.

Finally, the user looks at the coverage reports to assess testing progress
and to plan new test cases.New test cases are added in subsequent passes
until a threshold percentage of S1 call-pair coverage has been reached.The
coverage reports guide the addition, or possibly the deletion, of tests.

Instrumentation

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
S1 coverage at every stage of testing while behaving logically equivalent
to the original program.

195

CHAPTER 11: Instrumentation

11.2.1

In its operation, S-TCAT/C 's instrumentor parses your candidate source
code, looking for function call. When one is discovered, the instrumentor
inserts a function call in the instrumented version of the source code. It is
important to note that the resulting source code file is still a legal program
written in “C", as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remember,
the instrumented version will otherwise function as the uninstrumented
version.

The Instrumentor

The complete syntax for command line calls to s-ic is listed below.
s-ic file.ext [file.ext]
[-ce]

[-cw]

[-DI deinst-file]
[-f1 value]
[-fn value]
[-help]
[-T]

[-13]

[-m]

[-m6]

[-n]

[=¢]

[-u]

[-w]

[-x]

[-2]

This command instruments submitted “C" language file(s). It takes *.1i
source file(s) and produces the instrumented file(s): *. i . c (for UNIX) or
* . ic (for MS-DOS or OS/2). *.cis the “C" source file, while *. i is the
preprocessed file.

It is required that the user preprocess the source file through a “C" pre-
processor before passing it to s-ic. Normally, the preprocessing com-
mandis: cc -P file.c (for UNIX)or cl -P file.c (for DOS
running Microsoft C) These commands read file.c and produce
file.i. The options are listed in alphabetical order.

file.ext [file.ext]

196

‘

S-TCAT User’s Guide

-ce

-Cw

File(s) to be instrument. ext can be “c “or “i “. If there
are multiple files, then each is processed in the order
presented.

Processes conditional expressions of the form ?a:b.

Suppresses the “Conditional Expressions Not Pro-
cessed" warning message.

-DI deinst-file De-instrument Switch. Allows the user to specify a

-fl value

-fn value

-help

list of modules that are to be excluded from instru-
mentation. Only the list of module names found in
the specified deinst-file is to be excluded from
instrumentation. The module names can be specified
in any format. White space (such as tabs, spaces) is ig-
nored. This switch effects the instrumented (*.1i.c)
file and the reference listing (*.1i.A3) file.

Allows the user to specify the maximum length of
filename characters that are allowable on the system.
If the length of a generated filename exceeds the val-
ue, then the instrumentor output will be redirected to
files named Temp. i.?. These files can be used in
subsequent processing.

The flexname switch. Allows the user to specify the
maximum characters of function names the instru-
mentor recognizes. If the function name exceeds the
value, then the instrumentor will recognize as distinct
only the first value characters of the function name.
For instance, a -fn 5 will recognize the first five
characters as distinct. Characters beyond that point,
however, will not be recognized for function name
purposes.

Help Switch. Forces output to show a summary of
available switches. NOTE: This is also the output pro-
duced by any illegal command to s-ic.

Ignore Errors Switch. In certain rare cases, when the
underlying “C" compiler supports non-standard op-
tions and constructs, it may be desirable to “force" in-
strumentation to occur regardless of errors found.
This is done with the -I switch. CAUTION: When
instrumentation is forced using this switch, there is a
chance that the instrumented software will not com-
pile. For example, if you use the -I switch to “instru-
ment” a file of text material, you would not expect the

197

E——

CHAPTER 11: Instrumentation

11.2.2

-15

-m

-w

output to be compilable (and it probably won't be),
even though it may have been “instrumented".

Processes setjmp and longjmp. This option works
only for UNIX.

Recognize Microsoft C 5.1 keywords during the in-
strumentation process.NOTE: This switch applies
only to MS-DOS and OS/2 versions. This switch may
produce unusual results if used in UNIX systems.

Recognize Microsoft C 6.0 keywords during the in-
strumentation process. NOTE: Applies only to MS-
DOS and OS/2 versions. This switch may produce
unusual results if used in UNIX systems.

Will not instrument empty edges (for example: if
without else or switch without default.)

Recognize Turbo C keywords during the instrumen-
tation process. NOTE: This switch applies only to
MS-DOS and OS/2 versions.

Forces the instrumentor to recognize _exit asexit.
NOTE: This switch applies only to MS-DOS and OS/
2 versions.

Recognize Whitesmith C keywords during the instru-
mentation process. NOTE: This switch applies only
to MS-DOS and OS/2 versions.

Will not recognize exit as keyword. NOTE: This
switch applies only to MS-DOS and OS/2 versions.

Recognize MANX/AZTEC “C" keywords during the
instrumentation process. NOTE: This applies only to
MS-DOS and OS/2 versions. This switch may pro-
duce unusual results if used on UNIX systems. If
there is an error, s-ic gives a response line, or usage
line, indicating the set of possible switches and op-
tions, which is the same as the -h output.

Excluding Function Calls from Instrumentation

The S-TCAT.fns file contains the list of function calls that are to be
excluded from instrumentation. If the user wants to exclude particular
functions from instrumentation, he should put those functions in this file.

The S-TCAT.fns file can be of any format, as long as the function names
are separated by white space. An example of the S-TCAT.fns file is sup-
plied with the product and is shown next:

198

S-TCAT User’s Guide

assert
atof
toupper
ctime
isalpha
isspace

cuserid

atoi atol

tolower _toupper

ispunct isprint isgraph

ecvt fcvt gcvt

exit

exp
fclose
feof
floor
fopen
fread
frexp
fseek
getc
getenv
getgrent
getlogin
getopt
getpwent
endpwent
gets
13tol
logname

malloc

_tolower
asctime
isxdigit

log powe sgrt
fflush
ferror clearerr fileno
ceil fmod fabs
freopen fdopen
fwrite
ldexp modf
ftell rewind
getchar fgetc getw
getgrnam setgrent
getpwuid getpwnam

realloc calloc

toascii
isalnum
isascii
endgrent
setpwent

For example, printf isin the file, so every time printf is called in
the instrumented module, the instrumentor will not instrument that par-
ticular function call.

my_function is notin the file, so the instrumentor will instrument
every my_function function call encountered.

199

CHAPTER 11: Instrumentation

11.3

1.4

11.4.1

NOTE: In order to use this exclusion feature, S-TCAT.fns should reside
in your working directory.

DOS Instrumentation

In DOS you must preprocess before instrumentation. Microsoft C uses the
/P option, Lattice, -P. Check your compiler manual for the particulars of
the command. Preprocessing may also be accomplished by the ‘make’ file.
An important point about the DOS version of TCAT is that some compil-
ers will not accept files that end with .ic. It is therefore necessary to

rename the program prior to final compilation of the instrumented code.

s-ic [optional switches] <filename>.i

The above command always produces an instrumented version of the
code in a file called <filename>.ic. Check for the optional switches avail-
able for processing various dialects of “C" such as Turbo C and Microsoft
8

UNIX Instrumentation

As with DOS, in UNIX you must preprocess your code prior to instru-
mentation. This task can be accomplished with the following command:
cc -P filename.c

The preprocessed code can then be instrumented with the following
command:
s-ic [optional switches] filename.i

Instrumentation will create a number of files, one of them being <file-
name>. i.c. Itis this file which should be compiled and linked with the
appropriate runtime package.

Instrumenting With ‘make’ Files

Most often, S-TCAT/C will be used to develop test suites for systems that
are created with ‘make’ files. Make files cut the time of constructing sys-
tems, by automating the various steps necessary to build the system,
including compilation and linking.

Fortunately, it is possible to add a few statements to most ‘make’ files to
enable them to make an instrumented version of the system. The modifi-
cations fall into two general categories, based on whether or not the make
file explicitly names the compiler: cl for Microsoft C and cc for most
UNIX compilers.

If the “make’ file explicitly mentions the “C" compiler with a ce com-
mand (for example), it is possible to add the s-ic command and an

200

S-TCAT User’s Guide

extra cc command for preprocessing, instrumenting and compiling
causing the make script to instrument and compile the “C" files in ques-
tion.

Make file lines such as:

sample.o:sample.c

cc-c sample.c

MS-DOS and 0S/2:
sample.obj:sample.c
cl /c sample.c

would be changed to:

UNIX:
sample.o: sample.c
cc -P $(CFLAGS) sample.c
s-ic sample.i
cc -c $(CFLAGS) sample.i.c

mv sample.i.o sample.o

MS-DOS and 0S/2:

sample.obj:sample.c
cl /P $S(CFLAGS) sample.c
s-ic -mé sample.i
rename sample.ic temp.c
cl /c $S(CFLAGS) temp.c
rename temp.obj sample.obj

The other situation is where the compiler is not explicitly mentioned, but

given as a “built-in" rule. The user can add the following “built-in" rule:
UNIX:

6 2O
cc -P $(CFLAGS) $*.c
g-1lc §%ui
ce ~¢c $(CFLAGS) §*.i.c

iy B*.is0 S%*.0

MS-DOS and 0S/2:
JC.0b] s
Cl /P 5(CFLAGS) s$*.c

s-ic -m6 $*.1i

201

CHAPTER 11: Instrumentation

11.4.2

rename S$*.ic temp.c
cl /c $(CFLAGS) temp.cC
rename temp.obj S$*.obj

The other change necessary is to add SR runtime modules to the link
statement. Please refer to Section 12.1-12.2 for more information on the
runtime modules.

Example ‘make’ Files

This section gives several examples of how to create ‘make’ files that work
under MS-DOS and UNIX environments. The first example ‘make’ file is
an illustrative MS-DOS type ‘make’ file that is unmodified.
HHAHSHAHSHAHHAH AR AR B AR A HHAHAH AR RS H AR AR SRR ARAR IR AR RS HAH
##
S AM
-—=-W
##
##
DOS version make script for SAMPLE
##
FHAHSH G H S H R R H AR AR R R AR H A H A SR R R E R R R
#
OBJS = sample.obj sampley.obj samplel.obj tree.obj ini-
t.obj \
error.obj dotest.obj help.obj log.obj ui.obj premain.obj
license.obj \

M AKE F L E
OUTINSTRUMENTATTION----

H

H o
jasi s

pretree.obj preprocl.obj preprocy.obj

CFLAGS /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000

sample.obj: sample.c

sampley.obj: sampley.c

samplel.obj: samplel.c

tree.obj: tree.c

license.obj: license.c

init.obj: init.c

error.obj: error.c

202

f {
l{ l i
. ’- ‘-

S-TCAT User’s Guide

FIGURE 87

Uninstrumented DOS Make File

dotest.obj: dotest.c

premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy.obj: preprocy.c

sample.exe: $(0OBJS)
sample.obj license.obj help.obj \
sampley.obj samplel.obj tree.obj init.obj \
error.objdotest.obj log.obj ui.obj premain.obj\
pretree.obj preprocy.obj preprocl.obj\
link @sample.lnk;

The file below shows the modifications to the ‘make’ file needed to pro-

vide for automatic instrumentation. The modifications are shown in bold
face.

HEHHHHHHHHAHHHAFH A A HHH AR R A SRR AR B AR B AR H SRR RS RS
##

S AMPLE M A K E FITLE

##

#Hh sommmom s WITHINSTRUMENTATTIO N----
##

##

DOS version make script for SAMPLE file

#4

HHHHH AR AR HH RS S H R A A A AR H A HH R S H S S #
OBJS = sample.obj sampley.obj samplel.obj tree.obj ini-
t.obj \

error.obj dotest.obj help.obj log.obj ui.obj premain.obj
license.obj \

Dretr@g,gbj Preproc;.obj preprocy .obj

203

CHAPTER 11: Instrumentation

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000

.c.obj:
cl $(CFLAGS) /P $*.c
ic -m6 $*.i
rename $*.ic temp.c
cl $(CFLAGS) /c temp.c
rename temp.obj $*.obj
sample.obj: sample.c
sampley.obj: sampley.c
samplel.obj: samplel.c

tree.obj: tree.c

license.obj: license.c

help.obj: help.c

log.obj: log.c

ui.obj: ui.c
premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy.obj: preprocy.c
sample.exe: $(0OBJS)
sample.obj license.obj help.obj \\

sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj log.obj uil.obj premain.obj

204

0
]
3
[0}
B
o)
o
farl
0}
[at
3
o}
Lo}
0

_—‘

S-TCAT User’s Guide

FIGURE 88

pretree.obj preprocy.obj preprocl.obj
crunll.obj
link @sample.lnk;

Instrumented DOS Make File

205

CHAPTER 11: Instrumentation

The ‘make’ file below shows a typical UNIX/XENIX ‘make’ file before

modification.
FHEHHHHHHHHHAHHHHAHHHHAHHAH AR AR H AR H AR H A SRS H R HHH
##
SAMPLE M A KE FIVLE
##
Make file example, no instrumentation.
##
UNIX, XENIX
#4#

HERHHHAHHHHHAH A AR A G HHHHHHHHHEHHHAHH S HHHHHHHHFHSFHHFHES
Uses make's knowledge of lex, yacc, cc.

HHEHAHHHHHHH R A HHH AR H R HH SRR R HHHH R R S S R R
HEHHHHHHHH

CCextras =

CFLAGS = -s ${CCextras} -DXENIX

YFLAGS = -d

LDFLAGS = -i -ly -11

LFLAGS = -v

Lextras =

Objects = sample.o sampley.o samplel.o tree.o init.o

error.o dotest.o log.o \
ui.o premain.o preprocy.o preprocl.o pretree.o
help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c
error.c dotest.c log.c \
ui.c premain.c preprocy.C preprocl.c pretree.c
sample.h \
typedef.h error.h y.tab.h preproc.h help.c
license.c license.h
UNIX version. Compiles and links.
sample: $(Objects)
rm -f sample
cc $(Objects) $(LDFLAGS) $(Lextras) -o sample
B
sampley.c: sampley.y
yvacc $(YFLAGS) sampley.y
mv y.tab.c sampley.c
cp y.tab.h ytab.h

#

samplel.c: samplel.l
lex $ (LFLAGS) samplel.l
mv lex.yy.c samplel.c

#

preprocy.c: preprocy.y

206

E B N EEEREEEEEEEEEN

TT——

S-TCAT User’s Guide

yacc $(YFLAGS) preprocy.y

cat y.tab.c | sed -e 's/yy/xx/g' > reprocy.c
cat y.tab.h sed -e 's/yy/xx/g' > pretab.h

preprocl.c: preprocl.l

lex S (LFLAGS) preprocl.l
cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c
rm lex.yy.c
1px:
pr $(Sources) | lpr

license.o: license.c license.h

Uninstrumented UNIX Make File
The changes needed have been made in the modified ‘make’ file shown
below. The modifications are shown in bold face.
HHHHAHHHHHAHHAHHAAHHHHAFHAFTHEHHAH R HHAHHEH S
##
S AMP L
##
Make file sample, with S-TCAT/C instrumentation
##
UNIX, XENIX
##
HAAHHHHHH A A HHHHHAAAHHHH AR B B
Uses make's knowledge of lex, yacc, cc.
HHHHAHHHHHHHHHHFHH RIS H AR HH AR SR S

&3]
=
>
~
&3]
les|
H
=
=

CCextras =

CFLAGS = -s ${CCextras} -DXENIX

YFLAGS = -4d

LDFLAGS = -i -ly -11

LFLAGS = -v

Lextras =

Objects = sample.o sampley.o samplel.o tree.o init.o

error.o dotest.o log.o \

uli.o premain.o preprocy.o preprocl.o pretree.o
help.o license.o

Sources = sample.c sampley.c samplel.c tree.c init.c
error.c dotest.c log.c \

ui.c premain.c preprocy.c preprocl.c pretree.c
sample.h typedef.h error.h \

y.tab.h preproc.h help.c license.c license.h

207

CHAPTER 11: Instrumentation

UNIX version. Compiles and links.
008

cc -P § (CFLAGS) $*.c
s-ic $*.1i
cc -c $(CFLAGS) $*.i.c.
mv $*.i.0 $*.0
#
sample: $(Objects) crunl.o
rm -f sample
cc $(Objects) crunl.o $(LDFLAGS) $(Lextras) -o
sample
#
sampley.c: sampley.y
yacc $(YFLAGS) sampley.y
mv y.tab.c sampley.c

cp y.tab.h ytab.h

#

samplel.c: samplel.l
lex $ (LFLAGS) samplel.l
mv lex.yy.c samplel.c

#

preprocy.c: preprocy.y
yacc $(YFLAGS) preprocy.y
cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
cat y.tab.h sed -e 's/yy/xx/g' > pretab.h
rm y.tab.c

#
preprocl.c: preprocl.l
FLAGS) preprocl.l
cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c

lex S(L

rm lex.yy.cC
lpr:
pr $(Sources) | lpr

license.o: license.c license.h

FIGURE 90 Instrumented UNIX Make File

208

S-TCAT User’s Guide

11.5 File Summary

This section describes S-TCAT/C file naming conventions for the instru-
mentor (s-ic).

MS-DOS or 0S/2:

s-ic [optional switches] filename.i

Input:
<filename>.1i Preprocessed Source File
Produces:
<filename>.ic Instrumented source
<filename>.1iA Segment Reference Listing
<filename>.iE Error listing
<filename>.1iL Call-pair count/module
(Used by mksarchive)
<filename>.1iP Call-pair Listing
(Used by cg/Xcalltree)
<filename>.1iS Instrumentation Statistics
UNIX:

s-ic [optional switches] filename.i

Input:
<filename>.1 Preprocessed Source File
Produces:
<filename>.i.c ented source
<filename>.i.A Ref.Listing
<filename>.i.E listing
<filename>.i.L Call-paircountforeachmodule
(Used by mksarchive)
<filename>.i.P Call-pair Listin
(Used by cg/Xcalltree)
<filename>.1i.8S Instrumentation Statistics

209

CHAPTER 11: Instrumentation

11.6

Embedded Systems

An added benefit resulting from S-TCAT/C 's software instrumentation
strategy is that the tool may be used with embedded systems. Because S-
TCAT/C 's output is a syntactically-correct program, the tool can be used
on programs that are cross-compiled for target systems. The sequence of
steps are: the instrumented code is cross-compiled, linked, then moved to
the embedded system.

After execution, coverage data collection occurs on the embedded system,
and the trace files are uploaded to the host. The specifics of transferring
trace files from the embedded system to the host is dependent on the sys-
tem in question.

210

{

CHAPTER 12

Compiling, Linking and
Executing

This chapter explains how to compile, link and execute the instrumented program.

Once instrumentation has been completed, the instrumented version of
your “C" program must be compiled and linked with the runtime object
modules, sometimes called runtime routines.

The runtime routines are supplied by SR and will write to the trace file.
These modules are called from the instrumented code; the added function
calls, or “probes", call sub-functions inside the runtime modules.

There are several runtime objects for each computer as described in the
next section.

NOTE: Some unreachable code may occasionally be inserted by the
instrumentor. This may cause warning messages when compiling, but
they are not fatal and the compiler should proceed in spite of them.

121 Runtime Descriptions

As mentioned above, the test engineer using S-TCAT/C for other lan-
guages has a choice of many runtime routines to change the behavior and
performance of the instrumented system under test. Different runtimes
may be selected by linking in the appropriate module. Some optimize
execution speed of the instrumented program, while others decrease the
size of the trace file, and still another starts and stops the trace data sam-
pling during execution of the program under test, depending on certain
rules that are written in a control file. This is further discussed in the next
section. Finally, the user can write his own runtime package if he needs to
modify S-TCAT/C to a particular situation, since the program that is
needed is small.

For an embedded system where the target system has particular charac-
teristics, rewriting the runtime is a practical way to adapt S-TCAT/C.

211

CHAPTER 12: Compiling, Linking and Executing

There are a variety of runtime modules for each language. The function
of each runtime package is specified by the format of its name as defined
below:

<language>run<level>.0o (for UNIX)
or

<language>run<level><model>.obj (for DOS)

Examples:
crun0.o C, level 0, UNIX
frun3.o Fortran 77, level 3, UNIX
prun2.o Pascal, level 2, UNIX
crunOm.o C,level 0,DOS,medium memory model

Several versions of runtime are available depending on your needs. This
section describes runtimes common to both UNIX and MS-DOS or OS/2
systems. Special runtimes which apply only to UNIX are described in the
Section 12.2.

crun0 - Raw Tracefile (“quiet" runtime)

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca-
tion of the program under test.

crun1 - Standard Tracefile

This is the same as crun0, but with prompts that ask the user for Test
Descriptor and the name of trace file. There is no internal processing or
buffering. The trace file is the full, unedited trace of program execution.
This is the basic version.

MS-DOS Runtimes

MS-DOS has several runtimes available. You must first determine the
memory model you are using for memory management on your system.
You will then be able to easily choose from the following list of runtimes.
The standard runtimes are crun1, while the “quiet" runtimes are crun0.
Microsoft C has five memory models: S for small; M for medium; C for
compact; L for large; and H for huge. Turbo has six memory models: T for
tiny; S for small; M for medium; C for compact; L for large; and H for
huge.

212

S-TCAT User’s Guide

12.2

\RUNTIME\TURBO\STD\CRUN1C .OBJ
\RUNTIME\TURBO\STD\CRUNL1H.OBJ
\RUNTIME\TURBO\STD\CRUN1L.OBJ
\RUNTIME\TURBO\STD\CRUN1M.OBJ
\RUNTIME\TURBO\STD\CRUN1S.OBJ
\RUNTIME\TURBO\STD\CRUNIT.OBJ

\RUNTIME\TURBO\QUIET\CRUNOC.
\RUNTIME\TURBO\QUIET\CRUNOH.

\RUNTIME\TURBO\QUIET\CRUNOM.
\RUNTIME\TURBO\QUIET\CRUNOS.
\RUNTIME\TURBO\QUIET\CRUNOT.

OBJ
OBJ
.OBJ
OBJ
OBJ
OBJ

\RUNTIME\MSC51\STD\CRUN1C.OBJ
\RUNTIME\MSC51\STD\CRUN1H.OBJ
\RUNTIME\MSC51\STD\CRUN1L.OBJ
\RUNTIME\MSC51\STD\CRUN1M.OBJ
\RUNTIME\MSC51\STD\CRUN1S.OBJ

\RUNTIME\MSC51\QUIET\CRUNOC
\RUNTIME\MSC51\QUIET\CRUNOH
\RUNTIME\MSC51\QUIET\CRUNOL
\RUNTIME\MSC51\QUIET\CRUNOM
\RUNTIME\MSC51\QUIET\CRUNOS

.OBJ
.OBJ
.OBJ
.OBJ
.OBJ

The following is a partial list of runtimes for MS-DOS, as they appear on
the distribution diskette:

NOTE: Microsoft C 5.1 runtimes should be compatible with 6.0 updates.

crun?2 - In-Place Reduction

crun3 - Multiple Processes

Special Runtimes (for UNIX only)

The S1 statistics of the entire program execution are accumulated in

memory. The trace file information is written after the program properly
exits. crun2 allocates enough memory with dynamic memory allocation
to do full 51 reduction in place.

crun3 allows the user to turn on and off trace sampling by changing a
control file, /usr/lib/stcat.cntl. The crun3 runtime checks the control file
after a specified number of trace records have been registered in memory,
and writes an archive file if the control file indicates that sampling is to
stop and data is to be collected.

213

CHAPTER 12: Compiling, Linking and Executing

The next file contains instructions to control trace sampling. For instance,
the first control file statement will cause the instrumented program init to
register 1,000 “hits", check the control file and then write the trace file
data into an archive file and then stop sampling.

Here is an example of the syntax of the control file: # is a comment.

Here the process named "init" is turned off, but will
requery # the 'stcat.control' file after 1000 segment
hits: init -1000

Here the process named "my.oracle" is turned on, and
will # will requery the 'stcat.control' file after 25000
segment hits: my.oracle +25000

H = H 3 I

3=

Here, the process "trick" has been told to record essen
#tially forever, and "bad" has been told to not record

test data # essentially forever:

trick +5000000000

bad -5000000000

Caution: multiple continuously executing instrumented
programs will always check the 'stcat.control' file on
startup. If their # name is NOT found anywhere, then
they will NEVER requery the # 'stcat.control' file
again.

cruna - Multi-Tasking (or forking runtimes)

cruna provides for successful data collection when instrumented pro-
cesses run in parallel.

cruna is designed for analysis of system calls such as the “spawn” system
command of “C". A trace file will be produced for parent and child pro-
cesses.

crunc - Cross Development

Available as a separate purchase. This is source code for crun0-3, which
you can cross-compile to use in capturing executions of a cross-compiled
executable on a target machine. The tester will need to adapt the source
code of runtime for his/her particular situation. For instance, one alterna-
tive with an embedded system is to have the runtime write each trace file
record to the development system.

Another alternative is to have each record stored in a file on the embed-
ded system, which is then transferred to the development system.

214

S-TCAT User’s Guide

12.3

Executing the Instrumented Program

The next step is to run your instrumented program and track which func-
tion calls have been exercised by the test data you supply. In essence, this
is a matter of noticing the not-hit call-pairs mentioned in the Not Hit
report, and looking up the corresponding code in the Reference Listing.

S-TCAT/C senses when call-pairs are hit by monitoring the markers
inserted during instrumentation and by accumulating the results in a
trace file and an archive file, which then becomes the basis for all subse-
quent S-TCAT/C coverage reports.

To produce the trace file, first run your instrumented and compiled “C"
program and follow the S-TCAT/C prompts. If you use the standard runt-
ime routines, the system will respond with:

"“Type in a description of the test run. Be as descriptive as needed for
your own information in referring to this test run. You can enter up to 80
characters of text in your message. This message will be recorded in the
trace file and used in scover reports. If you choose to enter no descriptive
text, just press the return key.

The system next will prompt you for an output filename:

Name of tracefile [default is Trace.trc]:

Type in any name. The system will create a trace file with the name you
enter. To use the default name Trace.trc, just press the return key. The trace
file description and name are useful in keeping track of different test runs.
Consistent, clear naming conventions are useful in organizing different
groups of results. A common practice is to identify trace files with the file-
name extension.trc.

Performance Considerations

Sometimes, an instrumented program will produce very large trace files.
One solution to this is to compile a mixture of instrumented and un-
instrumented files so that the program is tested in pieces.

215

CHAPTER 12: Compiling, Linking and Executing

216

CHAPTER 13

Coverage Reporting and
Analysis

To get useful results from S-TCAT/C, you must analyze coverage reports.
To do this, the program scover is run to process the trace file and produce

several output reports. In general, the reports give the following informa-
tion:

Reports included in the current report.

A summary of past coverage runs.

Current and cumulative coverage statistics.
A list of call-pairs that have been hit.

A list of call-pairs that have been missed.

C IR O

Bar charts of the frequency of execution of each call-pair.

These reports are useful for performance analysis and also for “hot spot"

tuning. The two types of graphs, called histograms, show the frequency
distribution of call-pairs hit on either linear or logarithmic scales.

scover also archives the trace file information into an Archive file so that
the reports are cumulative. The diagram in Figure 91 shows the compo-
nents and interfaces of the system.

217

CHAPTER 13: Coverage Reporting and Analysis

Source Program

Analyzer

Run Coverage

v

]

H» | Reference Listing

s |

Segment Count

Direct Graph

Y

Instrumented
Program

v

Compile
Instrumented
Program

Y

Link

Object | Creates Executable

v

<@ Generates |

Run Applica-
tion

A

Generate
Reports

Cumulativ
Report

e Past Hit Report Not\dit
Report Repo

r\\\A

Newly Hit Newly Missed
Report Report

FIGURE 91

Linear Histogram Logarithmic Histo-
Report gram Report

System Components

Reference
Listing Report

218

‘

S-TCAT User’s Guide

13.1

13.1.1

13.1.2

Producing Reports

This section is an in-depth reference on scover and the reports it pro-
duces.

The scover command analyzes trace files produced by instrumented pro-
grams and generates a set of coverage reports.

Report Types

Reports generated by scover are stored by default in the file Coverage.
Depending on the options used, scover produces different reports. The
reports accomplish one or more of the following:

1. Summarize the S1 coverage achieved by current and cumulative tests
on a module by module bases. This is the Cumulative Report.

2. Indicate which call-pairs have been hit and which have been ignored
by your test cases. These are the Hit and Not Hit reports.

3. Analyze a current or a past test suite execution. The particular runs to
be investigated are selected by choosing the appropriate trace and
archive files. The trace file contains information from the most recent
run, and archive file contains information from previous runs. This is
the Past Report.

4. Indicate which call-pairs were hit in the current execution which
were not hit previously and vice versa. These are the Newly Hit and
Newly Missed reports.

5. Examine how often call-pairs in a module have been exercised. This is
a performance analysis at the function call level. The Logarithmic

Histogram and Linear Histogram reports are the reports of interest
here.

Trace File Argument

The scover command can handle many trace files in the same run. For
instance, in UNIX it is possible to issue the command:

scover *.trc -c -n -1
to report on all the trace files in the directory with the extension.trc. Of

course, one could also issue a command to input data from only one trace
file:

scover Trace.trc -c -n -1 ...

Finally, the Trace.trc file is a default, so the above command is equivalent
to the following:

gscover -¢ -n -1 ..

219

CHAPTER 13: Coverage Reporting and Analysis

13.1.3

13.1.4

Archive Files

At the end of each run, scover also generates a new archive file that can be
used in the next run of scover. The default filename is Archive. The archive
files created by scover are similar to trace files in their format and content.
The significant difference is that they do not contain information on the
sequence in which call-pairs were hit. They do, however, contain all other
data required for coverage analysis.

scover allows the user to perform a series of incremental tests. By default,
it takes the cumulative summary data stored in the default archive file,
Archive, produced by previous runs of scover, and submit it as input to
the current run of scover. This allows the user to add new test suites to
exercise unhit call-pairs without having to include previous test suites.
Thus, subsequent test suite size will be smaller.

‘scover' Syntax

The complete syntax for calls to scover is listed below. Items enclosed in
[..] are to be included zero or more times.

scover [tracefile [tracefile]]
[-a old-archive]
[-b title]
[-c]
[-d name [name]]
[-DI deinst-file]
[-DL]
[-f new-archive]
[-help]
[-h | -h name [name]]
-1 | -1 name [name]]
H]
NH]
NM]
]

BZE g

1l namefile]

::!

s

report]

mH

[-
[-
[-
{=
L~
[=
[~
[~
[-
[=
[=
[-
[-

SU]

220

S-TCAT User’s Guide

[-T [threshold]]
[-w width]

[-2

reference listing]

The options may be used to vary the processing and reports generated by
scover. The options are listed in alphabetical order.

[tracefile [tracefile]]

-a old-archive

-b title

-d name [namé]

These are the names of the tracefiles that you wish to
process. If there are no trace files given, then scover
looks for data in the default trace file name, Trace.trc

If there are no names given, and Trace.trc is not
present then an error message is issued. If there are
multiple trace files, each trace file is processed in the
order presented.

CAUTION: The list of trace files must be the first set
of arguments. The list is ended by the first symbol
that appears with a “-”, i.e. by the first optional
switch.

Old Archive File Name Switch.

You can include data from an old archive in your re-
ports. On the standard cumulative coverage report,
this data will be included in the “Cumulative Sum-
mary" test results, but not under the column “Test".
To test iteratively, progressing through a structured
series of tests towards higher C1 values, each run of
scover should include the cumulative archive file
from the previous test.

If you do not include an archive file, the “Cumulative
Summary" figures will be the same as those for
“Test". Alternatively, if no -a optionis given, the file
Archive is used by default. The -a option interacts
with the other report options discussed below.

Banner File Name Switch.

This allows you to include specific text, taken from
the first line of the named file, title, as a title for your
reports. A maximum of 80 characters is allowed for ti-
tles.

Cumulative Report Switch. This option prints the Cu-
mulative Report only.

Module Name Delete Switch. If this switch is present

then the named modules, if found in the current exe-

221

CHAPTER 13: Coverage Reporting and Analysis

-DI deinst-file

-DL

-f new-archive

cution, are deleted from the generated Archive file.
Subsequently, scover will never have heard about
these names. This switch is useful in updating an ex-
tensive test record that would otherwise be lost due
to the complexity of editing the Archive file.

De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from coverage
reporting. Only the list of module names found in the
specified deinst-file is to be excluded from coverage
reporting. The module names can be specified in any
format. White space (such as tabs, spaces) is ignored.
deinst-file is also the file where new modules that
pass the coverage threshold value (see -T switch) will
be written to.

De-instrument Module List Switch. Allows the user
to see which modules are excluded from coverage re-
porting. This switch is used along with the -DI switch.
The list of excluded modules is printed at the end of
the coverage report.

New Archive File Name Switch.

Newly accumulated test coverage data will be placed
in this file. If you don't include a different name with
this switch, the accumulated test data will be placed
in the default name Archive. CAUTION: Each time
you run scover, you will write over the contents of the
Archive file unless you use the -f switch to direct the
Archive file to another place. You may wish to re-
move the filename before starting a new test se-
quence.

-help Help Switch. Forces output to show a summary of
available switches. Note: This is also the output pro-
duced by an illegal command.

-h | -hname [name]

Linear Histogram Report Switch (-h).

-1 | -1 name [name]

Logarithmic Histogram Report Switch (-1)

These two options produce two “histogram” reports
that graph the frequency distribution of the segments
exercised in a single module. The histograms provide
a module-by-module analysis of testing coverage,
combining current trace file data with archive date in-

222

S-TCAT User’s Guide

-m

-N, -n

-nl namefile

cluded through the -a option or using the default Ar-
chive file. If the optional name argument is present,
then the corresponding histogram for only the named
module is produced; otherwise, scover produces his-
tograms for all modules found. There can be multiple
names in the argument if you want histograms of sev-
eral modules. Also, the names can be mixed between
linear and logarithmic histograms.

Hit Report Switch.

Lists the segments that have been hit one or more
times in current or past tests. This report analyzes the
cumulative effect of the current trace file and any ar-
chive data included through the use of the -a option
or using the default Archive file.

Minimal Output Switch. When present, scover sup-
presses banner information, list of current options,
and trace file descriptions. The coverage report con-
tains only the reports requested.

Not Hit Report Switch.

This option produces the Not Hit report which lists
segments that have not been exercised. This report
analyzes the cumulative effect of the current trace file
and any archive data included through the use of the
-a option or using the default Archive file.

Newly Hit Report Switch. Shows the segments by
module that were hit in the current execution that
were not hit previously. Thus this gives the user an
assessment of the value of the most-recently added
test(s). This shows what the current test “gained".
Output is the complement of the “Newly Missed" re-
port.

name List Switch.

This switch specifies that only the list of module
names found in the specified namefile file is to be re-
ported on in the current coverage report. Coverage on
other module names that may appear in the archive
or supplied trace files are ignored; however, the data
is accumulated in the archive file.

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

223

CHAPTER 13: Coverage Reporting and Analysis

-NM

-r report

-SU

-T [threshold]

The following reports are effected by the existence of
a namefile:

Cumulative Report, Past Report, Not Hit Report, Hit
Report, Newly Hit Report, Newly Missed Report.

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro-
duced individual histogram reports.

Newly Missed Report Switch.

Shows which segments, by module, hit in any prior
test but were not hit in the current test. This shows
what the current test “lost". This output is the com-
plement of the Newly Hit report.

Past Report Switch.

Print only the Past Test report; this option should be
used in conjunction with the -a option when you
want to analyze the overall performance of a set of
past tests.

Quiet Output Switch.

Suppress printout of current version and release in-
formation (this can be used to facilitate running scov-
er in batch mode).

Coverage Report File Name Switch.

Normally the report is written to the file Coverage
(the default name), but you can rename the file with
this switch. CAUTION: You will overwrite any file
you name with this switch.

Sort Switch. This option produces output reports
with module names sorted alphabetically.

Suppress Update Switch.

During processing, scover will suppress updating of
the archive file, either the default Archive or the file
named by the -f switch. scover will read the data in
the archive file to form the basis for the “past test" in-
formation.

Coverage threshold switch.

threshold is a real number that specifies the threshold
value. Any module with percentage coverage greater
than or equal to this threshold value, will be written

224

S-TCAT User’s Guide

13.2

to the "de-instrumented" file. If no threshold is speci-
fied, then the default value of 85 percent is assumed.

-w width Report Width Switch.

Normally the reports generated by scover are wide
enough to accommodate module names up to 21
characters in length. The internal limit on name
length is, however, 128 characters. You can use this
switch to force scover system to generate reports that
are wide enough to accommodate the full 128 charac-
ter module names.

The width factor is the number of additional charac-
ters to be added to the report. The default value is
zero. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con-
tain long lines and may not be suitable for printing di-
rectly.

-z reference listing Annotated Reference Listing Switch.
scover will analyze the specified archive file, any
specified trace files, and will produce a report that
shows the coverage level achieved for all modules
that are named in the specified reference listing (file
with .i.A or .iA extension). The reference listing
must be one that is produced by a current release of
the TCAT/C instrumentor. Reference listings pro-
duced by earlier versions may not necessarily work
correctly with this switch.

If a module is tested but the name is not found in the
supplied reference listing, then that coverage is not
reported. Similarly, if a name appears in the reference
listing and is not one that exists in the archive file, no
coverage will be reported.

In case there is an error, scover gives a response line
(usage line) indicating the set of switches and options.

‘mksarchive’ Utility

The S-TCAT/C system also includes a utility program for creating null
archive files. This is mksarchive . This utility ensures that your coverage
reports all modules on your system whether or not they have been exe-
cuted. Sometimes, when testing a subsystem, the initial tests do not touch
every module in the program. When this occurs, the S1 measure will

ctart at an artificially high level and, as the tests touch more modules, the
S1 value will decrease. Although more call-pair are being hit, more mod-

225

CHAPTER 13: Coverage Reporting and Analysis

ules are included in the percentage calculation, so the resulting value is
lower.

Most experienced S-TCAT/C users are aware of this phenomenon and
use the mksarchive utility to monitor the total could-have-been-hit
count. If you are not certain that you can detect whether a module has
been skipped over in a lengthy program, it is wise to always use this util-
ity to ensure that your testing coverage data is complete and accurate.

The mksarchive utility reads the archive input table *.i.L or *iL (Call-
pair Count) file produced by the instrumentation process and creates a
“null" archive file containing a complete count of all the modules and
their call-pairs in the program being tested. This is a normal archive file
and can be used with scover to ensure accurate results in generating cov-
erage reports.

To include the mksarchive data in your coverage reports, run mksar-
chive before beginning the report generation process with scover .

The syntax for mksarchive if you have a one file program is:

mksarchive < x.i.L > null.arc (for UNIX)

or
mksarchi < x.iL > null.arc (for DOS)

where x.i.L is the archive input table created during instrumentation,
and null.arc is the null archive file. To use mksarchive for multiple files
program, concatenate all *.i.L files into one file and execute mksarchive
on that one file. To include the null archive file in the coverage analysis
step, run scover with the -a option, as in the following example:

scover Trace.trc -a null.arc"

where Trace.trc isthe trace file.

226

S-TCAT User’s Guide

13.3

File Summary

This section describes S-TCAT/C file naming conventions for scover .

scover [optional switches] [tracefile]

Input:
Trace.trc (orother file named in execution of pro-
gram)
Old Archive files

Produces:

Coverage Coverage report

Archive New archive file which merges latest trace informa-

tion into cumulative data.

227

CHAPTER 13: Coverage Reporting and Analysis

228

CHAPTER 14

Menus

The second way to access S-TCAT is with menus, and this chapter will explain how to do
so. If you would rather use command-line invocation, you may skip this chapter and go
on to Chapters 15,-16, or the full S-TCAT example in Chapter 17.

14.1

14.1.1

S-TCAT/C ASCII Menus

The S-TCAT ASCII menus and their use are described below. Menus help
users in two ways: by providing a fixed structure for collecting test cov-
erage information and by providing a convenient way to customize a
sequence of operations.

Invoking S-TCAT

Start up S-TCAT in interactive mode with the command:
stcat [-r file]

where, fileis the optional configuration file (rc file) name.

The default name for the configuration file is stcat.rc. If you don't specify a
configuration file, or if S-TCAT doesn't find the file stcat.rc in the current
directory, then S-TCAT issues a warning message and continues process-
ing, using default values. Remember that the content of the S-TCAT con-
figuration file, stcat.rc, always overrides the internally supplied (default)
values of all parameters.

229

CHAPTER 14: Menus

14.1.2 S-TCAT Menu Tree

The menu tree is shown in the diagram below.
S-TCAT

MAIN:
Selects ACTIONS or FILES or OPTIONS menus
Shows option settings
Shows current execution stats
Saves option settings
Exit from S-TCAT system
On-line help frames
!<system commands>

____ ACTIONS:
| Selects basic S-TCAT operations
| Shows option settings
| Return to prior menu.
| On-line help frames
!<system commands>

____ OPTIONS:
| Helps select all user-settable options
| Shows option settings
| Return to prior menu.
On-line help frames
| !<system commands>

| FILES:
Shows all current file settings
Allows changing file settings
Return to prior menu.

On-line help frames
l<system commands>

After S-TCAT starts, you will see the title information, version control
indication, and the prompt “S-TCAT:-MAIN: “. To see the available menu
options, type from any prompt within S-TCAT:

? and then ([RETURN].
S-TCAT then displays the available options for that menu. This feature

works for all menus throughout S-TCAT. The current menu is redrawn
whenever you give an unrecognized command.

Issuing Commands

230

S-TCAT User’s Guide

14.1.3

You can issue commands by typing the first few letters of each com-
mand's name. The only requirement is that the letter sequence be unique
to that command. S-TCAT will inform you when a command you issue
matches two or more possible commands. To set variables (see the
options menu description, below) you must type the entire variable
name. This is done in order to be consistent with configuration file pro-
cessing.

Displaying Current Parameter Settings

You can display the current settings (options and filenames) known to S-
TCAT at any time using the settings command, get on-line help with the
help command, and exit the current menu using exit. The configuration
file reading in the settings is automatically used. However, the settings
can be changed if required.

S-TCAT Menu ‘Stack'

You can move from the MAIN menu to any other menu at will. S-TCAT
remembers the sequence of your choice of menus in an internal “stack".
This means that when switching from one menu to another, you can

return to the immediately prior menu with the exit command. This fea-

ture is provided to prevent you from entering conflicting or incorrect data
during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the MAIN menu to exit the system. That is, your moves
between the three subsidiary menus are “stacked" and must be
“unstacked" before returning to the MAIN menu. If you press the DEL
key, you return immediately to the MAIN menu.

MAIN Menu

When you invoke S-TCAT, the following menu is displayed:
S-TCAT:MAIN:

Options:
actions-- Go to the ACTIONS menu
files-- Go to the FILES menu
options-- Go to the OPTIONS menu
settings-- List current settings for S-TCAT
options
help [optl]-- Display HELP text for a command

release-- Show release and version numbé?

231

CHAPTER 14: Menus

save-- Save the current settings for S-TCAT
exit-- Exit from S-TCAT to system

14.1.4 ACTIONS Menu

The ACTIONS menu is displayed below:
S-TCAT:ACTIONS:
Options:
preprocess-- Run the preprocessor on desig-
nated module
nstrument-- Run S-TCAT instrumentor on desig-

gl
nated module
compile-- Execute standard compilation step

link-- Execute standard linkage step
make-- Execute specified make command
go-- Execute instrumented program

scover-- Execute S-TCAT Coverage Analyzer
view-- View S-TCAT Coverage Report

files-- Go to the FILES menu
options-- Go to the OPTIONS menu

settings-- Display current runtime settings
help [opt]-- Display HELP text for command
release-- Show release and version number
exit-- Exit current level

FILES Menu

The FILES menu is displayed below:
S-TCAT:FPILES:
Options:
prefix <name>-- Base name ('prefix') of file processed
tracefile <name>-- Name of trace file
archive <name>-- Name of trace file

(def.= Trace.trc)
(default Archive)
report <name>-- Name of report file (def. Coverage)

actions-- Go to the ACTIONS menu

options-- Go to the OPTIONS menu
settings-- Display current runtime settings
help [opt]-- Display HELP text for command
release-- Show release and version number
exit-- Exit current level

232

S-TCAT User’s Guide

If you change the configuration file from this menu, the stcat.rc file (or the
file you specified on invoking S-TCAT) is not automatically updated.
When you exit, S-TCAT will prompt you about saving the current set-
tings.

14.1.5 OPTIONS Menu
The OPTIONS menu is displayed below:

S-TCAT:0PTIONS:

Options:
preprocess- Specify the preprocessor command
instrument-- Specify the instrument command
compile-- Specify the compiler command
link-- Specify the linker command
make-- Specify the make command
execute-- Specify the 'go' command
scover--Specify coverage analyzer command
view-- Specify view command for cov. report
actions-- Go to the ACTIONS menu
files-- Go to the FILES menu
settings-- Display current runtime settings
showmenu-- Toggle showmenu option on and off
help [opt]-- Display HELP text for a command
release-- Show release and version number
exit-- Exit to the system
14.1.6 Saving Changed Option Settings

Before leaving S-TCAT, the user will be prompted to save the current set-
tings (unless this has already been done in the current execution of S-
TCAT and the options have not been changed since they were last saved).

Upon exiting S-TCAT, you are prompted:
Do you want to save current parameter settings (y/n): y

Do you want to use default filename (stcat.rc) (y/n): n
Specify filename: example.rc

Parameter settings saved in example.rc.

233

CHAPTER 14: Menus

14.1.7

14.2

14.2.1

Running System Command

You may issue a command directly to the operating system by using the
! symbol, as follows:

S-TCAT: !<any system command>

S-TCAT regains control after the command is executed. This feature is
useful for editing files and for other activity within an S-TCAT session.

S-TCAT Configuration File

This chapter describes the S-TCAT configuration file. A sample file is
shown at the end of this chapter. The S-TCAT menu system reads the con-
figuration file before starting processing. This file can contain modifica-
tions to the default settings of a variety of S-TCAT parameters. The user
can specify which file to use, or S-TCAT will automatically use the
default name stcat.rc. This feature allows the user to set various run-time
parameters automatically. Command-line parameters, however, always
override the configuration file settings whenever command-line parame-
ters are present.

The S-TCAT configuration file is a simple ASCII text file that can be cre-
ated with an editor. Alternatively, you can create this file, by using the
save option from within an interactive invocation of S-TCAT.

Configuration File Syntax

The following run-time parameters can be set in the configuration file.
Configuration file lines can contain any set of commands in any order.
Comment lines must begin with a # as the first character. All white space
(tabs and blanks) are ignored, except those appearing within quotes.

The latest occurring command prevails in the case of duplicate com-
mands. This feature may be useful when handling several configuration
files that differ only slightly. -

<comment> A line beginning with # is treated as a comment.

help=<filename>This parameter defines the location of the on-line
helpframe information used by S-TCAT. Normally it
does not have to be re-set if the file of help informa-
tion is placed at the ‘standard' location.

preprocess=<text>

This is the text of the command to be used to prepro-
cess the file whose prefix name is given below.

prefix=<name> This is the “basename" for the file you are processing.
S-TCAT automatically adds the appropriate suffix to

a4

———

TTTT————

S-TCAT User’s Guide

indicate the kind of file it is. For example, for a “C"
program the suffix is.c.

tracefile=<filename>

This filename is the one that is assumed to be used as
a trace file.

report=<filename>

This filename is the one that is assumed to be used for
coverage reports.

instrument=<text>

This is the text of the command used to instrument
the file whose prefix is given in the system settings.

compile=<text> This is the text of the command used to compile the
instrumented program.

link=<text> This is the text of the command used to link the in-
strumented program with the runtime package.

make=<text> This is the command text to run when the make com-
mand is run.

execute=<text> This is the text of the command to use to execute the
instrumented program.

scover=<text> This is the text of the command to use, including any

switches that might be needed, to analyze the named
trace file.

view=<text> This is the command to use to review the Coverage
Report.

archive=<filename>

This is the filename to use as the Archive File (perma-
nent test record).

showmenu
noshowmenu

These switches determine whether the entire menu is
re-drawn on the screen when a command is issued.
You will probably prefer to use noshowmenu after
you are familiar with the program.

235

CHAPTER 14: Menus

14.2.2 Sample S-TCAT Configuration File
Below is an example of a typical S-TCAT configuration file.

[o3)

Example of S-TCAT Configuration

showmenu

-
"

S = 3 3

o O

lp="/usr/lib/stcat/stcat.hlp”
process="cc -P"

g
H

e
rument="g-ic"

ix="example"

ol
; s
Lo I () B 1)

i3
ort="Coverage"
k

k="¢e *.1.0 ¢rua

compile="cc -c *.i.c"
make="make"
execute="a.out"
scover="scover -n -h"
view="vi"
tracefile="Trace.trc"
archive="Archive"

236

CHAPTER 15

Command Summary: MS-DOS,

0S/2

This chapter gives a short command summary for S-TCAT/C running under MS-DOS or

0S/2.

15.1

15.1.1

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C" preproces-
sor before putting it to s-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime module.

Depending on the size of your program and the development method
used, the following subsections describe how it is done.

Stand-Alone Files

Here are the commands you would use with the Microsoft C 6.0 compiler
on MS-DOS or OS/2:

Preprocess:cl /P <filename>.c /* to produce <filename>.i */
Instrument: s-ic -m6 <filename>.i /* to produce <filena-
me>.ic */

Compile: cl /c /Tc <filename>.ic /* to produce <filena-
me>.obj */

Link:cl <filename>.obj crunls.obj /* to produce <filena-
me>.exe */

Execute: (Run your program as usual. Press RETURN twice to
accept the default values for trace file message and name.)
Note that -mé6 is the s-ic switch for Microsoft C 6.0 compiler. /Tcisa

Microsoft C 6.0 option that allows for compilation of files with extensions
other than .c.

Also, note that crunls.obj is the runtime object module that comes
with S-TCAT/C. There are various runtime object files, depending on
compiler, runtime level, and memory model used. For more runtime
descriptions on MS-DOS runtimes, turn to Section 12.1.

237

CHAPTER 15: Command Summary: MS-DOS, OS/2

15.1.2 Systems With ‘make' Files

1. Insystems that have ‘make’ files where .0bj files are explicitly listed as
targets, add the following built-in rule before other targets:

Built in rule for S-TCAT instrumentation...

€. 0b7 5
cl S(CFLAGS) /P S$*.c cl. S(CFLAGS) S$*.c
s-ic -m6 $*.1i or s-ic -m6 $*.1i
ren $*.1 temp.c cl $(CFLAGS) /c/Tc s$*.ic

cl $(CFLAGS) /c temp.c
ren temp.o S$*.obj

sample.obj: sample.c

2. Add crun<level><model>.obj to the list of linked object mod-
ules. You must choose the version of runtime to use, based on the
runtime level and the memory model (small, compact, medium, large
or huge).

3. Run the ‘make' file to produce the instrumented program.

15.1.3 ‘make’ With ‘cl', ‘msc'

This section deals with situations that involve 'make' files for commonly
available PC-based compilers, such as Microsoft C, where compile state-
ments are explicitly mentioned.

1. Replace ‘cl' (or ‘msc') with the following lines:

cl S(CFLAGS) /P <filename>.c
s-ic -m6 <filename>.1i

ren <filename>.1 temp.cC
cl $(CFLAGS) /c temp.c
ren temp.o <filename>.o
2. Add crun<level><model>.obj to the list of linked object mod-
ules.

3. Run the make file to produce the instrumented program.

15.1.4 Systems Without ‘make’ Files

Go to the directories with the source code and follow the method for
stand alone files with each source code file (preprocess, instrument, com-
pile). Finally, link all the object files with the appropriate runtime object
file.

238

g |

T —

S-TCAT User’s Guide

15.1.5

15.2

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro-
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 12.2 for a
more detailed description of runtimes available.

Coverage Analysis

Use the command:

scover [tracefile] -p -c¢ -H -N -h
to analyze reports.

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the S1 coverage value you
obtain is acceptable. This is a general coverage reporting. For more infor-
mation, refer to Chapter 13.

239

—

CHAPTER 15: Command Summary: MS-DOS, OS/2

240

CHAPTER 16

Command Summary-UNIX

This chapter summarizes commands you use with S-TCAT/C in UNIX and UNIX-like
environments.

16.1 Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C" preproces-
sor before putting itto s-ic instrumentor. The instrumented program
is then compiled and linked with the appropriate runtime modules.
Depending on the size of your program and the development method
that you use, the following subsections describe how it is done.

16.1.1 Stand-Alone Files
The commands used are:
Preprocess: cc -P <filename>.c /* to produce <filename>.i */
Instrument: s-ic <filename>.1 /* to produce <filename>.i.c */
Compile: cc -c <filename>.i.c /* to produce <filename>.i.o */
Link: cc <filename>.i.o crunl.o /* to produce a.out */
Execute: (Run your program as usual. Press RETURN

twice to accept the default values for

trace file message and name.)

16.1.2 Systems With ‘make' Files

1. If you have ‘make’ files where *.o files are created with built-in
rules, add the following built-in rule before other targets:
Built in rule for S-TCAT instrumentation...

.C.0O:
cc $(CFLAGS) -P $*.c
s~ie §*.i
cc $(CFLAGS) -c $*.i.c
my §¥.d.o $%*.e

sample.o: sample.c

The above will depend on which one invokes built in rules.

241

CHAPTER 16: Command Summary-UNIX

16.1.3

16.1.4

16.2

2. Add crun<level>.o to the list of linked object modules.

3. Then run the ‘make’ file to produce the instrumented version of the
software.

‘make’ files with cc called in directives

When cc is explicitly called in directives, then add s-ic commands to
the cc commands within the ‘make’ file.
1. Replace cc with the following lines:

cc $(CFLAGS) -P <filename>.c

s-ic <filename>.i

cc $(CFLAGS) -c <filename>.i.c

mv <filename>.i.o <filename>.o

2. Addcrun<level>.o to the list of linked object modules.

3. Finally, run the make file to produce the instrumented version of the
software.

A system which does not use ‘make' files
(Or which will not allow “make'’ file changes)

Go to the directories that contain the source code. There, type the follow-
ing commands:

cc -P *.c

p~ic *.4i

ce =¢ *.d.e

cc *.i.o crun<?>.o0

to create the instrumented source, objects and executable.
Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented
program will add two prompts when the first instrumented code is exe-
cuted. You may fill in a value or press return each time. The prompts may
be suppressed by changing the provided runtime. Refer to Section 12.2
for a more detailed description of runtimes available.

242

S-TCAT User’s Guide

16.3

Coverage Analysis

Use the command:

scover [tracefile] -p -c¢ -H -N -h

to analyze reports.

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the SI coverage value you
obtain is acceptable. This is a general coverage reporting. For more infor-
mation, refer to Chapter 13.

243

CHAPTER 16: Command Summary-UNIX

244

CHAPTER 17

Full S-TCAT Example

This chapter describes a full S-TCAT example, that includes a sample ““C" program,
instrumented program and referenced listing.

171 Introduction

It is assumed that S-TCAT/C will be used on syntactically correct pro-
grams, that is programs that will compile cleanly before instrumentation.
Of course, S-TCAT/C will be used to verify that each program segment
or function call executes correctly under typical operating conditions.
Figure 92 show a sample “C" program with three function modules.

This example program will be used throughout the chapter to describe
each component of S-TCAT/C to better aid the user.
/* EXAMPLE.C --example file for use w. TCAT, STCAT, TCAT-PATH. */
#include "stdio.h"
#include <ctype.h>

#define INPUTERROR -1
#define INPUTDONE 0
#define MENU_CHOICES 13
#define STD_LEN 79

#define TRUE 1
#define FALSE 0
#define BOOL int
#define OK TRUE
#define NOT_OK FALSE

char menu[MENU_CHOICES] [STD_LEN] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",

& What type of food would you like?\n",
"\n

"

'

" 1 American 50s v,
R 2 Chinese - Hunan Style \n",
" 3 Chinese - Seafood Oriented \n",
. 4 Chinese - Conventional Style \n",
u 5 Danish \n",
" 6 French \at,

245

CHAPTER 17: Full S-TCAT Example

u 7 Italian \n*,
" 8 Japanese N\,
"\n\n"

}i

int char_index;

main (argc,argv) /* simple program to pick a restaurant */
int argc;
char *argv([];
{
int 1, choice, c,answer;

char str[STD_LEN];

BOOL ask, repeat;

int proc_input () ;

c = 33

repeat = TRUE;

while(repeat) ({
printf ("\n\n\n");
for(i = 0; i < MENU_CHOICES; i++)

printf ("%$s", menuli]);

gets(str) ;
printf("\n");
while(choice = proc_input (str)) {

switch(choice) {

case 1l:

rintf ("\tFog City Diner 1300 Battery 982-2000 \n");

break;

case 2:
printf ("\tHunan Village Rest839 Kearney 956-7868 \n");
break;

case 3:
printf ("\tOcean Restaurant726 Clement 221-3351 \n");
break;

case 4:
printf ("\tYet Wah 1829 Clement 387-8056 \n");
break;

case 5:
printf ("\tEiners Danish Res. 1901 Clement386-9860 \n");
break;

case 6:
printf ("\tChateau Suzanne 1449 Lombard T771-9326 \n");
break;

case 7:
printf ("\tGrifone Ristorante 1609 Powell397-8458 \n");
brea

=

case 8:
printf ("\tFlints Barbecue 4450 Shattuck, Oakland \n");
break;

default:

246

S-TCAT User’s Guide

"\t>>> : n a valid choice.\n", choice);

TRUE; ask;) {

tf("\n\tDo you want to
))

((answer = getchar(

char
BOOL
bad_i

while(isspace(in_str[char_index]))

char_index++;

for(; char_index <= strlen(in_str); char_index++) {
switch (i 1)
case '0':
case 'l‘':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9';:
/* process choice */
tempresult = tempresult * 10 + = Q') ;

247

CHAPTER 17: Full S-TCAT Example

FIGURE 92

if(char_index > 0 && got_first

char_index--;

while(char_index <= strlen(in

)

st

o]

if (chk_char (in_str[char_index]))

break;

else

*bad_input++

char_index++;

nput = '\0';

return (INPUTERROR) ;

N

} o}
return (INPUTDONE) ;

BOOL chk_char (ch)
char ch;
{
if (isspace(ch) || ch ==

return(OK) ;

"\0")

%s\n",

bad_str) ;

248

S-TCAT User’s Guide

17.2

Preprocess, Instrument, Compile and Link

The first stage in S-TCAT/C is to prepare your “C" program to provide
call-pair coverage data. Follow these steps:

1. Preprocessing the program. Most “C" compilers have this facility.

2. Instrumenting the program to insert markers at every segment posi-
tion.

The following program shows, in bold, the effects of S-TCAT/C
instrumentation on your “C" program:

-- S1 instrumentation by S-TCAT/C instrumenter:
-- Program s-ic, Release 8
-- Instrumented on Wed Jul 3 15:23:28 1991

-- SR Copy Identification No. 0.

-- (c) Copyright 1991 by Software Research, Inc. All Rights
Reserved.

-- This program was instrumented by SR proprietary software,
-- for use with the SR proprietary S-TCAT runtime package.
-- Use of this program is limited by associated software

-- license agreements.

extern Strace(
extern Ftrace(
extern EntrMod
(
(

extern ExtMod() ;
T H

extern TCATF P

char menu(13]([79] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",
2\n?,
u What type of food would you like?\n",
X,
" 1 American 50s NEI®™:;
" 2 Chinese - Hunan Style \al,

249

CHAPTER 17: Full S-TCAT Example

int char_

3
o
P

\n") ;

for

956-7868

\n*) ;

« 3 Chinese - Seafood Oriented \n",

~

hinese - Conventional Style \n",
Danish o',
French \n",

Italian \n",

© 9 o !

Japanese \n® ;

index;

1(argc,argv)

argc;
*argv(];

int i, choice, c,answer;
char str[79];
int ask, repeat;

int proc_input () ;

Strace("IC",0x7504,0,0);
EntrMod (-1, "main",3);

while(repeat) {
printf ("\n\n\n");
for(i = 0; i < 13; i++)
printf("%s", menuli]);

(TCATFH(1l), /*gets*/ gets(str)) ;
printf("\n");
while(choice = (TCATFH(2),/*proc_input*/ proc_input (str))

{
switch(choice) ({

a
printf ("\tFog City Diner 1300 Battery 982-2000

break;
(ask = TRUE; ask;) {
case 2:
printf ("\tHunan Village Restaurant 839 Kearney
\n") ;
break;
case 3:
printf ("\tOcean Restaurant726 Clement 221-3351

250

‘

S-TCAT User’s Guide

\n") ;
\n");
\n");
NEL™) §

choice) ;

ExtMod ("main")

("\tEiners Danish Rest. 1901 Clement386-9860

7o)
7
()]
ct
o]

3
(V)]
o}
ct
)
ey
o
o
0
g
2
<,
(0]
b

w
0
~J
e}
s
w
o)

e
printf ("\tFlints Barbecued4450 Shattuck, Oakland

&
printf ("\t>>> %d: not a valid choice.\n",

= 1; ask;) {
tf("\n\tDo you want to run it again? ");
(answer = (--((&_iob[0]))->_cnt < 0 ?
CATFH(3),/*_£ilbuf*/ _filbuf((&_iob[01)))
(int) *((&_iob[0]))->_ptr++)) != *'\n') {

H —~

switch (answer) {

case 'Y':

case 'y':
ask = 0;
char_index = 0;
break;

case 'N':

case 'n':

IR

251

I—

CHAPTER 17: Full S-TCAT Example

int tempresult = 0;
char bad_str[80], *bad_input;
N

int got_first = 0;

EntrMod (-1, "proc_input",5);
bad_input = bad_str;

while(
(TCATFH(1), /*isspace*/ isspace(in_str[char_index])))

char_index++;
for(ask = TRUE; ask;) {
for(; char_index <= (TCATFH(2),/*strlen*/ strlen(in_str)

); char_index++) {

switch(in_str[char_index]) {
\

case '0':
case '1l':
case '2':
case '3':
case '4':
case '5%;:
case '6':
case '7':

case '8':

case '9':

tempresult = tempresult * 10 + (in_str[char_index] -

got first = 1;

break;

if((TCATFH(3),/*chk_char*/ chk_char(in_str([char_in-

{ExtMod ("proc_input") ;
return (tempresult); }
}

else {

H

if (char_index > 0 && got_first)
char_index--;

while(char_index <= (TCATFH(4),/*strlen*/ strlen(-

if ((TCATFH(S5),/*chk_char*/ chk_char(in_str[-

252

TT———

S-TCAT User’s Guide

char_index++;

ExtMod ("proc_input") ;

ExtMod ("proc_input") ;

int chk_char (ch)

char ch;
EntrMod (-1, "chk_char",1);

if((TCATFH(1l),/*isspace*/ isspace(ch)) ch == "\0"
{ ExtMod("chk_char");
return(1l) ;

else
{ExtMod ("chk_char") ;

return(0) ;

ExtMod ("chk_char") ;

FIGURE 93 Instrumented Program Segment

253

CHAPTER 17: Full S-TCAT Example

17.3

Reference Listing

The Reference Listing file (that is filename.i.A or filename.ia for DOS) is
produced by the instrumentor and is used for manual cross-referencing
during a series of tests. The Reference Listing is a version of your “C"
program which has a call-pair (or function call) marked.

You will use this report by gathering the Not Hit call-pair from a Not Hit
report, and then looking up the related code in the Reference Listing.
After reviewing the exercised and not-exercised parts of the program,
you can design subsequent test cases to exercise more call-pairs.

Extensive call-pair and module notation have also been embedded and
the call-pair sequence numbers are listed along the leftmost column.

The header identifies the file as a Reference Listing and includes the
Release number plus a copyright notice. The code that s-ic adds
appears in bold in the following program.

-- S-TCAT/C, Release 8

-- (c) Copyright 1991 by Software Research, Inc. ALL RIGHTS
RESERVED.

-- CALL PAIR REFERENCE LISTING
-- Instrumentation date: Wed Jul 3 15:23:28 1991

-- Separate modules and call pair definitions for each module are
-- indicated in this commented version of the supplised source file.

char menu([13][79] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",
N\,
" What type of food would you like?\n",
* N,

American 50s ™ 4

Chinese - Hunan Style \n",

w N

Chinese - Seafood Oriented \n",

N

Chinese - Conventional Style \n",
Danish \n",

French \a®,

Italian ML,

Japanese N

o 3 o W

"\n\n"
}i
int char_index;

main(argc,argv)

254

«——--IIII.l.llIIIIIIII

S-TCAT User’s Guide

int argc;
char *argvl[];

repeat = 1;
while(repeat) {

£("\n

/** Call-pair 1 **/

/** Call-pair 2 **/

switch(choice) {

case 1:
printf ("\tFog City Diner 1300 Battery982-2000 \n");

break;
case 2:
printf ("\tHunan Village Restaurant
839 Kearney 956-7868 \n");
break;
case 3
printf ("\tOcean Restaurant 726 Clement
221=3351L \n")
break;
case 4
printf ("\tYet Wah 1829 Clement 387-
8056 \n");
break;
case 5
printf ("\tEiners Danish Restaurant 1901
Clement 386-9860 \n");

449 Lombard
771-9326 \n");

break;

case 7:

printf ("\tGrifone Ristorante 1609 Pow-
ell 397-8458 \n");

255

I—

CHAPTER 17:

Full S-TCAT Example

for(ask = TRUE; ask;) {

printf ("\tFlints Barbecue 4450 Shat-
tuck, Oakland \n");

N

choice.\n", choice);

}
J

for(ask = 1; ask;) {

3

printf ("\n\tDo you wa

while((answer = (--((&_iob[0]))->_cnt < 0 ?
_filbuf ((&_iob[01)) : (int) *((&_iob[0]))->_ptr++)) != '"\n') {
/** Call-pair 3 **/
switch (answer) ({
case '¥Y':
case 'y':
ask = 0;
char_index = 0;
break;
case 'N':
case 'n':
ask = 0;
repeat = 0;
break;
default
break;
}r Yy}
int proc_input (in_str)
char *in_str;
{
int tempresult = 0;
char bad_str([80], *bad_input;
/** Module proc_input **/
int got_first = 0;
bad_input = bad_str;
while(isspace(in_str[char_index]))
/** Call-pair 1 **/
char_index++;
for(; char_index <= strlen(in_str); char_index++)

{
/** Call-pair 2 **/
switch(in_str([char_index]) {

256

——

1t to run it again? ");

S-TCAT User’s Guide

case '0':

case 'l':

case '2':

case '3':

case '4':

case '5':

case '6':

case '7':

case '8':

case '9':
tempresult = tempresult * 10 + -

'0");

got_first = 1;
break;

default:

if (chk_char(in_str[(char_index])) {

/** Call-pair 3 #*+/

for (ask

/** Call-pair

/** Call-pair

dex] ;

return (tempresult) ;

if(char_index > 0 && got_first)
char_index--;
TRUE; ask;) {

while(char_index <= strlen(in_str)) {

**/
if (chk_char (in_str[char_index]))
**/
break;
else
*bad_input++ = in_str[char_in-

char_index++;

s
*bad_input = '\0';
printf ("\t>>> bad input: %s\n", bad_-

char_index++;
return(-1);
SO A
return(0) ;

int chk_char (ch)
char ch;

/** Module chk_char **/

257

CHAPTER 17: Full S-TCAT Example

if (isspace(ch) || ch == '\0")
/** Call-pair 1 #*%*/
return(l);
else

return(0) ;

-- S-TCAT/C, Release 8

-- END OF S-TCAT/C CALL PAIR REFERENCE LISTING

FIGURE 94 Reference Listing

258

‘

S-TCAT User’s Guide

17.4

FIGURE 95

Instrumentation Statistics

The instrumentor also produces program statistics. They are organized
module-by-module.

Inc. ALL RIGHTS RI

1991
statements = 42

compound statements = 7

call pairs found = 16

call pairs instrumented = 16
return statement = 0

MODULE 'proc_input':
statements = 22
compound statements = 6
call pairs found = 6

call pairs instrumented = 6

MODULE 'chk_char':

compound statement = 1

Instrumentation Statistics Sample

259

—
CHAPTER 17: Full S-TCAT Example

17.5 Call-Pair Listing

The Call-Pair Listing file (that is filename.i.P or filename.ip for DOS) is
produced by the instrumentor. It is used by the Xcalltree utility. It lists
all the call-pairs encountered in the filename.c file.

Below is the call-pair listing file for the example.c program.

main print

f
main printf
main gets
main printf
main proc_input
main printf
main printf
main printf
main printf
main printf
main printf
main printf
main printf
main printf
main printf
main _filbuf

proc_inputstrlen
proc_inputchk_char
proc_inputstrlen
proc_inputchk_char
proc_inputprintf

FIGURE 96 Call-Pair Listing Example

260

T——

S-TCAT User’s Guide

17.6

17.6.1

Reading S-TCAT Reports

The last and most important step in test analysis is to obtain test coverage
analysis reports. This section details how to read reports: the Cumula-
tive, Past, Not Hit, Hit, Newly Hit, Newly Missed, Linear Histogram
and Logarithmic Histogram reports. These reports analyze the trace file
and archive data produced and present it in an easy-to-read format. Of
particular importance are the Cumulative and Not Hit reports. To obtain
these reports, use the following command and, if necessary, include the
trace file name.

scover [tracefile name] -c -n

This produces a file called Coverage which contains Cumulative and Not
Hit reports plus an archive file, Archive, which contains coverage data
accumulated to this point and can be used in later testing. View Coverage
to see your reports with any non-document editor such as VI or Word.
The following subsections describe each coverage report in detail.

Cumulative Report

As shown in the following figure, the Cumulative Report lists each mod-
ule by name and indicates the number of call-pairs. The report tells you
how many times each module was invoked, how many of its call-pairs
were hit, and its resulting S1 coverage measure. For instance, module
porc_input might have 5 call-pairs, or function calls. If 3 of them were
exercised, the S1 metric for that module would be 3 / 5 = 60.00%. For
the S1 metric, a hit call-pair is counted only once, regardless of how
many times it was actually hit. The report tells about the current and all
tests, including previous tests. Current test data comes from the latest
trace file - the cumulative summary information from the archive file. In
addition, any text you entered earlier as a trace descriptor is shown at the
bottom of the report.

Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

[-c] Cumulative Report == YES
[-p] Past Report -- NO
[-n] Not Hit Report =

[-H] Hit Report

[-nh] Newly Hit Report NO
[-nm] Newly Missed Report -- NO
[-h] Histogram Report -- NO
[-1] Log Scale Histogram -- NO
[-Z] Reference Listing S1 -- NO

261

R—

CHAPTER 17: Full S-TCAT Example

FIGURE 97

Options read: 1

S-TCAT: Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.
7777777777777777777777777777 P e
-+

| | Current Test Cumulative Summary

| G e e e e e e e

| No. Of | No. Of
| Module Number Of No. Of Call-pairs S1% | No. Of Call-pairs S1% |
| Name: Call-pairs: | Invokes Hit Cover | Invokes Hit Cover |
e e fm e
| main 3 1 3 100.00 | 1 3 100.00
| proc_input 5 1| 2 3 60.00 | 2 3 60.00 |
| chk_char 11 2 1 100.00 | 2 il 100.00 |
e e R s e e e e e e S s e e
| Totals 9 5 7 77.78 5 7 TTT8
o e A o e e o e e e e e o e
-+
Current test message(s) (saved in archive):

Runtime vers 4.9, last updated 7/31/89

Cumulative Coverage Report

The cumulative coverage report contains the following information:

1. “Module Name” lists the names of each module in the program

2. Number of Call-pairs" lists the number of call-pairs in each module.

3. No. of Invokes" for “Test" gives the number of times the module was
called during the test run.

4. “No. of Call-pairs Hit" for “Test" indicates how many of the mod-
ule's total call-pairs were exercised during the test run.

5. “S1% Cover" for “Test" provides a S1 value for each module for the
current test.

6. Cumulative Summary" refers to the second part of the report. This
provides data for testing to date, including any archived data that
has been submitted as input to scover with the -a option or the
default Archive file. In the run for this example no archive data was
included, so data for “Cumulative Summary" is the same as for
“Test".

7. “Totals" shows the total for each category of test coverage data. This
gives you immediate feedback on your program as a whole.

8. Current Test Message" displays the trace file descriptor text typed in
earlier.

262

~_—--IIIIII.IIlIIII

S-TCAT User’s Guide

17.6.2

17.6.3

Past Report

The Past Report (-p option) is similar in appearance to the standard
coverage report, but it analyzes only one set of data: an archive file. The
report summarizes the percentage of call-pairs hit in each module listed,
giving the S1 value for each module and the program as a whole.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

[-c] Cumulative Report -- NO

[Past Report -= YES

[-n] Not Hit Report -- NO

[-H Hit Report -- NO

[-nh] Newly Hit Report -- NO

[-nm] Newly Missed Report -- NO

[-h] Histogram Report -- NO

[=1] Log Scale Histogram -- NO

[-Z] Reference Listing S1 -- NO
Options read: 1

S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

| Number Of

Module Number Of | Number Of Call-pairs Percent
| No. Name Call-pairs: | Invocations Hit Coverage
e e o A S St R e S T S e e e e s o e +
| 0: main 3 | 1 3 100.00 |
| 1l: proc_input 5 | 2 3 60.00
| 2: chk_char 1| 2 1 100.00
Totals 9 | 5 7 77.78

Current test message(s) (saved in archive):
Runtime vers 4.9, last updated 7/31/89

Not Hit Report

The Not Hit Report (-n option), illustrated below, analyzes your pro-
gram from an analytical perspective, showing which call-pairs were not
hit. You are given the module's name and the identification number for
each call-pair not hit in the current test . To identify the actual code not
executed and plan new test cases, look up the in the Reference Listing.
For S-TCAT/C , thisis the file filename.i.A (for UNIX) or filename.iA (for
DOS).

263

I—

CHAPTER 17: Full S-TCAT Example

Occasionally, all call-pairs in a module are hit during a test. When this
happens, a special message is displayed. However, in the example, each
module had call-pairs that were not hit. In most cases, at least one seg-
ment in each module has not been hit. This report ends with a short sum-
mary of test results, including the number of call-pairs hit in the
instrumented program, the total number of call-pairs in the instrumented
program, and the S1 coverage value for this test.

Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

[-¢] Cumulative Report -- NO

[-p] Past Report -- NO

[-n] Not Hit Report - ¥YES

[-H] Hit Report -- NO

[-nh] Newly Hit Report -- NO

[-nm] Newly Missed Report -- NO

[-h] Histogram Report -- NO

[-1] Log Scale Histogram -- NO

[-Z] Reference Listing S1 -- NO
Options read: 1

S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

S1 Not Hit Report.

No. Module Name: Call-pair Coverage Status:
1 main
All Call-pairs Hit. S1 = 100%
2 proc_input
4 5
3 chk_char

All Call-pairs Hit. S1 = 100%

Number of Call-pairs Not Hit: 2
Total Number of Call-pairs: 9
S1 Coverage Value: 77.78%

FIGURE 98

Not Hit Report

264

S-TCAT User’s Guide

17.6.4

FIGURE 99

Hit Report

The Hit Report (-H option) identifies all of the call-pairs which were
exercised in the present and past tests. It analyzes both the trace file and
archive files.

Here is a sample of the Hit Report.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

[-¢ Cumulative Report -- NO

[-p] Past Report -- NO

[-n] Not Hit Report -- NO

[-H] Hit Report -= YES

[-nh] Newly Hit Report -- NO

[-nm] Newly Missed Report -- NO

[-h] Histogram Report -- NO

[-1] Log Scale Histogram -- NO

[-Z] Reference Listing S1 -- NO
Options read: i

S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

S1 Call-pair Hit Report.

No. Module Name: Call-pair Coverage Status:
1 main
All Call-pairs Hit. S1 = 100%
2 proc_input
| 2 3
3 chk_char

All Call-pairs Hit. S1 = 100%

Number of Call-pairs Hit: 7
Total Number of Call-pairs: 9

S1 Coverage Value: 77.78%
Hit Report

265

CHAPTER 17: Full S-TCAT Example

17.6.5

FIGURE iOO

17.6.6

Newly Hit Report

The Newly Hit Report (-NH option) identifies all call-pairs that are hitin
the present test but which were not hit in any prior test. Here is a sample

of the Newly Hit Report.

Coverage Analyzer.
(c) Copyright

Selected SCOVER System Option Settings:

f=a] umulative Report
[-p] Past Report

[-n] Not Hit Report

[-H] Hit Report

[-nh] Newly Hit Report
[-nm] Newly Missed Report
[-h] Histogram Report
[-1] Log Scale Histogram
[-Z] Reference Listing S1
Options read: 1

S-TCAT: Coverage Analyzer.

(c) Copyright 1991 by Software Research,

Sl Call-pair Newly Hit Report.

No.
2

Module Name:

proc_input

Newly Missed Report

This report (-NM option) displays what the current test lost.

Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research,

Selected SCOVER System Option Settings:

[=cl
[-p]
[-n]
[-H]
[-nh]
[-nm]

Cumulative Report
Past Report

Not Hit Report

Hit Report

Newly Hit Report
Newly Missed Report

[Release 8]
1991 by Software Research,

NO
NO

[Release 8]

Call-pair Coverage Status:

NO
NO
NO
NO
NO
YES

RIGHTS RESERVED.

ALL RIGHTS RESERVED.

RIGHTS RESERVED.

266

4~——-Illlllllllllll

S-TCAT User’s Guide

-h] -- NO
- -- NO
-Z1] -- NO
Options read: i
S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

S1 Call-pair Newly Missed Report.

No. Module Name: Call-pair Coverage Status:
proc_input

FIGURE 101 Newly Missed Report
17.6.7 Linear Histogram

This report (-h option) displays a mark for each time a call-pair is hit
during testing. The samples shown are for the modules main and
proc_input .

Coverage Analyzer. [Release 8
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVE

Selected SCOVER System Option Settings:

[-c] Cumulative Report -- NO
[-p] Past Report -- NO
Not Hit Report -- NO
Hit Report -- NO
Newly I Report -- NO
Newly Missed Report -- NO
Histogram Report -- YES
Log Scale Histogram -- NO
-Z] Reference Listing S1 -- NO
Options read: 1
S-TCAT: Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc.

Call-pair Level Histogram for Module: main

| Number of Executions, Normalized to Maximum

| (Maximum = 13 Hits) X = One Hit

| (Scale: 7.692 Each X = 0.260 Hits)
Call-pair Number Of |

Execu

267

I———

CHAPTER 17: Full S-TCAT Example

1 7 | XXXXXXXXXXXXXXXXXXXXXXXXXX
2 13 [[9:9:9.9:6.6.9.9.9.9.9.9.0.9.9.9.9.9.0.9.0.9.9.0.9.9.9.9.9.9.0.9.9.9.0.0.0.0.0.0.0.0.9.9.0.0.0.0.0.0 4
3 7 | XXXXXXXXXXXXXXXXXXXXXXXXXX
|
e e e e e e S R e e S s T e s S S S E R s ss s s mr e RS s A s RS +
Average Hits per Executed Call-pair: 9.0000
S1 Value for this Module: 100.0000
S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.
Call-pair Level Histogram for Module: proc_ir
R S e e S R e R R . S s SR SN e R s s e ST e S, -

Call-pair Number Of

Number Executions

Average Hits per Execu
S1 Value for this Modu

| Number of Executions, Normalized to Maximum
18 Hits) X = One Hit
Each X = 0.360 Hits)

| (Maximum =
(Scale: 5.556

] XXXXXXXXXXXXXKXXXXXXKKXXXKXKKXXXXXXKXXKXXXXXX
[I9:9.6:9,9.0.0,0.6.9.6.9.9.9.6.0.0.0.9.0.0.0.0.6:9.0.9.9:0.0.0.0.0.0.9.0.9..0.0.0.0.0.0.0.0.0.0.0.9.4
| XXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXX

| XXXXXXXXXXXXX

| XXXXXXXXXXXXX

ted Call-pair: 10.8000
le: 100.0000

Linear Histogram

FIGURE 102

268

S-TCAT User’s Guide

17.6.8

Logarithmic Histogram

This report (-1 option) is similar to the linear histogram but translates
the data into logarithms to make the report more readable when some
call-pairs have been hit many times and others fewer times. The samples
are for the modules main and proc_input .

Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

Cumulative Report -- NO

Past Report -- NO

Not Hit Report -- NO

Report -- NO

Newly Hit Report -- NO

Newly Missed Report -- NO

Histogram Report -- NO

Log Scale Histogram -- YES

Reference Listing S1 -- NO
Options read: 3
S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Call-pair Level Histogram for Module: main

| Logarithm of Executions, Normalized to Maximum

| (Maximum = 14 Hits)
Call-pair Number Of |
Number Executions >-—-——====== Lmmmmmmm—mm 10— 20----30---40--80-100
s e e e i i e e e - +
|
1 8 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKEXXXXKXXXXXXX
2 14 [1D:9:9.9.9.0.9.0.6.0.0:0.0.0.0.9.0.0.0.0.0.0.9.6.6.0.0.0.0..0.0.0.0.60.0.0.0.6.0.0.0.0:0.6.0.0.0.0.6.4
3 8 | XXXXXXXXXXXXXXXXXXXXX XXX XXX XXKXKXXX XX XXX XKXXXX
I
B e —— B Ty S e +
Average Hits per Executed Call-pair: 10.0000
S1 Value for this Module: 100.0000

S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.
Call-pair Level Histogram for Module: proc_input

%)

Executions, Normalized to Maximum
19 Hits)

Call-pair Number Of |

269

CHAPTER 17: Full S-TCAT Example

FIGURE 103

1 15 D:0:0.0.9.9.0.9:9.0.9.9.9.0.9.0.0.0.0.9.0.0.0.0.9.9.0,0.9.0.0.0.0.9.0.0.0.0.6.0:9.9.9.0.0.0.0.¢
2 19 | XXXKXXXXXXXXX
3 13 | XXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXKXKXXKXXXXKXKXXX
4 5 | XXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXKXXX
5 5 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXKXX
|
R ittt e e e e e e e S e e s s e S e L s s e s S e +

Average Hits per Executed Call-pair: 11.4000
S1 Value for this Module: 100.0000

Logarithmic Histogram
17.6.9 Reference Listing S1 Report

This report (-z option) analyzes the specified reference listing file and
produces a report that shows the coverage level achieved for all modules
that are named in the specified reference listing. The following figure
shows a partial reference listing of the example.c program. Statistics of
coverage appear in bold on the left-hand column.
Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.
Selected SCOVER System Option Settings:
[-c] Cumulative Report -- NO
[-p] Past Report -- NO
[-n] Not Hit Report -- NO
[-H] Hit Report -- NO
[-nh] Newly Hit Report -- NO
[-nm] Newly Missed Report -- NO
[-h] Histogram Report -- NO
[-1] Log Scale Histogram -- NO
[-Z] Reference Listing S1 -- YES
Options read: 1
S-TCAT: Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.
S-TCAT Coverage on Reference Listing Report, based on file exam-
ple.i.A.

270

S-TCAT User’s Guide

(Coverage values for all tests processed are reported in left-hand

column.

"xx*x*xxn indicates not hits on corresponding call-pair.
not
part of this listing but the Archive file are ignored.)
by Software Research, Inc. ALL
LISTING
char menu[13][79] = {
"SOFTWARE RESEARCH'S RESTAURANT ",
n\nn
n",
" What type of food would you like?\n",
n\nn
He,
» 1 American 50s \n",
" 2 Chinese - Hunan Style \n",
" 3 - Seafood Oriented \n-",
" 4 - Conventional Style \n",
" 5 Danish \n®,
u 6 French \B"5
7 Italian \n";
¥ 8 Japanese NEL~
n \n\nll
i

int char_index;
main(argc,argv)
int argc;

char *argv([];

ice, c,answer;

81 = 100.00 /** Module main **/

int proc_input();

271

CHAPTER 17: Full S-TCAT Example

printf("%$s", menuli]);
gets(str);
1 /** Call-pair 1 **/

printf ("\n");

while(choice = proc_input(str)) {
2 /** Call=pair 2 **/
switch(choice) {
case 1:
printf ("\tFog City
Diner 1300 Battery 982-2000 \n");
break;
case 2:
printf ("\tHunan Village Restau-
rant 839 Kearney 956-7868 \n");
break;
case 3:
printf ("\tOcean Restau-
rant 726 Clement 221-3351L \n")j
break;
case 4:
printf ("\tYet
Wah 1829 Clement 387-8056 \n");
break;
case 5:
printf ("\tEiners Danish Restau-
rant 1901 Clement 386-9860 \n");
break;
case 6:
printf ("\tChateau
Suzanne 1449 Lombard 7719326 \n")j;

break;
case 7:
printf ("\tGrifone Ris-
torante 1609 Powell 397-8458 \n") ;
break;
case 8:
printf ("\tFlints Barbe-
cue 4450 Shattuck, Oakland \n");
break;
default:

if (choice != -1)

printf("\t>>> %d: not a valid
choice.\n", choice);

break;

}
for(ask = 1; ask;) {
printf("\n\tDo you want to run it

272

S-TCAT User’s Guide

FIGURE 104
17.7

while((answer = (--((&_iob[0]))->_cnt

< 0 2?2 _filbuf((&_iob[0])) (*((&_1i0ob[0]))->_ptr++)) != '"\n') {
/** Call-pair 3 **/
switch (answer)
case 'Y':
case 'y':
ask = 0;
char_index = 0;
break;
case 'N':
case 'n':
ask = 0;
repeat = 0;
break;
default:
break;
¥ 3) ¥}
int chk_char(ch)
char ch;
S1 = 100.00 /** Module chk_char **/
{
if (isspace(ch) || ch == '\0")
2 /** Call-pair 1 **/
return(l);
else
return(0)

Reference Listing S1 Report
Summary

After reviewing these reports (particularly the Cumulative Report and
the Not Hit Report), you will typically rerun the tests with different or
additional test cases, designed to exercise previously not-hit call-pairs
and achieve a higher S1 value. The higher the S1 value, the more com-
plete your testing. When you achieve a satisfactory value for S1, for
example, 95 percent or more, you can stop testing.

273

CHAPTER 17: Full S-TCAT Example

274

CHAPTER 18

Graphical User Interface (GUI)
Tutorial

This chapter demonstrates using S-TCAT in the OSF/Motif environment.

18.1

FIGURE 105

Invocation

To invoke, type:
Xstcat

The result is the main menu (shown below). This window has a window
menu button (available for all windows) that allows the user to restore,
move, size, minimize, lower and close the window. This menu button can
be used at any time during the X Window System program. For closing
main application windows, however, it is best to use the System menu's
Exit option to prevent any system crashes. The two buttons in the upper
right hand corner of the window allow the user to maximize or minimize
the window size.

Main Menu

275

CHAPTER 18: Graphical User Interface (GUI) Tutorial

To invoke with STW/COV, click first on Coverage and then on S-TCAT.
The S-TCAT main menu pops up.

FIGURE 106 STW/COV Invocation
18.2 Using S-TCAT/C

For first time use, always read the help menus. Below is main menu's
help, explaining S-TCAT three stages of testing: instrument, execute and
analyze.

276

S-TCAT User’s Guide

FIGURE 107

18.2.1

S-TCAT operates 1n three states:
Instrumentation, Execution, and Analysis.

Main Menu Help

Instrument

S-TCAT instruments the source code of the program to be tested; that is, it
inserts function calls at each call-pair. Double-click on Instrument in
order to begin testing. There are a variety of options which can be selected
with the menu in Figure 108 (see next page):

1. Preprocessing can be turned on or off. If it is turned off, then the
instrumentor will not preprocess.

2. Preprocessor output suffix is set to. i, which is normally the exten-
sion for preprocessed “C" programs. This option is user editable.

3. Preprocessor Command is set to cc -P. Refer to Chapter18 for fur-
ther information. This option is user editable.

4. Preprocessor options are options in addition to the Preprocessor
command previously specified.

5. Instrumentor Command is set to s-ic. This option is user-editable.
6. Instrumentor options

e Recognize _exit as keyword corresponds to the command line -
u switch. Refer to Section 3.2.1.

e Do not recognize exit as keyword corresponds to the command
line -x switch. Refer to Section 3.2.1.

277

CHAPTER 18: Graphical User Interface (GUI) Tutorial

FIGURE 108

Do not instrument functions in file corresponds to the -DI
deinst switch. Specify a filename that contains lists of modules that

are to be instrumented. Refer to Section 3.2.1.

Specify maximum file name length corresponds to the -£1 value
switch. Specify a number that will correspond to the maximum num-

ber of characters. Refer to Section 3.2.1.

Specify maximum function name length corresponds to the fn
value switch. Specify a number that will correspond to the maximum

number of characters. Refer to Section 3.2.1.

} File Action Help

Instrument Menu

Preprocessing & ON &I Preprocessor output suffix: l.:

Preprocessor command: Icc -P i Preprocessor options:
SRR

Instrumentor command:
Instrumentor options:
I Recognize _exit as keyword
& Do not recognize exit as keyword
2 Do not 1nstrument functions in file: DEINSTRU.fns {

O Specify maximum file name length:

£1 Specify maximum function name length:

You need to process the source program:s so
that dynamic coverage can be measured.

First, you may need to pre-process the pro-
aram,

Next, you need to run the S-TCAT instru-
menter. This produces a logically

equivalent but modified program that
includes special software instrumentation
“probes, "

Various parameters and files have to be
supplied to the instrumenter for

best effect, For example, you can tell the
instrumenter to pay attention to "_exat”,
or to not pay attention to “exit" (see
User Manual?, MAnd. you can specify minimum
sensitivity lengths for the names recog-

FIGURE 109

Instrument Help Menu

278

S-TCAT User’s Guide

After selecting instrumentor options, do the following:
1. Make sure the Preprocessing switch in ON.

2. (Click on the File pull-down menu. Drag the mouse down and select
Set File Name. A file pop-up window appears (refer to the picture
below). Select the file to be instrumented by either highlighting or
typing it into the Selection box. Press OK.

3. After establishing the file to be instrumented, click on the Action
pull-down menu. Drag the mouse down and select Preprocess and
then Instrument. Note: Instrument cannot be selected until prepro-
cessing has been completed.

NOTE: Current status and errors are displayed in the invocation box
from time to time. Frequently refer to the box while testing to see where
system crashes, errors and passes occur. When finished, click on Exit
under the File pull-down menu.

i1 Directories Files

example.c

example,i,c}

g} Selection

£ I.manualifcowerageﬁtcatfdemos

FIGURE 110

18.2.2

File Pop-Up Menu

Execute

The Execute menu compiles, links and executes the program. Normally,
the user compiles the instrumented source file and then links all the

279

CHAPTER 18: Graphical User Interface (GUI) Tutorial

source files with the runtime object module (which is specified under the
File pull-down menu). The user can also use the Make file. Both methods
are explained in this section.

Double-click on Execute to begin. The menu below appears.

File fAction

Compiler command:

Linker command:

Make commands %Nake file name:

Application name:

FIGURE 111 Execute Menu

There are a variety of options which can be selected from the Execute
menu.

1. Compiler command is used to invoke the compiler on the system. It
is set to cc-c but is user-editable.

2. Compiler options are the options for the compiler. Itis setto *.i.c
but is user-editable.

3. Linker command is used to invoke link. It is set to cc-o but is user-
editable.

4. Linker options are the options used in order to link. Itissetto *.i.0
but is user-editable.

5. Make command is used to invoke the make utility.

6. Make file name is where the make file is specified. It is fixed to
Makefile but is user-editable.

7. Application name is the command used to invoke the instrumented
program. It is fixed to a.out but is user-editable.

280

S-TCAT User’s Guide

FIGURE 112

After instrumentation, you need to link
your compiled programs with the "runtime"
module, There are eral different run-
time modules you can uze, depending on
the particular features you want:

Level 03 Fixed trace file and no buffer-
ing,

Level 1: User-selected trace file and no
buffering, This the most commonly-used
version,

Level 2: User-zelected trace file and
minimal buffering,

Level 3: User-zelected trace file and
moderate buffering,

Application argument is where command line arguments are speci-
fied. It is user-editable.

Execute Help Menu

Execute one of two ways:

1.

Without Make File

(a) Click on the File pull-down menu, drag the mouse to
Set Runtime Object Module and click. A pop-up win-
dow appears (shown in Figure 113).Highlight or type in
(the Selection Box) the necessary file. Click OK. Refer to
the help frame and to Section 12.1 and 12.2 for SR sup-
plied runtime object modules. -

(b) Set the compiler and linker commands (that is Com-
piler command, Compiler options, Linker command
and Linker options) as appropriate.

(c) Click on the Action pull-down menu and select Com-
pile. When completed, the invocation window will

state so.

(d) Click on Link. Invocation window will indicate when

linking has occurred.

(e) Click on Run Application.

2. YYith Make File: make organizes all compiler and linker commands

and files.

281

CHAPTER 18: Graphical User Interface (GUI) Tutorial

(a) Click on the File pull-down menu, drag the mouse to
Set Runtime Object Module (shown in Figure 113) and
click Highlight or type in (the Selection box) the neces-
sary filename. Click OK. Refer to the help frame and to
Section 12.1 and 12.2 for SR-supplied runtime object
modules.

(b) Set the make commands (that is Make Command,
Make file name, Application name and Application
arguments) as appropriate.

(c) Click on the Action pull-down menu and select Make.
When completed the invocation window will state so.

(d) Click on Run Application.
Whichever method is chosen, the trace file is created.

Filter

i1 Directories

1 Selection

FIGURE 113 Runtime Object Module Pop-Up Screen

282

S-TCAT User’s Guide

18.2.3 Analyze

After executing your program, you can analyze the trace file using the
cover command. Double-click on Analyze and the menu below appears.

M Cunulative tests

o Hit
™ ot bt
21 Newly hit

21 Newly m1

I Linear histogram

{1 Reference listing

Analyzer optionz:

2] Do not report function in file:

£l Generate list of functions not inc
M Do not update archive files

1 01d Archive nane:

21 New Hrchive name: N
21 Rename the report in;

O Change the report width to:

21 Sort repart by module name

21 Generate list of functions with S1

luded 1n report

o

FIGURE 114

Analyze Menu

Action

After you have executed your program you
need to analyze the S1 coverage obtained,
You can do this using the “"cover" subsystem,
control through the "analyze" menu,

Typically, you analuze one trace file rela-
tive to past test information stored 1n an
“Archive File." After determining cover
age and making notes about what you might
wish to do next, you create a new Archive
File.

next “cycle” of testing,

The "analyze
serage reports you want, which

} you want them to
of other options,

menu helps you

FIGURE 115

Analyze Hreip Menu

283

CHAPTER 18: Graphical User Interface (GUI) Tutorial

There are a variety of options which can be selected with the Analyze
menu.

1. Coverage Reports:

(a) Past test corresponds to the -p command line option.
(Refer to sections 5.1.4 and 10.6.2 for further informa-
tion.)

(b) Cumulative test corresponds to the -c command line
option. (Refer to sections 5.1.4 and 10.6.1 for further
information.)

(c) Hit corresponds to the -H command line option. (Refer
to sections 5.1.4 and 10.6.4 for further information.)

(d) Not Hit corresponds to the -n command line option.
(Refer to sections 5.1.4 and 10.6.4 for further informa-
tion.)

(e) Newly hit corresponds to the -NH command line
option. (Refer to sections 5.1.4 and 10.6.5 for further
information.)

(f) Newly missed corresponds to the -NM command line
option. (Refer to sections 5.1.4 and 10.6.6 for further
information.)

(g) Linear histogram corresponds to the -h command line
option. (Refer to sections 5.1.4 and 10.6.7 for further
information.)

(h) Log histogram corresponds to the -/ command line
option.(Refer to sections 5.1.4 and 10.6.8 for further
information.)

(i) Reference listing corresponds to the -Z command line
option. (Refer to sections 5.1.4 and 10.6.9 for further
information.) ’

2. Analyzer Options:

(a) Do not report functions in file corresponds to the -DI
deinst-file command line option. (Refer to Section 5.1.4
for further information). Specify the file in the supplied
box.

(b) Generate list of functions with C1> corresponds to the
-T [threshold] command line option (refer to Section 5.1.4
for further information). Specify the coverage threshold
percent in the form of a real or decimal number in the
supplied box.

284

S-TCAT User’s Guide

(c) Do not update archive files corresponds to the -su com-
mand line option. (Refer to Section 13.1.4 for further
information).

(d) Old Archive name corresponds to the -a old-archive
command line option. (Refer to Section 13.1.4 for further
information). Specify the file in the supplied box.

(e) New Archive name corresponds to the -f new-archive
command line option. (Refer to Section 13.1.4 for further
information). Specify the file in the supplied box.

(f) Rename the report file to corresponds to the -7 report
command line option. (Refer to Section 13.1.4 for further
information). Rename the file in the supplied box.

(g) Change the report width to corresponds to the -w
width command line option. (Refer to Section 13.1.4 for
further information). Specify a decimal number in the
supplied box.

(h) Sort report by module name corresponds to the -s com-
mand line option. (Refer to Section 13.1.4 for further
information).

Analyze in the following way:

1.

Click on the File pull-down menu, drag the mouse to Set Input Trace
File Name, and click. A trace file pop-up window appears (shown in

Figure 116). Highlight or type in the file in the Selection box. Click
OK.

Select the coverage reports and analyzer options. For the purpose of
this demonstration, Past Test, Cumulative Test, Hit, Linear Histo-
gram, and Reference Listing reports have been selected.

(a) When selecting the Reference listing option, a reference
listing pop-up window appears (shown in Figure 117).
Select the file and click OK.

Click on the Action pull-down menu and select Run Coverage Ana-
lyzer.

Click on the Action pull-down menu and select View Report. View
the reports by using the menu's scroll bars. Figures118 through 123
reflect viewed reports.

Click on the Action pull-down menu and select View Source. View
Source associates a segment or node with its corresponding source
code (refer to Chapters 23 and 24 for further information).
(a) Click on this option and a pop-up window appears (see
Figure 124). Select a file and click OK. For this demon-

285

CHAPTER 18: Graphical User Interface (GUI) Tutorial

stration, the main module has been selected (see Figure
125).

(b) Source view by clicking on a call-pair.

Filte

Selection

[/manuals

FIGURE 116 Set Input Trace File Name Pop-Up Window

ef erencef 1lename_

Filter

[;1s/cuverage!tcat/demae!*.l.H

Directories Files

Selection

/manuals/coverage/tcat/demos/

286

S-TCAT User’s Guide

FIGURE 117 Reference Listing Pop-Up Window

rage Analyz
1930-94 by

| (Archived} Past Tests

| Number Of
Hodule Number Of | Number Of

|
t|
No, Name Call-pairz: | Invocations t Coverage

0 example.main

21 1 p 100, 00
_input 41 12 i 50,00 |
|

12 100,00 |

61 25 BE.E7

aved in archive);

ou knou
over: Coverage Ana
Copyright 1990-94

[Ver 8.2 for SUN/UNIX £10/943]
of tware Research, Inc.

ORI

| Current Test Cumulative Summary

| No, Of No, Of

FIGURE 118 Past Test Report

Analyzer, [Yer r SUNJUNIX €11/10/94)]
-94 by Software ch, Inc.

| Current Test Cumulative Summary

Module Number Of o f Ce s

Name Call-pairs: vokes Hit Cover | Invokes

example,main
example,proc_input
example,chk_char

2 100,00 1 § 100,00
4 2 2 12 2 50.00
0 12 0 100,00

Totals 3 P : .67 25 66,67

Current test message (saved in archive’:
H you know

scover: Coverage Analyzer, [Ver 8

c} Copyright 1990-34 by Software R

SUNZUNIY (1171079431

S1 Call-pair Hit Report,

Mo, Hodule Name:

FIGURE 119

Cumulative Report

287

CHAPTER 18: Graphical User Interface (GUI) Tutorial

[Ver 8
ftuare Research, Inc,

S1 Call-pair Hit Report,

Hodule Name:
example.main
All Call-pairs Hit,
example,proc_input
1 2
example,chk_char
All Call-pairs Hit.

Number of Call-pairs Hit: 4
Total Number of Call-pairs: [3
S1 Coverage Yalue: B.67%

1scover: Coverage Analuzer, [Yer 8.2 for SUN/UNIX (11/10/94)]
(c) Copyright 1330-94 by Software Research, Inc,

51 Not Hit Repart,

No, Module Name: Call-pair Coverage Status:
1 example.main
All Call-pairs Hit. 51 = 100¥

FIGURE 120 Hit Report

Hction

over: Coverage Analyzer, 2 for SUN/UNI

c) Copyright 1990-94 by Software Research, Inc.

Call-pair Level Histogram for Module: example.main

Logarithm of Executions, Normalized to Maximum
(Haximum = 12 Hits)

Call-pair Number Of |

Number: Executions p————--——-— fmmSrescmm 10-=—==20--~-30~---40~--80-100

12
g

Average Hits per Executed Call-pair: 53,0000

S1 Yalue for this Module: 100,0000

1scover: Coverage Analyzer. [Ver 8.2 for SUN/UNIX (11/10/94)]
{c) Copyright 1990-34 by Software Research, Inc.

Call-pair Level Histogram for Module: example,proc_input

FIGURE 121 Linear Histogram

288

S-TCAT User’s Guide

ht 1930 by tware Inc. ALL RIGHTS RES

CALL PAIR REFERENCE LISTING

parate i
== indicated 1n

extern

FIGURE 122 Reference Listing (Part 1 of 2)

extern char ctermid
extern char *cuserid
3 *tempnam

ESTAURANT GUIDE
food would you lik

American S0s n"

- Hunan Style \

afood Ori

d
French
Italian
Japanesze

int char_index;
maint

int arg

char *arqull:

entional S

FIGURE 123 Reference Listing (Part 2 0f 2)

289

CHAPTER 18: Graphical User Interface (GUI) Tutorial

als/coverage/tocat/demos/*,1 P

Directories Files

/demos/, I

Ademos/, .

Selection

I verage/tcat/demos/exanple, 1.F A

CﬂfJ 'jFxlter“l il:aru:ell

TR

FIGURE 124 Source Viewing Pop-Up Window

290

S-TCAT User’s Guide

4 : i
i calltree Yer 2.7 {12/ anuals/cover {0 o
File Option Zoow In Zoom Out VYies Prant Help
example,main
lexample, proc_ _filbuf
strlen chk_char

Copyright 1930-94 Software Pese

|41

FIGURE 125

Source Viewing

291

CHAPTER 18: Graphical User Interface (GUI) Tutorial

292

CHAPTER 19

Testing Guidelines: S-TCAT/C

This section presents some general guidelines that are of help during the rigorous soft-
ware testing process imposed by S-TCAT/C.

The user should realize that these guidelines may have exceptions. The
purpose of stating them is to establish some basic scale information.

i

The number of call-pairs in a candidate program is usually about 20
to 30 percent of the number of statements.

The number of tests required to achieve S1 >= 95% (a minimum
threshold for test completeness) tends to be about 25 to 50 percent of
the number of call-pairs.

Typical programmers -- who do not have the benefit of detailed cov-
erage analysis -- normally produce programs that are only 25 to 50
percent 51 tested.

The execution-time overhead associated with instrumentation is in
the neighborhood of 20 to 30 percent additional execution time and
execution code. It can be higher if the program you are analyzing is
very complex.

The trace files produced from your instrumented program should be
moderate in length. If they become too large, then you should con-
sider removing the instrumentation from some of the code.

293

CHAPTER 19: Testing Guidelines: S-TCAT/C

294

CHAPTER 20

System Restrictions and
Dependencies

Certain restrictions exist in the way S-TCAT/C can be used. They are summarized here.

It is important to recognize that S-TCAT/C can only be used
with “legal" “C" programs. Non-legal constructions may pass
through S-TCAT/C , but results cannot be guaranteed.

The function names EntrMod, ExtMod, TCATFH, Strace,
and Ftrace are reserved for the runtime calls.

Both the instrumentor (s-ic) and system coverage analyzer
(scover) take identifiers (function or variable names) that are
up to 128 characters long.

Conditional expressions in “C" (of the form “ expr ? expr : expr)

are not supported; they must be expanded to the explicit " if...[e-
Ise]... ” form.

295

CHAPTER 20: System Restrictions and Dependencies

296

CHAPTER 21

References

1. E. Kit, State of the Art “C"’" Compiler Testing , Tandem Computers, Inc.,
1988.

2. E. Uren, E. Miller, J. Irwin, Automated Software Testing -- Case Studies ,
IEEE Conference on Software Maintenance, Austin, Texas, September
1987.

3. B. Boehm, Software Engineering Economics , Prentice-Hall, 1984.
Software Research, Inc., TCAT-PATH User's Manual , 1989.

W. G. Bently, E. E. Miller, Ct Coverage - An Initial Evaluation , Confer-
ence Proceedings, Quality Week 1989, Software Research, Inc., San
Francisco, California, May 1989.

297

CHAPTER 21: References

298

CHAPTER 22

Xdigraph Utility

Xdigraph is a utility which helps the user graphically understand a program’s structure

and flow.

22.1

22.2

22.2.1

22.2.2

Purpose

The Xdigraph utility draws digraphs, based on archive files from TCAT
and S-TCAT. Digraphs are composed of edges and nodes. Edges are
derived from segments (also known as logical branches) representing sets

ro 4

of consecutive program statements, or a program’s “actions” (see Figure
1). Nodes are the places or “states” where the actions occur.

Xdigraph File Format

The format for a digraph chart file is very simple.

All digraph files:
e #in Col. 1is a comment and is ignored (except # digraph...)

e Each line specifies an edge as a set of four strings: # digraph,tail,
head, edge-name.

e The first blank line in any digraph definition region ends the scan
for data (except if there are multiple-digraphs, explained below).
Material after the first blank line is ignored.

e The topmost node in the display is always taken as the first-
appearing node in the list of tail-nodes.

e If the digraph is ill-formed for any reason, then an error may
result. Xdigraph tries to draw a picture in all cases.

Multiple digraph files:
e A multiple digraph file contains digraphs for many modules,
each of which is identified with a formatted comment as follows:

e #digraph for ‘module-name’ in file ‘file-name’ This line precedes
the digraph that corresponds to the module named “module-

299

CHAPTER 22: Xdigraph Utility

223

name”. There can be many digraphs in the file, each preceded by
this line.

* When there are multiple digraphs in the submitted file, Xdigraph
always draws a picture of the first-occurring one. You can select
OTHER digraphs from the file using the Load New Module but-
ton from the File pull-down menu.

Invoking Xdigraph

To invoke Xdigraph from the command line, type:
Xdigraph filename
Options:
[-A archive file]
[-B filename]
[-H filename]
[-dig]
[-h]
This will result in a digraph being drawn onscreen based on the file-
name given. The switches have the following values:
-A archive file
Archive file name. Default is ‘Archive’.

-B filename Spine file.This will change the text string for the di-
graph’s nodes; the program will use the text settings
for the filename typed after -B.

-H filename Highlight specified file. File called will come up in
“highlight” mode; program searches for file with .pth
extension.

-dig This switch specifies that the default TCAT.dig file
will be drawn on the digraph.

-h This switch brings up Xdigraph'’s help window.
You can also invoke the utility by simply typing its name:
Xdigraph

In this instance, a blank main window will appear, and you can use the
File pulldown menu to call up a file.

300

TCAT/C User’s Guide

Succession State-
ment

Statement A:

Statement B:

Alteration State-
ment

statement A;
if condition then
statement B;

else

Iteration State-
ment --while

Statement A;

while condi-
tion loop

Statement

Case State-
ment -case
element is
when value-
==

Statement
A;

FIGURE 126 Program edges as represented in a digraph

301

CHAPTER 22: Xdigraph Utility

224 Xdigraph Main Window
| 7L L ‘ S
2 ptions Zoo t ‘i-i—'JJ
4]
‘ |
2(__Y 1
o
o
o
T.,_;‘G /
e} [FW ight 1392-1394 Software Research, 9‘ -‘J‘ v
FIGURE 127 Xdigraph Main Window
Using Xdigraph, you can display a program’s digraph and annotate it in
a variety of ways. From Xdigraph’s Main Window menu bar, nine
options are available.
22.4.1 File
This window allows you to select the file which will be displayed in the
digraph. ‘
22.4.2 Options
This window allows you to choose the characteristics of the nodes and
edges displayed in the digraph, including shape, size, and color, as well
as the scale for the Zoom In & Zoom Out options.
22.4.3 Zoom In
This window allows you to narrow the focus of the digraph, so that you
can see it in more detail. There are maximum amounts that you can
reduce or enlarge graphics, depending on what machine you are using.
302

TCAT/C User’s Guide

22.4.4

2245

22.4.6

22.4.7

2248

22.4.9

Zoom Out

This window allows you to expand focus of the digraph, so that you can
see it in wider perspective.There are maximum amounts that you can
reduce or enlarge graphics, depending on what machine you are using.

View Source

This window allows you to view the source code for the current digraph.

Statistics

This window allows you to display pertinent statistics about the digraph,
including node and edge counts, cyclomatic number, and path informa-
tion.

Print

This window allows you to set the parameters and print the digraph.

Annotation

This window allow you to set the maximum and minimum thresholds for
the nodes and edges in the digraph, as well as its path file.

Help

If you have a problem using Xdigraph, click on Help. Click your mouse
on the Action pull-down menu and select Search. You will then get an
Enter String to search dialog box. Click on the blank area and type the
name of the option or function with which you need help.

NOTE: All these windows will be explained in further detail on the fol-
lowing pages.

303

CHAPTER 22: Xdigraph Utility

You use the Load New Module option if you have a multiple-digraph file

you click on OK, Xdigraph replaces the picture you have (if any) with the

22.5 File Pull-Down Menu
i i i
| Mdigraph Ver 2.7 (11/18/34) [-] i 1»'IJE
”F;:J:J Options Zoom In Zoom Out View Source Statistics Print Arnotation Help |
Exi
FIGURE 128 Digraph File Pul-Down Menu
22.5.1 Load New Graph
Click your mouse on the File pull-down menu shown above. Drag the
mouse to Load New Graph. The File Message Box Pop-Up (Figure 129)
will appear onscreen.
22.5.2 Load New Module
and you want to choose a specific module in that file to be displayed.
When you click on this button the display shows you the set of available
module names, taken from the multi-module digraph file that you have
selected. You can then choose the module to be displayed . As soon as
one corresponding to the named module.
304

———*

TCAT/C User’s Guide

22,53

2254

If you don’t have a multiple-module digraph file then this window may
show no names. This is not an error but indicates that there are no mod-
ule names specified.

Set Archive

The default Archive file is “Archive” but you can change this to any file
you wish using the Set Archive option. After you push the button you
will be given a file-selection popup. Select the file you want to use as the
Archive file and click on Apply to confirm that choice. The current name
of the Archive file is shown in the filename section of the window.

NOTE: The Archive file can have two formats, one for branch coverage
(from TCAT) and one for call-pair coverage (from S-TCAT). It is important
that the Archive file you are using reflects the kind of data appropriate for
your display. Otherwise the annotation function will “fail” -- and the dis-
play will remain unannotated.

Exit

To close the current digraph window, select Exit from this pull-down
menu.

305

CHAPTER 22: Xdigraph Utility

22.5.5

Digraph File Message Box

Filter

1/graphics/documentation/digraph/*,dig

Directories Files

- example, chk_char,dig

.. - |exanple.main,dig
SCreens | example.proc_input.dig

if.dig
seq,dig
switch,dig
while,dig

Selection

I W/ stw/graphics/documentation/digraph/

FIGURE 129

22.5.6

22.5.7

Digraph File Message Box

The message box in Figure above will pop up after you click the mouse
on Load New Graph or Load New Module. The available options will
allow you to choose the file to be represented in the digraph.

Filter

Allows you to limit the number of files that will be searched for; as above,
only those ending in .dig will be included.

Directories

The directory from which the file is chosen to display in the digraph.
Click on the chosen directory; it will show as darkened on the screen. Use
the scroll bar at the bottom of this box if you cannot read the entire path-
name of the directory.

306

TCAT/C User’s Guide

225.8

22.5.9

22.5.10

22.5.11

22.5.12

Files

The actual file name selected to display in the digraph. Click on the file
name, and the choice will be displayed in the Selection box. Use the scroll
bar at the bottom of the box if you cannot read the entire filename.

Selection

Displays the file name selected in the Files box, or you can type in
another name.

OK

Click OK when the desired file name is in the Selection box. The file
named will then be represented as a digraph.

Filter Button

Clicking on this button will activate the filter limitations specified in the
Filter box at the top of the window.

Cancel

To exit the window, without saving any changes, click on the Cancel but-
ton.

307

CHAPTER 22: Xdigraph Utility

22.6 Options Window

o

EDGE CHARACTERISTICS:

Urhighlighted Edge

Eccentricity:

1.0 Default Color:

1,0 Low-level Color:
Vertical Spacing:]

Mormal Color:

Hspect Ratio:

High-level Color:

FIGURE 130 Xdigraph Options Window

This window will allow you to choose the scale for the Zoom In and
Zoom Out options, the size of the digraph’s nodes, and the colors of its
edges.

22.6.1 Zoom Scale

This is the setting which affects the Zoom In and Zoom Out options. The
default setting is 0.5, meaning a 50% reduction or enlargement is scale
each time these buttons are used. To change the setting, move the slide
rule left or right. Each 0.1 represents 10%, so if you slide the rule to .3, for
example, the reduction and enlargements will be 30% each time. There
are minimum and maximum amounts that you can reduce or enlarge
graphics depending on what machine you are using.

22.6.2 Node Characteristics

You can choose different sizes and shapes for the digraph’s nodes. You
can also change the space between nodes, and their height-to-width ratio,
using this window.

308

{
|
(
i
s
i
|
i
|
|
|
|
|
|

TCAT/C User’s Guide

22.6.2.1

22.6.2.2

22.6.2.3

22.6.2.4

22.6.3

22.6.3.1 -

22.6.3.2

22.6.3.3

22.6.3.4

22.6.3.5

Shape

You have four choices for shapes: Circle, Box, Oval or Outlined (the cir-
cle is drawn but not filled). The default setting is Circle.

Size

You can also choose the size of the circle, box or oval. The default size is
1.0.

Vertical Spacing

This is the amount of space between nodes. The default setting is 1.0.

Aspect ratio

The height-to-width ratio (for ovals or box shapes only). The default set-
ting is 1.0.

Edge Characteristics

Unhighlighted Edge

There are three choices: fulltone, halftone (dashes) or blank (no visible
lines). The default setting is fulltone.

Eccentricity

Determines the curvature of the generated display. The default value is
1.0, meaning the edge between the two nodes is always drawn as a half-
circle: bigger values make the picture wider, and smaller values narrower.

Default Color

Selects the basic color of the digraph’s edges and nodes.The default set-
ting is blue.

Low-level Color

In all cases, if the value of the chosen annotation is below the values indi-
cated for Threshold 1, the display is done in the Low-level color. The
default setting is red.

Normal Color

If the value of the chosen annotation is between Threshold 1 and Thresh-
old 2, the Normal color is used .The default setting is yellow.

309

CHAPTER 22: Xdigraph Utility

22.6.3.6

22.6.3.7

22.6.3.8

22.6.3.9

22.6.3.10

High-level Color

If the value of the chosen annotation is above the value stated in Thresh-
old 2, then the High-level color is used.The default setting is green.

NOTE: If you have a monochrome display, then the three colors are
expressed as a narrow, normal, and triple-wide line.

Apply

If you click on the Apply button, all the current settings in the Options
window will be displayed on the digraph.

Reset

If you click on the Reset button, all the default settings will be restored to
the Options window.

Close

If you click on the Close button, you will exit the Options window.

Help

If you have a problem using the Options window, click on Help. Click
your mouse on the Action pull-down menu and select Search. You will
then get an Enter String to search dialog box. Click on the blank area and
type the name of the option or function with which you need help.

310

TCAT/C User’s Guide

22.7

FIGURE 131

Zoom In/Zoom Out Window

4 g

. f . v
g

N i

N..

o000

000

1

.

oo

=

b

1 i

Zoom In feature illustrated

These buttons allow for a narrower or wider perspective of the digraph,
depending on what you require. Click on the Zoom In button once to nar-
row the focus of the digraph, and click on the Zoom Out button to get a
wider perspective of the digraph. Notice the difference between the
digraph in Figure 6 , after clicking on Zoom In once, and the same
digraph, depicted in Figure .

The arrow (triangle) symbols on the right-hand side and bottom of the
window are scroll bars, which you can use to move vertically or horizon-
tally in viewing the digraph. For example, in Figure 6 above, to see the
parts of the digraph below the node labeled 15, you would click your
mouse on right-hand side scroll bar “down” arrow, and click on it as
many times as necessary to get to the desired viewing point. You can also
point, click and hold the mouse down to get to a certain area of the
digraph.

NOTE: These features are limited by the display capabilities of your
machine.

311

CHAPTER 22: Xdigraph Utility

22.8

FIGURE 132

View Source Window

- Yiew Sour

Action

&k Segment 26 <end_for> %k/

27 <end_while> %/

“*k Segme

int proc_input{in_str)
char *in_str:
1

int temprezult = 0:
char bad_str[80], *bad_input:

/%% Module example,proc_input %%/

int got_first = 03
*x Segment 1 < xx/
bad_input = bad_str:
while{{{_ctype_+1}[in_strlchar_index]1&010}}
*% Segment 2 <start_while> **/
char_index++:,
Segment 3 <end_while> ¥%/
for{ : char_index <= strlen{in_str): char_index++} {
‘®% Segment 4 <{start_for> xk/
switch{in_strlchar_index]) {
case 073

View Source Option Window

This option displays the source code for the program depicted in the
digraph. If you click on an edge segment number in the digraph’s main
window, the View Source display will move to and highlight that partic-
ular edge’s source code. The source code for the edge selected will appear
in the middle of the window.

The arrow (triangle) symbols on the right-hand side and bottom of the
window are scroll bars, which you can use to move vertically or horizon-
tally in this window.

312

TCAT/C User’s Guide

22.9

FIGURE 133

Statistics Window

‘ath Analysziz Statistics

% File name: exanple,proc_input.,d

; Number of nodes:
| Number of edges:
| Cyclomatic number (E - N + 20:

Number of paths:

Average path length {(segme

Minimum length path
Maximum length path i

4| Mozt iteration groups:

Path count by iteration groupsz:
0 iteration group
1 iteration grou
2 iteration grou
3 iteration grou
Stopped at 3 iteration groups

Statistics Option Window

This window displays the relevant statistical information for the digraph.

If the file you are processing has multiple digraphs on it, then only the
displayed digraph is reflected in the Statistics calculation.

WARNING: In some cases, particularly if the digraph is very complex,
the Statistics calculation will take a long time. Practical internal limits
have been set on the STW facility that computes these statistics (i.e. apg
from TCAT-PATH) but even so the calulcation may show the “hour glass”
symbol.

When the limits are exceed you will see the error message that results in
the display where the statistics would ordinarily reside.

NOTE: The statistics generated in this window are always for the digraph
that is on the display.

313

CHAPTER 22: Xdigraph Utility

22.9.1

22.9.2

22.9.3

22.9.4

22.9.5

File Name

The name of the program studied in this particular digraph.

Node and Edge Count
The total number of nodes and edges in the digraph.

Cyclomatic Number (Cyclomatic Complexity)

A number which assesses program complexity according to the pro-
gram’s flow of control. This flow is based on the number and arrange-
ment of decision statements in the code. The cyclomatic number can be
calculated using the formula:

cyclo=e-n+2

where n is the number of nodes in the graph, and e is the number of
edges or lines connecting each node.

Average, Minimum and Maximum Path Lengths

The mathematical mean of all the paths in the program, as well as (user-
defined) minimum and maximum possible lengths.

Path Count by Iteration Groups

The path count by iteration groups is the total number of distinct equiva-
lence classes of program flow, figured using the one-trip loop assumption
(for details on how this computation is done, see the TCAT-PATH man-
ual).

The total path count has been shown to be very highly correlated with the
overall effort required to completely test a module.

314

TCAT/C User’s Guide

22.10

FIGURE 134

22.10.1

22.10.1.1

22.10.1.2

Print Window

“Print Dialog i
Faper Size Info,
Top Margin: i Bottom Marging
Left Marqin: |n.2 j Right Margin:

Fage Widths Page Height:

o To File:

21 To Printer:

i Cancel l i Print

The image you see will be printed to a standard print device. This win-
dow will allow you to configure it for your environment.

Paper Size Information

Top Margin

The distance from the top of the page to the first line. Default setting is
0.25 inches.

Left Margin

The distance from the left-hand side of the page to the first character of
type. Default setting is 0.25 inches.

315

CHAPTER 22: Xdigraph Utility

22.10.1.3

22.10.1.4

22.10.1.5

22.10.1.6

22.10.2

22.10.2.1

Page Width
The actual horizontal length of the paper you will be printing on. Default
setting is 8.5 inches.

Bottom Margin

The distance from the bottom of the page to the last printed line. Default
setting is 0.25 inches.

Right Margin

The distance from the right-hand side of the page to last character on the
line. Default setting is 0.25 inches.

Page Height

Actual vertical measurement of the paper to be printed on. Default set-
ting is 11 inches.

Enlargement Factors

Width/Height

The enlargement factors specify the size expansion, vertically or horizon-
tally, to be applied to this particular print activity; in effect, the total num-
ber of 8.5 inch by 11.0 inch sheets onto which to draw the picture.

Selecting 1.0 means the picture will be printed on a single 8.5 inch x 11.0
inch sheet. Hence, width = 1.0 and height = 1.0 means to draw the image
on a standard page.

If you change the Width to 2.0, for example, this means the picture will be
drawn on two pages, i.e. in such a way that two 8.5 inch by 11.0 inch
sheets can be pasted together to make a 17.0 inch by 11.0 inch image.

When more than one sheet is involved, the software numbers each page
so that assembly into a larger diagram is simple and straightforward.

The software automatically sizes the image to fit into the smallest whole
number of page equivalents. Also, the software sizes the diagram and the
typefaces to “best fit" the specified size.

Some experimentation may be required to determine the optimum size
for the diagram you are working with.

NOTE: The picture drawn on the printer always includes all of the infor-
mation in the diagram, even if the entire diagram is not visible because of
a zoom setting.

316

TCAT/C User’s Guide

22.10.3

22.10.3.1

22.10.4

22.10.4.1

22.10.4.2

Font Information

Font name/Font size

The default font size, 12 pt, and the default font name, Times-Roman, nor-

mally provide good quality pictures. Times-Roman at 12 pt is commonly
available on most printers.

You can choose different typesizes and type fonts depending on the sizes
and fonts available on your computer.

Print locator

To File

Will create a PostScript (.ps) file, which you can use to have the digraph
printed on any PostScript-compatible printer.

To Printer

You must name the printer to which the printing of the document will be
sent.

When the printing has been sent to either a .ps file or a printer, a message
box, Print action completed, will pop up. Click OK to close it.

NOTE: The print option requires use of a PostScript-compatible printer. If
your machine is not attached to a PostScript compatible printer then the
Print window option will be inoperative.

317

CHAPTER 22: Xdigraph Utility

22.11 Annotation Window
digraph v2.7 - Annotation Threshol
| 3 NOME ¢ Threshold 1 Threshold 2
21 Nhits: | 1 | 10
21 N | 0,10 0,90
2 Complexitys: | 100 ‘Eu 2
2 Ntokens: 50 ; I 10
1 Nlines: | o5 s|? z
o User: | 10 ’ |le(] %
1 Highlight:
Path file: Imam.pt.h
! Reset | Help |
3 Close | I Apply I
FIGURE 135 Annotation Thresholds Window
In many cases, annotation of the display is accomplished by showing the
results of coverage testing, as reflected in the repository of multi-test cov-
erage stored in the Archive file.
There are a number of ways to annotate the digraph. Typically this
involves choosing a different color depending on where a particular
parameter falls into user-specified ranges (thresholds).
There are five built-in annotation options and one user-defined annota-
tion.
22.111 Threshold 1 & 2
Threshold 1 represents the lower limit, and Threshold 2 the upper limit
desired for each annotation. The user can change the values of any thresh-
old used by clicking in the window and typing in the new value. The val-
ues won't be applied to the current calltree unless you click the Apply
button.
318

TCAT/C User’s Guide

22.11.2

22.11.3

22.11.4

22.11.5

22.11.6

22.11.7

22.11.8

None

No annotation; the digraph is left alone.

Nhits

Number of times an edge is executed. The edge’s color is based on this
number. Default values: 1 10.

N%

The relative number of times an edge has been executed. The color
depends on this number’s relation to the highest number of times any
edge is exercised. Default values: 0.1 0.9.

Complexity

Edge complexity value; the current value of the METRIC-produced edge
complexity for this particular edge. Default values: 10 100.

NOTE:This setting is available only for TCAT Ver 9 or later.

Ntokens

Number of textual tokens on the edge. This number is a rough indicator
of complexity, because it relates to the segment length (how many state-
ments and how complex they are). Default values 10 50.

NOTE: This setting is available only for TCAT Ver 9 or later.

Nlines

The number of code lines associated with the edge. Default values: 5 25.

NOTE: This setting is available only for TCAT Ver 9 or later.

User

The outcome of calling a user-defined function, “Xdigraph.user”, if that
function exists along the current search path, is the value used to color the

display. Default values: 10 100.

319

CHAPTER 22: Xdigraph Utility

22.11.9

22.11.10

22.11.11

22.11.12

22.11.13

22.11.14

22.11.15

Highlight

The path highlight options permits you to see how a path set--typically
one produced by apg (all paths generator)--applies to a particular
digraph.

Each path in the set is shown highlighted. The path number is always
shown “on screen”. You can move forward or backward in the path set
using the mouse buttons as follows:

e Left button: move down one path in the path set (N-1)
e Middle button: quit the highlighting activity.
e Right button: Move up one path in the path set (N+1)

Path File
This indicates the file you've selected to represent in the digraph.

Apply

If you click on the Apply button, all the settings changes made in the
Annotation Thresholds window will be displayed on the digraph.

Reset

If you click on the Reset button, all the default settings will be restored to
the Annotation Thresholds window.

Close

If you click on the Close button, you will exit the Annotation Thresholds
window.

Help

If you have a problem using the Annotation Thresholds window, click
on Help. Click your mouse on the Action pull-down menu and select
Search. You will then get an Enter String to search dialog box. Click on
the blank area and type the name of the option or function with which
you are experiencing difficulty.

Colors

The colors of the digraph display are based on the annotation thresholds.
They are selected in the Options window (see Section n.3 for further

detail), and are used to distinguish the annotation to "low", "normal", and

J20

TCAT/C User’s Guide

"high". How these colors convey information is a function of which anno-
tation is chosen.

NOTE: Whatever annotation option is selected for the digraph will be
displayed in the upper left-hand corner of the main window, above an
up-pointing arrow. In the example in Figure 11, the annotation is for User.
If the Zoom In option is chosen, however, the corner where the annota-
tion message is displayed may not be visible, and if None is the annota-
tion chosen, no message will appear.

FIGURE 136 Sample Annotation for User Threshold

321

CHAPTER 22: Xdigraph Utility

22.12 Quick Reference Guide to Xdigraph Annotations

Nhits

Absolute number of hits per
edge (segment), from local
Archive file. The Archive
file is must be from TCAT. If
not, silence.

1.0/ 10.00

N%

Percent of total hits in mod-
ule for this edge (segment),
from local Archive file. The
Archive file must be from
TCAT. If not, silence.

10.00/90.00

Complexity

Requires use of TCAT Ver 9.

100.00/10.00

Ntokens

Requires use of T7CAT Ver 9.

50.00/10.00

Nlines

Requires use of TCAT Ver 9.

25.00/5.00

User

“(-1,0,1) = Xdigraph.user
N Lo Hi" for all N = edge-
number The default supplied
sample script does some-
thing naive.

10.00 / 100.00

Highlight

Highlights Nth path, begin-
ning at N=1.(Path File) Left
button moves up one path;
right button moves down
one path. Assumes
<name>.pth file exists; apg
generates the path list.

(Path File)

TABLE 1 Quick Reference Guide for Xdigraph Annotations

322

. - /- .

EREEEREER

CHAPTER 23

Xcalltree Utility

The Xcalltree utility displays the caller-callee dependence structure in a software pro-
gram. The call tree is shown for the specified call-pair file--the one used when you invoke
Xcalltree--and based on files created using the TCAT or S-TCAT tools.

23.1 Calltree Defined

A call-pair file’s relationships are annotated on the calltree, and there are
a number of ways to do this--ten built-in annotation options and one
user-defined annotation. This information can then be displayed and
printed out in a variety of ways.

23.2 Xcalltree File Format

The format for an Xcalltree chart file is very simple.

e #in Column 1 indicates a comment. There is no limit on the num-
ber of # comments in a file.

e The first blank link "ends the data". This means that the informa-
tion describing a calltree chart must appear before the first blank

lines -- and that you can have no blank lines anywhere in the data
region.

e After the first blank line, the rest of the file is treated as a com-
ment.

A comment will be ignored by Xcalltree. A data line consists of a
call-pair. The fields are separated by white spaces.

323

CHAPTER 23: Xcalltree Utility

23.3

Invoking Xcalltree

Xcalltree can be invoked from the command line by typing;:
Xcalltree filename
[-D]
(-r]
(-m]
[-h]

If you do this, the filename typed will be represented in the Xcalltree
main window (see Figure 137). The switches have the following values:
-D Maximum depth of calltree.

-r Rootname for top-most file of calltree.
-m Multigraph mode.

-h This switch brings up the Xcalltree help
window.

You can also simply type:
Xcalltree

A blank Xcalltree main window will appear. You would then select a file
name from the File pull-down menu.

324

S-TCAT User’s Guide

23.4 Xcalltree Main Window
{ i
| e B
File Option Zoom In Zoom Out Yiew Source Statistics Help
A
| 322 Fopurishtrtdeviaoh Softuere Beseettu fren. . a
‘]:r =
FIGURE 137 Xcalltree Main Window
Using Xcalltree, you can display a program’s calltree and annotate it in a
variety of ways. From Xcalltree’s main window menu bar, nine options
are available.
23.4.1 File
This pull-down menu allows you to select the file which will be displayed
in the calltree.
23.4.2 Options

This window allows you to choose the characteristics of the nodes and
edges displayed in the calltree, including shape, size, and color, as well as

the gcale for the Zoom In & Zoom Out options.

325

CHAPTER 23: Xcalltree Utility

2343

23.4.4

2345

23.4.6

23.4.7

23.4.8

2349

Zoom In

This option allows you to narrow the focus of the calltree, so that you can
see it in more detail. The amount you can Zoom In is limited to your dis-
play’s capabilities.

Zoom Out

This option allows you to widen the focus of the calltree. The amount you
can Zoom Out is limited to your display’s capabilities.

View Source

This window allows you to view the source code for the current calltree.

Statistics

This window allows you to display pertinent statistics about the calltree,
including links, number of callpairs, calltree depth, and number of recur-
sive modules.

Print

This window allows you to set the parameters and print the calltree.

Annotation

This window allow you to set the maximum and minimum thresholds for
the nodes and edges in the calltree, as well as its path file.

Help

If you have a problem using Xcalltree, click on Help. Click your mouse
on the Action pull-down menu and select Search. You will then get an

Enter String to search dialog box. Click on the blank area and type the

name of the option or function with which you.need help.

NOTE: All these windows will be explained in further detail on the fol-
lowing pages.

326

" i f f |
| (

S-TCAT User’s Guide

23.5

FIGURE 138

23.5.1

23.5.2

23.5.3

File Pull-Down Menu

1tree Ver 2.7 (12/08/94) (]

Zoom Qut 1ew Source Statistics Print Honotation

>l

KL

L

File Pull-Down Menu

Load New Graph

To display a calltree, click the mouse on the File pull-down menu. Drag
the mouse to Load New Graph (Figure 138). The dialog box in Figure 139
will appear onscreen.

Load New Multi Graph

If there is more than one call between two nodes, the calltree will show
each connection if Load New Multi Graph is selected. This may be diffi-
cult to see on a large calltree, so the example included in our demos direc-
tory is simple enough to see these connections.

Set Archive

The default Archive file is Archive but you can change this to any file you
wish using the Set Archive button. After you push the button you will be
given a file-selection popup. Select the file you want to use as the Archive
file and click on OK to confirm that choi¢e. The current name of the
Archive file is shown in the filename section of the window.

327

CHAPTER 23: Xcalltree Utility

23.5.4

NOTE: The Archive file can have two formats, one for branch coverage
(from TCAT) and one for call-pair coverage (from S-TCAT). It is important
that the Archive file you are using reflects the kind of data appropriate for
your display. Otherwise the annotation function will “fail” -- and the dis-
play will remain unannotated.

Exit

If you wish to close the present calltree, drag the mouse to Exit on the
pull-down menu, and the current calltree will disappear from the screen.

328

f (
| { (

S-TCAT User’s Guide

23.6

FIGURE 139

23.6.1

23.6.2

23.6.3

Calltree File Selection Dialog Box

Filter

I ddocumentationdcal ltree/*, i P

Directories Files

A ST - |

ndcalltrees,

Selection

I phicz/documentationdcal ltrees

0K | %Filter'l ?ftiaru:ell

Calltree File Selection Dialog Box

This window pops up after you select Load New Graph or Load New
Multi Graph, and allows you to select the file to be displayed as a call-
tree, using the following options:

Filter

Allows you to limit the number of files that will be searched for; as above,
only those ending in .i.P will be included.

Directories

The directory from which the file is chosen to display in the calltree. Click
on the chosen directory; it will be highlighted on the screen.

Files

The actual file name selected to display in the calltree. Click on the file-
name, and the choice will be displayed in the Selection box.

329

CHAPTER 23: Xcalltree Utility

23.6.4 Selection

Displays the file name selected in the Files box, or you can type in
another name.

23.6.5 OK

Clicking on the OK button will cause whatever file is currently in the
Selection box to be displayed in the calltree.

23.6.6 Filter

This button activates whatever filtering has been specified in the Filter
box at the top of the window.

23.6.7 Cancel

To close the File dialog box without selecting a file for display, simply
click on the Cancel button.

330

S-TCAT User’s Guide

23.7 Option Window
o Acalltree v2,7 - Options i |
Zoon Scale: "_‘:f:m NODE CHARACTERISTICS:
1.0
Horizental Spacing: 7 TR ize
Depth: Aspect Ratio:
Root N;mr- Default Color:
= S e Low-level Color:
EIGE CHARACTERISTICS:
) Normal Color:
Edge Color: steel blue
High-level Caolor:
Unhighlighted Edge: Eifad PR
Display Mode: WNFTTI:E ”:_]
| Apply | Reset) Close J & Help
FIGURE 140 Option Window o
23.71 Zoom Scale
The percentage for the Zoom In and Zoom Out functions. The default
setting is 0.2, which means there will be a 20% enlargement or reduction.
This value can be changed by sliding the ruler to the left (smaller) or right
(larger). Each 0.1 is equal to 10%, thus setting the ruler to 0.4 would mean
a 40% reduction or enlargement of the calltree each time you click Zoom
In or Zoom Out.
23.7.2 Horizontal Spacing
The space between the nodes in the calltree. The default setting is 1.0.
23.7.3 Depth

The Depth value specifies the number of layers of the tree that will be dis-
played. The default value, 2048, is “very large” and it is unlikely that any

331

CHAPTER 23: Xcalltree Utility

real-world calltree will be that deep. You would set the value to a smaller
number, e.g. 10, if you want to limit the amount of detail on the screen.
Using a smaller value for depth tells Xcalltree to disregard all calls below
the specified value.

Also note that the Connections option can be adjusted to have a maxi-
mum upward and downward extent.

23.7.4 Root Name

Roots:

¥ AnnotefpplyCE

* AnnoteCloseCE

¥ AnnoteRezetCE

* AnnoteSetCE

¥ AnnoteTogglelB

* AppExitCE

* AppHelpCE

* ApplLoadCE

¥ ApploadFileCancelCh

Selection

%Eancel
FIGURE 141 Root Name Selection Window Example 1
The calltree on the display is normally the first-occurring one in the call-
pairs file that Xcalltree processes. Some callpairs files contain more than
one tree, i.e. more than one single “root” module name and the associated
calls. If you want to view a different calltree than the one on the display,
you do this by clicking on the Root Name button.
The resulting root-selection window is as shown in Figure 141. Every pos-
sible function name is shown in the list in the floating window.
332

S-TCAT User’s Guide

HtAddCallback
" ¥tAddEventHandler
“ ¥tAppCreateShell

Selection

BuildAppHelpMenu,

FIGURE 142

23.7.5

23.7.5.1

Root Name Selection WindowExample 2

Modules that are possible “roots” for the call tree, i.e. which are not called
by another name in the file, are shown with a “*” (as in Figure 142). These
are shown in alphabetical order at the top of the list.

Modules that never call another module are shown with a “~" in front of
the name (as in Figure 144). They are sorted to the bottom of the list.

All other modules, those which are called by some root name or are in the
downward chain from some root -- any one of which could be chosen as a
new “root” name -- are in the middle of the list. Simply click on the name
you wish to be the root and the new call-tree using that name is shown.

NOTE: If the Depth Value is set to a low number only PART of a tree may
be visible.

Edge Characteristics

Edge Color
The actual color of the edge. Default setting is steel blue.

333

CHAPTER 23: Xcalltree Utility

23.7.5.2 Unhighlighted Edge
The kind of unhighlighted edge to use: Fulltone, Halftone (dashes), or
Blank (no lines). Default setting is Fulltone.

23.7.5.3 Display Mode
Determines whether the nodes are darkened (Filled) or outlined (Out-
line). Default setting is Filled.

23.7.6 Node Characteristics

23.7.6.1 Size
The relative size of the box representing each nodule. Boxes are used for
“normal” functions. Circles are used for self-referencing modules. Trian-
gles are used for modules that are invoked recursively.

23.7.6.2 Aspect Ratio
The height-to-width ratio of the box.

23.7.6.3 Default Color
Selects the basic color of the calltree’s edges and nodes.The default setting
is blue.

23.7.6.4 Low-level Color
In all cases, if the value of the chosen annotation is below the values indi-
cated for Threshold 1, the display is done in the Low-level color. The
default setting is red.

23.7.6.5 Normal Color
If the value of the chosen annotation is between Threshold 1 and Thresh-
old 2, the Normal color is used (only when some edges are highlight-
ed).The default setting is yellow.

23.7.6.6 High-level Color
If the value of the chosen annotation is above the value stated in Thresh-
old 2, then the High-level color is used.The default setting is green.
NOTE: If you have a monochrome display, then the three colors are
expressed as a narrow, normal, and triple-wide line.

334

S-TCAT User’s Guide

23.7.6.7 Apply
If you click on the Apply button, all the current settings in the Options
window will be displayed on the calltree.
23.8 Zoom In & Zoom Out Options
FIGURE 143 Zoom In Option illustrated

These buttons allow for a narrower or wider perspective of the calltree,
depending on what you require. Click on the Zoom In button once to nar-
row the focus of the calltree, and click on the Zoom Out button to get a
wider perspective of the calltree. Notice the difference between the call-
tree in Figure 143, after clicking on Zoom In once, and the same calltree,
depicted in Figure 137.

The arrow (triangle) symbols on the right-hand side and bottom of the
window are scroll bars, which you can use to move vertically or horizon-
tally in viewing the calltree. You can single-click the mouse as many times
as necessary to get to the desired viewing point, or for quicker response
simply click and hold the mouse down.

This feature is limited by your machine’s display capabilities.

335

CHAPTER 23: Xcalltree Utility

23.9

View Source Window

Action

View Sourc

Widget
Widget
Widget
Widget

1

int i

/%% Call-pair 1 *x/

/%% Call-pair 2 *x/

/%% Call-pair 3

else {

editInputT1[12]:
editInputT2[12];
thresholdLabell:
thresholdLabel?2:

Widget annoteSeparator:

extern char fileName[]:

void UpdateAnnoteToggle{toagle, state)
int toggle, state:

/%% Module UpdatefnnoteToggle *k/

if (lstate) 4

XmToégleButtonSetState(appHnnoteToggle[toggle], 1, 0

#mToggleButtonSetState{appAnnoteTogglelcurrAnnoteToggle] |

currfinnoteToggle = toggle:
GetColor{currAnnoteToggle, thresholds[currfnnoteTogglel, t

FIGURE 144

23.9.1

View Source Window

Description of Source Code Viewing

The source-code text you see corresponds to the diagram. The text is posi-
tioned to show you the location of the call-pair you clicked on (or the first
call-pair in the module, if you don’t have a multi-graph on the screen).
Also, if you click on the name of a function, Xcalltree will invoke Xdi-
graph and show you the detailed structure of that function. From Xdi-
graph you can view the source from that perspective, i.e. in terms of

edges and nodes rather than call-pairs.

336

S-TCAT User’s Guide

23.10

Statistics Window

Dizplayed Tree:
Linksz
Call-Fairs:
Modules:
Deptht

Recursive

[]
r
DAY a1l available
Link=:

U Y |

- 120

o

Call-Pairs:
Modules:
Depths
Fecursive

FIGURE 145

23.10.1

23.10.2

23.10.3

Statistics Window

The statistics you are given by Xcalltree are in two sections, the first per-
taining to the calltree that you see on the screen, and the second pertain-
ing to the entire file of information you supplied to the call to Xcalltree.

Links

This is the number of module-to-module connections in the diagram.

Call pairs

The total number of distinct, individual caller-to-callee connections in the
diagram.
Modules/Depth

Modules is the total number of different names in the calltree, and depth
indicates the maximum depth (either for links or for call-tree pairs).

337

CHAPTER 23: Xcalltree Utility

23.10.4 Recursive

If the call tree is recursive, that is, if some module calls itself or calls some
module for which there is a “self-referencing” chain, the number of such
functions will be shown here.

23.11 Print Window

Top Marging 0, Bottom Marging

Left Margin: | o, 25 Right Margin:

Page Width: 8.5 Fage Height:

2 To Files

&l To Printer:

i Cancel]

FIGURE 146 Print Window

The image you see will be printed to a standard print device. This win-
dow will allow you to configure the printing for your environment.

23.11.1 Paper Size Information

23.11.11 Top Margin

The distance from the top of the page to the first line. Default setting is
0.25 inches.

338

S-TCAT User’s Guide

23.11.1.2

23.11.1.3

23.11.1.4

23.11.1.5

23.11.1.6

23.11.2

23.11.21

Left Margin

The distance from the left-hand side of the page to the first character of
type. Default setting is 0.25 inches.

Page Width

The actual horizontal length of the paper you will be printing on. Default
setting is 8.5 inches.

Bottom Margin

The distance from the bottom of the page to the last printed line. Default
setting is 0.25 inches.

Right Margin

The distance from the right-hand side of the page to last character on the
line. Default setting is 0.25 inches.

Page Height

Actual vertical measurement of the paper to be printed on. Default set-
ting is 11 inches.

Enlargement Factors

Width/Height

The enlargement factors specify the size expansion, vertically or horizon-
tally, to be applied to this particular print activity; in effect, the total num-
ber of 8.5 inch by 11.0 inch sheets on which to draw the picture.

Selecting 1.0 means the picture will be kept on a single 8.5 inch x 11.0 inch
sheet. Hence, width = 1.0 and height = 1.0 means to draw the image on a
standard page.

If you change the width to 2.0, however, this means the picture will be
drawn on two pages, i.e. in such a way that two 8.5 inch by 11.0 inch
sheets can be pasted together to make a 17.0 inch by 11.0 inch image.
When more than one sheet is involved, the software numbers each page
(on the bottom center) so that assembly into a larger diagram is simple
and straightforward. To assemble a diagram, start with sheet #1 in the
lower left-hand corner.

The software automatically sizes the image to fit into the smallest whole
number of page equivalents. Also, the software sizes the diagram and the

tprfACég t6 “best fit" the speciﬁecl size.

339

CHAPTER 23: Xcalltree Utility

Some experimentation may be required to determine the optimum size
for the diagram you are working with.

NOTE: The picture drawn on the printer always includes all of the infor-
mation in the diagram, even if the entire diagram is not visible because of
a zoom setting.

23.11.3 Font Information

23.11.3.1 Font name/Font size
The default font size, 12 pt, and the default font name, Times-Roman, nor-
mally provide good quality pictures. Times-Roman at 12 pt is commonly
available on most printers.
You can choose different typesizes and type fonts depending on the sizes
and fonts available on your computer.

23.11.4 Print locator

23.11.41 To File
Will create a PostScript (.ps) file, which you can use to have the calltree
printed on any PostScript-compatible printer.

23.11.4.2 To Printer
You must name the printer to which the printing of the document will be
sent.
When a printing has been sent to either a .ps file or to a printer, a message
window saying Print action completed will pop up. Click OK to close
this window.
NOTE: The print option requires use of a PostScript-compatible printer. If
your machine is not attached to a PostScript compatible printer then the
Print window option will be inoperative.

340

S-TCAT User’s Guide

23.12

FIGURE 147

23.12.1

Annotation Window

= icalltree w27 - Annotation

M NONE < Threshold 1 Threshold 2

0,50

ol Minwvokes: rl

0.8

0,50

g [

21 Nlines: I

Z Ntokens: I 1000

1 Npathse

O User: I (i
iR

& Cornections l 5

Annotation Window

Annotation of the display (using the Annotations button), in many cases
is accomplished by showing the results of coverage testing, as reflected in
the repository of multi-test coverage stored in the Archive file.

There are a number of ways to annotate the calltree. Typically this
involves choosing a different color depending on where a particular
parameter falls into user-specified ranges (thresholds).

There are ten built-in annotation options and one user-defined annota-
tion.

Threshold 1 & Threshold 2

Threshold 1 represents the upper limit, and Threshold 2 the lower limit
desired for each metric. You can change the values of any threshold used
in the annotation of the call tree by clicking in the window and typing in
the new value. The values WON'T be applied to the current calltree
unless you click the Apply button.

341

CHAPTER 23: Xcalltree Ultility

23.12.2 None
No annotation is shown.

23.12.3 SO
The current value of the SO metric is used to cover the display.

23.12.4 Ninvokes
The current number of invocations of the module is used to color the dis-
play.

23.12.5 S1
Call pair coverage. The current value of the S1 (module coverage) metric
is used to color the display.

23.12.6 C1
Branch coverage. The current value of the C1 (module coverage) is used
to color the display.

23.12.7 Cyclo
Cyclomatic complexity. The value of the cyclomatic complexity is used to
color the display. For this annotation to work, you must choose a file with
a .dig suffix.

23.12.8 Nsegs
The number of segments in the module is used to color the display.
NOTE: This annotation works only with TCAT Ver 9 or later.

23.12.9 Npairs
The number of call-pairs in the module is the metric used to color the dis-
play.

23.12.10 Nlines
Number of source lines. The number of non-blank lines in the module is
the metric used to color the display.
NOTE: This annotation works only with TCAT Ver 9 or later.

342

S-TCAT User’s Guide

23.12.11

23.12.12

23.12.13

23.12.14

23.12.15

23.12.16

23.12.17

23.12.18

Ntokens

The number of tokens (i.e. non-blank strings, or “words”) in the module
is the metric used to color the display:.

NOTE: This annotation works only with TCAT Ver 9 or later.

Npaths

The number of paths in the selected module, as computed by apg, is the
value used to color the display.

User

User-defined function. The outcome of calling a user-defined function,
“Xcalltre.user”, if it exists, is the value used to color the display.

Connections

The Connections option can be adjusted to have a maximum upward and
downward extent.

Apply
After setting the desired thresholds, click Apply to display them in the

current calltree.

Reset

To restore the default settings to the window, click on Reset.

Close

To exit the Annotation window, click on Close. '

Help

If you have a problem using the Annotation window, click on Help. Click
your mouse on the Action pull-down menu and select Search. You will
then get an Enter String to search dialog box. Click on the blank area and
type the name of the option or function with which you are experiencing
difficulty.

NOTE: In certain cases, the annotation you select may not be displayed
immediatel}l, deFending on the complexity of the calltree. In such

instances the pointer will convert to a “clock” symbol, and you will have

343

CHAPTER 23: Xcalltree Ultility

to wait until it reverts to the pointer symbol for the annotations to take
effect.

When annotating the calltree, you may attempt to annotate an object file
that is supplied through X or the machine language, to which you will
not typically have the source code. In the case where you click on a mod-
ule of this type, the following message box will pop up:

MeSSagel1ndow_popup s

@ Kcalltree: Module “¥AllocColor” WOT DEFINED in reference file,

FIGURE 148 Xcalltree “NOT DEFINED in reference file” message box

344

o

S-TCAT User’s Guide

23.13 Quick Reference Guide to Xcalltree Annotations

Display Coloring Reflects Preset Low/

Function What Information? High

Whether module was/wasn't invoked, from 50.00 /7 50.00
Archive file. Shows onlytwo colors on dis-
play, low and high. The Archive file must be
from S-TCAT. If not, silence.

Ninvokes Number of times module was invoked, from 1/25
Archive file. The Archive file is assumed to
be one from S-TCAT. If not, silence.

S1 S1 value for module, from Archive file. Mod- | 50.00/90.00
ule name must appearin Archive; else no
default color. The Archive file is assumed to
be one from S-TCAT. If not, silence.

Cl C1 value for module, from Archive file. 60/ 85
Assumes module name appears in Archive;
else no color. The Archive file must be from
TCAT. If not, silence.

Cyclo Cyclomatic number retrieved from a call to 25/12
apg <name>.dig -X cyclo.This annotation
requires that TCAT-PATH have been run and
thus that the <name>.dig file for the module
exists. NO error messages are given for

<name>.dig's not found, but they keep the
default color.

Nsegs The number of segments in the module. 50.00/10.00
Requires use of TCAT Ver 9.

Npairs Number of call-pairs in module, from Archive | 50.00/ 10.00
file.The Archive file must be from S-TCAT. If
not, silence.

Nlines Number of source lines. The number of non- 250.00/50.00
blank lines in the module is the metric used to
color the display

Requires use of TCAT Ver 9.

Ntokens The number of tokens (i.e. non-blank strings, 1000/ 100
or “words”) in the module is the metric used to
color the display.

Requires use of TCAT Ver 9.

TABLE 2 Quick Reference Guide to Xcalltree Annotations

345

CHAPTER 23: Xcalltree Utility

Npaths

Number of paths in module retrieved from apg
<name>.dig -X npaths. This annotation
requires that TCAT-PATH have been run and
thus that the <name>.dig file for the module
exists. NO error messages are given for
<name>.dig's not found.

300.00 / 50.00

User

“(-1,0,1) = Xcalltree.user N Lo Hi" forall N=
pair-number. The default supplied sample does
something naive.

10.00 / 100.00

Connections

Up and Down +5, -5 callers/callees from
clicked function.

TABLE 2

Quick Reference Guide to Xcalltree Annotations

346

Index of Terms

Symbols

. dig file 104

. i.A file 104

. i.c file 104

. i.L file 104

. Xdefaults file 107
.dig file 24

A

-a option 169

a.out 109

ACTIONS menu 232

Analyze Window 38

Archive file 167,217

archive file 116, 122, 215, 263, 265
Archive Files 220

B

bottom-up testing 7, 8
boundary conditions 193
branch coverage status 76
branch/segment coverage 2

C

C compiler 111

C1 and S1 instrumentation 162
C1 coverage 2, 76, 87, 158

C1 coverage value 75

C1 value 74,77,174, 176
call-pair coverage 2

Call-Pair Listing file 260
CAPBAK 11

-ce option 159

Change the report width to button 122
command line instructions 16
command line usage, TCAT 157
commands, MS-DOS 237
compile, modified program 73
compilers, C 111

compilers, UNIX 111

Compiling 28

compiling & running 3
compiling, instrumented program 108
Configuration File 234
configuration file processing 231
configuration file, S-TCAT 229
cost benefit analysis, use of S-TCAT 186
cover command 167

coverage analysis reports 261
coverage analysis tools 1
coverage analyzer 73

Coverage Analyzer Options 121
Coverage file, creation of 122
coverage reports 3

Coverage Reports, definitions 42
Cross Development 214
cross-compile 178

crun0 - Raw Tracefile 212
crun0.o 108

crun1 - Standard Tracefile 212
cruni.o 108

cruni.o file 30

cruna.o 109

cumulative coverage report 221
Cumulative Report 219
Cumulative report, defined 42
customizing TCAT 179

-cw 197

347

Index of Terms

function definition boundary 163

348

D G ¥
data structures 6 Generate list of functions not included in
de- instrumentation feature 162 report button 121 .
default runtimes 176, 239 Generate list of functions with C1>
default trace file name 110, 221 button 121
De-instrumented File Switch 169 graphical user interface 89
De-instrumented Module List Switch 169 GUI defaults 179 .
demos directory 14 GUI Operation 89
development system 178 GUI parameters 179
Directed Graph Listing 24 GUI) Tutorial 275 -
Directed Graph Listing file 104 GUI, OSF /Motif style 89
directive processing 163
directives 162, 175 H
DOS, preprocessing rules 200 .
Dynamic 189 -H 170
Dynamic Analysis 6, 189 -H option 265
-h option 267 .
= header information 58
-help 170
embedded system 210, 211 Help window 91
embedded system usage 178 help, on-line 91 .
Error Listing 24 Hit and Not Hit reports 219
error rate prediction 11 Hit Report 265
example, instrumented program 245 Hit report 75 .
example.c 270 Hit Report Switch 170
example.c program 14, 20 host 210
example.i file 22
example.i.A 58 [.
example.i.c 58
example.i.E 58 i.S file 104
example.i.L 58 ic instrumentor 158 .
E’)‘(‘:)"I"E;ea'as 58 if statement 164
Execuls wirdow 56 Ignore Errors Switch 197
. . ; : Instrument window 18
Execute window, ivoking & using 106 instrumentation 3, 24, 53, 58, 98 .
instrumentation, C1 & S1 162
F instrumentation, completion of 104
instrumentation, single/multi modules 7 .
-f file 169 instrumented program 73
file naming conventions, S-TCAT 209 Instrumented source 161
file naming conventions, TCAT 161 Instrumented Statistics file 24, 68, 104
filename.c file 260 instrumenting 249 .
FILES menu 232 instrumenting, with make files 99
-fl value 197 instrumentor 199, 241
for statement 164 Instrumentor command 101
function call 196 Instrumentor options 101 .
function calls 3, 34, 53 instrumentor options 159

STW/Coverage/C User’s Guide

L

-l option 269

Linear Histogram 267

Linear Histogram Report Switch 169
Linear Histogram report, listing 78
linking , object files 109

Linking the Application 32

-lj 198

Logarithmic Histogram report 269
Logarithmic Histogram Report Switch 169
Logarithmic Histogram report, listing 79
logical branch 3, 98

logical branch coverage 14

logical branch marker 58

logical condition 2

logical path coverage 2

M

-m 170, 198

-m6 198

Make command 115

make file 111

make files 112, 175

make utility 115

Manual Analysis 6

memory models, Microsoft C 212
Microsoft C 200, 238

Microsoft C 6.0 compiler 237
Minimal Output Switch 170
mkarchive Utility 70

mkarchive utility 174
mksarchive 225, 226

module testing 2
modulename.dig 58

MS-DOS Runtimes 212

MS-DOS runtimes 237

MS-DOS, UNIX environments 202
Multi-Tasking runtime 214

N

-n 198

-N, -n 170

New Archive File Name Switch 169
New Archive name button 121
Newly Hit Report 266

Newly Hit report 76, 77

Newly Hit Report Switch 170
Newly Missed Report 266
Newly Missed report 77
Newly Missed reports 219
-NH 170

-NH option 266

-nl file 170

-NM option 266

Not Hit call-pair 254

Not Hit report 76, 254

Not Hit Report Switch 170
Not Hit report, defined 42
Not Hit reports 219

null archive files 225

(0

object code 73

object modules 32

Old Archive name button 121
on-line help 91

on-line help, S-TCAT 231
OPTIONS menu 233
OSF/Motif 89

P

-p option 263

parsing, candidate source code 196
parsing, source code 158

passive “directives” 162

Past Report 219, 263

Past Test report 74

percent coverage recommended 4
Preprocessed source file 161
Preprocessing 102

preprocessing 22, 23, 57, 131, 249
Preprocessing Source Code 57
preprocessing source code 241
preprocessing step 100
Preprocessor command 101
Preprocessor options 101
Preprocessor output suffix 101
program module 18

program statistics 259

Q

Quick Start 13

349

Index of Terms

quick.trc file 40
quiet 34
quiet runtime 34, 73, 108, 177, 212

R

rc file, S-TCAT 229

recommended amount of coverage 53
Reference Listing 24

Reference Listing File 120
Reference Listing file 254

reference listing file 3, 53
Reference Listing report 120
Reference Listing report, defined 42
Reference report, listing 80
reliability modeling 11

Resource files 179

runtime modules, description 177
runtime object module 30

runtime object modules 108, 110
run-time parameters, S-TCAT 234
runtime routines 211

runtime, forking 214

runtimes, MS-DOS 212

runtimes, non-standard 178

S

-h name 169

-l name 169

S1 call-pair coverage 195

S1 coverage 2, 192, 195, 219

S1 coverage, definition 191

S1 metric 261

S1 value 225, 263, 273

S1/C1 coverage, relationship 191
scover 217, 261

scover command 219

scover, syntax 220

Segment Count Listing file 24, 70, 104
Segment reference listing 161

Set File Name option 20, 130

Set Runtime Obj Module option 108
s-ic 196

Single- and Multiple-Module Testing 7
SMARTS 11

Sort report by module name button 122
special runtimes 178

special runtimes (UNIX) 213

Specify maximum file name length button,

defined 102

Specify maximum function name length but-

ton, defined 102
SR file 179
Static Analysis 6
S-TCAT ASCIl menus 229
S-TCAT configuration file 234
S-TCAT configuration file, sample 236
S-TCAT example 245
S-TCAT.fns file 198
stcat.rc file 229
STW/Coverage 2
switch statment 164
syntax errors 57, 100, 131
System pull-down menu 16

-

-t 198

TCAT 2, 200

TCAT invocation window 16
TCAT, GUl-version 16
TCAT-PATH 2

test cases 4

testing methods 6

threshold, proper coverage 11
top-down testing 7, 8

Trace Descriptor 215

trace file 3, 24, 36, 110, 122, 157, 212, 215,

265
trace file name, default 110
trace file selection 40
trace file, defined 108
trace file, naming 118
trace files, complete listing 168
Trace.trc 110, 221
transferring trace files 210
T-SCOPE 2
Turbo C 200
tutorial 13

U

-u 198

UNIX compilers 111

UNIX Instrumentation 200

UNIX, preprocessing rules 200
UNIX/XENIX make file, example 113

350

STW/Coverage/C User’s Guide

unreachable code 211

\'

variable type rules 6
View Report option 44
View Report window 123
View Source option 71
View Source window 48
viewing source code 48

w

-w 198
while statement 164
window manager 14

X

-x 198

X Window System 14
Xcalltree utility 192, 260
Xdefaults file 100

Xtcat 16

y4

-z 198
-Z file 172
-Z option 270

351

Index of Terms

352

San Francisco, CA 94107

o
o
©
@
]

e
o
&

2
5

»

625 Third Street

I

*)
~

m._.<<\Oo<mqmcm (Book 1)

	STWC-00
	STWC-01
	STWC-02
	STWC-03
	STWC-04
	STWC-05

