
. ,

'

from Software Re arch : t .
"".;~

•
II

II
:II
·11
.11

:II

II
,II

.II

II
II

II

II

II .,
II

Software TestWorks

STW /Coverage Tool Suite for C

(Book 1 of 2)

TCAT: Test Coverage Analyzer

S-TCAT: System Test Coverage Analyzer

~Orl'WARE RESEARCH, INC,

This document property of:

Name: ______________ _

Company: ____________ _

Address: ____________ _

Phone _______________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel : (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT­
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update July 17, 1995)

•
II
II
II
II
II
II
II

II
II
ll
·11

II

II

II
II
I

••
II
II
:II
II
·11

II
II
II

II
.II

II
a:
I

Table of Contents
PART I: TCAT USER'S GUIDE

CHAPTER 1 : TCAT Overview ... 1
1.1

1.2

1.3

1.4

1.5

1.6

1.7

The QA Problem ... 1

The Solution .. 1

SR's Solution .. 2

Testing and TCAT ... 3

Software Test Methods .. 6
Manual Analysis : 6

Static Analysis 6
Dynamic Analysis 6

Single- and Multiple-Module Testing .. 7
Bottom-Up 8

Top-Down 8

TCAT's Cost Benefits .. 8
Improved Error Detection 8

Earlier Error Detection 9

More Efficient Testing 1 O

Minimal Test Set 11
Assessment of Progress 11

CHAPTER 2: Quick Start .. 13
2.1 Recommendations ... 13

2.1 .1 STEP 1: Starting Up TCAT 14
2.1.2 STEP 2: Invoking TCAT .. 16
2.1 .3 STEP 3: Opening the Instrument Window 18

Table of Contents

2.1 .4 STEP 4: Choosing a Target Program 20
2.1 .5 STEP 5: Running the Preprocessor 22
2.1.6 STEP 6: Instrumenting the Application 24
2.1.7 STEP 7: Opening the Execute Window 26
2.1 .8 STEP 8: Compiling 28
2.1.9 STEP 9: Choosing a Runtime Version 30
2.1.10 STEP 1 O: Linking the Application 32
2.1 .11 STEP 11 : Running the Application - Part 1 34
2.1.12 STEP 12: Running the Application - Part 2 36
2.1.1 3 STEP 13: Opening the Analyze Window 38
2.1.14 STEP 14: Choosing a Trace File 40
2.1.1 5 STEP 15: Choosing Coverage Reports 42
2.1.16 STEP 16: Viewing the Coverage Reports 44
2.1.17 STEP 17: Selecting a Digraph of a Module 46
2.1.18 STEP 18: Viewing a Logical Branch's Source Code 48
2.1.1 9 STEP 19: Sign Off and Cleanup 50

2.2 Summary ... 52

CHAPTER 3: System Introduction .. 53
3.1

3.2
3.2 .1
3.2.2
3.2.3
3.2.4
3.2.5

3.3

Overview of TCAT ... 53

How to Use TCAT .. 53
Preprocessing Source Code 57
Instrument Program Code 57
Compile and Link Code 73
Execute Program and Generate Trace File 73
Generate Coverage Reports 73
Conclusion .. 87

CHAPTER 4: GUI Operation ... 89

ii

4.1 User lnterface .. 89
4.1 .1
4.1.2
4.1.3
4.1.4

4.2
4.2.1
4.2.2

4.3
4.3.1
4.3.2

File Selection Box 89
Help Boxes 91
Message Boxes 92
Option Menus 93

Invoking TCAT ... 96
Selecting Main Window Options 97
Exiting the Main Window 98

Instrumenting .. 98
Selecting the Application Name 99
Setting Options 1 00

II

•
II
II
II
II
II
II
II

II

-
II
II

II
II

II

II

'II

II

-­
II

II
II

II
II
II

II

- --
11

II

II

II

II

•

STW/Coverage/C User's Guide

Preprocessing Option Menu 100

Preprocessor output suffix 101

Preprocessor command 101

Preprocessor options 101

lnstrumentor command 101

lnstrumentor options 101

4.3.3 Preprocessing Your Program 102
Preprocessing Results 103

4.3.4 Instrumenting Your Program 104
Instrumenting Results 104

4.3.5 Exiting the Instrument Window 105
4.4 Running Your Program .. 106

4.4.1 Invoking the Execute Window 106
4.4.2 Setting Options 107
4.4.3 Compiling the Instrumented Program 108

Compilation Results 108

4.4.4 Selecting a Runtime Object Module 108
4.4.5 Linking 109

Linking Results 109

4.4.6 Running Your Application 110
Running Results 11 O

4.4.7 Exiting the Execute Window 111
4.5 Using make Files .. 111

4.5.1 Preprocessing, Instrumenting, Compiling 111
4.5.2 Linking Object Modules 112
4.5.3 Example make Files 113
4.5.4 Running Your Make File 115

4.6 Obtaining Coverage Reports ... 116
4.6.1 Invoking the Analyze Window 117
4.6.2 Selecting the Trace File Name 118
4.6.3 Selecting Reports 118
4.6.4 Selecting Coverage Analyzer Options 121
4.6.5 Running the Coverage Analyzer 122
4.6.6 Looking at Coverage Reports 122
4.6.7 Exiting the Analyze Window 123

CHAPTER 5: GUI Reference ... 125
5.1

5.2

5.2.1
5.2.2

TCAT Menus .. 125

Main Window ... 126
5y5tem Pull-Down Menu 127

Help Button 11,11, 1'-7

iii

Table of Contents

iv

5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3 .7
5.3.8
5.3.9

5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
5.4.11

5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.5.10
5.5.11
5.5.12
5.5.13
5.5.14
5.5.15

Instrument Window .. 129
File Pull-Down Menu 130
Action Pull-Down Menu 131
Help Button 131
Preprocessing Option Menu 132
Preprocessor output suffix Specification Region 132
Preprocessor command Specification Region 132
Preprocessor options Specification Region 132
lnstrumentor command Specification Region : 132
lnstrumentor options 132
Recognize _exit as keyword Button 132
Do not recognize _exit as keyword Button 133
Do not instrument functions in file Button 133
Specify maximum file name length Butta 133
Specify maximum function name length Button 134

Execute Window ... 135
File Pull-Down Menu 136
Action Pull-Down Menu 137
Help Button 138
Compiler command Specification Region 139
Compiler options Specification Region 139
Linker Command Specification Region 139
Linker options Specification Region 139
Make command Specification Region 139
Make file name Specification Region 139
Application name Specification Region 140
Application argument 140
Analyze Window ... 141
File Pull-Down Menu 142
Action Pull-Down Menu 143
Help Button 144
Past tests Check Button 145
Cumulative tests Check Button 146
Hit Check Button 147
Not Hit Check Button 148
Newly Hit Check Button 149
Newly missed Check Button 150
Log histogram Check Button 151
Linear histogram Check Button 152
Reference listing Check Button 153

Do not report function in file Check Button 154
Generate list of functions with C1 > Check Button 154
Generate list of functions not included in report Check Button 154

II

•
II
II
II
II

II

II
·11

II

-
II

II

II

II

JI

II

.II

•
II
II

II

II

II

II
II

II

II

II

II

II

II

:I

•

STW/Coverage/C User's Guide

5.5.16 Do not update archive file Check Button 155
5.5 .17 Old Archive name Check Button 155
5.5.18 New Archive name Check Button 155
5.5.19 Rename the report file to: Check Button .. 155
5.5.20 Change the report width to: Check Button 155
5.5.21 Sort report by module name Check Button .. 156

CHAPTER 6: Command-Line Activation ... 157
6.1 Command Line Usage .. 157

6.2 'Xtcat' Command .. 157
Options and Parameters: 157

6.3 ic lnstrumentor Command ... 157
Options and Parameters: 158

6.3.1 File Summary 161
6.3.2 Instrumentation Directive 162

Application of Directive 162
Proper Directive Placement 162
Improper Directive Placement 166
Additional Notes 166

6.4 cover Command ... 167
Options and Parameters 167

6.4.1 File Summary 173
6.4.2 Trace File Argument 173
6.4.3 Archive Files ... 173

6.5 'mkarchive' Utility ... 174

6.6 Command Summary ... 174
6.6.1 Instrumentation, Compilation and Linking .. 174

Stand-Alone Files 175
Systems With make Files-............... 175
make Files With cc Called In Directives 175
A System Which Does Not Use make File 176

6.6.2 Program Execution 176
6.6.3 Coverage Analysis 176

CHAPTER 7: Runtime Features ... 177
7.1

7.2

Runtime Descriptions .. 177

Special Runtimes .. 178

V

Table of Contents

CHAPTER 8: Customizing TCAT ... 179

PART II: S-TCAT

CHAPTER 9: Introduction .. 183
9.1

9.2

9.3

Audience ... 183

Purpose ... 183

Manual Organization .. 184

CHAPTER 10: Overview ... 185
10.1 Why System Test Coverage Analysis? ... 185

10.2 QA Problems Addressed ... 185

10.3 Cost Benefit Analysis ... 186
10.3.1 Improved Error Detection 186
10.3.2 Earlier Error Detection 187
10.3.3 More Efficient Testing 188
10.3.4 Minimal Test Set 188
10.3.5 Assessment of Progress 188

10.4 Software Test Methods ... 189
10.4.1 Manual Inspection 189
10.4.2 Dynamic Analysis 189

10.5 Multiple-Module Testing ... 190

10.6 Hierarchy of Coverage Metrics 190

10.7 S1 Measure .. 191

10.8 How Does S 1 Relate to C1? ... 191

10.9 Advanced Coverage Metrics ... 192

CHAPTER 11: Instrumentation .. 195
11.1 Overview .. 195

11.2 Instrumentation .. 195
11 .2.1 The lnstrumentor 196
11.2.2 Excluding Function Calls from Instrumentation 198

11.3 DOS lnstrumentation .. 200

11.4 UNIX lnstrumentation 200
11 .4.1 Instrumenting With 'make' Files 200
11 .4.2 Example 'make' Files 202

vi

II
II
II
II
II

II

II

II
II

II
II

II

II

II

II

II

II

II'

II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

STW/Coverage/C User's Guide

11.5 File Summary .. 209

11.6 Embedded Systems ... 210

CHAPTER 12: Compiling, Linking and Executing 211
12.1 Runtime Descriptions .. 211

crun0 - Raw Tracefile ("quiet" runtime) 212

crun1 - Standard Tracefile 212

MS-DOS Runtimes 212

12.2 Special Runtimes (for UNIX only) 213
crun2 - In-Place Reductio 213

crun3 - Multiple Processes 213

cruna - Multi-Tasking (or forking runtimes 214

crunc - Cross Development 214

12.3 Executing the Instrumented Program ... 215
Performance Considerations 215

CHAPTER 13: Coverage Reporting and Analysis 217
13.1

13.2

13.3

13.1.1
13.1.2
13.1.3
13.1.4

Producing Reports ... 219
Report Types 219
Trace File Argument 219
Archive Files 220
'scover' Syntax 220

'mksarchive' Utility ... 225

File Summary .. 227

CHAPTER 14: Menus .. 229
14.1 S-TCAT/C ASCII Menus .. 229

14.1 .1 Invoking S-TCAT 229
14.1 .2 S-TCAT Menu Tree 230

Issuing Commands 230
Displaying Current Parameter Settings 231

S-TCAT Menu ·stack· 231

14.1 .3 MAIN Menu 231
14.1 .4 ACTIONS Menu 232

FILES Menu 232

14.1 .5 OPTIONS Menu 233
14.1.6 Saving Changed Option Settings 233
14.1.7 Running System Command 234

vii

Table of Contents

14.2 S-TCAT Configuration File ... 234
14.2.1 Configuration File Syntax 234
14.2.2 Sample S-TCAT Configuration File 236

CHAPTER 15: Command Summary: MS-DOS, OS/2 237
15.1 Instrumentation, Compilation and Linking 237

15.1.1 Stand-Alone Files 237
15.1.2 Systems With 'make' Files 238
15.1.3 'make' With 'cl' , 'msc' 238
15.1.4 Systems Without 'make' Files 238
15.1.5 Program Execution 239

15.2 Coverage Analysis ... 239

CHAPTER 16: Command Summary-UNIX 241
16.1 Instrumentation, Compilation and Linking 241

16.1.1 Stand-Alone Files 241
16.1 .2 Systems With 'make' Files 241
16.1.3 'make' files with cc called in directives 242
16.1 .4 A system which does not use 'make' files 242

16.2 Program Execution ... 242

16.3 Coverage Analysis ... 243

CHAPTER 17: Full S-TCAT Example ... 245
17.1 lntroduction ... 245

17.2 Preprocess, Instrument, Compile and Link 249

17.3 Reference Listing .. 254

17.4 Instrumentation Statistics ... 259

17.5 Call-Pair Listing .. 260

17.6 Reading S-TCAT Reports ... 261
17.6.1 Cumulative Report 261
17.6.2 Past Report 263
17.6.3 Not Hit Report 263
17.6.4 Hit Report 265
17.6.5 Newly Hit Report 266
17.6.6 Newly Missed Report 266
17.6. 7 Linear Histogram 267
17.6.8 Logarithmic Histogram 269
17.6.9 Reference Listing S1 Report 270

viii

II
II
II

II

II
II

II

II
II

II

II

II

II
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

------STW/Coverage/C User's Guide

17.7 Summary ... 273

CHAPTER 18: Graphical User Interface (GUI) Tutorial 275
18.1 Invocation .. 275

18.2 Using S-TCAT/C 276
18.2.1 Instrument. 277
18.2.2 Execute 279
18.2.3 Analyze 283

CHAPTER 19: Testing Guidelines: S-TCAT/C 293

CHAPTER 20: System Restrictions and Dependencies 295

CHAPTER 21: References .. 297

PART III: SOURCE-VIEWING UTILITIES

CHAPTER 22: Xdigraph Utility ... 299
22.1 Purpose ... 299

22.2
22.2.1
22.2.2

22.3

Xdigraph File Format .. 299
All digraph files : 299
Multiple digraph files : 299

Invoking Xdigraph .. 300

22.4 Xdigraph Main Window .. 302
22.4.1 File 302
22.4.2 Options 302
22.4.3 Zoom In 302
22.4.4 Zoom Out. 303
22.4.5 View Source 303
22.4.6 Statistics 303
22.4.7 Print 303
22.4.8 Annotation 303
22.4.9 Help 303

22.5 File Pull-Down Menu .. 304
22.5.1 Load New Graph 304
22.5.2 Load New Module 304
22.5.3 Set Archive 305

ix

Table of Contents

X

22.5.4 Exit 305
22.5.5 Digraph File Message Box .. 306
22.5.6 Filter 306
22.5.7 Directories 306
22.5.8 Files 307
22.5.9 Selection ... 307
22.5.10 OK 307
22.5.11 Filter Button 307
22.5.12 Cancel 307

22.6 Options Window ... 308

22.6.1 Zoom Scale .. 308
22.6.2 Node Characteristics 308

Shape 309
Size 309
Vertical Spacing 309
Aspect ratio 309

22.6.3 Edge Characteristics 309
Unhighlighted Edge 309
Eccentricity 309
Default Color 309
Low-level Color 309
Normal Color 309

22.7

22.8

22.9

High-level Color 310
Apply 310
Reset 310
Close 310
Help 310

Zoom In/Zoom Out Window ... 311

View Source Window ... 312

Statistics Window ... 313
22.9.1 FileName 314
22.9.2 Node and Edge Count. 314
22.9.3 Cyclomatic Number (Cyclomatic Complexity) 314
22.9.4 Average, Minimum and Maximum Path Lengths 314
22.9.5 Path Count by Iteration Groups 314

22.10 Print Window ... 315
22.10.1 Paper Size Information ... 315

Top Margi 315
Left Margin 315
Page Width 316
Bottom Margin 316
Right Margin 316

II

II
II

II

II

II

II

II
II

II

II

II

II

II

II

I
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

STW/Coverage/C User's Guide

Page Height 316

22.10.2 Enlargement Factors 316
Width/Height 316

22.10.3 Font Information 317
Font name/Font size 317

22.10.4 Print locator 317
To File 317

To Printer 317

22.11 Annotation Window .. 318
22.11.1 Threshold 1 &2 318
22.11.2 None 319
22.11 .3 Nhits 319
22.11 .4 No/o 319
22.11 .5 Complexity 319
22.11 .6 Ntokens 319
22.11.7 Nlines 319
22.11 .8 User 319
22.11 .9 Highlight. 320
22.11 .10Path File 320
22.11 .11 Apply 320
22.11 .12Reset. 320
22.11 .13Close 320
22.11.14Help 320
22.11.15Colors 320

22.12 Quick Reference Guide to Xdigraph Annotations 322

CHAPTER 23: Xcalltree Utility ... 323
23.1 Calltree Defined .. 323

23.2 Xcalltree File Format .. 323

23.3 Invoking Xcalltree ... 324

23.4 Xcalltree Main Window ... 325
23.4.1 File , 325
23.4.2 Options 325
23.4.3 Zoom In 326
23.4.4 Zoom Out 326
23.4.5 View Source 326
23.4.6 Statistics 326
23.4.7 Print 326
23.4.8 Annotation 326 ,~.4.~ Help 326

23.5 File Pull-Down Menu .. 3~7

xi

Table of Contents

23.6

23.5.1
23.5.2
23.5.3
23.5.4

Load New Graph 327
Load New Multi Graph 327
Set Archive 327
Exit 328

Calltree File Selection Dialog Box .. 329
23.6.1 Filter 329
23.6.2 Directories 329
23.6.3 Files 329
23.6.4 Selection 330
23.6.5 OK 330
23.6.6 Filter 330
23.6.7 Cancel 330

23.7 Option Window 331
23.7.1 Zoom Scale 331
23.7.2 Horizontal Spacing 331
23.7.3 Depth 331
23. 7 .4 Root Name 332
23.7.5 Edge Characteristics 333

Edge Color 333

Unhighl ighted Edge 334

Display Mode 334

23.7.6 Node Characteristics 334
Size 334

Aspect Ratio 334

Default Color 334

Low-level Color 334

Normal Colo 334

High-level Color 334

Apply 335

23.8 Zoom In & Zoom Out Options ... 335

23.9 View Source Window 336
23.9.1 Description of Source Code Viewing 336

23.10 Statistics Window 337
23.10.1 Links 337
23.10.2 Call pairs 337
23.10.3 Modules/Depth 337
23.10.4 Recursive 338

23.11 Print Window ... 338
23.11 .1 Paper Size Information 338

Top Margin 338

Left Margin 339

Page Width 339

xii

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

STW/Coverage/C User's Guide

Bottom Margin 339

Right Margin 339

Page Height 339

23.11 .2 Enlargement Factors 339
Width/Height 339

23.11 .3 Font Information 340
Font name/Font size 340

23.11 .4 Print locator 340
To File 340

To Printer 340

23.12 Annotation Window .. 341
23.12.1 Threshold 1 & Threshold 2 341
23.12.2 None 342
23.12.3 so 342
23.12.4 Ninvokes 342
23.12.5 S1 342
23.12.6 C1 342
23.12.7 Cyclo 342
23.12.8 Nsegs 342
23.12.9 Npairs 342
23.12.1 ONl ines 342
23.12.11 Ntokens 343
23.12.12Npaths 343
23.12.13User 343
23.12.14Connections 343
23.12.15Apply 343
23.12.16Reset 343
23.12.1 ?Close 343
23.12.18Help 343

23.13 Quick Reference Guide to Xcalltree Annotations 345

CHAPTER 24: Index of Terms .. 347

NOTE: Documentation for TCAT-PATH and T-SCOPE, the
accompanying products in the STW/COVERAGE tool set, is
included in STW /COVERAGE/BOOK II.

xiii

Table of Contents II
II
II

II
II

II

II

II
II

II

-
II

II

II

II

II
xiv II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

List of Figures
FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 25

FIGURE 26

STW/Coverage Dependency Chart 3

STW/Coverage System Chart 5

Stages in Software Testing 7

Cost Benefit Analysis . 9

Increase in Cost-to-fix Throughout Life-cycle 10

Setting Up the Display (Initial Condition) 15

Invoking TCAT 17

Initializing the Instrument Window 19

Selecting a Target Program 21

Preprocessing Your Program 23

Instrumenting Your Program • 25

Initializing the Execute Window 27

Compiling the Instrumented Program 29

Selecting a Runtime Object Module 31

Linking Object Modules 33

Naming the Trace File 35

Running the Application 37

Initializing the Analyze Window 39

Selecting a Trace File Name 41

Selecting the Reference Listing File 43

Looking at Coverage Reports 45

Selecting a Module 47

Looking at Source Code 49

Completing a TCAT Session 51

Sample C Program 57

Instrumented Program 63

xv

List of Figures

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

FIGURE 38

FIGURE 39

FIGURE 40

FIGURE 41

FIGURE 42

FIGURE 43

FIGURE 44

FIGURE 45

FIGURE 46

FIGURE 47

FIGURE 48

FIGURE 49

FIGURE 50

FIGURE 51

FIGURE 52

FIGURE 53

FIGURE 54

FIGURE 55

FIGURE 56

FIGURE 57

FIGURE 58

FIGURE 59

FIGURE 60

FIGURE 61

FIGURE 62

xvi

Reference Listing 68

Instrumentation Statistics Sample 70

Segment Count Listing Sample 71

Directed Graph Listing 71

Directed Graph Display 72

Error Listing 73

Using a File Selection Dialog Box 90

Using the Help Dialog Box 92

Using a Dialog Box 93

Using an Option Menu 94

Using a Pull-down Menu•...................... 95

Invoking the Main Window 96

Invoking TCAT from the STW Tool Suite 97

Exiting the Main Window 98

Invoking the Instrument Window 99

Selecting the Program File Name 100

Exiting the Instrument Window 105

Invoking the Execute Window 106

Selecting the Runtime Object Module · 109

Exiting the Execute Window 111

Uninstrumented UNIX Make File 114

Instrumented UNIX Make File 115

Obtaining Coverage Reports 117

Invoking the Analyze Window 117

Selecting the Trace File Name . 118

Reference Listing File Selection 120

Looking at Coverage Reports 123

Exiting the Analyze Window 124

Main Window 126

System Pull-Down Menu 127

Help Window for the Main Window ..•.............. 128

Instrument Window 129

Set File Name Dialog Box . 130

File Pull-Down Menu 130

Action Pull-Down Menu 131

Help Window for the Instrument Window 131

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

•
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

FIGURE 63

FIGURE 64

FIGURE 65

FIGURE 66

FIGURE 67

FIGURE 68

FIGURE 69

FIGURE 70

FIGURE 71

FIGURE 72

FIGURE 73

FIGURE 74

FIGURE 75

FIGURE 76

FIGURE n
FIGURE 78

FIGURE 79

FIGURE 80

FIGURE 81

FIGURE 82

FIGURE 83

FIGURE 84

FIGURE 85

FIGURE 86

FIGURE 87

FIGURE 88

FIGURE 89

FIGURE 90

FIGURE 91

FIGURE 92

FIGURE 93

FIGURE 94

FIGURE 95

FIGURE 96

FIGUA£; 97

FIGURE 98

STW/Coverage/C User's Guide

Execute Window 135

Set Runtime Obj. Module Selection Dialog Box 136

File Pull-Down Menu 137

Action Pull-Down Menu 138

Help Window for the Execute Window 138

Analyze Window 141

Set Input Trace File Name Selection Dialog Box 143

File Pull-Down Menu . 143

Action Pull-Down Menu 144

Help Window for the Analyze Window 144

Past Report 145

Cumulative Report . 146

Hit Report 147

Not Hit Report 148

Newly Hit Report 149

Newly Missed Report 150

Log Histogram Report 151

Linear Histogram Report 152

Reference Listing File Selection 153

Reference Listing Report 154

TCAT resource file 180

Cost Benefit Analysis 186

Increase in Cost-to-fix Throughout Life-cycle 187

Stages in Software Testing 190

Uninstrumented DOS Make File 203

Instrumented DOS Make File 205

Uninstrumented UNIX Make File 207

Instrumented UNIX Make File 208

System Components 218

Sample "C" Program 248

Instrumented Program Segment 253

Reference Listing 258

Instrumentation Statistics Sampl 259

Call-Pair Listing Example 260

Cumulative Coverage Report 262

Not Hit Report• , , , •..................... 264

xvii

List of Figures

xviii

FIGURE 99

FIGURE 100

FIGURE 101

FIGURE 102

FIGURE 103

FIGURE 104

FIGURE 105

FIGURE 106

FIGURE 107

FIGURE 108

FIGURE 109

FIGURE 110

FIGURE 111

FIGURE 112

FIGURE 113

FIGURE 114

FIGURE 115

FIGURE 116

FIGURE 117

FIGURE 118

FIGURE 119

FIGURE 120

FIGURE 121

FIGURE 122

FIGURE 123

FIGURE 124

FIGURE 125

FIGURE 126

FIGURE 127

FIGURE 128

FIGURE 129

FIGURE 130

FIGURE 131

FIGURE 132

FIGURE 133

FIGURE 134

Hit Report 265

Newly Hit Report•....... 266

Newly Missed Report 267

Linear Histogram 268

Logarithmic Histogram 270

Reference Listing S1 Report 273

Main Menu 275

STW/COV Invocation 276

Main Menu Help 277

Instrument Menu 278

Instrument Help Menu 278

File Pop-Up Menu 279

ExecuteMenu 280

Execute Help Menu 281

Runtime Object Module Pop-Up Screen 282

Analyze Menu 283

Analyze Help Menu 283

Set Input Trace File Name Pop-Up Window 286

Reference Listing Pop-Up Window 287

Past Test Report 287

Cumulative Report 287

Hit Report 288

Linear Histogram 288

Reference Listing (Part 1 of 2) 289

Reference Listing (Part 2 of 2) 289

Source Viewing Pop-Up Window 290

Source Viewing 291

Program edges as represented in a digraph 301

Xdigraph Main Window 302

Digraph File Pull-Down Menu 304

Digraph File Message Box 306

Xdigraph Options Window 308

Zoom In feature illustrated•............ 311

View Source Option Window 312

Statistics Option Window 313

Print Dialog Window 315

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II STW/Coverage/C User's Guide

FIGURE 135 Annotation Thresholds Window 318

II FIGURE 136

FIGURE 137

Sample Annotation for User Threshold 321

Xcalltree Main Window 325

II
FIGURE 138

FIGURE 139

File Pull-Down Menu 327

Calltree File Selection Dialog Box 329

FIGURE 140 Option Window 331

II FIGURE 141 Root Name Selection Window Example 1 332

FIGURE 142 Root Name Selection WindowExample 2 333

II FIGURE 143

FIGURE 144

Zoom In Option illustrated 335

View Source Window 336

II
FIGURE 145

FIGURE 146

Statistics Window 337

Print Window 338

FIGURE 147 Annotation Window. 341

II FIGURE 148 "NOT DEFINED in reference file" message box 344

II

II

II

II

II

II

II

II

II

II xix

List of Figures II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
xx II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

.USER'S GU IDE

TCAT

Test Coverage Analyzer

Ver 8.1

SOFTWARE RESEARCH, INC.

This document property of:

Name: ______________ _

Company: _____________ _

Address: ____________ _

Phone ______________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel : (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT­
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

CREDITS: Programming: Linh Dang, Tjiu Oh; Documentation: Deborah Steiner,
Brian Kluepfel; Design: Rebekkah Graves.

Copyright © 1995 by Software Research1 Inc
(Last Update: July 10, 1995)

II

II

II
II
II

II

II
II

II
II

II
II

II
II

II

II

ll

·II
II

II
II

I
II

II
II

II

II

II

I
II

II

II

II
II

CHAPTER 1

TCAT Overview
This chapter explains the basic concepts behind coverage tools, and tells how they can
save you time and money in your development process.

1.1

1.2

The QA Problem

It is a sad fact of the software engineering world that, on average, without
coverage analysis tools, only around 50 percent of the source is actually
tested before release. With little more than half of the logic actually cov­
ered, many bugs go unnoticed until after release. Worse still, the actual
percentage of logic covered is unknown to SQA management, making
any informed management decisions impossible.

Questions such as when to stop testing or how much more testing is
required are not answered on the basis of data but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with
the quality of the released software and make plans based on inadequate
data.

A related problem is that test case development is done in an inefficient
manner; that is, many test cases are redundant. Cases testing the same
logic clutter test suites and take the place of other cases which would test
previously unexplored logic. Often testers are unsure of the direction to
take and can waste SQA time devising the wrong tests.

The Solution

The primary purpose of testing is to ensure the reliability of a software
program before it is released to the end user. To ensure a reliable and solid
software product, the software should be thoroughly tested with a variety
of input to provide statistically-verifiable means of demonstrating reli­
ability. In other words, a suite of test cases should cover, in some way, all
the possible situations in which the program will be used.

Although a worthy goal, imagining every possible use, as well as devel­
oping test data and running them, is extremely complicated and time­
consuming. A more realistic goal is to test every part of the program.
According to industry studies, achieving this goal yields significant

1

CHAPTER 1: TCAT Overview

2

improvement in overall software quality. Coverage analysis improves the
quality of your software beyond conventional levels.

1.3 SR's Solution

Software Research, Inc. offers a solution: STW/Coverage. STW/Coverage
ensures tests are more diverse than those which are chosen by reference
to functional specification alone or based on a programmer's intuition.
STW/Coverage ensures tests are as complete as possible by measuring
against a range of high quality test metrics:

• Cl, or branch/segment coverage, measures module testing at the
unit or module testing level; it accesses the completeness of indi­
vidual modules or small groups of module testing.

• Sl, or call-pair coverage, measures all the interfaces of a complex
system to be exercised.

• Ct, or equivalence class coverage, measures the number of times
each path or path class in a module is exercised.

With the three test metrics, STW/Coverage ensures tests are as complete as
possible. STW/Coverage includes the following products:

• TCAT does coverage at the logical branch (or segment) level and
the call-graph level. It employs the Cl metric. You can choose to
test a single module, multiple modules or the entire program
using the Cl metric.

• 5-TCAT does coverage at the call-pair level. It employs the Sl
metric. After individual modules have been tested, you can test
all the interfaces of the system using the Slmetric.

• TCAT-PATH does coverage at the logical path level. It employs
the Ct measure. It can easily be programmed to include or to
exclude the program's modules from analysis. This allows you to
emphasize certain critical modules, once these are identified.
TCAT-PATH allows you to extract and display the logical condi­
tions that will cause that particular path to be exercised. Based on
these conditions, you can design new test suites to exercise the
path.

• T-SCOPE provides dynamic visualization of test attainment dur­
ing unit testing and system integration. It is a companion tool for
TCAT, S-TCAT and TCAT-PATH. While these tools report the
status of modules after-the-fact, T-SCOPE visually demonstrates
such things as segments and call-pairs hit or not hit while it is
happening.

TCAT for the C language is the focus of this manual. For complete infor­
mation on use of the other STW/Coverage products, please consult the
proper User Manuals.

II

II
II
II
II
II
II
II

II
II

II

•
II
II

II

II

II

II

II

II

II
II
II

II
II
II

II

II
II
II
II

II
II

II

FIGURE 1

1.4

TCAT/C User's Guide

Below is a STW /Coverage flow chart. Boxes with darkened backgrounds
represent the main components of STW/Coverage.

Source File

TCAT

TCAT-PATH

STW/Coverage Dependency Chart

Testing and TCAT

User

Reports

Archive File

TCAT takes your program and automatically instruments it. During
instrumentation, TCAT inserts function calls (special markers) at every
logical branch (segment) in each program module. Instrumentation also
creates a reference listing file, which is a version of your program which
has logical branch marking comments added to it in a manner similar to
the code added to the instrumented version. Extensive logical branch
notation and sequence numbers are also listed.

This instrumented program is then compiled and run. By running it, you
are exercising logical branches in the program. The more tests in your test
suite, the higher the coverage. This test information is then written to a
trace filQ. From the information stored in the trace file, you can generate
coverage reports. In general, the reports give the following information:

3

CHAPTER 1: TCATOverview

4

• Reports included in the current report.

• A summary of past coverage runs.

• Current and cumulative coverage statistics.

• A list of logical branches that have been hit.

• Bar charts of the frequency of execution of each logical branch.

You should try to obtain >85 percent coverage. If the reports indicate that
you have less than 85 percent coverage (the recommended amount), you
can identify unexercised logical branches by looking at the entire refer­
ence listing report, or you can look at the reference listing code for a par­
ticular logical branch. When you identify the troubled areas, you can then
create new test cases and re-execute the program.

TCAT can help you reach your goal: creating the most extensive test cases
possible.

The diagram in the following figure illustrates the TCAT process. You
should study this diagram carefully so that you see the natural structure
and rhythm of TCAT use.

II

II

II

II
II
II

II
II

II

II

II

II
II

II

II
II

II

II

II
II

II
II
II

II
II
II

II
II
II
II

II
II

II

II

Source
Program

Run Cover­
age Analyzer

Generates Archive
File

Cumulative
Report

...

Generates

Preprocess
&

Instrument

' lnstrumente
d

' Compile
Instrumented

Link
Object

' Run
Application

FIGURE 2 STW/Coverage System Chart

TCAT/C User's Guide

Segment Count

Error Listing

Directed Graph

Creates Executable

Newly Missed
Report

5

CHAPTER 1: TCAT Overview

6

1.5 Software Test Methods

Coverage analysis as implemented through TCAT is a powerful testing
technique which can save you much money and time, in addition to
greatly improving software quality. Plainly, it is not the only testing tech­
nique in existence, and we recommend that you use it along with other
techniques.

Testing methods vary from shop to shop, but most successful techniques
fall into a few general categories. The most common ones, which are usu­
ally performed in their natural sequence, are described below.

Manual Analysis

Programs are manually inspected for conformance to in-house rules of
style, format, and content as well as for correctly producing the antici­
pated output and results. This process is sometimes called "code inspec­
tion", "structured review", or "formal inspection".

Static Analysis

Once a program has passed through manual testing steps, it can be tested
in more depth. Automated tools are used to check the design rules
applied in a program. Static analysis validates the software allegations
about the program's static properties, such as the global properties of its
data structures and the application of variable type rules. Such testing can
remove 20 to 30 percent of the latent software defects in your program.
There are many static analyzers. For instance, static analyzers include
tools for detecting data element misuse and complexity measurement
tools, which estimate the difficulty of testing and help identify hard to
test modules with a statistic, or finally, conformance measure tools, which
flag confusing or inefficient code.

Dynamic Analysis

This approach tests the dynamic properties of the software under real or
simulated operating conditions. The software is executed under con­
trolled circumstances with specific expected results. It is important in this
phase to test as many paths and branches in the program as possible.
Doing so assures that the tests you have run have the greatest diversity,
hence the best chance of uncovering defects.

To obtain statistics on the program parts that have been covered by your
tests can often be very difficult. Dynamic analysis can uncover 85 percent

II

II
II

II
II
II

II
II

II

II

II

II
II

II

II

I
II

II

II

II

II

II

II

II
II

II

II

II

II
II

II

II

II

II

FIGURE 3

1.6

TCAT/C User's Guide

to 90 percent of the potential remaining software defects. SR's TCAT­
PATH, for instance, will produce data on what has been validated and
what has been left out of your testing.

Supporting
Documents

Source
Program

Manual
Analysis

Dynamic
Analysis

Stages in Software Testing

Archived
Test Files

Archived Test
Documents

Single- and Multiple-Module Testing

Another consideration in getting the most out of TCAT involves deter­
mining the scope of your tests: whether a single program module, multi­
ple modules, or even an entire system should be tested. You can prepare,
or "instrument", many modules with logical branch markers and run
tests on them as a group. TCAT keeps track of each module by name.

There are two approaches to multiple-module testing: bottom-up or
top-down. Because TCAT is able to track many modules simultaneously,
it will support either approach. The route you choose depends on your
individual needs and on your own testing style.

7

CHAPTER 1: TCAT Overview

1.7

8

Bottom-Up

In the bottom-up approach, testing begins at the lowest level in the sys­
tem hierarchy; that is, modules that invoke no other module. Each bot­
tom-level module is tested individually with special test data. Modules at
each subsequent level of the hierarchy are tested using already-tested
lower-level modules. The process continues until all modules have been
thoroughly exercised. Thus, you can control testing carefully as you
progress up the system hierarchy.

Top-Down

In the top-down approach, testing begins at the highest level in the sys­
tem hierarchy. Sometimes module "stubs" are used to simulate invoked
modules to check the high-level logic of the program. As an alternative to
using module stubs, use a complete program with only a few selected
modules instrumented. TCAT ignores uninstrumented modules as it
traces test coverage through the program.

In top-down analysis, the tester is chiefly concerned with the combination
of modules to form a larger system. TCAT focuses specifically on function
calls within the system, so that the tester can verify each interconnection.

TCAT's Cost Benefits

TCAT will save your organization much time and effort. As a matter of
fact, the economics of coverage analysis are extremely favorable. Here are
some ways it can save you money.

Improved Error Detection

TCAT provides increased error detection. Software Engineering literature
indicates that an average error rate is 40 defects per 1,000 lines of code
{KLOC). With no coverage analysis, 50 percent of the code is exercised,
leaving the product with 20 defects per KLOC. Assuming a uniform dis­
tribution of errors throughout the source code, the simple act of raising
the coverage rate can uncover many errors. According to the experience
of SR in advanced industrial projects and reports from customers, cover­
age analysis can eliminate another 75 percent of the errors.

II

II

II

II
II

II

II
II

II
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II
II

II

II

II

II

FIGURE 4

TCAT/C User's Guide

Without TCAT

40 defects/KLOC

t
50% Cre,age

20 defects/KLOC

Cost Benefit Analysis

With TCAT

40 defects/KLOC

85-90% tve,age

t
5 defects/KLOC

The economic value of the increased error detection will vary from orga­
nization to organization. One estimate of the worth of coverage analysis
comes from what software consulting firms charge to find and remove
errors, a price established in the open market. The software testing indus­
try, sized at $50 million in 1986 by Fortune magazine, typically charges
$1,000 per error fixed.

Applying this to TCAT, you could save $15,000 or more per thousand
lines of code. In practical terms, this means that a large project with over
20,000 lines of code might save $300,000.

Earlier Error Detection

Not only are more errors detected with TCAT, they are also discovered
earlier. It's a well accepted truth in Software Development that the earlier
you catch and fix an error, the cheaper. Over and over, managers, vendors
and gurus have shown us figures and charts that detail how much less it
costs to rectify an early detected defect. A classic example of this is the
following by Barry Boehm (see Chapter 21, "References"):

9

CHAPTER 1: TCAT Overview

1000

500

200

100

50

20

10

5

2

1

FIGURE 5

10

Larger Software

IBM-
SSD

- 80%

Median - 20%

Requirements Design Code

.... ········· ·····
....

Smaller Software

Dev. Tests Acceptance Tests Operation

Phase in which error was detected and corrected

Increase in Cost-to-fix Throughout Life-cycle

Your organization can reduce its cost-to-fix ratio by a factor of ten by
using TCAT to find errors before system integration. In the diagram, it
costs $5,000 to $15,000 to fix errors after they have left the developer. The
developer or the Software Quality Engineer (SQE) can identify and fix
problems much more inexpensively than the beta site or independent
testing organization. This is not to say that beta sites or IV&V (indepen­
dent verification and validation) are not needed, but instead there is a
great cost advantage in letting detailed unit-testing find more errors for
less cost.

More Efficient Testing

Using TCAT, you can gain in guiding test case development. In general,
the tool may be used to identify features that have been missed by exist­
ing test suites. The missing items can direct the addition of new test cases.

For example: a software test engineer from a super-minicomputer manu­
facturer used TCAT to reduce the time to test by a factor of eight. As
detailed in a technical article available from SR ("References" # 2- 3), he
was in charge of testing a C compiler and used TCAT to identify the fea­
tures missed by commercially-available test suites. He specified the lan­
guage elements that were not tested to a software engineer, who

II

II

II

II

II

II

II
'

II

II

II

II

II

II

II

II

II

II

II
II

II

II
II
II
II

II

II

II

II

II
II
II

II

II
II

TCAT/C User's Guide

completed the test suite. Overall, the compiler was fully tested in six
weeks, rather than the expected one year.

Minimal Test Set

TCAT can be used to develop the minimal covering test suite for a system.
It is useful for a tester to have the smallest test suite that will exercise all
the logic of a system, since test sets require much time and resource to
run.

We recommend the use of SMARTS, CAPBAK, and EXDIFF to automate
test suite execution, evaluation and analysis steps. These tools can signifi­
cantly reduce the cost of test suite execution and analysis. TCAT can be
used to identify and eliminate redundant test cases. With the coverage
reports described in this manual, it is possible to determine how much
each new test case adds to the total coverage of a test suite.

If a new test adds under a certain specified coverage threshold, say five
percent, for example, it might be reasonable to discard it. Having done so,
the tester will end up with a better and easier-to-run test suite.

Assessment of Progress

Coverage analysis with TCAT can be valuable to important SQA deci­
sions, such as when to ship a product or how much further product test­
ing is needed. A coverage value of Cl > 85% has been the traditional
threshold for proper coverage. Generally, one should stop improving test
coverage when the marginal cost of adding a new test is greater than the
cost to visually and rigorously inspect the associated code passage. Other
considerations you may weigh are the added test cost and the risk of
defects.

Coverage analysis data is important for reliability modeling and predict­
ing error rates. By tracking error rates and number of errors discovered as
a function of overall test effort it is possible to predict eventual product
latent defect rates. We encourage SQA managers to keep careful records
of errors found and corresponding coverage values.

11

CHAPTER 1: TCAT Overview II
II

II

II

II

II

II

II

II

II

II

II
II

II

II

II
12 II

·II
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

CHAPTER 2

Quick Start
This tutorial chapter gives a quick demonstration of TCAT functions.

2.1 Recommendations

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This will give you a feel for how the
system is organized and will permit you to perform coverage analysis
testing.

For best results, follow the instructions very carefully.When you have
completed this chapter, you should be familiar with the main activities
involved in using TCAT, including instrumenting, compiling, linking and
running the target program, and finally, looking at resulting coverage
reports.

If you are a first-time TCAT user, this chapter is best used if you make ref­
erence to Chapter 3 for an overview of what is happening at each stage
and to Chapter 4 for in-depth operational instructions. If you are an inter­
mediate user, this chapter is best used if you make reference only to those
menu definitions which need further explanation (see Chapter 4 and
Chapter 5 for further information).

13

CHAPTER 2: Quick Start

14

2.1.1 STEP 1: Starting Up TCAT

Before you begin, make sure you are in the X Window System running a
window manager (e.g. mwm, olwm, etc.) You should start with the screen
organized in a particular way, as shown in Figure 6.

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command xterm & from an existing window.
The xterm window will serve as the TCAT invocation window.

Move the window to the upper left of the screen. Go to the $SR/demos/cov­
erage/C/tcat. C directory. The demos directory is supplied with the product
and it consists of an example C program, example.c.

This application allows you to select from several types of foods. By
selecting various foods, you are actually exercising various logical
branches (or segments) of the example program. The goal is to achieve
the highest amount of Cl (logical branch) coverage possible for this pro­
gram through your input. The more selections you make, the higher the
coverage.

II

II

II

II
II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

TCAT/C User's Guide

When initiating this quick start session, your display should look like
this:

- '_,,
l•'"'l'.! ;iJ ,·:, ... 1. , ,'-"'P• '"I , c,j no:.e ·1::, . ..,....,, , VI'"!"'~•· •::,su:1 .. ,,.
[s,.e,ici!:'.:J ·f~~,.·::·,,....iole:/ccr'efq.tt~\-~. · f

- - '

FIGURE 6 Setting Up the Display (Initial Condition)

15

--
CHAPTER 2: Quick Start

16

2.1.2 STEP 2: Invoking TCAT

Now, invoke TCAT.

1. Position the mouse pointer, so that it is located in the invocation win­
dow.

2. Activate it by clicking the mouse pointer on it. This window becomes
the main control window. During your session, all status messages
and warnings are displayed in this window.

3. To invoke TCAT, type in

Xtcat

Xtcat is the GUI-version of TCAT. See Chapter 8 for command line
instructions.

4. When you type in this command, the TCAT invocation window pops
up.

5. Move the TCAT invocation window to the upper right of the screen.
You can move a window by clicking on its title bar and dragging it.

6. If you want to start over, you can terminate TCAT from the TCAT
invocation window, by clicking on the System pull-down menu and
selecting Exit.

II

II
II

II

II

II

II

II

II
II
II
II

II

II

II

I
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

TCAT/C User's Guide

When invoking TCAT, your display should look like this:

l~er-1,d 3,./.; .~.';:'lh..-:,~ .. ; cd l-r,,;;e-1::!,,.:,nwl··~.....,..,.~- · uit°""'°·
(,lll,ef"\:~ 3,S; ,'hc,,,,(,.'l::'•'oy•lll</c'.'1'<ff'd¥ 1tc3" .'~;
>:teat J"r e.:. , 11 .,:,t.''!J
!'") ~19,..• :"13'-S<:. Sofh¥ t Ft!,t~d,. In,;.
Licer¢:!C l-0 ~oft,,.;r!!- :::t'-""·tlo !- ,._.
0

FIGURE 7 Invoking TCAT

~-:: .. ~~· ,,... j
I

I.~ E=•· I

..; ""'''"' ·1

17

CHAPTER 2: Quick Start

18

2.1.3 STEP 3: Opening the Instrument Window

With the Instrument window, TCATcan automatically instrument the
example.c program. TCAT modifies the source program so that special
markers are positioned at every segment in each program module. To
invoke:

1. Click on the TCAT invocation window's Instrument button.

2. The Instrument window pops up.

3. Use the mouse to drag the window below the TCAT invocation win­
dow.

II

II
II

II

II
II

II

II

II

II
II

II

II

II
II

I
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

TCAT/C User's Guide

After initializing the Instrument window, your display should look like
this:

(111er1:.:, ; .; ; Ir~ :::•hJel:" fel ~ cd /1-.c..e'l: 11~.-u5]:,,o-,e' ~ t:,t,Qe-.,:
il...,...ri:.-. '.5] /hc·-'l:1 .. ~J·lecll"~-'9e'·qt,·o,-,.r:,:: (t rcJ •
I teat ~e, 8 • .?. 1'•·':\ ':14'
:ic,(~1q!;t l 'n'•-'::1,1 :.OfnYeFe:e¥ th
lr1r,.r,~~ •o ,o:,.,,...e FneNC'>]n(. ,,

.,

•1....il

l,r<hu,,,:r,I I

I '""' I
11 -,~e I

Pr~,...-...,;~1~ ~ fre,proce:!or outp,.,t ~uf f1: \ .1 _

Freprou~ror co-.i,,1d: I~:. ·P_ Freproce~~or oPt 1or~ : ~

[r ·.truitntnr·c~: j 1: '

(r.: !n.a ,..,tor ,»l.10.,.. :

:J C.., r,c;t 1r:~r,,_.t t.....:: lion1: 1n hi,: I [{!NSmJ.·~

CJ ~c1f1J"'4 1-f1le.._lert9th; c=:­
O ':,p,t(1fJM1·l.._r1,iroct1onn,a,ioe!er-sth: c=----

FIGURE 8 Initializing the Instrument Window

19

CHAPTER 2: Quick Start

20

2.1.4 STEP 4: Choosing a Target Program

To instrument the supplied example program, you must first select the
source file name:

1. Click on the File pull-down menu.

2. Select the Set File Name option.

3. A file selection dialog box pops up.

4. To select the file, do one of three things:

• Double click on example.c in the File selection window.

• Highlight example.c in the File selection window or type in the
file name in the Selection entry box and click on OK, or

• Highlight or type in example.c and press the <ENTER> key.

II

II

II
II
II
II

II

II

II

II

II

II

II

II
II
II

II

II

II

II

II

II
II
II

II

II

II

II

II
II

II
II
I
II

TCAT/C User's Guide

When selecting a target program, your display should look like the one
below:

(~....., 1.:1 : ~: ih•~ 1:::-l.ive~ttl c,; -1.;...,. :: . .,.,._~1..·,,, . ..,. .. ~.,.. :c,t !lnic
C,_ I(, ":5l ··t.o-.e, 1::.,_.,J,l::;,)',,•tn~-'.: ,t -~v.: ~:ot
t:e'.\/er3 ,: 1,,:E,").1l
·I [GP,Tl9'1t l'H .. ·~. Vtt••~r~ P..t••;r-,:h. :re.

L1-er-•,d to ,oo, • .,~ _._tv,t Ir-..
u

• ,I

FIGURE 9 Selecting a Target Program

- 'tu• •,.-. { .:: · lJ

ii ,..,,., r
~ •• ,,,. Iii·

;n: t q1re<1.tf1lt c,..r.!,

CtS~(lf QOt&)Ut ~-Jff l ; l , J

;<: t l~()<" ~tlot'\.I: ~

21

CHAPTER 2: Quick Start

2.1.5

22

STEP 5: Running the Preprocessor

Before passing the application to the instrumentor, you must first prepro­
cess it.

1. Click on the Action pull-down menu.

2. Select Preprocess.

3. As TCAT preprocesses the source file, TCAT's windows will appear
stippled, the mouse pointer changes into a wristwatch symbol and
the options gray out. This signifies a time-out period, in which you
are unable to select any options until TCAT finishes preprocessing.

4. Preprocessing creates an output file named example.i.

5. When the mouse pointer symbol returns, preprocessing is complete.

NOTE: If the Preprocessing button in the upper-left corner of the Instru­
ment window is already toggled to On, you may skip this step and pro­
ceed to Step 6.

II

II

II

II

II
II

II

II

II

II

II

II

II
II
II
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II
II

II
II

II

TCAT/C User's Guide

When preprocessing your program, your display should like this:

ldO!t .. I~~: lo-..::• li.,,:p,< •· ~j ,t'-"'~ I: _.._l:...U·~~- I.a: .1-:o..:,
lai--ert~,. 35: ~-t~ :~,.,...,..,iJ:/cc·t &:-e '.~4'.-~! ~tc.,t

:~~
4
~,.:.:-1~,~-tq~:~.·j~t ... !lf~ F--,.,,,t•,. h .

'LICtn:,cl :, 5'::ft .. !11"' P,~e¥:"l :re.
E.tNtim: 'cc_::, ton,t/\:._...,_aJ: cc·1·t~-,'t,:4::1e1,c: ~·4"'Pl~.c ~,.,.12..,an
jD"'Js,,=,,.9'!;tc•ti()e•···-'e•,."'4-'1•.1

I

FIGURE 10 Preprocessing Your Program

... ,a

frtP.-OU·!~lf":, ~ r'rtFf?-'.:e!~or o,.•PUt •1;11:; ~

0,~roce<::<;or ~and: l e~ "'rtFrJt~~O< oi:•.10,,: ~

Jn:tr..-1tc, COO'-"'~nd: ~

lnur.-1to- opt1~:

:J 00 rmt r•,c.oc,in~e I!' it~ ,eyr,,v,-j

:J r«nottr'l~tr...-itf.....:t1,n::r-f1i,: ~ TP.J.t,

:J 'Spec:f~ u:,:1- fil t naio.t leo<;it ri : I __ !
0 ~ J fu '""-1- h,nctlor, narie length : c==;

23

•

CHAPTER 2: Quick Start

2.1.6

24

STEP 6: Instrumenting the Application

After preprocessing, the application is ready for instrumentation. Instru­
mentation parses the candidate source code, looking for logical branches,
or segments. When one is discovered, the instrumentor inserts a function
call (a special marker) in the instrumented version of the source code.

Instrumentation produces the following files:

• basename.i.c an instrumented version of your "C" program, base-
name.

• basename.i.A--a Reference Listing.

• basename.i.5--an Instrumented Statistics file.

• basename.i.L--a Segment Count Listing file.

• modulename.dig--a Directed Graph Listing file. Each module
should have its own.dig file.

• basename.i.E--an Error Listing file.

Instrumenting your application will not change its functionality. When it
is compiled, linked and executed, the instrumented application will
behave as it normally does, except it will write coverage data to a trace
file .

1. Click on the Action pull-down menu.

2. Select Instrument.

3. Like the preprocessing stage, the mouse pointer ch'anges into a wrist­
watch symbol and the options gray out.

4. When the mouse pointer returns, the following message should
appear in the invocation window:
---> TCAT analysis of ' example ' complete , no errors . <--­

At this point, instrumentation is complete.

5. Close the Instrument window by clicking on the File pull-down
menu and selecting Exit.

II

•
II

II

•
II

II

II

II

II

II

II

II
II
II
I
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

TCAT/C User's Guide

After instrumenting your program, your display should like this:

-1)--------~---------~+-,
1.-.,• 1:~ :c: .t,-.·::, :~t": _j ,t-.i-.,·1:-J..dl;.•._,.,,_.~_ t,.4· jaoc~
[_,.~1:<11 :" '.i: 1+0¥.';:_.,,-.,-,l!acc·--r- t:a:·~..,: i;t(at
,,.;r J~ 3,2 1v:J.·~•·

1•c) ~.lfi".J 1~r,t J-.~1-'-J. ,..,., .. _.,_ F- -.. ;,,n,, I r ,
·"'"'!ed t, ";,c;t,.Ye P.e~ev~r, !re ,
E eCJUrY.: 'cc .o ,~,o,.e'l:,_. ... al:."cc·~ra-:.e- tN'.'~i,,;s.e ...-rl e.c hc,e-'11,.,¥1

,,..,,1 ,ov,-,,-;p-·•.c.;,t/~" ,:, , ,.e,"Ple.1·
IE ec11t:rr:,: ·~c .;, ,h,;,,,,e/J::-..,al!/cc"~ &.~ · lcovJ;,,,._ :,-, iiOf] ., . c ;,_M l~/,-.i1,i
l:oal !· :~r,~/tc ~t /oeh)!.'e , a-.p:e , 1 : :c .·Mrie ·1::.·-u,l! ·c,'-'l!'f"a'le -'t cat· de• o i ,·" ~
-,t- ,1 '

1or: h•.tn,,....,trr-e1tld-ly: ,•.., ~-' tc, ~-t. (!O,':?f."?'I •
l·c· :)P.,T l~~t 19)•<•J :..:,ih. ,·e Feie¥ch. !re. M.L ~lf* Vi 1'£~EP:\'ED.

""··~- .::: •• ,,,.,,1 __ ,: , ,,,._ . ;!, <l.,..,.. __ , ... _, .,. .•
..,:1,l'i~: (.,.,J , '.1:,,..,;., .~.,-::-1? ~-x.,-.. 1·":t•it P, C.tr!;ctd .

T:111 , ~>.•!I'. c' ·'! .!lo;>],i, C)•r< e·e re e,·r«"i. ·-

FIGURE 11 Instrumenting Your Program

. ,t I ~ -~ I • • JI

,,,, I
,.~

I ~ !r-t tr~,,

~ f-..-:U-!' (ii

' ~;:;:;:, l. 1·
~·

lf\" " ~...,,. .- ·~

Pr'!l"f"C<'!'~:!r-; -(N-~ I
P..-e,: ,·oc,...!, .. ·:-o'I0"·~,1 ; ~

J~tn-1to·cx-a!Jlid: r:­

l~t,.-.-,~c· OPtl,:,-t,;:

':I :.: .-.ot f'!;;o,;f 1:e e ·1t 4. ·~:l'-C'j

:J :..: n:-.t 1nnr'-""'!-ntlur,,:t1(>(1! 1r,f 1le: [~lf'U.ln~

::J SF'!'c1f ":,1u1-f1ler,aoele·.-,;~n: ~

:J Sp'!'cif'.:""·1-functtorn-leneith: (:=-

,.n

25

CHAPTER 2: Quick Start

26

2.1.7 STEP 7: Opening the Execute Window

Once instrumentation is done, you need to compile the instrumented ver­
sion of your program, link the program's object code to TCAT /C's object
modules, or runtime routines, and run the program. This can all be done
with the Execute window.

To invoke the Execute window:

1. Click on the TCAT invocation window's Execute button.

2. The Execute window pops up.

3. Use the mouse to drag the window below the TCAT invocation win­
dow.

II

II

II

II

•
II

II

II

II

II

II

II

II

• •
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II
II

TCAT/C User's Guide

After initializing the Execute window, your display should look like this:

l••o!'f1c.a ;..tJ -~-·12.11~·el . ~d ,r.,..e,L1Mr-~•lilr.1>"-er.- tc,.,•,~
l~1c-,:, >'.il -~-'l'.:,~h./c;,erll':,';'/tc~t/de·. ~ ~tc-4•
>t·&•\Jer8.::'.·:1,,,:,:,:1,;:
,_, Ccw· 1,J1t 199-1-9-: . Soot-.- ~e,e¥d, Ir:.
~ic«.•<!'d ,.., '-Ott.WM'" ~~•.e.arch]r,c.
i; -:u•,.,..: ·cc -P ~.'!2,0l$'Jualucov..,..-·,~•t'de<>o'l.>'e·-le.c- 1J-.:- 11::,,,.,y,
.,,1 .. ·c-o-.,.-,..~ .. tc-<1t ... Je,,,;,,.-e,a,,rle.,·
[.. :,r1r,,;; ·,:,, -f· ~-1:.:.o .. !mu~J•:ro,.era~--1c~t:.,....o•/e--l,._r .,.._-1:.-,
... ,l.. ·=-..~ 49:.:~c-,.•_. "d,,,,,,;,~.1,:-,<lflJ'l~ ., ,1. '''°"'e,i :-·..,,,~~lil~-P:,« 'tc./1",dewr. . .,._...,
Le,:
i:: ln<:ir.-ritor.>l11<1ly.;n. '!e• S.: fvt }ll', ,; .-;:,;4.
1:• l(lf)'.¥1<1h• 199-,.._94 !:,o• ·WMe ~•,e,,n~- !~:. ~L. Fj(,HTS P.(S(~•/[D,

~~·~,-1?._,.,111[~,"o:,=-··...---&I de-,,.,. ~..::le.:
~.&·HI·(,; (ond1t10,.i,I <'·t'f'tr.~,c· ~-~:e:;1r,9 ,-.t ..roce; ,eJ,
- - - TL><l anal'-1'1! n, e-MOPI~ c:;•;.l~U. r: ~~ceir•.

FIGURE 12 Initializing the Execute Window

27

CHAPTER 2: Quick Start

28

2.1.8 STEP 8: Compiling

To compile the instrumented version of the example.c program:

1. Click on the Action pull-down menu.

2. Select Compile.

3. The mouse pointer changes into a wristwatch symbol and the options
gray out until instrumentation is complete.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

TCATIC User's Guide

When compiling the instrumented program, your display should look
like this:

1(.-nc:a 30 /ho~1 ::.·,1·;epf c-l cd ·1-.·1~1~l. ,;c..-er"'c""·tcotf~., •.

l

[-ri-:, ""i)Jh<\~"·'L'··~~r.',~l,.'to- ...--,tc.,i•,det,,o• , :1tc~1
;:t~s\t \/~, ;.: · l ·:f ;J.
ici Co~yr: : rt l':1',t<,-,4 . S.:-lt. ,re r..,.!e.wrh. Inc.

~'.~~~~~,t ;/~~·e·~.;;:e[·;~j~,en--,- ·=·-~, .. ai·,: :e.· :hcr ... ,.,,~,

l
u-:,J-:.,::-·•"rJ~:tc~t!~~:;ce-,,..i,le .,·

~~~~~:~;a~~t~:t -~:'~: -~:·:;.,~:~:~" ~;=\t::.~;·;:.;;:~: :;c,t :;~:: '.-1-~':;; 
1:: ;' lnc t r,~• ntO!'• •n!l'c<:"r. '-"r 8.::' for· Slfl Cl".':):!..').: , 
lie: Cc< _«·,jt l':!~·Oi ;dt ,..., fw<;e;irct. Inc, ft.I.. Pie-Ht; :;,:::~~-EL 

.i~~i1i:1~i:l~~:;'.l~::~~:::!:::=: 
e -~l~. 1.·" . Jir,,o 44 '::.,,rn1nq:•-.a· eooen·no'. r~ 

ID 

- 11 ,. 

(OfOP1)erCWi'ar-d:~(°"p1\tt-opt1,;.e: 

~ Lin~eropt 1on:-: 

!•ah !11~ef1ll',-: 

F-=1~l1c.at10"l~t.!: 

FIGURE 13 Compiling the Instrumented Program 

29 



CHAPTER 2: Quick Start 

30 

2.1.9 STEP 9: Choosing a Runtime Version 

In this step, you need to specify the SR-supplied runtime object module 
you will use to link with your instrumented application's object modules. 

SR supplies three runtime object modules: 

• crunO.o quiet runtime (see the note in STEP 11) 

• crunl.o 

• cruna.o 

Each runtime object module can change the behavior and the perfor­
mance of your application. For the purpose of this demonstration, how­
ever, use crunl.o. To select it: 

1. Click on the File pull-down menu. 

2. Select the Set Runtime Object Module option. 

3. A file selection dialog box pops up. 

4. The three runtime objects modules should be listed in the Files selec­
tion window. 

5. Select crunl .o by double-clicking the mouse button on it and then 
clicking on OK. You can also highlight or type in the file name then 
click on OK or press the <ENTER> key. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 
II 

-
II 
II 

II 

II 
II 

II 

II 
II 

II 

II 

II 

II 

II 

FIGURE 14 

TCATIC User's Guide 

When selecting a runtime object module, your display should look like 
this: 

,_,..,ri.,.,_. .~ • J,...-p,~J ; •-..,.J; .. •···•1 ,..,..,..,..,,~t·a..-.. .. 
a .. ~, h~ >'.i . ~ ·- ~l. ·~~c,,t ., .. · .. or--; >'.s s· 1·,:•··-- ; -'·., 

1 •, .... ..,,, ....... ., , • •• ,, -1 .. ]t • 
• , .•..•• , ...... .f,i,_, 
·, -C ·,,,..,. ·1.' """'u), .. ,,.,e,-4,_. ' Cl! 'J"·?' ,. ,-le,c -~-\~ -

' ··-~·-'·-·-···· ,.--·1:.: ..... , .......... ,. ... ·-·· .,_ .• •-4"f'l-. f,·- 1:.: .. -
~--~;.·, -1~ .• -.; hc,,,,:-.l~ ,.i,,.,,:, ·:v~,._~-tut·!~: •. ,... , 

~ ... c... .,.,. . '. ~ .. •: - .. 
1;; ·"-I Y.•; .. ..,~ =¥:u,, h .. .._ :::•·: •[:£< .. :c. 

, - 1_ .. ._, .. 1 --~ ... --.- -··--1-. 
-··-:·,:: (, .. ;,· .. _, ·- t "~:-""' ;...~, ,., ... .... ,. :~•--""· 

0
'flltn.l,.'i' • / •-:• <c-«::. ·•- •o,..-••,.:. •­

f o-, .,,.,.:' • .. 
•-• .. !~., .< li<i C~; _.,.i,,,; ;lt\tooe,,t ,.,._ •O.•,t,J 

.• ••~, •• 1., , i ,Ja •I": .._,,,..,..ln<.: '.I>•-,.,• ~ ,.,,,.-:1 

Selecting a Runtime Object Module 

31 



CHAPTER 2: Quick Start 

2.1.10 

32 

STEP 10: Linking the Application 

Now, you are going to link the runtime object module you just selected 
with the instrumented application's object modules. Linking will create 
an executable. What you're doing is linking the instructions in the exam­
ple program to SR's object modules, which records program behavior 
during execution. 

To link: 

1. Click on Action pull-down menu. 

2. Select the Link option. 

3. The mouse pointer will change into a wristwatch symbol and the 
options gray out until linking is complete. 

II 
II 
II 

I 
II 
II 
II 

I 
II 

II 

II 
II 

II 
II 

II 

II 

II 



·II 
II 
II 

II 
II 

II 
II 

• 
II 
II 

II 

I 
II 
II 

II 

II 

FIGURE 15 

TCAT/C User's Guide 

When linking the runtime object module to the program's object modules, 
your display should look like this: 

Linking Object Modules 

33 



CHAPTER 2: Quick Start 

2.1.11 

34 

STEP 11: Running the Application - Part 1 

During instrumentation, TCAT inserted function calls at each logical 
branch it found. In order to later see what the Cl coverage is, you must 
run the application. 

This application is designed to ask you which type of food in the San 
Francisco, CA area you would like to eat. By selecting particular types of 
food, you are actually exercising program segments. The more times you 
run the application and the more types of food you select during each 
run, the more segments you will hit. This information is then written to a 
trace file . 

To run the application: 

1. Click on Action pull-down menu. 

2. Select the Run application option. 

3. The mouse pointer will change into a wristwatch symbol and the 
options will gray out. 

4. The application will then prompt you, 
Name of tracefile: 

[ default is Trace. trc] 

Type in quick. trc and then press the <ENTER> key. 

5. The invocation window will prompt you, 
Trace descriptor: 

Activate the window, type in quick start test, and then press 
the <ENTER> key. 

Here, the application is asking you to put in a comment about the 
test. This is particularly useful when you are planning on running 
several test. For smaller tests, however, it is quickest just to press the 
<ENTER> key, without typing anything. 

Here the application is asking you what trace file name you want 
your information saved to. Although it is not required, it is important 
that you set the file to the suffix .trc, so you can easily recognize the 
file as a unique trace file. 

NOTE: If you had chosen the quiet runtime crunO.o, your test run infor­
mation would have automatically defaulted to the file Trace.trc. You 
would have not been prompted with the questions in 4 and 5. 

II 

II 
II 

II 
II 

II 
II 

1111 

• -
II 
I 
II 
II 

II 
II 

II 



II 

II 
II 

II 
II 
II 
II 

II 
II 
II 
II 

• 
II 

II 
II 

II 

• 

TCAT/C User's Guide 

When naming the trace file, your display should look like this: 

:c : ]',! '. r.--.tor .I<,lu;,, .,ff E-.: i~r W I 'l•·/:-€..-;.: . 
, , c~,,,,,,;,1 t'l"<-Q.: =,,, _.,,,. ~.-,·e-¥c.1. l,.;. '4.i. l'J-.,;r= F!Ex:•~u . 

. t.;•e .·L""""-'ll.cn,·~,,,•-t.c~t.·.-_, p d~l-•. 
~NI~· : ,:,:,-.j, • 1«>al ,,r,•:,,,y ~.-~•:•1r>11 mt troc•!·t~. 
-- T:-" ,u10,.·. : n • · ··:ioc>l~ au).-• • . -,:,~tore. • •• 
f e-'.·J•1,~: ·-: • ·C • ,I,. ' 

·~ <r•<le .•• • •. ltt~ ~I.:: ..,ynu") : H,t~~ent .... ;i rt<r:r-,:: 
·.- 8~et,. , .,·. lor.- J4•: "!<°nlr<l: st3t••en• ,..,. ,..,,,, • • 

{ t -:utin:, : ·, .• ·, d. ~~·- • . , . , .'l-~ 1€ elw. L',,·Proo.JC'. 1,t,.'~.1.c 
l •cc.•,,,~: ·8,oo.," 

·,.,,~ '"~ n,,.....: .,._, _1 n,- , 1.-.·. 
"r<>:•d•;-cr,P't,.. : tr!:•. t rcl 

FIGURE 16 Naming the Trace File 

i 

• I 

I 
•.,. 

~ 
~ c::jl 

35 



CHAPTER 2: Quick Start 

2.1.12 

36 

STEP 12: Running the Application - Part 2 

After specifying the trace file where test run information will be written 
to, follow these steps: 

1. After specifying the trace file name and pressing the <ENTER> key, 
the example.c program should appear in the invocation window. It 
asks you, 
•what type of food would you like? '' 

2. In order to get the most coverage from this run, type in 
1 2 3 4 5 6 7 8 

for the eight types of food listed. 

3. Press <ENTER>. 

4. Eight restaurants that reflect the eight types of food you selected will 
be displayed. 

5. The following message will prompt you, 
• Do you want to run it again? '' 

During an ordinary testing situations, you would normally run the 
application a couple of times, selecting various combinations of food 
types. For now, however, just type inn for no. You'll soon have plenty 
of opportunities to execute several runs of your own application! 

6. The wristwatch symbol will change to the familiar pointer symbol. 

7. Close the Execute window by clicking on the File pull-down menu 
and selecting Exit. 

II 
II 
II 

II 
II 
II 
II 

II 
II 
II 
II 
I 
II 
II 
II 
II 

• 



II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 

TCAT/C User's Guide 

When running the application, your display should look like this: 

.:; 

FIGURE 17 

-·,:, '... .., . "'" _.,"' -, .......... .,,~·. 
'.,J .. ,., o .. I r -•• <:"<'.rt• --,..-, c -

,~_--"""':_," :,, ....... _,.,,,-_ -·~•t ,~~ .• ,,,~1 
•, .. ~ .••.• - !1•• H,; _.,,,,,, ,,,,._,, ,.,.,, ,,, • • 1 1~ ::.~:~~: ·:~ _; ,_ .. , '·'·" .......... i;- . . .. _ .. _f, u,.,, ... ht,,·,..-,.· 

I 
IS/)P ..... [r<'':,EWW Ff) l .. f'><Nt WI!{ 

lot,)" •.,,... .• 1 __ .j ...... 1J ~~ l1·~· 

_., ... ,., 
, ....... ~ - Iv..- :1-!t 

;;'.;:: ,,.,,. 
l>':i,,ot;• 

y,.+...,: -~,..-•"<I 
( -~~·,,,_ .. , ... 1. 

Running the Application 

r ' ~j !· · 

: 

37 



CHAPTER 2: Quick Start 

2.1.13 

38 

STEP 13: Opening the Analyze Window 

All the information from the run of the application is stored in the trace 
file. From the trace file, coverage reports are produced. The Analyze win­
dow allows you look at several reports, which tell you which segments 
have or have not been hit. 

Here's how to open the Analyze window: 

1. Click on TCAT invocation window's Analyze button. 

2. The Analyze window pops up. 

3. Use the mouse to drag the window below the TCAT invocation win­
dow. 

II 
II 
II 
II 
II 

II 
II 
II 

• 
II 

II 
II 
II 
II 

II 
II 

II 



II 
II 
II 

II 
II 

II 
II 
II 
II 

II 

II 
II 
II 

II 

II 

II 

II 

FIGURE 18 

TCATIC User's Guide 

After initializing the Analyze window, your display should look like this: 

..... ,.. ,.1, 
,,..,>I "J ··-~·.-d 
(or,--·:.,, .. ,,,1° 

;,.... It, ~,,_,.. :3' ,_,, •• • , , 
""''*·"!l•-.t:!".:,,._.,.i,,t ::,,e.,,.,. 
,Jr~,r Co·q1a,>• ·.a;,-,,• 
,.,i..,, !~>-·-· 
:., .... o)' ,, ~~-l " -" •" i~ ~ c;.-,· 
~-.... & ~..,, .. ~.. !l~, u-.c,,.-: 
.. ,1 .... ~,,,- .• ,. :;,1.-1 

fl,n\• brW<:""" H~ 9>f••i,;I 

[,,,'1'-'••' 1 1 COi it"','-', 

<_.'.c ,.,,_. 

• • , .... 1.,, ..• , •.• 

.J •w 

.J -t,f,t 

Initializing the Analyze Window 

ii
r::1 .•.•...•... -:-.. 

_«It• ~ID 

, ... ,_. · 1 
, , ..•. I 
~ I 

:J tll~:r~·,.->.t;.,i,•d•: r-=­
:J Gener~t~li,•o••.-,.-,.,•-:1 r:-­

:J wr,e,-~t ~ 11• • ~- •1•rt11Y1' .-.:,• lflC.l~-.;i 1<, rer,y • 

3g 



·------CHAPTER 2: Quick Start 

2.1.14 

40 

STEP 14: Choosing a Trace File 

Before looking at coverage reports, you must first select the trace file you 
specified when running the application, quick.trc. Here's how: 

1. Click on the File pull-down menu. 

2. Select Set Input Trace File Name. 

3. A file selection dialog box pops up. 

4. The quick. trc file should be listed in the Files selection window. 

5. Select it by double clicking the mouse button on it and then clicking 
on OK. You can also highlight or type in the file name then click on 
OK or press the <ENTER> key. 

II 
II 
II 

II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 

• 
II 



II 
II 

II 

II 

II 

II 
II 

II 
II 

-
II 

II 

II 

II 

II 

• 
II 

FIGURE 19 

TCAT/C User's Guide 

When selecting a trace file name, your display should look like this: 

1-.,, •• 
1_1u-•• o D,,,., 

l t ,:c.· 
holM.~ 

.. ,.y ' .• 
...... ,, .,-., ...... ,t 
I • • - •1 •I ~••,!~ 

I
'"""' 

~-:;•' :\\':';· ~tc·•,. ••I \:; ~:~:: ;<;,.:-~et; 
'·"""" '•·•:,,r"r ·~·- ,-,• ~~;-'":IL ,........ :·;• .-· :;•. ,.,.. 
£,.....-, [',, 1;1 !':<.'-•" 1,r,I lj, ~ :l-.i•. Ost'"" 

~:~ ~ ':."'~:.. \~·: ~=~ ~;~-;~; 
;;.,,,_ h--~_.,. uc ~,i•tu.l ;~ . ....-;! 

"""" .. ,1 , .. ··~·,· 

Selecting a Trace File Name 

.J 01, ...-d 

:;J _..,.CI 

.J .....,...,.., 

e-:;!,, ..... 

~" I 

E •··~':'."~ 

~ ~ ~ 
I 

41 



CHAPTER 2: Quick Start 

2.1.15 

42 

STEP 15: Choosing Coverage Reports 

From the Analyze window, you can look at several different kinds of cov­
erage reports. In general, the Cumulative, Not Hit, and Reference List­
ing reports are the most frequently looked at coverage reports. 

The Cumulative report lists each module by name and indicates the num­
ber of segments. It tells you how many times each module was invoked, 
how many times its segments were hit, and its resulting Cl coverage. 

The Not Hit report shows which segments were not hit. It gives you the 
module name and identification number for each segment not hit in the 
current test. 

To identify the actual code not executed and plan new test cases, you can 
look up the segment in the Reference Listing report. 

1. To select these three reports, simply click on the accompanying check 
boxes. 

2. In the case of the Reference Listing report, a file selection dialog box 
pops up when you click on the check button. 

3. A file named example.i.X should be listed in the Files selection win­
dow. This file was created during instrumentation. (Please see STEP 6 
for a full explanation.) 

4. Select it by double clicking the mouse button on it and then clicking 
on OK. You can also highlight or type in the file name, then click on 
OK or press the <ENTER> key. 

II 

II 
II 

II 
II 

II 
II 

II 
II 
II 

II 

-
II 

II 

II 
II 

II 



II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 

II 

II 

II 

_, 

FIGURE 20 

TCAT/C User's Guide 

When selecting the reference listing file, your display should look like 
this: 

":'.~~~:;• <;.. lu'>v , ,!• 
ti,•·.• .,.. .. ic,.,...- .. d 
._. ... ,. • 1 .... -u·••I .,,.1l• 

I:~1;; 
lt>loY 
J)<., ... t 

,,,., ,,,:,,. ,-. E-,-• .. ;_,._, •• 

...,-.s- .: .,,. i>t:'.4 .. il'•t ~;? •t;,•,t ¥.<=-~*-= 
-'(~,Y••· ·y,,.,. ·~- _, ••• l '"51 
, .. -i.,,- :. • .:·--- - ·· - •• , ... _, 
:: . .....-; :,,.;· »o;~.....-:..tl'-1:1-,• ;,.;-,s,,; 
M•t•, ,:,....,. l U • l.-..bll''. ;'i·'.•'~'i 
,..,.,.,.._._ . .,,. ll·•-1 ,,:. , ,;.. 
··,,._- ·-,:n..,. •4f ;t,,•.tuJ ~.>:,.,4 

: ..... ., ,,,, ... .,,.O')> 

~~r·:·:., ... ~ 
I __ J ~ 
~ ~ 

Selecting the Reference Listing File 

43 



CHAPTER 2: Quick Start 

2.1.16 

44 

STEP 16: Viewing the Coverage Reports 

To look at the Cumulative, Not Hit, and Reference Listing reports: 

1. Click on the Action pull-down menu. 

2. Select Run Coverage Analyzer. 

3. The mouse pointer changes into a wristwatch symbol and the options 
gray while TCAT reads in the trace file and the reference listing to cre­
ate a report format you can understand. 

During this period, the following message appears in the invocation 
window: 
Processing date from trace file : quick . t rc ] . .. 

When the information is read in, the mouse pointer returns. 

4. Click on the Action pull-down menu and select View Report. 

5. A Report window pops up. It first lists a selection status of all the 
reports.For this demonstration, only three (the ones selected) of the 
nine possible reports were selected. After this status listing, it con­
tains the Cumulative report, the Not Hit report, and the Reference 
Listing. 

6. Move the window below the invocation window. 

7. Use the scroll bars to move side/side and up / down. 

8. When finished studying the reports, click on the Action pull-down 
menu and select Exit. 

II 
II 
II 

II 
II 
II 
II 
II 
II 

II 

II 
II 
II 

II 
II 

II 

II 



II 
II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

I 
II 

II 

When looking at coverage reports, your display should look like this: 

'•···· h, .... , .. 

.,~, ;! .. ;,-.. :" ,.., ... , ! 

.. , .... di,~,- p •. (N• ,,t -•• • .,. .... , 
·At->' ~,.1.,,.,,,1 --:,; Ci-n•. 
, ... -..~ ! ':' ; 1-.-
t ,,- :,. ,-~ i, • . ,,. • ..,, 1,,: .1 ..... ,, 
Ch,,.,,..;..,.,.,.,. 1u;~: 
.. , .,.....~,-,.,...... J' ,,.-1 
~ ""' 1,,t ,.. 4~' -1 .. - ,, .... 

k- ,. . ., ...-, t r •,r 1· ..,,,~- -
£ .. . , ,,. .•. ,. •• ,,..~ :. - ... 1,- ..... .,,. tu•,:i.-: '1,.,._., 
:~ _.,_,_.J t-•-,<),e.·Ul\ •.-,;,t·--•~ ... 11 • ;II' 
:0-e•:(,:--,'9'"..-)i'-!-. [Vt,"",.,tc•~1 1N]- ll!•'i-1 

C,fy:/>" l•• >I t>,-'"''_t,.,t .. -.! ,, I,._, 

'..ii 

''t>:"""" d1· i ,, .. lr,c• ·il-: r 'ho;o,e.· 1~ o.y,.al\-c•--a.,. ""' ._,,....,_, ·lr.i,ce_ •,. 
) .. 
:-

...e1 .. -,.,: ,',{' ~- ··· ~-,..,,.,:.. - l,1>9:: 

~"""' ru~: ) 
1<"'-'"'·: Of,!,)",.,., .., •. , CV-. G. '..' F;, <.JJ!<~I 11-1' .,_, 
•c- ,:ccv,..,,• l'l:9o -<it; ''.tt,..,, i., • .,..,.,_ 1r,c. 
-------- --- , -- -- -~----------··· ·--········ 

' 
I I -.,(• "->.' 
I~~;- ~ ... -~ I""·•). ,,.._t, (J: "•· 0, -role '.l:" 

FIGURE 21 Looking at Coverage Reports 

.J ~, .• te .t. 

;:i_ ,.,.,_._,;_q-.., 

.J ~,-· ... '''''"'l'"~ 

ffl ' I t I 

J ,<,~c",~-, r---=--
J .... ~,.,._, c== 
:J ~<!"'"-tht,._t,,!et<o: ~ 

_J :~ !h, Cff'(lf'! ~Id'• • -,: ~ 

.J ,,,,- , ,_.,.t.D«""*'lt-

45 



2.1.17 

46 

STEP 17: Selecting a Digraph of a Module 

Besides looking at coverage reports after using the Run Coverage Ana­
lyzer option, you can also look at the source code for a particular seg­
ment. To do this, you are first going to select one of the program's 
modules and then look at the source code for one of the selected module's 
segments (see STEP 18 for this part). 

Here's how: 

1. Click on the Action pull-down menu. 

2. Select View Source. 

3. A file selection dialog box pops up. 

4. The three modules for the application are listed: chk_char.dig, main.dig 
and proc_input.dig. Each of these modules consists of several seg­
ments. For this demonstration, select module main.dig. 

5. Select it by double clicking the mouse button on it and then clicking 
on OK. You can also highlight or type in the file name and then click 
on OK or press the <ENTER> key. 

II 
II 
II 

II 

II 
II 
II 

II 
II 

-
II 

II 

II 
II 

II 

• 
II 



II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 
II 

II 

II 

II 

II 

___________ 1111111111111_ 

TCAT/C User's Guide 

When selecting a module to graphically view, your display should look 
like this: 

Fe: (1t~ [l1n~r I"" IL!,•tH,! ';f:'._··~•••• 
l'lvn~•,li)?t>t,l~•rl 8i"11,,,ino!"J ':1".",E.·~ 
Qc•an Feih..r.wt ."_.t, I 1-,• ~~1 ~?II 
1c-t w,r l r.'3 ( t-.~,·- )3~-$1F.,6 
Ei.,er: Ia.-.l't, ; .. itayart 1-.,1 rt-· '81,-<u,, 
.:,,~tt.._. Su.:ar.-~ 1.1~'3 Loo,t.,,od ~·1-ii~ 
Grif .::•torerte l{,l'lf>o:-!I vl~-8-:51:! 
,Jint • [,,-~,;,,• 4.,,;., ~Alttfl.«;I. 0.-I ]ari,j 

[i.::. ·..fO'J .,,., r· •ci• :• ,~a1n·-• n 
e<:vt1n,g: 'c~· ,,.,,;,r,-e-'!:.-,~.~Jl..·co-~~)<' '.,.;· ~.'lr~~-tr. ·r ·Z 

~- ·_,.,..! :ac,i ... •,.:.•- t: ~, .-;;,..,~i-·• !llof>l•., ,w ·<.t.l 
=: Cc·,~;..,e ~ . .i:~~ - (•e· ~ - ~ •(A- SlkUU !Liu'~ J 

,: ~:<I"! i<,.:.,-J• ~~ C,:,tt Y• ~.-•......-d,. Ir.-. 

FIGURE 22 Selecting a Module 

,,.,~ .,.,. I 

I ,~-·-·· 11 
I , •.• ,. J 

' F1he, l 

I ,.,~,l,•;c .. e·•~'t~•t- deoocr.. • .J,'J 
1
~ 

.... _ _. L 

-r~~ ';': ,,o,<',·, .. I~ 

l:~ ·-···-··~ 
il l-w~l,-c,---------~,-l. -J 

,,..e1,~ · hn:t1,:r,in ~ 

~~ra t e 11:t ol •.n:t 10,r:: v1th Cl Ir:" __ 
-ote h~t er f~t1orr.: not m:l...o,d ,,. ,·,=t n ,_:__u 

--i 

47 



CHAPTER 2: Quick Start 

2.1.18 

48 

STEP 18: Viewing a Logical Branch's Source Code 

In this step you are going to look at the source code for a particular seg­
ment of the module you selected in STEP 17. 

1. After selecting the module, a window pops up visually displaying 
the module. This display is called a directed graph. Its circles repre­
sent nodes, or true/false decision points, and the curved lines repre­
sent segments. 

2. Move the window to the lower left of the screen. 

3. Click on the View Source pull-down menu. 

4. A View Source window pops up, which contains the source code for 
the module. 

5. Move the View Source window over the Analyze window. 

6. For this demonstration, you are going to look at the source code for 
Segment 17. To do so, position the mouse pointer on Segment 17 and 
press the mouse button. 

7. TCAT automatically locates the source code for Segment 17 and dis­
plays it in the View Source window. 

8. Feel free to use scroll bars to move up/down or side/side. 

9. When you are finished looking at the source code, click on View 
Source's Action pull-down menu and select Exit. The window closes. 

10. To exit the digraph, click on File pull-down menu and select Exit. The 
window closes. 

II 
II 

-
II 
II 
II 

II 

II 

II 

-
II 
II 
II 

II 

II 

• 
II 



II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

• 
II 
II 

When looking at source code, your display should look like this: 

\

-! ' :,! .. · 
i .. ..-.. ,~ 

' ,:, .. 

FIGURE 23 Looking at Source Code 

r::'I·,,,, ., ... . J 

1:?rl~ I -~,1 
·~-- 1' 

- I 

.J l .... ,l ,.....-·. •=:,co-. ff, ; ,l~; ~ 

-' -•t•lt ;,o, h,-,c t 1on w11 •-.I ~ 

J i,,er,e,-&tt 11•• o' h,nrt LO<',! rv • ,~I-~,~,...,,,., 

J Ol~..,..;r., .. ...-: r­
a,._~,,,• -• c:::=-
.J ~- ttoe ·-t f1;t c: c==-­
.J (~ t.,. ,_.. ~,cu •o: r­
.J >O"I -~-t b<- -.::o,h ._ 

49 



2.1.19 

50 

STEP 19: Sign Off and Cleanup 

After looking at the source code, follow these steps to complete theses­
sion: 

1. Close the View Source file selection pop-up window by clicking on 
the Cancel button. 

2. Close the Analyze window by clicking on the File pull-down menu 
and selecting Exit. 

3. Close the TCAT invocation window by clicking on the System pull­
down menu and selecting Exit. 

II 
II 
II 
II 

II 

II 
II 

II 

II 

-
II 
II 
II 
II 

II 

I 
II 



-
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

111111111111111 
TCAT/C User's Guide 

When completing your test session, your display should look like this: 

>,-:. C,t_, 01r,e, l'!- • ; .. •u, .. ':i:>:•" 
~,....,, J:!l!!>.t <>.e:•,.,-:,r· E!) te)'"-e'' 5;,;-•e,;3 

~,- P- -., •. d,,, •:~ L,~,..,, •. 1·''0,1 
,~t WJ1, !K~ lla~rr 'i'~-~·,<.., 
i,, . ..,., [-¥ i,I •·•c! H ,.- · !'• l I ..... 1 7 >,·'*"'' 
C•~t~~~.;.,,e l~~~L<.--1>•.J "".<•?::-:. 
C"itC'~ f1:1Cnn•e 1€• ~ f<,we:l ;;~-~4~ 
;j,,•- f,¥t,,o,:i,•• o•' 'tltt,,:, l!• Y::I 

~,i,;,..1,r:~\~.;.,"' 1,;.:.e·;~~:~:;;';'.c'~•Jt"'.,otJ......_,-c4.~,·t ·c . .,,.: 'h.,r. 
;:.•YoU.!l!.'CG·~•ot "()l'C@'to(.l:.t •·r], .•. ~ <J 
,,,..,...,: ( ......... b,.. ..... _,,: ..... •,,,... :,. 'V f~·l"I: ::-J,.""',,j __ 
,,, -1:J-• '."""··i-1 t>,~ •U.y•~• "·11°-"- l1o 

FIGURE 24 Completing a TCAT Session 

51 



• CHAPTER 2: Quick Start 

2.2 

52 

Summary 

If you successfully completed the preceding 19 steps, you've seen and 
practiced the basic skills you need to use TCAT productively. In this chap­
ter you should have learned how to invoke TCAT, how to instrumenting, 
compile and link, and execute a program, and how to look at coverage 
reports. 

For best learning, you may want to: 

• Repeat STEPS 1 -19 without the manual and experiment by run­
ning the application several times and looking at the amount of 
coverage your test input receives. 

• Repeat STEPS 1 -19 with your application. 

• Turn to the chapters on system operation reference and GUI ref­
erence where you had difficulties. The table of contents and the 
index can help you locate the topic you want. 

II 
II 

II 

II 

II 

II 
II 

II 

II 

II 

II 
II 

II 

II 

II 

• 
II 



II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 
II 

II 

II 

II 

CHAPTER 3 

System. Introduction 
This chapter is an overview of the TCAT system, which explains the overall operation of 
TCAT and shows how code is affected at each stage. 
LEVEL: If you are an advanced TCAT user, you may skip this chapter, which is intended 
for beginning and intermediate users. 

3.1 

3 .2 

Overview of TCAT 

TCAT takes your program and automatically instruments it. During 
instrumentation, TCAT inserts function calls (special markers) at every 
logical branch (or segment) in each program module. Instrumentation 
also creates a reference listing file, which is a version of your program 
which has segment marking comments added to it in a manner similar to 
the codeadded to the instrumented version. Extensive logical branch 
notation sequence numbers are also listed. 

This instrumented program is then compiled and run. By running it, you 
are exercising logical branches in the program. The more tests in your test 
suite, the higher the coverage. This test information is then written to a 
trace file. 

From the information stored in the trace file, you can generate coverage 
reports. If the reports indicate that you have less than 85 percent coverage 
(the recommended amount), you can identify unexercised logical 
branches by looking at the entire reference listing report or you can look 
at the reference listing code for a particular logical branch.When you 
identify the troubled areas, you can then create new test cases and re-exe­
cute the program. 

TCAT can help you reach your goal: creating the most extensive test cases 
possible. 

How to Use TCAT 

To obtain coverage for your program, you should follow these steps: 

4. Preprocess. 

5. Instrument Program Code (marking logical branches). 

6. Compile and Link Code (recording and counting markers). 

7. Execute Program and Generate Trace File. 

53 



~ ER 3: System Introduction 

54 

8. Generate Coverage Reports (reporting logical branches hit). 

To explain the various stages, we wrote a simple program namedexam­
ple.c. This program asks you questions about which type of cuisine in the 
San Francisco, CA area you would like to eat. If you went through the 
Chapter 2, you may already have a feel for the program. 

This program consists of three function modules: main, proc_input and 
chk_char. Please take note of the following points: 

Point A Marks the #include statement that imports the stan­
dardinput-output stdio.h code. This willalso be in­
cluded in the instrumented C program file as well as 
in the Reference Listing file. 

PointB Indicates the main function with its argc and argv ar­
guments. 

Point C Refers to the two function names, proc_input and ch­
k_char. 

/* EXAMPLE . C --example file for use with TCAT, STCAT , TCAT-PATH. * / 

+-------------------+ 
I #include "stdio . h" I A 

+-------------------+ 
#include <ctype . h> 

#define INPUTERROR -1 

#define INPUT DONE 0 

#define MENU_CHOICES 13 
#define STD_ LEN 79 

#define TRUE 1 

#define FALSE 0 

#define BOOL int 

#define OK TRUE 

#define NOT_ OK FALSE 

char menu[MENU_CHOICES] [STD_LEN ] = { 

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ", 

What type of food would you like?\n ", 

" \n " ' 
1 American 50s \n " ' 
2 Chinese - Hunan Style \n "' 

3 Chinese - Seafood Oriented \n " I 

4 Chinese - Conventiona l Style \n " ' 

5 Danish \n" ' 
6 French \n " ' 
7 Italian \n " ' 
8 Japanese \n "' 

" \n\n" 

II 
II 
II 
II 
II 

II 
II 

II 
II 
II 

• -
II 

II 

-• 
II 



II 

II 
II 

II 

II 
II 
II 
II 
II 

II 

II 
II 
II 
II 
II 

II 

II 

TCAT/C User's Guide 

} ; 

int char_index ; 

+-------------------+ 
!#include <ctype . h> I B 

+-------------------+ 
main(argc , argv) / * simple program to pick a restaurant * / 
int argc ; 

char *argv[] ; 

int i , choice , c , answer ; 

char str[STD_ LEN] ; 

BOOL ask , repeat ; 
inc proc_ input() ; 

C = 3 ; 

repeat= TRUE ; 

while (repeat) { 

printf( " \n\n\n " ) ; 

for(i = 0 ; i < MENU_ CHOICES; i++) 

printf( "ls ", menu[i]) ; 

gets (str) ; 

printf( " \n " ) ; 

while(choice = proc_input(str)) 

switch(choice) { 

case 1 : 

printf( " \tFog City Diner 1300 Battery 

break ; 
case 2 : 

982-2000 \n " ) ; 

printf( " \tHunan Village Restaurant 839 Kearney 956-7868 
\n " ) ; 

\n " ) ; 

break ; 

case 3 : 

printf( " \tOc ean Rescauranc 726 Cl ement 
break ; 

case 4 : 

221-3351 \n " ) ; 

printf( " \tYet Wah 1829 Clement 
break ; 

387-8056 \n " ) ; 

case 5 : 

printf( " \tEiners Danish Resc . 1901 Cleme nt 386-9860 \n " ) ; 
break ; 

case 6 : 

princf( " \tChateau Suzanne 144 9 Lomba rd 771-9326 \n " ) ; 
break ; 

case 7 : 

printf( " \tGrifone Ristorant e 1 609 Powell 

break ; 
case 8 : 

397-8458 

printf( " \tFlints Barbecue 4450 Shattuck , Oakland \n " ) ; 

break ; 

55 



CHAPTER 3: System Introduction 

56 

default : 

if(choice != INPUTERROR) 

printf(" \ t>>> %d: not a valid choice.\n", choice) ; 

} } 

for(ask = TRUE ; ask; ) { 
printf( " \n\tDo you want to run it again? "); 

while ( (answer = get char ()) ! = ' \n ' ) { 

switch(answer) 

case 'Y': 

case 1 y r: 

ask= FALSE; 
char_index 0 · 

break ; 

case 'N': 

case 1 n': 

ask= FALSE ; 

repeat= FALSE ; 

break; 

default: 

break; 
} } } } } 

+----------------------+ 
l int proc_input(in_str) I 

+----------------------+ 
char * in_s tr; 

int tempresult = 0 ; 

C 

char bad_str[B0], *bad_input; 

BOOL got_first = FALSE ; 
bad_input = bad_str; 
while(isspace(in_str [char_index])) 

char_index++ ; 
for( ; char_index <= strlen(in_s tr); char_index++) { 

switch(in_str [char_ index ] ) 

case IO I: 

case ' 1': 

case '2': 

case ' 3 ' : 

case ' 4 ': 

case ' 5' : 

case I 6 I : 

case '7': 

case ' 8 ': 

case '9' : 

/ * process choice * / 
tempresult = tempresult * 10 + (in_ str[char_index] - ' 0'); 

got_first = TRUE ; 
break ; 

II 
II 
II 
II 
II 

II 

II 
II 
II 

II 
II 

-
II 
II 

II 
I 
II 



II 
II 
II 

II 

II 

• 
II 

II 

II 
II 

II 

• 
II 

II 

II 

II 

FIGURE 25 

3.2.1 

3.2.2 

111111111111111 
TCAT/C User's Guide 

default: 

if(chk_char(in_str[char_ index])) 

recurn(ternpresult) ; 

else { 

if(char_ index > 0 && got_first) 

char_index-- ; 

while(char_index <= strlen(in_str)) 

if(chk_char(in_ str[char_index])) 

break; 

else 

*bad_input++ 

char_ index++; 

*bad_input = '\0 ' ; 

in_ str[char_index]; 

printf( " \t>>> bad input : %s\n", bad_str); 

char_ index++ ; 

recurn(INPUTERROR) ; 
} } 

recurn(INPUTDONE) ; 

+----------------------+ 
IBOOL chk_char(ch) 

+----------------------+ 
char ch ; 

C 

if ( is space (ch) I I ch ' \0 ' ) 
return (OK) ; 

else 

return(NOT_OK); 

Sample C Program 

Preprocessing Source Code 

Most often, you must check your program for syntax errors by prepro­
cessing. When you preprocess, your source code file basename.c is auto­
matically copied to a file named basename.i which is where the 
preprocessing takes place. 

Instrument Program Code 

The second step in analyzing test coverage with TCAT is to instrument 
the source code. TCAT modifies the program so that special markers are 
positioned at every logical branch in each program module. Later, during 
program execution, these markers will be tracked and counted by TCAT 

57 



• CHAPTER 3: System Introduction 

58 

to provide data for coverage analysis. Instrumentation does not affect a 
program's logical behavior, although it increases test execution time and 
code size by about 20 percent. 

During instrumentation, TCAT generates several files: 

• example.i.c -- an Instrumented Version of your C program. 

• example.i.A -- Reference Listing, showing where 

• TCAT has placed each logical branch marker and how they are 
numbered. 

• example.i.S -- Instrumented Statistics Listing. 

• example.i.L -- Segment Count Listing. 

• modulename.dig -- Directed Graph Listing for each module. 

• example.i.E -- Error Report. 

Examples of the above files are shown next. 

When you instrument basename.i, your instrumented program is automat­
ically copied to a file named basename.i.c, which is where the instrumenta­
tion markers are placed. In the case of example.c, the file name becomes 
example.i.c 

The effect of instrumentation on the example.c program are displayed in 
boxes and shown in bold face on the following pages. Please take note of 
the following points: 

Point A 

Point B 

PointC 

PointD 

PointE 

PointF 

Point G 

Marks the specific header information for this copy of 
TCAT. Included are the system release number and 
information on the copyright and licensing agree­
ment. 

Refers to the runtime modules. 

Traces the start of the program. 

Traces the start or entry of a function. 

Traces a segment. The number identifies the branch 
number; this number is transmitted to the trace file 
when the instrumented program is run. 

Traces the exit of the function. 

Traces the exit of the program. 
+---- ------------------------------------------------------- -- ----------+ 
I I 

1---------------------------------------------------------------------- I 
I/ * 
1-- Cl instrumentation by TCAT ins t r umenter : 

1--

II 

II 
II 
II 
II 

• 
II 

II 

II 

II 

II 

• 
II 
II 

II 

I 
II 



II 

II 

II 
II 

II 

• 
II 

II 

II 
II 

II 

• 
II 

II 
II 
II 

II 

TCATIC User's Guide 

1-- Program ic, Release 8 . 2 

1-- SR Copy Identification No . 0 . 

l--

1----------------------------------------------------------------------
I A 

1-- (c) Copyright 1990 by Software Research , Inc . All Rights Reserved . 

1--

1-- This program was instrumented by SR proprietary software , 

1-- for use with the SR proprietary TCAT runtime package . 

1-- Use of this program is limited by associated software 

1-- license agreement . 

1----- - ------- ---------------------------------------------------------- I 
I * / 

+----------------- -------------- ---- ------------------------------------+ 
+------- - ---------------+ 
I extern SegHit() ; 

I extern St race (I ; 

I extern Ft race (I ; B 

I e x tern EntrMod () ; 

I extern Ex tMod() ; 

+-------------- ---------+ 

char menu[13] (79] = { 

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n", 

What type of food would you like?\n ", 

" \n" , 

1 Ame r i can 50 s \n ", 

2 Chines e - Hunan Style \n "' 
3 Ch inese Seafood Oriented \n" ' 
4 Chines e - Conv entional Style \n " ' 
5 

6 

7 

8 

" \n\n" 

} ; 

int char_index ; 

main(argc , argv) 

int argc ; 

char *argv[J ; 

Da n ish 

French 

Ital i a n 

Japanes e 

int i , choice , c , ans wer ; 

char str[79} ; 

int ask , repeat ; 

int proc_input() ; 

+------------------- - ------ - --+ 
Strace( " IC ", 0x 7504 , 0,0) ; 

+--------------- --- -----------+ 

+---------- ------- -- --------+ 

\n "' 
\n ", 

\n ", 

\n "' 

C 

59 



CHAPTER 3: System Introduction 

60 

EntrMod(27 , "ma in",-1) ; 

+----- ---- ------------------+ 
+--------------+ 

SegHit(l) ; E 

+--------------+ 
C = 3 ; 

repeat= l; 

while(repeat) ( SegHit(2) ; 

print.f("\n\n\n") ; { 

for(i = 0 ; i < 13; i++) 

D 

printf("%s", menufi]) ; 

SegHi t ( 4) ; } ; 

gets(str); 

printf ( "\n"); 

SegHit(3); 

} 

while(choice = proc_input(str)) ( SegHit(5); 

switch(choice) 

case 1: SegHit(6); 

printf('\tFog City Diner 

break ; 

case 2: SegHit(7); 

1300 Battery 982-2000 \n"); 

printf("\tHunan Village Rest.839 Kearney 956-7868 \n " ) ; 

for(ask 

break ; 

case 3 : SegHit(8) ; 

printf("\tOcean Restaurant 726 Clement 

break ; 

case 4 : SegHit(9); 

221 - 3351 \n "); 

printf('\tYet Wa h 1829 Clement 387-8056 \n "); 

break; 

case 5 : SegHit(l0) ; 

printf( " \tEiners Danish Rest 1901 Clement 

break; 

case 6 : SegHit(ll); 

386-9860 \n " ) ; 

printf("\tChateau Suzanne 1449 Lombard 771-9326 \n "); 

break ; 

case 7 : SegHit(l2) ; 

printf("\tGrifone Ristorante 1609 Powell 397-8458 \n "); 

break; 

case 8 : SegHit(l3); 

printf( " \tFlints Barbecue 4450 Shattuck, Oakland \n") ; 

break; 

default: SegHit(l4) ; 

if(choice ! = -1) { SegHit(l5) ; 

printf( " \t>>> %d : not a valid choice . \n " , choice); 

l else SegHi t( l6) ; 

break; 

} ) } SegHi t ( 1 7) ; } ; 

1 ; ask ; ) { SegHi t ( 18) ; 

II 

• 
II 

• 
II 

" II 
II 

II 
II 

II 

• 
II 

II 

II 

• 
II 



II 

II 

II 
II 

II 

II 

II 

II 

II 
II 

• • 
II 

• • 
II 
II 

TCAT/C User's Guide 

printf("\n\tDo you want to run it again? ") ; 

while((answer = getchar()) != '\n") { SegHit(l9) ; 

switch(answer) 

case 'Y': SegHit(20); 

case 'y" : SegHit(21); 

ask= O; 

char_index = O; 

break; 

case 'N': SegHit(22); 

case 'n' : SegHit(23); 

ask= O; 

repeat= O; 

break; 

default: SegHit(24); 

break; 

) } 

} } SegHit(25); } ; 

} } SegHit(26); } ; 

} } SegHit(27); }; 

+------------------------+ 
I ExtMod("main"); 

+------------------------+ 

+-------------------- ----+ 
I Ftrace(O) ; 

+------------- - --- - -- - ---+ 

int proc_input(in_str) 

char * in_str ; 

int tempresult = O; 

F 

G 

char bad_str[BO], *bad_input ; 

int got_first = O; 

EntrMod ( 24 , "proc_input", -1) ; 

SegHit(l) ; 

bad_input = bad_str; 

while(isspace(in_str[char_index])) { SegHit(2); 

char_index++ ; } SegHit (3) ; } ; 

for( ; char_index <= strlen(in_str) ; char_index++) { SegHit(4); 

switch(in_str[char_index]) 

case ' 0 ': SegHit (5) ; 

case '1 ' : SegHit (6) ; 

case ' 2' ; SegHit(7) ; 

case ' 3' : SegHit (8); 

61 



CHAPTER 3: System Introduction 

62 

case ' 4 ': SegHit(9); 

case ' 5' : SegHit(l0); 

case '6' : SegHit ( 11) ; 

case ' 7 ': SegHit(12); 

case '8' : SegHi t ( 13) ; 

case '9': SegHit (14); 

tempresult = tempresult * 10 + (in_str[char_index] - ' 0 ' ); 

got_first = l ; 

break; 

default: SegHic(lS); 

if(chk_char(in_str[char_index])) { SegHic(16) ; 

{ExtMod("proc_input") ; 

return(tempresult); 

else { SegHit(17); 

{ 

if(char_index > 0 && got_first) { SegHit(18); 

char_index--; l else SegHit(19); 

while(char_index <= strlen(in_str)) 

if(chk_char(in_str[char_index] )) 

break; l 
else { SegHit(22); 

*bad_input++ = in_scr[char_index]; 

char_index++; 

} SegHit(23) ; } ; 

*bad_input = ' \0' ; 

SegHit(20); 

SegHi t ( 21 ) ; 

printf(" \t>>> bad input: %s\n", bad_str) ; 

char_index++; 

) ) 

{ ExtMod("proc_input") ; 

return(-1) ; 

} } SegHi t I 2 4 ) ; l ; 

{ Ex tMod("proc_ input") ; 

return(0) ; } 

ExtMod("proc_input"); 

int chk_char(ch) 

char ch ; 

EntrMod(3, "chk_char",-1); 

SegHit(l) ; 

if(isspace(ch) II ch== '\0') { SegHit(2); { ExtMod("chk_char"); 

return(l) ; l l 
else { SegHit(3); { ExtMod( "chk_char " ); 

return(0) ; } } 

II 

II 

II 

II 

II 

I 
II 
II 

• 
II 

II 

I 
II 

II 

• 
II 

\.. 

II 



II 

II 

II 
FIGURE 26 

II 

II 

' II 

II 

II 
II 

II 
II 
II 

II 

II 

II 

-TCAT/C User's Guide 

ExtMod("chk_char") ; 
} 

Instrumented Program 

The Reference Listing file is a version of C program which marks pro­
gram segments corresponding to logical branch outcomes. This file is use­
ful when you later look at a Not Hit report to see which logical branches 
were not hit. You can then cross-reference with the Reference Listing 
report. This report has the same information as the Reference Listing file, 
except it identifies the coverage for each module, the number of times 
each logical branch was hit and which branches were not hit. 

During instrumentation the Reference Listing file is named basename.i.A. 
For the example.c program the file name becomes example.i.A. The effect 
of instrumentation on the example.i.A file are displayed in boxes and 
shown in bold face on the following pages. Please take note of the follow­
ing points: 

Point A Marks the title and header information. 

Shows where function main execution begins. 

Shows where function proc_input begins. 

Shows where function chk_char begins. 

PointB 

Point C 

Point D 

Point E Indicates the number and/ or statement type of each 
logical branch. 

+-----------------------------------------------------------------+ 
1------------------------------------------ ------------------------
-----I 

1-- TCAT/C , Release 8 . 2 
I 
1--

1-- (c) Copyright 1990 by Software Research , Inc . ALL RIGHTS 
RESERVED. I 
1--
1-- SEGMENT REFERENCE LISTING 
I 
1--

1-- Instrumentation date : Tue May 4 15 : 06 : 02 
1993 I A 
1--

1-- Separate modules and segment definitions for each module 
are I 

1-- indicated in this commented version of the supplied source file . 
I 

1-----------------------------------------------------------------­
t-----------------------------------------------------------------+ 

char menu [ 13] [ 7 9] = { 

63 



CHAPTER 3: System Introduction 

"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n " , 

What type of food would you like?\n ", 

American 50s \n " , 

- Hunan Style \n" , 

- Seafood Oriented \n ", 

1 

2 

3 

4 

5 

6 

7 

8 

Chinese 

Chinese 

Chinese 

Danish 

French 

Italian 

Japanese 

- Conventional Style \n ", 

64 

"\n\n" 

} ; 

int char_index; 

main(argc , argv) 

intargc ; 

char*argv[J ; 

int i , choice, c , answer ; 

char str[79]; 

int ask, repeat ; 

+---------------------+ 
I/ ** Module main**/ 

+- --- -----------------+ 

int proc_input() ; 

+----------------------+ 

I/ ** Segment 1 <> ** / 

+----------------------+ 
C = 3 ; 
repeat= l ; 

while(repeat) 

B 

E 

/ ** Segment 2 <start while> ** / 

printf("\n\n\n") ; 

for(i = O; i < 13; i++) 

/ ** Seg ment 3 <start for> ** / 

printf( " %s", menu[i]) ; 

/ ** Se gme nt 4 <end for> ** / 

gets (str) ; 

printf("\n " ) ; 

\n " ' 

\n" I 

\n •' 

\n "' 

while (choice = proc_ inp ut (s tr)) 

/ ** Se gme nt 5 <start while> ** / 

switch(choice) { 

case 1: 

/ ** Se gment 6 <case alt> ** / 

printf( " \tFog City Dine rl300 Battery 

break ; 

case 2 : 

982-2000 \n ' ) ; 

II 

II 

II 

II 

II 

I 

• 
II 

II 

II 

II 

I 
II 

• • 
I 
II 



II 

II 

II 

II 

I 
II 

II 

II 

II 

II 
II 
II 

II 
I 
II 

II 

TCAT/C User's Guide 

/ ** Segment 7 <case alt> ** / 

printf( " \tHunan Village Restaurant 839 Kearney 
7868 \n " ) ; 

956-

break ; 

case 3 : 

/ ** Segment 8 <case alt> **/ 

printf( " \tOcean Restaurant 726 Clement 
\n " ) ; 

break ; 

case 4 : 

221-3351 

/ ** Segment 9 <case alt> ** / 

printf( " \tYet Wah 

break ; 

1829 Clement 387-8056 \n " ) ; 

case 5 : 
/ ** Segment 10 <case alt> ** / 

printf( ' \tEiners Rest 1901 Clement 386-9860 \n " ) ; 

break ; 

case 6 : 

/ ** Segment 11 <case alt> ** / 

printf ( " \tChateau Suzanne 1449 Lombard 771-9326 \n " ) ; 

break ; 

case 7: 

/ ** Segment 12 <case alt> ** / 

printf( " \tGrifone Ristorante1609 Powell 397-8458 \n " ); 

break ; 
case 8: 

/* * Segment 13 <case alt> ** / 

printf( " \tFlints Barbecue 4450 Shattuck , Oakland \n " ) ; 
break ; 

default: 

/ ** Segment 14 <case alt> ** / 
if (choice ! = -1) 

/ ** Segment 15 <if> ** / 

printf( ' \t>>> %d : not a valid choice . \n ", choice) ; 

/ ** Segment 16 <implied else> ** / 

break ; 

/ ** Segment 17 <end while> ** / 
for(ask = l ; ask ; ) { 

/ ** Segment 18 <start for> ** / 
printf( " \n\tDo you want to run it again? " ); 
while ( (answer = get char ()) ! = ' \n ' ) { 

/ ** Segment 19 <start while> ** / 

switch(answer) { 

case •y ': 

case •y• : 

65 



CHAPTER 3: System Introduction 

66 

/ ** Segment 21 <case alt>**/ 

ask= O; 

char_ index 

break ; 

case ' N ': 

/ ** Segment 22 <case alt>**/ 

case • n ': 

/ ** Segment 23 <case alt>**/ 

ask= O; 

repeat O; 

break ; 

default: 
/ ** Segment 24 <case alt>**/ 

break; 

} } } } 

/ ** Segment 25 <end while>**/ 

/ ** Segment 26 <end for> ** / 

/ ** Segment 27 <end while>** / 
int proc_input(in_str) 

char *in_ str; 

int tempresult = O; 

O; 

char bad_ str[80], *bad_input ; 

+----------------------------+ 
I/** Module proc_ input ** / 

+----------- -- ---------------+ 
int got_ first = O; 

+------------ ------- -- --- + 
I/ ** Segment 1 <> ** / E 

+------------------------+ 

C 

bad_input = bad_ str; 

while(isspace(in_ str[char_index])) 

/ ** Segment 2 <start while>**/ 
char_ index++ ; 

/ ** Segment 3 <end while>**/ 
for( ; char_index <= strlen(in_ str); char_ index++) 

/ ** Segment 4 <start for> ** / 

swi tch(in_str [char_index ]) 

case '0': 

/ ** Segment 5 <case alt>**/ 

case ' 1 ': 

/ ** Segment 6 <case alt>**/ 

case '2' : 

/ ** Segment 7 <case alt> ** / 

case '3': 

/ ** Segment 8 <case alt> ** / 

case ' 4 ' : 

/ ** Segment 9 <case alt> ** / 

II 

I 
II 

II 
II 

II -
II 

II 

II 

II 

II 

I 
I 
II --
II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
-----

II 

Ill 
Ill 
II 

II 

TCAT/C User's Guide 

case ' 5 ' : 

/ ** Segment 10 <case alt> ** / 

case ' 6' : 

/ ** Segment 11 <case alt> ** / 

case 1 7 r: 

/ ** Segment 12 <case alt> ** / 

case ' 8 ': 

/ ** Segment 13 <case alt> ** / 

case I 9 I : 

! ** Segment 14 <case alt> ** / 

tempresult = tempresult * 10 + (in_ str[char_ index ] -
' 0 ' ); 

got_first = l ; 

break ; 

default : 

/ ** Segment 15 <case alt> ** / 

if(chk_char(in_str[char_ index])) 

/ ** Segment 16 <if> ** / 

return(tempresult) ; 

else { 

/ ** Segment 17 <else> ** / 

if(char_index > 0 && got_first) 

/ ** Segment 18 <if> ** / 

char_index--; 

/ ** Segment 19 <implied else> ** / 
while(char_index <= strlen(in_s tr)) 

/ ** Segment 20 <start whi le> ** / 

if(chk_ char(in_s tr[char_ index])) 

/ ** Segment 21 <if> ** / 
break; 

else 

/ ** Segment 22 <el se> ** / 
*bad_ input++ 

char_index ++ ; 

/ ** Segment 23 <end while> ** / 
*bad_ input = ' \0 ' ; 

in_str[char_index ] ; 

printf(" \t>>> bad input : %s\n ", bad_str) ; 

char_ index ++ ; 

return(-1) ; 
} } 

/ ** Segment 24 <end for> ** / 
return(0) ; 

int chk_char(ch) 

char ch; 

67 

• 



CHAPTER 3: System Introduction 

FIGURE 27 

68 

+-------------------------+ 
)/ ** Module chk_char** / D 

+----------------- --------+ 

+------------------------+ 
I/ ** Segment 1 <> ** / E 

+------------------------+ 
if(isspace(ch) II ch ' \0 ') 

/ ** Segment 2 <if>**/ 
return(l) ; 

else 
/ ** Segment 3 <else> ** / 

return(0) ; 

TCAT/C , Release 8.2 

-- END OF TCAT SEGMENT REFERENCE LISTING 

Reference Listing 

The instrumentor also produces an Instrumented Statistics file. Statistics 
are organized module-by-module. The file is named basename.i.S. In the 
case of the example.c program it is automatically named example.i.S. 

-- TCAT/C , Release 8.2 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS 
RESERVED. 

INSTRUMENTATION STATISTICS 

Instrumentation date : Tue May 4 15 : 06 : 02 1993 

MODULE ' main' : 

statements= 42 
compound s tatements 7 

branching nodes= 10 
segments instrumented= 27 

conditional statements (if, switch) 

if statement= 1 

3 

II 

II' 

II' 

II 

II 

II ---
II 

II 

II 

II 

II 

II 

II 

II ---

• 
II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
----

II 

II 

II 

II 

II 

else statement added= 1 

switch statements= 2 

switch statement cases= 14 
default statement added= 0 

iterative statements (for , while, do) 

for statements= 2 
while statements 3 

do statements= 0 

exit statement= 0 

return statement 0 

MODULE ' proc_input ': 

statements= 22 
compound statements 6 

branching nodes= 9 
segments instrumented 24 

conditional statements (if, switch) 

if statements= 3 
else statement added 1 

switch statement= 1 
switch statement cases= 11 

default statement added= 0 

iterative statements (for, while, do) 
for statement= 1 
while statements= 2 
do statements= 0 

exit statement= 0 
return statements= 3 
MODULE ' chk char ' : 

statements= 2 
compound statement 1 

branching nodes= 3 
segments instrumented= 3 

conditional statement (if, switch) 
if statement= 1 
else statement added 0 

switch statement= 0 
switch statement case 0 

default statement added 0 

5 

4 

3 

1 

iterative statements (for , while , do) - 0 

TCAT/C User's Guide 

69 



CHAPTER 3: System Introduction 

FIGURE 28 

70 

for statements= 0 
while statements= 0 

do statements= 0 

exit statement= 0 

return statements= 2 

TCAT/C , Release 8.2 

END OF TCAT INSTRUMENTATION STATISTICS 

Instrumentation Statistics Sample 

During instrumentation, a Segment Count Listing file is automatically 
created (basename.i.L). This file contains a complete count of all the mod­
ules and their logical branches in the program being tested. This file can 
be used with the mkarchive utility to create a null archive file. Please see 
Section 6.5, "mkarchive Utility". 

II 

II 

II 

II 

II 

II 
'---

II 

II 

II 

II 

II 

II 

II 

II 
'----

II 

II 
II 



II 

II 

II 

II 
II 

II 

II 

II 

II 
II 
II 

II 
II 

II 

II 

II 
II 

FIGURE 29 

FIGURE 30 

Module 

main 

proc_ input 

# Segment 

27 

24 

Segment Count Listing Sample 

TCATIC User's Guide 

The Directed Graph Listing shows the relationship between nodes and 
logical branches. Below is the example.c program's Directed Graph Listing. 
The first two columns show the node numbers and the third column 
shows the branch number. To first row reads like this: Segment 1 connects 
nodes 1 and 2. You can also visually looks at this file using the Analyze 
window's View Source option, or the Xdigraph utility .. Below is the 
visual representation of chk_char.dig's directed graph. 
# digraph for ' chk_char . dig ' 

1 2 1 

2 

2 

3 

3 

Directed Graph Listing 

2 

3 

in file "example " 

71 



CHAPTER 3: System Introduction 

FIGURE 31 

72 

E_ile Qptions Zoom 1n Zoom O~t !'._iew Source ~tat1 stics !:rint ~nnotation !:!elp 

i 

(c ) CoP!Jright 1990-94 Software Research, Inc. 

Directed Graph Display 

Instrumentation errors are generally the result of typing mistakes. The 
instrumentor will stop at the first unrecognized character and display 
that line and several lines of code leading up to the point of failure. Dur­
ing instrumentation, the error file is automatically named basename.i.E. In 
the case of the example.c program it is named example.i.E. 

-- TCAT/C, Release 8 . 2 

(c) Copyright 1990 by Software Research , Inc. ALL RIGHTS 
RESERVED. 

II 
II 
II 

II 
II 
II 

II 
II 
II 

111 

II 
II 

II 
II 

II 

II 
II 



II 

II 

II 

II 
II 

II 

-
II 
II 

II 
II 

II 

II 

-
II 

II 

II 

FIGURE 32 

3.2.3 

3.2.4 

3.2.5 

TCAT/C User's Guide 

ERROR LISTING 

Instrumentation date: Tue May 4 15 : 06 : 02 1993 

Error Listing 

Compile and Link Code 

After instrumentation, you need to compile the modified program. When 
you compile the instrumented program, a file name basename.i.o is cre­
ated. This file is the object code of the instrumented program. You then 
must link the instrumented program's object code with one of TCAT 
runtime module files . TCATs runtime modules define all the functions 
inserted by the instrumentor. 

Execute Program and Generate Trace File 

Once the program has been instrumented, compiled and linked with the 
appropriate TCAT runtime module, the next step is to run the program. 

In your test run, TCAT will initially prompt you to make a comment for 
the current test run and to name a trace file. The trace file is where exe­
cuted test information is written. If you think this takes up too much time, 
you can avoid this by selecting TCATs quiet runtime, crunO.o, which 
automatically defaults to the file name Trace.trc for a trace file. 

At this point, the instrumented program will run as usual. Enter informa­
tion to exercise the system control structure thoroughly. 

During testing, information about branch coverage is recorded in the 
trace file without any work on your part. Note, however, only the latest 
run is stored in the trace file . Older runs are automatically stored in a file 
named Archive when you run the coverage analyzer (cover). This file 
serves as the archive library for all test runs. 

Generate Coverage Reports 

Once the test program has been executed and a trace file created, you can 
analyze branch coverage coverage with easy-to-read coverage reports. In 
general, these reports show you which logical branches have been hit or 
ignored during your test run. 

You first select the kind of report you want (listed and described on the 
following pages) and then use the GUI Run Coverage Analyzer option 

73 



CHAPTER 3: System Introduction 

74 

or the command line cover command. Depending on the type of report 
you select, TCAT will gather information from the trace file and the 
Archive file. 

In general the reports give the following information: 

1. Reports included in the current report. 

2. A summary of past coverage runs. 

3. Current and cumulative coverage statistics. 

4. A list of logical branches that have been hit. 

5. A list of logical branches that have been missed. 

6. Bar charts of the frequency of execution for each branch. 

These reports are useful for performance analysis and also for "hot spot" 
tuning. 

TCAT offers the following coverage reports: 

The Cumulative report charts branch coverage for the current test cumu­
latively, and for each module in the total system: its module name, num­
ber of branches, number of invokes, number of branches hit, and Cl 
coverage. 

TCAT: Coverage Analyzer . [Release 8.2 ] 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED. 

+- ------ -- ------------------+---- --------------------+-----------------------
-+ 

Current Test Cumulative Summary 

+---- ---- ----------------+---------------------- --+ 
No . Of No. Of 

Module 
I Name: 

Number Of I No . Of Segments Cl% I No . Of Segments Cl% I 

Segments: I Invokes Hit Cover I Invokes Hit Cover I 

+------ -- -------------------+------------------------+----------------------+ 

I main 

proc_input 

chk_char 

27 

24 

3 I 

1 

6 

6 

17 

15 

2 

62 . 96 

62 . 50 I 

66 . 67 I 

2 

12. 

12 

17 

15 

2 

62.96 

62 . 50 

66.67 I 

+---------------------------+------------------------+----------------------+ 
I Totals 54 I 13 34 62. 96 I 26 34 62.96 I 

+-- -------------------------+-------------------- ----+- ------ ---------- --- --+ 

Current test message(s) (saved in archive) : 

Runtime vers 4 . 9 , last updated 12/4/88 

The Past Test report resembles the Cumulative report, but lists informa­
tion from the stored archive data. It summarizes the percentage of logical 
branches in each module listed, giving the Cl value for each module and 
the program as a whole. 

II 

II 
II 
II 

II 

II 
II 
II 
II 
II 
II 
II 
II 
II 

I 
II 



II 

II 
II 
II 
II 
II 

II 
II 
II 
II 
II 

II 

II 
II 
II 

II 
II 

TCAT/C User's Guide 

TCAT : Coverage Analyzer . [Release 8 . 2] 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED . 

+---------------------------+------------------------+-----------------------
Current Test Cumulative Summary 

+---- ------ -- -- -- -- -- --- - +-- -- -- ---------- -- -- ----+ 
No . Of No . Of 

Module 
Name : 

Number Of I No . Of Segments Cl% I No . Of Segments Cl% I 

Segments : I Invokes Hit Cover I Invokes Hit Cover I 

+---------------------------+----------- - ------------+----------------------+ 
main 

I proc_input 

I chk_char 

27 

24 I 

3 I 

1 

12 

12 

18 
14 

2 

66 . 67 

58 . 33 I 

66 . 67 I 

1 

12 
12 

18 

14 

2 

66 . 67 

58 . 33 I 

66 . 67 I 

+---------------------------+------------------------+----------------------+ 
I Totals 54 I 25 34 62 . 96 I 25 34 62 . 96 I 

+---------------------------+------------------------+----------------------+ 

Current test message(s) (saved in archive) : 
Runtime vers 4 . 9, last updated 12/4/88 

The Hit report identifies all of the logical branches which were exercised 
in the present and past tests. It analyzes information from both the 
archive and the trace file. It includes: module names, identification num­
ber for each logical branch hit so far, the number of logical branches hit, 
the total number of logical branches, and the resulting Cl coverage value. 

TCAT : Coverage Analyzer. [Release 8.2 ) 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED. 

Cl Segment Hit Report . 

No. Module Name : Segment Coverage Status: 

1 main 

1 2 3 4 5 7 9 13 14 
15 17 18 19 21 23 25 26 27 

2 proc_input 

1 3 4 6 7 8 9 10 11 

12 13 14 15 16 

3 chk char -
1 2 

Numbe r of Segments Hit : 34 
Total Number of Segments : 54 

Cl Coverage Value : 62. 9 6% 

75 



CHAPTER 3: System Introduction 

76 

The Not Hit report indicates untested branches. This report charts, for the 
current test and includes the following information: branch coverage sta­
tus (100% or specific branch not hit), total number of branches hit, total 
number of branches in the system, and Cl coverage value. You can use 
this information to add tests to your test suite for more comprehensive 
testing. 

TCAT : Coverage Analyzer . [Release 8 . 2) 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED. 

Cl Segment Not Hit Report. 

No. Module Name: Segment Coverage Status: 

1 main 
6 8 10 11 12 16 20 22 24 

2 proc_ input 

2 5 17 18 19 20 21 22 23 
24 

3 chk_char 

3 

Number of Segments Not Hit : 20 
Total Number of Segments: 54 

Cl Coverage Value: 62 . 96% 

The Newly Hit report shows which logical branches (by module) were hit 
in the current execution that were not hit previously. This information 
gives you an assessment of the value of the most recently added test(s). 
This shows what the current test gained. 

II 

II 
II 
II 

II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 



II 

II 
II 

II 

II 
II 

II 

II 
II 
II 
II 

II 

II 
II 

II 

II 

II 

TCAT/C User's Guide 

TCAT : Coverage Analyzer . [Release 8 . 2] 

(c) Copyright 1990 by Software Research , Inc . ALL RIGHTS RESERVED . 

Cl Segment Newly Hit Report . 

No . Module Name : Segment Coverage Status : 

1 main 
1 2 3 4 5 7 9 13 14 

15 17 18 19 21 23 25 26 27 

2 proc_ input 

1 3 4 6 7 8 9 10 11 

12 13 14 15 16 

3 chk_ char 

1 2 

The Newly Missed report shows which branches (by module) that were 
not hit in the current execution that were hit previously. This information 
gives you an assessment of the loss of the most-recently added test(s) . 
This shows what the current test "lost". This report is complimented by 
the above Newly Hit report. 

TCAT : Coverage Analyzer . [Release 8 . 2] 
(c) Copyright 1990 by Software Research , Inc . ALL RIGHTS RESERVED . 

Cl Segment Newly Mi s sed Report . 

No . Module Name : Se gment Coverage Status : 

None found . 

The Logarithmic Histogram and the Linear Histogram reports demon­
strate the frequency distribution of branches exercised in each module. 
These reports combine the current trace "file and includes archive data. 
The Linear Histogram graphs a mark for each branch hit during testing; 
the Logarithmic Histogram translates this data into logarithms making 
the graph more readable for varying branch hit levels. 

Both histograms include the following information: module name, 
branch numbers, number of executions, frequency distribution of exer­
cised branches, graph scale, average hits per executed branch and module 

Cl valm!. 

77 



CHAPTER 3: System Introduction 

On the next two pages are examples of both histograms for example.e's 
main module. Below is a Linear Histogram report. 

TCAT: Coverage Analyzer. [Release 8 . 2] 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED . 

Segment Level Histogram for Module: main 

+---------------------------------------------+ 
I Number of Executions , Normalized to Maximum 

I (Maximum 78 Hits) X = One Hit 

(Scale : 1.282 Each X = 1.560 Hits) 

Segment Number Of 

Number Executions >-1 - ------20--------40------60--------80---100 

+---------------------+-------------------------------------------+ 

1 1 

2 6 XXX 

3 78 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

4 6 XXX 

5 6 XXX 

6 * 

7 1 

8 * 

9 1 

10 * 

11 * 

12 * 
13 2 X 

14 2 X 

15 2 X 
16 * 

17 6 XXX 
18 6 XXX 
19 6 XXX 

20 * 
21 5 XXX 

22 * 

23 1 
24 * 
25 6 XXX 

26 6 XXX 
27 1 

+---------------------+----------------------------------- --------+ 
( * =Zero Hits) 

II 

II 

II 

II 
II 
II 
II 

-
II 
II 

II 

II 
II 
II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

Average Hits per Executed Segment: 

Cl Value for this Module : 

7 . 8889 

66.6667 

Below is a Logarithmic Histogram report. 

TCAT : Coverage Analyzer . [Release 8 . 2] 

TCATIC User's Guide 

(c) Copyright 1993 by Software Research, Inc . ALL RIGHTS RESERVED. 
Segment Level Histogram for Module : main 

Segment Number Of 

Number Executions 

+---------------------------------------------+ 

Logarithm of Executions , Normalized to Maximum 
I (Maximum = 78 Hits) 

>--------1------10-----20----30---40--80--100 

+---------------------+-------------------------------------------+ 

1 1 xxxxxxxxxxxxx 
2 6 xxxxxxxxxxxxxxxxxxxxxxx 
3 78 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
4 6 xxxxxxxxxxxxxxxxxxxxxxx 
5 6 xxxxxxxxxxxxxxxxxxxxxxx 
6 * 
7 1 xxxxxxxxxxxxx 
8 * 
9 1 xxxxxxxxxxxxx 

10 * 
11 * 
12 * 
13 2 xxxxxxxxxxxxxxxxx 
14 2 xxxxxxxxxxxxxxxxx 
15 2 xxxxxxxxxxxxxxxxx 
16 * 
17 6 xxxxxxxxxxxxxxxxxxxxxxx 
18 6 xxxxxxxxxxxxxxxxxxxxxxx 
19 6 xxxxxxxxxxxxxxxxxxxxxxx 
20 
21 5 xxxxxxxxxxxxxxxxxxxxxx 
22 
23 1 xxxxxxxxxxxxx 
24 * 
25 6 xxxxxxxxxxxxxxxxxxxxxxx 
26 6 xxxxxxxxxxxxxxxxxxxxxxx 
27 1 xxxxxxxxxxxxx 

+---------------------+-- - -- -
------+ 

79 



CHAPTER 3: System Introduction 

80 

( * = Zero Hits) 

Average Hits per Executed Segment : 

Cl Value for this Module : 

7.8889 

66 . 6667 

The annotated Reference report shows the coverage level achieved for all 
modules that are named in the specified reference listing. If a module is 
tested but the name is not found in the supplied reference listing, then 
that coverage is not reported. Similarly, if a name appears in the reference 
listing but is not found in the archive or trace file, no coverage will be 
reported. 

On the following page is an example of reference listing report. Take note 
of the following: 

Point A 

PointB 

Point C 

PointD 

Marks the reference listing file name. 

Shows the Cl coverage for the module. 

Indicates how many times a branches has been hit. 

Refers to an unexecuted logical branch. 

TCAT: Coverage Analyzer. [Release 8.2] 

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS RESERVED. 

+-----------+ 

TCAT Coverage on Reference Listing Report, based on file [l exam-
ple.i.AI]. A 

+-----------+ 

(Coverage values for all tests processed are reported in left-hand 
column. 

"*****" indicates not hits on corresponding segment. Extra names 
not 

part of this listing but in the Archive file are ignored,) 

TCAT, Release 8. 

(c) Copyright 1990 by Software Research , Inc. ALL RIGHTS 
RESERVED . 

SEGMENT REFERENCE LISTING 

Instrumentation date : Sat Jun 16 15 : 53:06 1990 

Separate modules and segment definitions for each module a~e 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 
II 
II 

II 

I 
II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

TCAT/C User's Guide 

-- indicated in this commented version of the supplied source file . 

externstruct iobuf 

int:_cnt ; 

unsigned char*__ptr ; 

unsigned char*_base ; 

char_flag ; 

char_file ; 

} _iob[60] ; 

externstruct _ iobuf * fopen() , *fdopen(), * freopen() , *popen() , * t:mp­
f ile () ; 

ext:ernchar*fget:s() , *gets(), *ctermid() , *cuserid() ; 

externchar*tempnam() , * tmpnam(); 

externvoidrewind() , setbuf(); 

externlongftell() ; 

externunsigned char*_bufendtab[] ; 

externchar_ctype[] ; 

char menu[l3] (79] = { 

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ", 

II \n " f 

What type of food would you like?\n ", 

" \n "' 
American S0s 

Chinese 
\n" ' 

Hunan Style \n " , 

1 

2 

3 

4 

5 

6 

7 

8 

Chinese 

Chinese 

Dani s h 
French 

Italian 

Japanese 

- Seafood Oriented \n" , 

- Conventional Style \n", 

" \n\n " 

} ; 

int char_index ; 

main(argc , argv) 

intargc ; 

char*argv[] ; 

int i , choice , c ; 

char str[79], answer ; 

int ask, repeat:; 

+----------+ 

ICl = 66 . 671/ ** Module main **/ 

+----------+ 
/ * First Segment * / 

+-+int proc_input() ; 

Ill/ ** Segment 1 <> ** / C 

+-+ 

C = 3 ; 

\n "' 
\n "' 

\n "' 

\n " ' 

B 

81 



CHAPTER 3: System Introduction 

82 

repeat= l ; 

while(repeat) 

6/ ** Segment 2 <start while> ** / 

printf( " \n\n\n") ; 

for(i = O; i < 13 ; i++) 

78/ ** Segment 3 <start for> ** / 

printf( " %s ", menu[i]) ; 

6/ ** Segment 4 <end for> ** / 

gets(str) ; 

printf("\n"); 

while(choice = proc_ input(str)) { 

6/** Segment 5 <start while> ** / 

switch(choice) 

case 1 : 

+- - ---+ 

1***** 1/ ** Segment 6 <case alt> ** / 
+-----+ 

D 

printf( " \tFog City Diner 1300 Battery 

break; 

982-2000 \n " ) ; 

case 2 : 
1/* * Segment 7 <case alt> ** / 

printf( " \tHunan Village Re staurant 839 Kearney 

break ; 

case 3: 

956-7868 \n ' ) ; 

*** ** / ** Segment 8 <case alt> ** / 

printf("\tOcean Restaurant 726 Clement 

break ; 

221-3351 \n " ) ; 

case 4 : 

1/ ** Segment 9 <case alt> ** / 

printf( " \tYet Wah 1829 Clement 
break ; 

case 5 : 
***** / ** Segment 10 <case alt> ** / 

387-8056 \n " ) ; 

printf("\tEiners Danish Restaurant 1901 Clement 

break ; 

case 6 : 

***** / ** Segment 11 <case alt> ** / 

386-9860 \n • ) ; 

printf( " \tChateau Suzanne 1449 Lombard 771-9326 \n " ) ; 

break ; 
cas e 7: 
***** / ** Segment 12 <case alt> ** / 
printf('\tGrifone Ristorante 1609 Powell 397-8458 \n " ) ; 
break; 
case 8 : 
2/ ** Segment 13 <case alt> ** / 
printf("\tFlints Barbeque 4450 Shattuck , Oakland \n") ; 

break ; 

default : 

2/ ** Segment 14 <case alt> ** / 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

111111111111111 
TCAT/C User's Guide 

if (choice ! = -1) 

2/ ** Segment 15 <if> ** / 

printf( " \t>>> %d : not a valid choice . \n ", choice) ; 
***** / ** Segment 16 <implied else> ** / 

break; 

6/ ** Segment 17 <end while> ** / 

for(ask = l ; ask; 
+-+ 

161/ ** Segment 18 <start for> ** / C 
+-+ 

printf( " \n\tDo you want to run it again? " ) ; 

while((answer = ( --((&_iob[O]))->_ cnt >= 0? 
(*( (&_iob[O]))->_ptr++)) : _fi lbuf((&_iob [O))) 

6/ ** Segment 19 <start while> ** / 

switch(answer) 

case'Y': 

***** / ** Segment 20 <case alt> ** / 

case ' y ': 

5/ ** Segment 21 <case alt> ** / 

ask= O; 
char_index O; 

break ; 

case ' N ': 

***** / ** Segment 22 <case alt> ** / 
case ' n ': 

1/ ** Segment: 23 <case alt:> ** / 

ask = O; 

repeat= O; 

break; 

de fault: : 

+-----+ 

1***** 1/ ** Segment 24 <case alt>**/ D 
+-----+ 

break; 

6/ ** Segment 25 <end while>** / 

6/** Segment 26 <end for> ** / 

1/ ** Segment 27 <end while>**/ 

int proc_ input(in_s tr) 

char * in_ str ; 

int tempresult = O; 

char bad_str[BO] , *bad_ input; 

(Ox ff & (int:) 
) I ! = ' \n ' I { 

83 



CHAPTER 3: System Introduction 

84 

+-- - -------+ 

ICl = 58.331/ ** Module proc_ input ** / 

----------+ 
/ * First Segment * / 

int got_ first = 0; 

12/ ** Segment 1 <> ** / 

bad_ input = bad_ str ; 

B 

while((( _ ctype+l) [in_ str[char_ index]]&0l0)) 

** * ** /* * Segment 2 <start while> ** / 

char_ index++ ; 

+--+ 

1121/ ** Segment 3 <end while> ** / 

+--+ 

C 

for( ; char_index <= strlen(in_ str) ; char_ index++) 

19/ ** Segment 4 <start for> ** / 

switch(in_str[char_index]) 

ca s e ' 0 ' : 

+-----+ 

1***** 1/ ** Segment 5 <case alt> ** / 

+-- - --+ 

cas e ' 1 ' : 

1/ ** Segment 6 <case alt> ** / 

case ' 2 ': 

3/ ** Segment 7 <case alt> ** / 

case I 3 I : 

3/ ** Segment 8 <case alt> ** / 

cas e I 4 I: 

4/ ** Segment 9 <case alt> ** / 

case ' 5 ' : 

4/ ** Segment 10 <Case alt> ** / 

case ' 6 ' : 

4/ ** Segment 11 <case alt> ** / 

cas e I 7 I : 

4/ ** Segment 12 <case alt> ** / 

cas e ' 8 ' : 

6/ ** Segment 13 <case alt> ** / 

c ase I 9 I : 

7/ ** Segment 14 <case alt> ** / 

D 

tempresult = tempresult * 10 + (in_ str[char_ index] 

got_ first 
break; 

default : 

= l ; 

12/ ** Segment 15 <case alt> ** / 

if(chk_char(in_s tr[char_ index ])) 

12/ ** Segment 1 6 <if> ** / 

return(tempres ult) ; 

II 
II 
II 

II 
II 

II 

II 

II 

II 

II 

II 

II 
II 

- ' 0 ' ) ; II 

II 

• 
II 



II 

II 

II 

II 
II 

II 

II 

II 

II 

II 
·11 

II 

II 

II 

II 

II 

II 

else { 

***** / ** Segment 17 <else> ** / 

if(char_index > 0 && got_ first) 
***** / ** Segment 18 <if> ** / 

char _index-- ; 
***** / ** Segment 19 <implied else> 
while(char_index <= strlen(in_str)) 

** ! 

***** / ** Segment 20 <start while> ** / 

if(chk_char(in_str [char_index ])) 

***** / ** Segment 21 <if> ** / 

break; 

else 

***** / ** Segment 22 <else> ** / 

*bad_input++ = in_s tr[char_ index] ; 

char_index++ ; 

***** / ** Segment 23 <end while> ** / 

*bad_ input = ' \0 ' ; 

printf( " \t>>> bad input : %s\n", bad_s tr) ; 

char_ index++ ; 

return ( -1) ; 

***** / ** Segment 24 <end for> ** / 

return(0) ; 
} 

int chk_char(ch) 

char ch ; 

+----------+ 

ICl = 66.67 1/ * * Module chk_char ** / 

+----------+ 
/ * First Segment*/ 

+--+ 

1121/ ** Segment 1 <> ** / 
+--+ 

if((( _ ctype+l)[ch]&0l0) II ch 

12/ ** Segment 2 <if> ** / 
return(l) ; 

else 
+-----+ 

1***** 1/ ** Segment 3 <else> ** / 
+-----+ 

return(0) ; 

C 

' \0 ' ) 

D 

B 

TCAT/C User's Guide 

------------ --~ ~- ------ --
-- TCAT/C, Release 8 . 2 

85 



CHAPTER 3: System Introduction 

-- END OF TCAT SEGMENT REFERENCE LISTING 

86 

II 
II 

II 

II 
II 

II 

II 

II 

II 
II 

II 

II 

II 

II 
II 

• 
II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 
II 

II 

II 

3.3 

TCAT/C User's Guide 

Conclusion 

From this chapter you should have learned the basic steps needed to use 
TCAT: instrument and compile the program, execute the program and 
generate a trace file and generate reports. In the examples shown 
throughout this chapter, Cl coverage was only around 63 percent. Ideally, 
you want to try for 85 percent coverage. In the case of this example, you 
would re-run the program and execute new tests to achieve higher cover­
age. 

TCAT can do a number of things for you: manageyour system testing 
more objectively and effectively. It also finds latent software errors before 
your customers do. Finally, TCAT demonstrates when testing is complete 
with its easy-to-read reports. 

87 



CHAPTER 3: System Introduction II 

II 
II 

II 

II 

II 

II 

II· 
II 

II 
II 
II 

II 
II 

II 

II 
BB II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

CHAPTER 4 

GUI Operation 
This chapter covers the basic X Window System graphical user interface (GUI) operations 
of TCAT. It demonstrates using TCAT from the OSF / Motif X Window System. 

LEVEL: If you are an advanced X Window System TCAT user, you may skip this chapter, 
which is intended for beginning and intermediate users. 

4.1 

4.1.1 

User Interface 

If you are familiar with the OSF / Motif style graphical user interface, you 
can go on to the next section. This section demonstrates using file selec­
tion dialog boxes, help menus, message dialog boxes, and pull-down 
menus. 

File Selection Box 

The Instrument, Execute and Analyze windows use file selection dialog 
boxes, where you can select a new or existing file name. 

Refer to the next figure for each of the dialog box's components: 

Filter entry box 

Directories 

Files 

Scroll Bars 

Specifies a directory mask.When you click the Filter 
push button, the directory mask is used to filter files 
or directories that match this mask (or pattern). 

Lists directories in path defined in the Filter entry 
box. 

Lists files in path defined in the Filter entry box. 

Move up / down and side/ side in the Directories and 
Files selection windows. You use them to search for 
the appropriate directory or file. 

Selection entry box Selects and enters the file name. 

Use the three push buttons at the bottom of the dialog box to issue com­
mands: 

OK Accepts the file in the Selection entry box as the new 
file or the file to be opened and then exits the dialog 
box. 

89 



CHAPTER 4: GUI Operation 

FIGURE 33 

90 

Filter 

Cancel 

Applies the pattern you specified in the Filter entry 
box. It lists the directories and files that match that 
pattern. 

Cancels any selections made and then exits the dialog 
box. No file is selected as a result. 

Fi I ter 

I nua ls/covera9e/tcatidernosl*. c I 
Directori es _,: 
;/demos/. . I 

I 

C :a 
Se lect ion 

Files 

exarnple. c 
examp le. i .c 

l•anuals/covera9e/ t cat/deroos/ 

Using a File Selection Dialog Box 

To use a file selection dialog box, follow these steps: 

1. You can restrict the file selection operation to a named region (direc­
tory path) by typing in a directory path name in the Filter entry box 
or by clicking on a path name in the Directories selection window. 
Then click on the Filter push button. 

2. Select a file by clicking on an already existing file you want to over­
write in the Files selection window or type in a new file name in the 
Selection entry box, with no limit on character length. 

3. To select a file name, do one of these three things: 

II 

II 
II 

II 
II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

4.1.2 

TCAT/C User's Guide 

• Double click on the file in the File selection window, Highlight 
the file in the File selection window, or 

• type in the file name in the Selection entry box and click OK, or 

• Highlight or type in the file name and press the <ENTER> key. 

Help Boxes 

TCAT provides on-line help for its Main, Instrument, Execute, and Ana­
lyze windows. This on-line help will automatically bring up the text cor­
responding to where you invoke it at. In other words, if you invoke it at 
the Main window, the Help window will automatically display informa­
tion pertinent to the Main window. Here's how to use a help frame: 

1. Once it is invoked, the text should correspond to the window from 
which it was invoked. 

2. You can use the scroll bars to move up/down and side/side. 

3. If you don't see what you need, you can search for specific text: 

• Click on the Action pull-down menu and select Search. 

• A dialog box (shown below) pops up. 

• Type in the pattern you want to search for and then click on OK 
or press the <ENTER> key. 

• If the pattern is found, the help frame will automatically scroll to 
the location of the pattern. 

4. If you select another Help option from another window, while the 
current one is displayed, the Help window will automatically scroll 
to the context of the new window. 

5. To exit, click on Quit. 

91 



CHAPTER 4: GUI Operation 

FIGURE 34 

4.1.3 

92 

B_ction 

~ tion, Execut ion, and Anal!;,lsis. 

TCAT instruments !:_tOur 
arri .. using a var1et~ of 1nstru­

opt1ons which \JOU select with th 
t" r~enu. 

After instrumentat ion you 

Enter string to search I INS~RUMENll . - I 
and I ink w, th the TCAT "un-

1----------lll lra111. Several alternatives for 
1 on step are hand 1 ed by 

After each test \JOU can 
e tracefi le us1n9 the "cover" 

comriiand. The coverage repor t s include; hi 
segments, not hit segments, newl!J hit seg­
ments, new l !::I r,, i ssed segments, cun,u lat i ve 
test resu 1 ts, current tes t results, l 1 near 
histograms , log hi s tograms , coverage on 

Using the Help Dialog Box 

Message Boxes 

Pop-up message dialog boxes have three purposes: 

1. They display warnings and error information. 

2. They ask you to verify that you want to perform a task. 

3. They ask to enter a command. 

To remove a message box after you have read it or to tell TCAT to go 
ahead with a command, click the OK push button. If you want to cancel a 
command, click the Cancel push button. 

II 
II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 
II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

FIGURE 35 

4.1.4 

TCATIC User's Guide 

I Enter string to search 

! INSTRUMENll 

;, ......................................................................................... n1 

I jOK- Ira~ 
........................... 

~.-~.>_: • ~-. ~:;-: 

frx ;.· .· .• n·>s· .• t<?>< ·:::·N.=.::.::::: ••• v·t:>::·:;Yt"< ••• · ·:···:·::vl:r 

Using a Dialog Box 

Option Menus 

The Instrument, Execute and Analyze windows use an option menu. An 
option menu includes selections from a list. Usually, only the default 
menu option is visible. To use an option menu, follow these steps: 

1. Click on the option menu. 

2. After clicking on the menu, the list of choices are visible. 

3. Drag the mouse to the menu option you want. 

4. Let go of the mouse. 

5. The new menu option should be visible, indicating that it is acti­
vated. 

93 



CHAPTER 4: GUI Operation 

FIGURE 36 

94 

t!_el p 

Preprocessor output suff ix: . i 

I cc -P Preprocessor options : 1 ... _____ ,
1 

Instruroent or options : 

!J Recogni ze _exit as ke~word 

!J Do not recognize exit as ke~wor d 

!J Do not instrument funct ions in fi le: I DEI NSTRU. fns I 
!J Specif~ rnaxi rnur~ f ile narne l ength: 

!J Specif~ rnaxirnurn f unct ion narne length: 

.... ·.-.-.-------.-:·:=:::·.- :,:,:-:-: 

Using an Option Menu 

Pull-down menus are located within the menu bar. They often contain 
several options. To use pull-down menus and their options, follow these 
steps: 

1. Move the mouse pointer to the menu bar and over the menu contain­
ing the item. 

2. Hold the left mouse button down. This displays the items on the 
menu. 

3. While holding down the left mouse button, slide the mouse pointer to 
the menu item you want to select. The menu item is highlighted in 
reverse shadow. 

Three dots at the right of the menu item indicates that selecting the 
item will bring up a pop-up window. 

An arrow to the right of the menu item indicates that the item is a 
submenu (or cascading menu). 

To display the submenu, slide the mouse pointer over the arrow. You can 
then select an item on the submenu. 

II 
II 

II 
II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 



II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
FIGURE 37 

II 

II 

II 

II 

II 

TCATIC User's Guide 

4. Release the mouse button while the desired item is highlighted to 
activate the command. To the function exit without selecting any­
thing, simply drag the mouse pointer off the menu before releasing 
the mouse button to not activate anything. 

IC 
s_xit 
reprocessor comMcrnd: I cc -P 

Instrurnentor cofflmand: ~I _ic __ ~ 

Instrumentor options: 

0 Recognize _exit as ke';jword 

Preprocessor output suffi x: 

Preprocessor options: 

Cl Do not recognize exit as ke!:fword 

D Do not instrument Functions in file: I DEI NSTRU.Fns I 
D Speci f!:f rnax irnurn file narne length: 

D Specif!:f rnaxirnurn function name length: 

Using a Pull-down Menu 

95 



CHAPTER 4: GUI Operation 

4.2 Invoking TCAT 

To start TCAT from your working directory, type this command: 

Stcat 

The Main window (shown below) pops up. 

FIGURE 38 Invoking the Main Window 

You can also invoke TCAT through the STW menu. First, type 

stw 

1. The STW window (shown below) pops up. 

2. Click on the Coverage activation button. 

3. The STW/Coverage window pops up. 

4. Click on TCAT. TCAT 's Main window pops up. 

96 

I 
II 

II 
I 
II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

I 
II 



• 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

FIGURE 39 

4.2.1 

TCAT/C User's Guide 

... n.\,I {(., Yer ~.6 • .J 

Syste111 Help 

... ISTW/Co-.1 (0 I/er ~ 6 1 J 

S1:JSte- Help 

TCAT 

' S-TCAT 

TCAT -PATH I 
I T-SCCff 

. 
' 

..;, Xtcat/C \/er 8.2 f • I j -

~, .. ~Ip 

I lnstr ur-ent I 

Execute I 
Analyze 11, 

Invoking TCAT from the STW Tool Suite 

Selecting Main Window Options 

The Main window has four push buttons that allow you to perform all of 
TCAT 's operations, including, instrumenting your application, compil­
ing, linking object code, executing the program, generating a trace file 
and looking at coverage reports or source code. 

Instrument For preprocessing and instrumenting your applica­
tion. (See Section 5.3) 

t'.xecul:e for compiling the instrumented version of your pro­
gram, linking the program's object ,ode to TCAT 's 

97 



CHAPTER 4: GUI Operation 

4.2.2 

FIGURE 40 

4.3 

98 

Analyze 

object modules, and running the application. (See 
Section 5.4) 

For generating coverage reports and visually looking 
at the source code. (See Section 5.5 and the accompa­
nying documentation on the Xdigraph utility. 

The following sections deal specifically with their usage. 

Exiting the Main Window 

The Exit option allows you to close TCAT. 

Here's how: 

1. Click on the System pull-down menu. 

2. Drag the mouse to Exit, and then let go of the mouse button. TCAT 
exits. 

Exiting the Main Window 

lnstrumenti ng 

To analyze your test coverage you must first preprocess your application 
for syntax errors and then instrument it. During instrumentation, TCAT 
modifies your application by placing special markers (function calls) at 
every logical branch in each program module. These markers are later 
tracked and counted by TCAT during your application's execution. This 
is how coverage is obtained. 

To begin the instrumentation process, invoke the Instrument window by 
clicking on the Instrument activation button. The window below pops 
up. 

' II 

• 
I 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
FIGURE 41 

4.3.1 

II 

II 

II 

II 

II 

II 
II 

TCAT/C User's Guide 

NOTE: If you are instrumenting with make files, please refer to Section 
4.5. 

E_i le !!ct ion 

Preprocess ing Preprocessor output suffi x: .1 

Preprocessor cooMnd: ~ Preprocessor options : '-----'Ill 

Instrufllentor corrirnand: ~ 

lnstr umentor options: 

0 Recognize _ex1 t cE ke!:jword 

0 Do not rec09n 1 ze ex 1 t as ke'jword 

0 Do not 1nstru111ent functions in f ile : I DEINSTRU.fns ! 
0 $pec1 f~ fllax iflllurn h ie naflle length: 

0 Spec if!:J maxifllum funct ion name length: 

Invoking the Instrument Window 

Selecting the Application Name 

You must first select an already existing program to instrument. To select 
a file name: 

1. Click on the File pull-down menu. 

2. Select Set File Name. 

3. A file selection dialog box like the one below pops up. 

4. Select an existing program name, basename. 

5. Select a file name by clicking on an already-existing program in the 
Files selection window or typing in the file name in the Selection 
entry box. 

99 



CHAPTER 4: GUI Operation 

FIGURE 42 

4.3.2 

4.3.2.1 

100 

,.;1:· - 1ns trLW1e-~tF1 le_~,n1r 

Filter 

I nwls/cover~/tc.?1t/cle,io~.l• .c I 
D1rector1e!; Fi les 

LJ~ 
mmra 

~ 
• 

exariiple.1.c 

~ r::11111:a 
Selection 

I coverll9"/tcat/de1110slexai-ple.cd 

~ IFilter l I Cancel j 

Selecting the Program File Name 

Setting Options 

After selecting the application file name, you may adjust the Instrument 
window's options. Listed next are the options and how to use them. 
These instructions will also tell you how to change the defaults. If you 
want a more permanent change, you can change any of the defaults in the 
. Xdefaults file (see Chapter 8). For complete definitions on the options' 
functions, please refer to Chapter 5. 

Preprocessing Option Menu 

Most often you must check your program for syntax errors by preprocess­
ing. In these cases, you will simply leave the default ON switch on. Some­
times, however, you may already know there are no syntax errors and 
want to skip the preprocessing step. In these cases, you will want to acti­
vate the OFF switch. Here's how: 

1. Click on the Preprocessing menu. 

2. Select the OFF switch. 

3. The accompanying Preprocessor command, Preprocessor output 
suffix and Preprocessor options options gray out, becoming inactive. 

• 
II 

• 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 
4.3.2.2 

II 

II 

II 4.3.2.3 

II 

II 
4.3.2.4 

II 

II 
4.3.2.5 

II 

II 

II 4.3.2.6 

II 

II 

II 

II 

II 

II 

TCAT/C User's Guide 

Preprocessor output suffix 

When you preprocess a program, normally the file name will change 
from basename to basename. i, with an i suffix. If you want a different suf­
fix: . 

1. Click inside the corresponding specification region. 

2. When the cursor appears, you can type in the desired suffix. 

Preprocessor command 

The preprocessor command is defaulted to cc -P, a standard UNIX pre­
processing command. If you want to change it: 

1. Click inside the corresponding specification region. 

2. When the cursor appears, you can edit. 

Preprocessor options 

If you want to add additional compiler options for preprocessing: 

1. Click inside the corresponding specification region. 

2. When the cursor appears, you can edit. 

lnstrumentor command 

The instrumentor command is defaulted to ic. This is the command that 
instruments your C program. To change it: 

1. Click inside the corresponding specification region. 

2. When the cursor appears, you can edit. 

lnstrumentor options 

This option provides several check buttons from which you can select. 
These options will effect the instrumentation process in several ways. You 
can select any of the following check buttons (by clicking once in the cor­
responding button). A check button is turned on if it darkened. If it is hol­
lowed, then it is turned off. 

• Recognize _exit as keyword button. You turn this option on if 
you want the instrumentor command (ic) to recognize the key­
word exit in your program. 

• Do not recognize _exit as keyword button. You turn this option 
if you do not want the instrumentor command (ic) to recognize 
the keyword exit in your program. 

• Do not instrument functions in file button. Use this option to 
selectively de-instrument individual C functions, or modules. 
TCAT will disr~gard these functions when they are found. 

101 



CHAPTER 4: GUI Operation 

4.3.3 

102 

This option can effectively ignore entire modules from instru­
mentation. You should use this option when you don't want a 
particular module's logical branches marked during instrumenta­
tion. 

The default file is set to DEINSTRUfns. If you want to de-instru­
ment certain functions, simply put the names of those functions 
you want to de-instrument in this file. If you want to change the 
name of the default file name, click inside the specification region 
and begin editing when the cursor appears. 

NOTE: You can also de-instrument parts of your code by placing direc­
tives in your source code file. Please refer to Section 6.3.2 for further infor­
mation. 

• Specify maximum file name length button. Use this option 
when your system has a limit on the amount of characters a file 
name can have. If the length exceeds the value, then the instru­
mentor output will be redirected to files named Temp.i.?. (See Sec­
tion 4.5.4 for a listing of the different kinds of instrumentor 
output). 

Type in the amount of characters in the accompanying specifica­
tion region. 

• Specify maximum function name length button. Use this option 
when your system has a limit on the amount of characters a name 
can have. If the length exceeds the value, then the instrumentor 
will recognize only the first value characters of the function 
name. For instance, a value of 5 will recognize only the first five 
characters of a module as distinct. Characters beyond that point 
will not be recognized for function name purposes. 

Preprocessing Your Program 

After selecting the Instrument window's options, you are ready to pre­
process your program. Prior to instrumenting, it is often necessary to pre­
process your program for syntax errors. Here's how: 

1. Click on the Action pull-down menu. 

2. Select Preprocess. 

3. The mouse pointer turns into a wristwatch symbol and the Instru­
ment window's options gray out until preprocessing is complete. 
This signifies a time-out period in which the TCAT is completely inac­
tive until preprocessing is complete. 

II 

II 

Ill 

II 

II 

Ill 

II 

II 

II 

II 

II 

II 

II 

II 

Ill 

II 
II 



II 

II 
II 

II 

II 
II 
II 

I 
II 

II 

II 
II 
II 

II 
II 

II 

-

TCAT/C User's Guide 

N OTE: If you turned the preprocessing OFF, you do not have to prepro­
cess. 

Preprocessing Results 

Preprocessing checks your program for syntax errors. If any are found, 
messages are displayed in the invocation window. 

When preprocessing is complete, TCAT writes its results to a file named 
basename. i, where basename is the name of your program and i indicates it 
as a preprocessed file. 

103 



CHAPTER 4: GUI Operation 

4.3.4 

104 

Instrumenting Your Program 

After preprocessing your program, you are ready to instrument your pro­
gram. During this phase, TCAT will automatically insert function calls at 
each logical branch. This marking is important. Later when you run your 
application, you will be trying to hit these markers with your planned test 
suite. This information is then written to a trace file, where you can obtain 
coverage reports. 

Here's how to instrument: 

1. Click on the Action pull-down menu. 

2. Select Instrument. 

3. The mouse pointer turns into a wristwatch symbol and the Instru­
ment window's options gray out until preprocessing is complete. 
This signifies a time-out period in which the TCAT is completely inac­
tive until instrumentation is complete. 

4. When instrumentation is complete and no errors are found, the fol­
lowing message appears in the invocation window: 

---> TCAT analysis of ' basenarne ' complete , no errors<---

5. If an error is found, it will appear in the invocation window. 

NOTE: If you used any of the Instrumentor options, instrumentation 
will be affected accordingly. 

Instrumenting Results 

Instrumentation produces the following files : 

• basename. i.c -- an instrumented version of your C program, base­
name. 

• basename. i.A -- a Reference Listing, which has the logical 
branches marked as Segment 1, Segment 2 ... 

• basename. i.S -- an Instrumented Statistics file, where various 
kinds of statistics are listed for each module, including the num­
ber of statements, logical branches, conditional statements, etc. 

• basename. i.L -- a Segment Count Listing file, which contains a 
complete count of all the modules and their logical branches in 
the program being tested. 

• modulename. dig -- a Directed Graph Listing file for each module, 
which reports the logical branch relationship between nodes. You 
can also visually look at a module's directed graph using TCAT 's 
Xdigraph utility (see Chapter 22, ''Xdigraph Utility"). 

II 

II 
II 

II 
II 
II 
II 

• 
II 
II 

II 
II 
II 

-
II 

II 

II 



II 

II 

II 

II 

II 
II 
II 
II 
II 

II 
II 
II 

II 

II 

II 

II 

-

4.3.5 

FIGURE 43 

TCAT/C User's Guide 

• basename. i.E -- an Error Listing file, which contains all the errors 
found during instrumentation. 

To look at samples of the above files, please refer to Section 4.2. 

Exiting the Instrument Window 

The Exit option allows you to close the Instrument window. Here's how: 

1. Click on the System pull-down menu. 

2. Drag the mouse to Exit and then let go of the mouse button. The 
Instrument window exits. 

I nstri.imentor comroand: l._1_· c __ __,_ 

I nstru~,entor options : 

D Recognize _exit as ke!:jword 

Preprocessor output suffi x: • i 

Preprocessor options: 

D Do not recognize exit as ke!c!word 

D Do not instrument functions in file: I DE!t-lSTRU. fns I 
D Specif~ r,1aximurr, file name length: 

D Specif1c1 rnaximurn function name length: 

Exiting the Instrument Window 

105 



CHAPTER 4: GUI Operation 

4.4 

4.4.1 

FIGURE 44 

106 

Running Your Program 

After instrumenting your source program, you need to compile the 
instrumented version of your program, link the program's object code 
with TCAT 's runtime object modules, and run your application. 

As you know, instrumentation inserts function calls at each logical 
branch/ call-pair. When you eventually run the program, you will be try­
ing to "hit" these function calls. In order for TCAT to understand the 
meaning of the instrumented program's object code, you must link the 
code to a supplied runtime object module. This runtime module will 
interpret the object code's instructions, creating an executable. After link­
ing, you can run your program (see Section 4.5.6). 

This is all accomplished using the Execute window. This section demon­
strates the Execute window. 

Invoking the Execute Window 

Invoke the Execute window from the Main window. Simply click on the 
Execute button. The window below pops up. 

E_i le 8_ction tj_elp 

Comp i 1 er command; };:c - c Compiler options : *. i.c 

Linker command; cc -o Linker options : I • .Lo 

Make command; I o,ake I Make file name; 

Application name; I a . out I App 1 i cati on arguments ; 

Invoking the Execute Window 

II 

II 

-
II 

II 

II 
II 

II 

II 

II 
II 
II 

II 

II 

II 

• 
II 



II 
II 

II 

II 
II 

II 
II 
II 
II 
II 

II 
II 
II 

II 

II 

II 

IJ 

4.4.2 

TCAT/C User's Guide 

Setting Options 

When using the Execute window, you may want to adjust the options. 
Listed next are the options and their default settings. For complete defini­
tions on the options' functions, please refer to the Chapter 5. 

To change any of the default setting for the following options: position 
the mouse pointer so it in the specification region and then click the 
mouse button. A cursor will appear and you can then edit: 

• Compiler command & Compiler options. These two options 
form the standard command to compile instrumented files. The 
Compiler command default is set to cc-c and the Compiler 
options is set to *. i. c. cc -c is the standard compiling com­
mand and *.i.c represents instrumented files. 

• Linker Command & Linker options. These two options form the 
standard command to link the program object code files with one 
of TCAT 's object modules. The Linker Command default is set to 
cc -o and Linker options is set to * i. o. cc -o. i * i. o 
represents the input object code files, created during compilation. 

• Make Command. This option invokes the make utility. The 
default is set to make. 

• Make file name. This option names the 'make' file. No default is 
set. 

• Application name. This names the instrumented executable. The 
executable is the result of linking. 

• Application arguments. This option lists arguments or switches 
for the application. 

NOTE: All defaults can also be changed by manually editing the .Xde­
faults file. Please refer to Chapter 8 for further information. 

107 



CHAPTER 4: GUI Operation 

4.4.3 Compiling the Instrumented Program 

You are now ready to compile you instrumented program. Follow these 
steps: 

1. Click on the Action pull-down menu. 

2. Select Compile. 

3. The mouse pointer turns into a wristwatch symbol and the Execute 
window's options gray out until compilation is complete. 

Compilation Results 

Compiling checks your instrumented program for syntax errors. If any 
are found, messages are displayed in the invocation window. 

When compilation is complete, TCAT automatically writes object code 
found in the instrumented program to a file named basename. i.o, where 
basename is the name of your program and i.o signifies the instrumented 
program's object code file. Eventually this file will be linked with one of 
TCAT 's runtime object modules. 

4.4.4 Selecting a Runtime Object Module 

1DS 

Before you link, you must specify the TCAT runtime object module. Each 
runtime routine can change the behavior and performance of the instru­
mented system when it is run. Below are standard routines available from 
TCAT. TCAT also offers several more. For more information on these, 
please refer to Chapter 7. Here's how to select a runtime routine: 

1. Click on the File pull-down menu. 

2. Select Set Runtime Obj Module. 

3. A file selection dialog box like the one on the next page pops up. In 
the Files selection window, there are three runtime object modules 
from which to choose from: 

• crunO.o or quiet runtime. There is no internal processing or 
buffering. The trace file is the full, unedited trace of program 
execution. There is no prompting for trace file name at the 
start of your instrumented system's test run, so the trace file 
name is automatically defaulted to Trace.trc. 

• crunl .o This is the same as crunO.o, except it prompts you to 
describe the test and the name of the trace file. There is no 
processing or buffering. The trace file is the full, unedited 
trace of program execution. This is the most commonly-used 
object module. 

II 
II 
II 

II 
II 

II 

II 
II 
II 

-
II 
II 
II 
II 

II 
II 

ll 



II 
II 

II 

II 

II 

II 
II 
II 
II 

II 
FIGURE 45 

II 
4.4.5 

II 
II 

II 

II 

II 

II 

TCAT/C User's Guide 

• cruna.o.This runtime object module is designed for analysis 
of system calls such as spawn system command of C. A trace 
file is produced for parent and child processes. 

4. Select a runtime routine by clicking on one of them in the Files selec­
tion window or typing in the name of the object module in the Selec­
tion entry box. 

1le ~election 

F1 lter 

I 6/s tw,2.6/product/l1b/crun•. o I 
Dtrector1e: File! 

' ,IJ 
!!<Ip 

*.i. c 

*.i.o 

:::~xi1R5 ~:. • .. r-~-2-1~~-::-,~,·· 
1 

' I 1bl!:har-ed i . crunl.o . 
i . crun4.o 
; · crun5. o 
· cr~O++.o 
- 1 cr1..na0 .o ~ 1 

,-- a 1:1111111::D 
I Selection 

Selecting the Runtime Object Module 

Linking 

Now, you are ready to link the program's object c:ode to the object module 
you selected. To link: 

1. Click on the Action pull-down menu. 

2. Select Link. 

3. The mouse pointer turns into a wristwatch symbol and all the options 
gray out until the object modules are linked. 

Linking Results 

After linking object files, an executable of the instrumented application is 
created. The executable is defaulted to a.out. 

109 



CHAPTER 4: GUI Operation 

4.4.6 

110 

Running Your Application 

The next step is to run your instrumented program and track which logi­
cal branches have been exercised by the test data you supply. TCAT 
senses when segments are hit by monitoring the markers during instru­
mentation and by accumulating the results in a trace file. The trace file 
becomes the basis for all subsequent coverage reports. 

To run your application: 

1. Click on the Action pull-down menu. 

2. Select Run Application. 

3. The mouse pointer turns into a wristwatch symbol and all the options 
gray out until you are finished running your application. 

4. If you using the crunl.o or cruna.o runtime object modules, the invo­
cation window then prompts you: 

Trace Descriptor: 

Type in a description of the test run. Be as descriptive as you feel is 
necessary. You can enter up to 80 characters of text in your message. 
This message will be recorded in the trace file and used in coverage 
reports. If you choose to enter no descriptive text, just press the 
RETURN key. 

5. If you using the crunl.o or cruna.o runtime object modules, the invo­
cation window prompts you: 

Name of trace file [default is Trace . trc] : 

Type in any name. The system put the trace information under the 
name you specify. You can also save trace information to the default 
trace file name, Trace.trc. To do this, press the RETURN key. 

The trace file description and trace file name are useful in keeping 
track of different test runs. Consistent, clear naming conventions are 
useful in organizing different groups of results. A recommended 
practice is to identify trace files with the file name extension trc. 

If you are using the crunO.o runtime routine, then you will not be 
prompted with the questions in 4 and 5. The trace file name is auto­
matically defaulted to Trace.trc. 

6. Run your program as you normally would, making sure to exercise 
your test suite as thoroughly as possible. 

Running Results 

After exercising your test suite, all the test trace information is written to 
a trace file. From this file, coverage reports can be obtained. 

II 
II 
II 

II 

II 

II 
II 
II 
II 

II 

II 
II 
II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

4.4.7 

FIGURE 46 

4.5 

4.5.1 

TCAT/C User's Guide 

Exiting the Execute Window 

The Exit option allows you to close the Execute window_ Here's how: 

1. Click on the File pull-down menu_ 

2. Select Exit_ The Execute window exits_ 

Ill !L'..~~~.~~-~-"~, , ' , 
Runtime Obj Module+++ ~l- ·1 \ -ornp1 er 

............. •.•.•.-.-.. :: 

1 n ::.er comrnan + 
,.,:'..'.: __ , __ ::~----------w.w--. .,.._.,..J L i nker o 

Make cornrnand ! 
""~'.:~-~-~~~=------.-,.._. ___ ..... .w,.·-·.wj Make f i 1 

App 1 i cation narne ! a+ out !! App 1 i cat 
I ..... ------~~----;.,'-;.;.,w.;;."";.,"w..;··;.,·-"'..;._.'"",,_"'.,., . ..,.,,..,·.,·..;···.-;.;.·"•'·;.;.,'"-"'.;;.;.,J ____ ....., 

Exiting the Execute Window 

Using make Files 

Most often, TCAT will be used to develop test suites for systems that are 
created with make files_ Make files cut the time of constructing systems, 
by automating the various steps necessary to build the system, including 
preprocessing, instrumenting, compiling and linking- All of these steps 
can be written in the make file_ 

Preprocessing, Instrumenting, Compiling 

Fortunately, it is possible to add a few statements to most make files to 
enable them to make an instrumented version of the system_ The modifi­
cations fall into one category: cc for most UNIX compilers-

If the make file explicitly mentions the C compiler with a cc command 
(for example), it is possible to add the ic command and an extra cc com­
mand for preprocessino, instrumenting and compiling, causing the make 

script to instrument and compile the C files in question_ 

111 



CHAPTER 4: GUI Operation 

4.5.2 

112 

This section will discuss how to use TCA T and make files . Please refer to 
Section 6.6.1 for more information on make file commands. 

Make file lines such as: 
sample . a : sample . c 

cc -c sample . c 

would be changed to: 
sample.a: sample . c 

cc -P $(CFLAGS) sample.c 

ic sample.i 

cc - c $(CFLAGS) sample . i .c 
mv sample.i.a sample .a 

The other situation is where the compiler is not explicitly mentioned, but 
given as a "built-in" rule. You can add the following "built-in" rule: 

cc -P $(CFLAGS) $*.c 

ic $* . i 

cc -c $(CFLAGS) $*.i.c 
mv $* . i . a $*.a 

Linking Object Modules 

You can also link object modules by adding one of TCAT 's supplied 
object modules to the link statement. Below is a standard link statement: 

sample: $(Objects) 

rm -f sample 

cc $(Objects) $(LDFLAGS) $(Lextras ) -a sample 

You would add one of the supplied object modules, as shown below (the 
object modules are shown in regular text): 

sample: $(Objects} crunl.a 
rm -f sample 
cc $(Objects} crunl . a $( LDFLAGS ) $(Lextras) -a sample 

At this point, your make file has accomplished the preprocessing, instru­
menting, compiling, and linking steps. All you need to do is run the make 
file (see Section 4.5.4). 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 



II 
4.5.3 

II 
II 

II 

II 

II 

II 
II 

II 

II 
II 
II 
II 

II 

II 

II 

II 

TCAT/C User's Guide 

Example make Files 

The make file below shows a typical UNIX/XENIX make file before mod­
ification. 

############################################################### 
#### 

## 

##SAMPLE M A K E F I L E 
## 

##Makefile example , no instrumentation . 
## 

## UNIX , XENIX 

## 

############################################################### 
#### 

# Uses make "s knowledge of l ex, yacc , cc . 

############################################################### 
#### 

CCextras 

CFLAGS = -s ${CCextras} -DXENIX 

YFLAGS = -d 

LDFLAGS = -i -ly -11 

LFLAGS = -v 

Lextras = 

Objects= sample.a sampley.o samplel .o tree . a init . o error . a 
dotest . o log .a\\ 
ui . o premain.o preprocy.o preprocl.o pretree.o help . a license . a 
Sources= sample.c sampley .c samplel.c tree . c init.c error . c 
dotest . c log .c \\ 
ui .c premain.c preprocy.c preprocl .c pretree . c sample . h \\ 
typedef.h error . h y . tab.h preproc . h help.c license.c license.h 

# UNIX version . Compiles and links . 

sample: $(Objects) 

rm -f sample 
cc $(Objects) $(LDFLAGS) $(Lextras) -o sample 

# 

sampley.c: sampley.y 

# 

yacc $(YFLAGS) sampley.y 
mv y . tab . c sampley . c 

cp y . tab . h ytab . h 

samplel . c : samplel.l 

lex $(LFLAGS) samplel.l 
mv lex.yy.c samplel . c 

# 

preprocy.c : preprocy.y 
yacc S(YFLAGS) preprocy . y 

cat y. tab .c sed -e "s/yy/xx) g• > preprocy.~ 

cat y.tab . h I sed -e ' s/yy/xx/g ' > pretab.h 

113 



CHAPTER 4: GUI Operation 

FIGURE 47 

114 

rm y.tab.c 

# 

preprocl.c: preprocl.l 

lex $(LFLAGS) preprocl.l 

cat lex . yy . c I sed -e 's/yy/xx/g' > preprocl . c 

rm lex.yy.c 

lpr: 

pr $(Sources) I lpr 

license.o: license.c license.h 

Uninstrumented UNIX Make File 

The changes needed have been made in the modified make file shown 
below. The modifications are shown in bold face. 

############################################################### 
#### 

## 

##SAMPLE M A K E F I L E 

## 

##Makefile sample, with TCAT /C instrumentation 
## 

## UNIX, XENIX 

## 
############################################################### 
#### 

# Uses make ' s knowledge of lex , yacc , cc . 

############################################################### 
#### 

CCextras 

CFLAGS = -s ${CCextras) -DXENIX 

YFLAGS = -d 

LDFLAGS = -i -ly -11 
LFLAGS = -v 
Lex tras = 

Objects= sample.o sampley.o samplel . o tree . o init.o error . o 
dotest.o log . o \\ 

ui . o premain.o preprocy.o preprocl.o pretree.o help.o license.o 

Sources= sample.c sampley . c samplel.c tree . c init.c error.c 
dotest . c log . c \\ 
ui . c premain.c preprocy . c preprocl.c pretree.c sample.h type­
def.h error.h \\ 

y.tab.h preproc . h help . c license.c license . h 
# UNIX version . Compiles and links . 

.c.o: 

cc -P $ (CFLAGS) $*.c 

ic $*.i 

cc -c $(CFLAGS) $*.i.e. 

mv $*.i.o $*.o 

II 
II 

II 

II 
II 

II 
II 
II 
II 

II 
II 
II 
II 

II 

II 
II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II FIGURE 48 

4.5.4 

II 

II 

II 

II 

• 
II 

.TCAT/C User's Guide 

# 

sample : $(Objects) crunl . o 
rm -f sample 

cc $(Objects) crunl . o $(LDFLAGS) $(Lextras) -o sample 

# 

sampley . c : sampley . y 

yacc $(YFLAGS) sampley . y 

mv y.tab . c sampley . c 

cp y . tab . h ytab . h 

# 

samplel . c : samplel . l 

lex $(LFLAGS) samplel.l 

mv lex . yy . c samplel.c 

# 

preprocy.c : preprocy . y 

# 

yacc $(YFLAGS) preprocy . y 

cat y.tab.c I sed -e ' s/yy/xx/g ' > 

cat y.tab.h I sed -e ' s/yy/xx/g' > 

rm y . tab.c 

preprocl . c : preprocl . l 

lex $(LFLAGS) preprocl. l 

preprocy . c 

pretab.h 

cat lex . yy . c I sed -e ' s/yy/xx/g ' > preprocl . c 
rm lex . yy . c 

lpr: 
pr $ (Sources) I lpr 

license . a : license.c license.h 

Instrumented UNIX Make File 

Running Your Make File 

Now you are ready to run your program. Please follow these steps: 

1. Invoke TCAT as you normally would (see Section 5.2). 

2. Invoke the Execute window (see Section 5.3). 

3. Make sure the Make command, which invokes the make utility, is set 
to the command you need. The default is set to make. To change it, 
position the mouse pointer in the specification region and then click 
the mouse button. When the cursor appear, edit the region accord­
ingly. 

4. You need to specify a make file name for the Makefile name option. 
The make utility will use this file. Simply position the mouse pointer 
so it is in the specification region and then click on the mouse button . 
When the cursor appears, type in the name of your make file. 

115 



CHAPTER 4: GUI Operation 

116 

5. Click on the Action pull-down menu. 

6. Select the Make option. 

7. This option will invoke the make utility, which will use the make file. 
The preprocessing, instrumenting, compiling, and linking instruc­
tions are executed. 

8. The mouse pointer turns into a wristwatch symbol and the Execute 
window's options gray out until the make file's statements are exe­
cuted. 

9. Run your make file like any other instrumented and compiled pro­
gram (see Section 5.4 for program running instructions). 

4.6 Obtaining Coverage Reports 

When you ran your program, all branch/ call-pair coverage information 
was written to a trace file, default Trace.trc or the trace file name you spec­
ified. 

To obtain coverage reports, the specified trace file is inputted into the cov­
erage analyzer. The coverage analyzer generates coverage reports and an 
archive file (named Archive), which can be used in the second run of the 
coverage analyzer. The archive file is similar to trace files in its format and 
content. The significant difference is that the archive file does not contain 
information on the sequence in which logical branches were hit. It does, 
however, contain all other data required for coverage analysis. 

The archive file is useful if you run several subsequent test sessions and 
want cumulative results. In such a case, both the archive file and the trace 
file are inputted into the coverage analyzer. This is done automatically for 
you. 

Following is a diagram of how coverage reports are created. 

II 

II 

II 

II 
II 

II 

II 
II 

II 

II 
II 
II 

II 
II 

II 
II 

II 



II 

II 
II 

II 

II 

II 

II 

II 
FIGURE 49 

II 4.6.1 

II 

II 

II 

II 

II 

II 

• FIGURE 50 

II 

TCAT/C User's Guide 

Trace 

File 

Archive 

File 

Obtaining Coverage Reports 

Invoking the Analyze Window 

Coverage 

Analyzer 

Coverage 

Reports 

Invoke the Analyze window from the Main window. Simply click on the 
Analyze button. The window below pops up. 

~ 1. 
,---
! [i le 8_ct1on 

Report t!:jpes : 

j D Past test s j 
• CUfllulat ive tests 

D H1t 

• Not hit 

D Nel.1 1!!1 hit 

D Newl!,-1 ru ssed 

t:J log h1 st09r&Jil 

D Linear h1stografll 

CJ ReferMce I 1stm9 

''°'" 
!:!_elp 

Ftnal!,o!zer options : 

D Do not report fooct1on m f1 le: I 
:===a:ltl 

D Generate !1st of funct ions with C1 > ~185 ___ ~ ,u 

D Genf!r<!lte list of' functions not included in report 

• Do not update archive f 1 les 

0 Old rrch1ve nare: I 
::===::: 

0 New lrch1~ Mf'Je: I 
~-.==---

0 Ren.!!Me the report f I le to: 

D Change the report width t o : 

0 Sort report bod ,-OOUJ e name 

Invoking the Analyze Window 

117 



CHAPTER 4: GUI Operation 

4.6.2 

FIGURE 51 

4.6.3 

118 

Selecting the Trace File Name 

You must select the trace file you named when you ran the program. 
Eventually the trace file will be fed into the coverage analyzer to create 
reports. To select a file name: 

1. Click on the File pull-down menu. 

2. Select Set Input Trace File Name. 

3. A file selection dialog box like the one below pops up. 

4. Select an existing trace file name. 

5. Select a file name by clicking on it in the Files selection window or 
typing it in the Selection entry box. 

al s/coverage/ tcat/ dernosl*. trc 

Directories Fil es 
fflt41$lU•Ni • .-T-r a_c_e_. t-rc--, 

:at/demos/ •• 

~ . 

I "' :.,.--.. :a~! ' 
Selection 

/ manua Is/ cover age/ teat/ demos/ 

Selecting the Trace File Name 

Selecting Reports 

Before you run the trace file through the coverage analyzer, you must 
specify which reports you would like to see. The coverage analyzer will 
only take the information you specify it take from the trace file (and the 
archive file) . For a detailed description of the below reports, please refer 
to the Chapter 5. 

II 
II 

II 
II 
II 
II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

I 
II 

TCAT/C User's Guide 

You can select any of the following check buttons by clicking once in the 
corresponding box. A check button is turned on if it is darkened. If it is 
hollowed, then it is turned off. 

• Past tests button. The coverage analyze will produce a Past 
report. The Past Test report gives analysis of the archive file only. 
It summarizes the percentage of logical branches hit in each mod­
ule, giving the Cl value for each module and the program as 
whole. This button is defaulted off. 

• Cumulative tests button. The coverage analyze will produce a 
Cumulative report. This report tells you how many times each 
module was invoked, how many of its logical branches were hit, 
and its resulting Cl coverage measure. It analyzes information 
from both the trace file and the archive file . This button is 
defaulted on. 

• Hit button. The coverage analyze will produce a Hit report. The 
Hit report identifies all of the logical branches within each mod­
ules that were exercised during your test suites. This button is 
defaulted off. 

• Not hit button. The coverage analyze will produce a Not Hit 
report. The Not Hit report gives each module name and an iden­
tification number for each segment not hit in the current test. To 
identify the actual code not executed, look up the segment identi­
fication number in the Reference Listing report. This button is 
defaulted on. 

• Newly hit button. The coverage analyze will produce a Newly 
Hit report. This report identifies which logical branches are hit in 
the present test which were not hit in any prior test. This button is 
defaulted off. 

• Newly missed button. The coverage analyze will produce a 
Newly Missed report. This report shows which logical branches 
were not hit in the current execution that were hit previously. The 
button is defaulted off. 

• Log histogram button. The coverage analyze will produce a 
Logarithmic Histogram report. This report demonstrates the fre­
quency distribution of branches exercised in each module. This 
button is defaulted off. 

• Linear histogram button. The coverage analyze will produce a 
Linear Histogram report. This report graphs a mark for each 
branch hit during testing. This button is defaulted off. 

• Reference listing button. The coverage analyze will produce a 
Reference Listing report. This report shows the coverage level 

achieved for all modules that are named in the specified reference 

119 



CHAPTER 4: GUI Operation 

FIGURE 52 

120 

listing, basename.i.A. The button is defaulted off. To obtain the 
Reference Listing report, you must specify the Reference Listing 
file. The coverage analyzer takes the information from the Refer­
ence Listing file and then creates a report. 

Remember, the Reference Listing File is a version of your C program 
which has logical branches marked. The Reference Listing report has the 
same information, except it identifies the coverage for each module, the 
number of times each logical branch was hit and which were not hit. 
Here's how to specify the Reference Listing file: 

1. Click on the Reference Listing radio button like you normally would. 

2. A file selection box like the one below pops up. 

3. Select an existing reference listing file, basename. i.A. 

4. Select a file name by clicking on an already existing file in the Files 
selection window or typing in the file name in the Selection entry 
box. 

Directories Files 

tlal4ul•~W ~ : example. i .A '-
:/demos/,. 

t 
Se lect ion 

/ manua Is/ cover age/ teat/ demos/ 

Reference Listing File Selection 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 
II 

II 

II 

II 

II 

II 

II 
II 
II 
II 

II 

II 

II 

II 

II 

4.6.4 

TCAT/C User's Guide 

Selecting Coverage Analyzer Options 

Before you run the coverage analyzer you may want to select some of the 
following options, which can effect the coverage reports in various ways. 
For a detailed description of the below options, please refer to Chapter 
5.5. 

You can select any of the following check buttons by clicking once in the 
corresponding box. A check button is turned on if it is darkened. If it is 
hollowed, then it is turned off. If an option has a corresponding specifica­
tion region, simply position the mouse pointer in the specification region 
and then click the mouse button. A cursor should appear and you can 
edit accordingly. 

• Do not report function in file button. Use this option if you don't 
want the coverage analyzer to create coverage reports based on 
certain modules. You must already have a de-instrument file, 
defaulted to DEINSTRU.fns with the module(s) listed. Simply 
type the file name in the specification region. This option is 
defaulted off. 

• Generate list of functions with Cl> button. Use this option to 
specify a threshold value. Any module with percentage coverage 
greater than or equal to the threshold value (defaulted to 85) per­
centage will automatically be written to the de-instrument file, 
DEINSTRU.fns. Type in the threshold number in the specification 
region. This option is defaulted off. 

• Generate list of functions not included in report button. Use 
this option to see which modules are excluded from coverage 
reporting. The list of excluded modules is printed at the end of 
the coverage report. This option should be used with the Do not 
report function in file option. This option is defaulted off. 

• Do not update archive file button. Use this option to suppress 
updating the archive file. This is useful if you want the archive 
file to be the basis for past test information. This option is 
defaulted on. 

• Old Archive name button. Use this option to include data from 
an old archive file in your reports. Type in the name of the old 
archive file in the specification region. This option is defaulted 
off. 

• New Archive name button. Each time you run the Coverage 
Analyzer, you will write over the contents of the archive file. If 
you want to keep a coverage run's archive file results, you can 
use this option. Simply type in a different file in the specification 
reoion. If you don't include a file name, the accumulated test data 

121 



CHAPTER 4: GUI Operation 

4.6.5 

4.6.6 

122 

will automatically defaulted to the file name Archive. This option 
is defaulted off. 

• Rename the report file to button. When you run the Coverage 
Analyzer, coverage reports are automatically written to a file 
named Coverage. If you want a different report file, use this 
option. Simply type in the new file name in the specification 
region. This option is defaulted off. 

• Change the report width to button. Normally the reports gener­
ated by the coverage analyzer are wide enough to accommodate 
module names up to 21 characters in length. The internal limit on 
name length is, however, 128 characters. You can use this option 
to generate reports that are wide enough to accommodate the full 
128 characters. Simply type in the width in characters in the spec­
ification region. This option is defaulted off. 

• Sort report by module name button. Use this option to produce 
output reports with module names sorted alphabetically. This 
option is defaulted off. 

Running the Coverage Analyzer 

After selecting the kinds of reports and any coverage analyzer options, 
you just need to run the coverage analyzer to obtain coverage reports. 
Here's how: 

1. Click on the Action pull-down menu. 

2. Select Run Coverage Analyzer. 

3. The mouse pointer turns into a wristwatch symbol and the Analyze 
window's options gray out. During this time-out period the coverage 
analyzer is taking information from the trace file (and the archive file) 
and then creating a file named Coverage, which contains the coverage 
reports you selected. 

4. When the mouse pointer is returns, the coverage analyzer has com­
pleted creating coverage reports. 

Looking at Coverage Reports 

To look at coverage reports: 

1. Click on the Action pull-down menu. 

2. Select View Report. 

3. A View Report window like the one below pops up. 

4. It lists which reports you selected and each subsequent report fol­
lows. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

-
II 

II 

II 
II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II FIGURE 53 

II 4.6.7 

II 

II 

II 
II 

TCAT/C User's Guide 

5. To look at reports, use the scroll bars to move up / down or side / 
side. 

6. When you are finished looking at the reports, you can close the View 
Report window by clicking on the Action pull-down menu and 
selecting Exit. 

From the coverage reports you selected, you should be able to determine 
which segments were exercised. We recommend that you try to obtain 85 
percent coverage. If you report coverage is less than 85 percent, we rec­
ommended re-exercising your test suite. From the coverage information, 
you should be able to determine which segments need to be exercised. 

' Action 

I::over age Analyzer. [Ver 8.2 for SUN/ UrH X (11/10/94)] 
{c) Copyr ight 1980-94 by Software Research, Inc . 

Selected COVER Systerr. Option Settings: 

[ -c ) Curnu 1 ot 1 ve Report -- YES 
[-p) Past H1stor!:J Report -- NO 
[- n) Not Hit Report -- YES 
[ -HJ H1 t Report -- ND 
[-nh] New l!,J Htt Report -- NO 
[-rvnJ Newl!:J t11 ssed Report -- NO 
(-hl Histogram Report -- NO 
[ -ll Log Scale H1stogra,i -- NO 
{-Zl Reference listing Ci -- YES 

Options read: 3 
,c011er : Cover~ Anal!:Jzer . [Ver 8 . 2 for SUN/UNIX (11/10/94)] 
(c) Copyright 1990-94 b!:l Software Research, Inc. 

I 
I 
I 
l Hodule 

Current Test I Curtiu l at 1 ve Surr.r-iar!:I I 

I No. Of I No. Of I 
Nurr.ber Of I No . Of Seg,rients CU I No. Of Seg,r,ents Cl % I 

Looking at Coverage Reports 

Exiting the Analyze Window 

Before exiting the Analyze window, please note that you can also look at 
the coverage information in a graphical display (see the accompanying 
documentation on the Xdigraph utility), which can be quite useful in 
identifying unexercised segments. 

The Exit option allows you to close the Analyze window. Here's how: 

1. Click on the File pull-down menu. 

2. Select Exit. The Analyze window closes, 

123 



CHAPTER 4: GUI Operation 

--,, 

w ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,·,·,·,·,·,·,·,·,·, 

~~ 
l Set Input Trace Fi le Name... -·· 1 t -
i - Hna !:_!Zer op , ions : 
! set Module Name ••• 
l - 0 Do not report fun ct i 
! ~ :it 

• Cur .. ,u 1 at i ve test s 

0 Hit 

.Not hit 

0 Ne~Jl!:.l hit 

0 Newl!:.l missed 

0 Log hi stogram 

0 Generate list of fun 

0 Generate list of fun 

• Do not update archiv 

0 Old Archive narqe: [ 
0 NeL~ Archive name: [ 
0 Rename the report fi 

FIGURE 54 Exiting the Analyze Window 

124 

II 

--
II 

II 

II 
II 

II 

II 

II 
II 
II 

II 

II 

II 
II 

• 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

-
II 

II 

II 

II 

II 
II 

CHAPTER 5 

GUI Reference 
This chapter defines and explains the contents of the major X Window system windows 
that make up the TCAT product, and is intended to act as a reference. 
LEVEL: All users. 

5.1 TCAT Menus 

Once you have invoked TCAT, operations are initiated by using the fol­
lowing menus: 

• Main window to initiate other windows. 

• Instrument window to preprocess and instrument source pro­
grams. 

• Execute window to compile the source program, link the pro­
gram's object code to the TCAT object modules, and run the 
application. 

• Analyze window to generate coverage reports and to analyze the 
control of program through graphical displays. 

This chapter briefly describes the functions for each of these menus and 
their commands. Information on how to use these menus and commands 
can be located throughout Chapter 6. 

125 



CHAPTER 5: GUI Reference 

5.2 Main Window 

FIGURE 55 

126 

When TCAT is first invoked, the Main window is the place from which 
you activate other windows. 

Instrurnen 

Execute 

Anal',Jze 

Main Window 

The window has two pull-down menus (located in the menu bar): 

System 

Help 

The System pull-down menu allows you to exit 
TCAT. 

The Help button describes the basic functions of 
TCAT. 

The window has three push buttons: 

Instrument 

Execute 

Analyze 

This button activates the Instrument window, which 
allows you to preprocess and instrument source pro­
grams. 

This button activates the Execute window, which al­
lows you to compile the instrumented source code, 
link the instrumented program's object code with the 
TCAT-supplied runtime object modules, and run the 
application. 

This button activates the Analyze window, which al­
lows you to analyze the thoroughness of your test 

II 

II 

II 

II 

II 

II 
II 

II 

II 
II 

II 
II 

II 

II 

II 
II 

II 



II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 
II 

5.2.1 

FIGURE 56 

5.2.2 

TCAT/C User's Guide 

suite through coverage reports and to look at graphi­
cal displays of the program's control flow. 

The two pull-down menus are described on the following pages and the 
push buttons are described in the sections that follow. 

System Pull-Down Menu 

The Exit option allows you to exit TCAT. 

~:.• 0 ~:-- •"•"•"•" • • .,•,•,•, _. ... ,,, .. .-.- _. .-. .- ... .-n W N .. o" 

u-~~:.ern tj_elp 

:~~x1t~ 

E::o::ec1Jte 

AnaltiZ:e 

System Pull-Down Menu 

Help Button 

The Help button provides you with a dialog box that explains the basic 
operation of TCAT. 

127 



CHAPTER 5: GUI Reference 

. -··iioni;/94\ ·-· Hei' 

€!.ct i on 

Help for Xtcat Hai n Window 

TCAT, Ver 8.2 

(c) Cop.Jr19ht 1990-1994 b!:i Software P.esearch. 

ALL RIGHTS RESERVED 

TCAT Reasures the corop l etene5s of a test 
set us 1n:3 the ·se9111ent" or "branch" 
test CQf!flleteness coverage 111etr1c "Cl·. 

Nonrial 1~, test sets are cons idered Cortfl lete 
when the C1 value for t he tests 1s above 
90Z . 

TOH operates in tt-ree s tates : 
Instru,rienut1on . Ex:ecut1on, and Anal1;ts1s . 

FIGURE 57 Help Window for the Main Window 

128 

II 

II 

II 

II 

II 

• 
II 

II 
II 
II 
II 

II 

II 

II 

II 
II 



II 
5.3 

II 

II 

II 

II 

II 

II 

II 
II 

FIGURE 58 

II 

II 

II 

II 

II 

II 

II 

TCATIC User's Guide 

Instrument Window 

All functions necessary to preprocess and instrument source program are 
accessible from this window. See Section 4.3 for use of this window. 

~de 8._ction lj_elp 

Preprocessor output suffi x: . i 

Preprocessor opt 1 ons: 

Instrumentor command: 

Instrumentor options: 

D Recognize _exit as ke!:Jword 

0 Do not recognize exit as keyword 

Cl Do not i nstrument functions in ftle: DEINSTRU. fns 

0 Specif~ max 1murn file name len9th: 

0 Specif~ ma xunum function name length: 

Instrument Window 

The window has three pull-down menus: 

• File pull-down menu. You use it to select the source program, or 
application name, and to exit the window. 

• Action pull-down menu. You use it to preprocess and to instru­
ment the source application. 

• Help button. This button provides you with an on-line help 
menu for the Instrument window. 

The window has an option menu: 

• Preprocessing allows you to turn preprocessing on or off. 

The window has the following specification regions. 

• Preprocessor output suffix specification region allows you to set 
the suffix for the output file created from preprocessing. 

• Preprocessor options allows you to set additional compiler 
options for preprocessing. 

• Preprocessor command specification region allows you set the 

preprocessor command. 

129 



CHAPTER 5: GUI Reference 

5.3.1 

FIGURE 59 

FIGURE 60 

130 

• Instrumentor command allows you to set the command that 
instruments the source application. 

• Instrumentor options allows you to select a variety of options, 
which effect instrumentation's outcome. 

Each of these options is described in the sections that follow. 

File Pull-Down Menu 

Selecting the Set File Name option opens up a file selection dialog box. 
There you can select an application name you would like to preprocess 
and then instrument. 

Ftlter 

D1rtttor ies Files : ~ ~:::::~::., ~ 
r:.atD I i ti' 
Selection 

I llllarMJd l s/coverage/tcat/ defllos/ i 

Set File Name Dialog Box 

The Exit option closes the Instrument window. 

i rrii;i Hetaoo 

0 Do not r-ecogruz:e exit 4S ~~d 

0 Do not 1n~trl.W!rlt ii.roct1~ 1'l file : I [EUISTP.U.fn: j 

0 Specif.,, ..a;.:1- f:le n-e length: C=:J 
CJ 5f:.oc , f.,, -ax,_ f1roCt1on l'IMe length: C=:J 

File Pull-Down Menu 

~Ip 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 

11· 

II 

II 

II 

II 

II 



II 
5.3.2 

II 

II 

II 

II 

II 

II 

II 

II FIGURE 61 

5.3.3 

II 

II 

II 

II 

II 

II 

II FIGURE 62 

II 

TCAT/C User's Guide 

Action Pull-Down Menu 

Preprocess to preprocess the source program. Preprocessing checks your 
code for syntax errors prior to instrumentation. 

Instrument to instrument the source program. After preprocessing, you 
instrument the source application. During this process, TCATwill auto­
matically insert function calls at each logical branch. 

Prepro ., -
! l ns t r urnent 

Preprocessor' cornrnand: 

I nst rurnentor cornrijand: 

Ins t r urnentor opt ions : 

-P 

0 Recognize _exi t as ke!:jk,ord 

Preprocessor output suf f 

Preprocessor options : [ 

0 Do not r ecogn i ze exi t as ke!Jword 

Action Pull-Down Menu 

Help Button 

The Help button provides you with on-line help for the Instrument win­
dow. 

""' ""t<tcat Ver 8.2 (10/26/94 ) - Help11 

You need to proce~s the source prografl"ls so 
that ~Pl i c coverage can be fflMsured. 

Fir s t , ~ ~ need tl, pre-process the pro-
9'""· 

Next, yo..J need to r!Xl the TCAT 1nstru­
rrienter . Th i s produces a logica l 1~ 
equ i valent but 111od1f1ed progr~ th.at 
inc l udes special software 1nstn.111entat1on 
Nprobes." 

Various par airieters and f 1 le:s ha11e to be 
suppl 1ed to t he 1nstr ~enter t o ge t t he 
best effect , For exa,ip}e, ~ou can tel I the 
1nstri.nenter t o pay attent ion to "_exit" . 
or to not pay attent ion to Nex1 t~ (see 
User Harual) . You can also spec if~ ,i1ni111U111 

ns1t1vit':,I l engths for the names recog-

Help Window for the Instrument Window 

, .. ,,. 

~i 

131 



CHAPTER 5: GUI Reference 

5.3.4 Preprocessing Option Menu 

5.3.5 

5.3.6 

5.3.7 

5.3.8 

5.3.9 

132 

The Preprocessing option menu allows you to turn preprocessing on or 
off. In most cases, you must check your program for syntax errors. In such 
cases, you will select the ON menu item. 

There are times, however, you may already know there are no syntax 
errors and wish to forsake the preprocessing step. In these cases, select 
the OFF menu item. The default is set to ON. 

Preprocessor output suffix Specification Region 

After preprocessing a source program, the results are automatically writ­
ten to a file. The Preprocessor output suffix specification region defines 
the suffix to that file where preprocessing results are written. The suffix is 
defaulted to .i. 

Preprocessor command Specification Region 

The Preprocessor command defines the command your compiler will use 
to compile the source program. The default is set to the standard UNIX 
compiler command cc-P. 

Preprocessor options Specification Region 

The Preprocessor options specification region allows you to add any 
additional compiler options you may want. No options are specified for 
the default. 

lnstrumentor command Specification Region 

The Instrumentor command defines the command that instruments the 
source program. The default is set to ic, which is the TCAT standard 
instrumentor command. 

lnstrumentor options 

If you select any of the Instrumentor options buttons, instrumentation on 
your source program will be effected. Below is a list of these options: 

Recognize _exit as keyword Button 

The Recognize _exit as keyword check button causes the instrumentor 
(ic) to acknowledge exit as a keyword. This option is defaulted off. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

TCAT/C User's Guide 

Do not recognize _exit as keyword Button 

The Do not recognize _exit as keyword check button causes the instru­
mentor (ic) not to acknowledge exit as a keyword. This option is 
defaulted off. 

Do not instrument functions in file Button 

The Do not instrument functions in file check button causes the instru­
mentor to selectively de-instrument named functions in the file specified 
in the specification region. This file name is defaulted to DEINSTRU.fns. 
During the instrumentation process, the instrumentor will not mark the 
segments for modules named in the file . This option is recommended if 
you know certain modules have already been thoroughly exercised. 

This option is defaulted off. 

Specify maximum file name length Button 

After instrumentation, the instrumentor creates the following files : 

• basename.i.c -- an instrumented version of your "C" program, 
basename. 

• basename.i.A -- a Reference Listing, which has the logical 
branches marked as Segment 1, Segment 2 ... . 

• basename.i.S -- an Instrumented Statistics file, where various 
kinds of statistics are listed for each module, including the num­
ber of statements, segments, conditional statements, etc. 

• basename.i.L -- a Segment Count Listing file, which contains a 
complete count of all the modules and their segments in the pro­
gram being tested. 

• modulename. dig -- a Directed Graph Listing file for each module, 
which reports the segment relationship between nodes. You can 
also visually look at a module's directed graph using the TCAT 
Xdigraph utility (see the accompanying Software Product Notes) 

• basename.i.E -- a Error Listing file, which contains all the errors 
found during instrumentation. 

The Specify maximum file name length check button causes the instru­
mentor to put a limit on the amount of characters a basename file name 
can have. If the length exceeds the value specified in the specification 
region, then the instrumentor output files will be redirected to files 
named Temp.i.?. 

The default is turned off. 

133 



CHAPTER 5: GUI Reference 

134 

Use this option when your system has a limit on the length of file name 
characters. 

Specify maximum function name length Button 

The Specify maximum function name length check button causes the 
instrumentor to put a limit on the amount of characters a function name 
can have. If the length exceeds the value specified in the specification 
region, then the instrumentor will only recognize as distinct only the first 
value characters of the function name. If you specify 5, for instance, then 
only up to the first five letters of the function names are recognized. 

The default is turned off. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 



II 

II 

II 

II 

II 
II 

II 

II 

I 
I 
II 

II 

II 
II 

II 

II 
II 

5.4 

FIGURE 63 

TCAT/C User's Guide 

Execute Window 

All functions necessary to compile source programs, link the programs' 
object modules with the TCAT runtime object modules and run applica­
tions are accessible from this window. See Section 5.5 for use of this win­
dow. 

l:c -c Compiler options: *.i. c 

Li nket' cornrnand: cc - o Linker options: I *.i.o 

Make coM.-,and: I ~,ake I Make file name: 

Appli cation nar,,e: I a. out ! App l ication argurnents: 

Execute Window 

The window has three pull-down menus: 

• File pull-down menu. You use it to select the TCAT runtime 
object module and to exit the window. 

• Action pull-down menu. You use it to compile the instrumented 
program, link object files, and run the application. 

• Help button. This button provides you with an on-help of the 
Execute window. 

The window has the following specification regions: 

• Compiler command specification region allows you to set the 
command to compile your instrumented program. 

• Compiler options allows you to specify the instrumented pro­
grams to be compiled. 

• Linker Command specification region allows you set the com­
mand to link the instrumented program's object code with the 
TCAT object modules. 

• Linker options allows you to specify the object code file needed 
for linking. 

• Make command allows you to select the command that will 
invoke the make utility. 

• Make file name allows you to specify th~ make file. 

135 



CHAPTER 5: GUI Reference 

5.4.1 

FIGURE 64 

136 

• Application name allows you to name the instrumented execut­
able. 

• Application argument allows you to specify arguments or 
switches for the application. 

Each of these options is described in the sections that follow. 

File Pull-Down Menu 

Selecting the Set Runtime Obj. Module option opens up a file selection 
dialog box. There you can select a TCAT runtime object module. The runt­
ime object module you select is eventually linked with the instrumented 
program's object code, creating an executable for the application. Each 
runtime routine can change the performance of the instrumented system. 

Fi lter 

16/stw.2.6/ product/ l ib/crun*,o I 
Directories Fi !es ,,, 
' lib/ •• 
' l ib/X11R5 
'1 i b/ shared 

I ,, 
Select1on 

£ 

-c-ru_n_O_++-. -o - ~ 

crunO.o 
crun1++.o 
crunl.o 
crun4.o 
crun5.o 
crunaO++.o 
crunaO.o 

I / home/ 16/stw.2.6/product/l ib/ I 

Set Runtime Obj. Module Selection Dialog Box 

The Exit option closes the Execute window. 

II 

II 

II 

II 
II 
II 

II 

II 

• 
I 
II 
II 

II 

II 
II 

II 



II 

II 

II 

II 
II 
II 
II 

II 
II 

II 
II 

II 

II 
II 
II 

II 
II 

FIGURE 65 

5.4.2 

TCAT/C User's Guide 

Module ••• options : *.i.c 

cornrnan • cc -o I Linker options: 

~[,=qa=k=e==~I Make file name: 

:::::====:;i 
l App 1 i cation argLments : 

File Pull-Down Menu 

Action Pull-Down Menu 

Compile to check your instrumented program for syntax errors. When 
errors are found, they are displayed in the invocation window. Compiling 
also automatically creates an object file, basename.i.o, which contains 
object code information. This file is later linked with one of the TCAT 
object modules. 

Link to link the program's object code to one of the TCAT object modules. 

Make will invoke the make the utility, which will use the make file you 
specify in the the Make file name option. Tius file should contain instruc­
tions to preprocess, instrument, compile and link. Creating a make file 
can save you a lot of time. Please refer to Section 5.4.9 for further informa­
tion. 

Run application to execute the program. When you run a program, you 
will be using your test suite to exercise module's segments as thoroughly 
as possible. 

137 



CHAPTER 5: GUI Reference 

FIGURE 66 

5.4.3 

FIGURE 67 

138 

j ;:;';:::;:;:::::::;:;:;:::;';:;!;!;':';!;:::;:;:;:;:,:,,,:,:;';';!;!;';:;';':':':':!:';:;';';!:'::;:::::::;:;:;:;:;:;:;:;:::;:;:;:;::: 

~~~~:~~-~~:~.~~~~.t~(~~""'~:,n;..£_~:~i~~~::~~~~-:~e 
E_i le [.8-cti~~;:J -. .1 J Cor,lpi le .omp1 9 -
~ ! L_._,:,K

.inker Make

I Compiler optic
a===~ j Linker option~

- c

lake C(B_un app 1 i cation e I Make fil e name

lppl i cation name: ~ j Appli cation ar

]: '::::;:,:;:;::::';:;:;:;:::,:::::::;:,:::::,;, :::::;:;:;:;:;:::,:::::;:,::::,:';:;,;:;:;:;:,:::::::::;:;:,:;:::,;,;;:,:::::,:;:::::,;

Action Pull-Down Menu

Help Button

The Help button provides you with on-line help for the Execute window.

teat Ver 8.

~ct ion

After instrUfllentation, ~ou need to 1 ink
!:JOUr compi l ed progra111s 11.1ith the "runtirne"
module. There are several different run­
time 11\0dules ~ can use , depending on
the part i cu 1 ar features ~ou want:

Level O: Fi xed trace file and no buffer­
ing.

Leve I 1 : User- se I ected tr ace f i I e and no
buffering. Thi s is the most common l ~-used
version.

Leve 1 2: User-se 1 ected tr ace f i 1 e and
rriinirnal buffer ing.

Level 3: User-se lected trace file and
moderate buffering.

Help Window for the Execute Window

II

II

II

II
II
II
II

II
II
II
II

II

II
II
II

I
II

II
II

II

II
II
II
II

II
II
II
II

-
II
II
II

I
II

5.4.4

5.4.5

5.4.6

5.4.7

5.4.8

5.4.9

TCAT/C User's Guide

Compiler command Specification Region

The Compiler command specification region specifies the command to
compile. The default is set to cc -c, which is the standard UNIX compil­
ing command.

Compiler options Specification Region

You must specify the instrumented files to be compiled. The Compiler
options specification region allows you to specify the instrumented pro­
grams' suffix. Generally when programs are instrumented, the instru­
mented version of the source program is generally named basename i.i.c,
unless otherwise specified in the Instrument window's Preprocessor out­
put suffix option. For this reason, the default is set to *i.e.

Linker Command Specification Region

The Linker Command specification region specifies the command to link
object files: a supplied SR runtime object module with object code files,
basename.i.o. The default is set to cc -o.

Linker options Specification Region

You must specify the input object files to be linked with one of SR's object
modules. These input object files are created during compiling, generally
named basename.i.o. For this reason, the default for the Linker options
specification region is set to * i. o.

Make command Specification Region

The Make command specification region allows you to specify the com­
mand used for invoking the make utility. The make utility performs the
instructions defined in a make file. The default is set to make.

NOTE: This option is only necessary if you are using make files.

Make file name Specification Region

The Make file name specification region allows you to specify the file
names for the make file. There is no default set.

NOTE: This option is only necessary if you are using make files.

139

CHAPTER 5: GUI Reference

5.4.10

5.4.11

140

Application name Specification Region

When object files are linked, an executable is created. The Application
name specification region allows you specify the instrumented executable
name. The default is set to a.out.

Application argument

The Application argument specification region allows you to add
switches for the application. There is no default set.

II
II

II

II
II
II
II
II
II
II
II
II
II
II
II

II

I

II
5.5

II

II
II
II
II
II

II
II
II FIGURE 68

II
II

II
II
II

I
II

TCATIC User's Guide

Analyze Window

All functions necessary to look at coverage reports and to view a mod­
ule's directed graph are accessible from this window. See Section4.6. l for
use of this window.

E_i le 8._ct1on

Report t~pes;

IO Past t ests j
• Cumu lative tests

• Not hi t

0 New l~ hit

0 New l~ missed

0 Log histogram

D Linear histogram

0 Reference listing

Analyze Window

t!el p

Analyzer options :

0 Do not report function in file:

D Generate list of functions with Cl > I 8_5 ___ .., m

D Generate I ist of functions not incl uded in report

II Do not update archi ve f iles

0 Old Archive name;

D New Arch 1 ve nafl'le:

0 Rename the report file to:

0 Change the report width to;

0 Sort report b~ modu le name

The window has three pull-down menus:

• File pull-down menu. You use it to select the trace file and to exit
the window.

• Action pull-down menu. You use it to run the coverage analyzer,
view reports, and view source code for a program module's seg­
ments.

• Help button. This button provides you with an on-help of the
Analyze window.

The window has the following reports available:

• Past tests check button.

• Cumulative tests check button.

• Hit check button.

• Not Hit check button.

• Newly hit check button.

• NPwly migg~d ~heck buHon.

141

CHAPTER 5: GUI Reference

5.5.1

142

• Log histogram check button.

• Linear histogram check button.

• Reference Listing check button.

The window has the following coverage analyzer options available:

• Do not report function in file check button.

• Generate list of functions with Cl> check button.

• Generate list of functions not included in report check button.

• Do not update archive file check button.

• Old Archive name check button.

• New Archive name check button.

• Rename the report file to: check button.

• Change the report width to: check button.

• Sort report by module name check button.

Each of these options is described in the sections that follow.

File Pull-Down Menu

Selecting the Set Input Trace File Name option opens up a file selection
dialog box. There you can select the trace file you named when you ran
the program. Remember that when a program is run, all segment infor­
mation is written to the trace file.

, ... , ·tftracef'i1enai.e:o<Y11;;I -
Filter

I al s/c&.-erage/ t cat/ deMos/• .trc I
D1rector 1es Files

-~o~ :at/deltos/ ••
'

I

I '
I

- I

t ., l:IIIIID
Selection

I / .-iariu.al$/coverage/ tcat/deroos/ I

IIJ _ OK Jil jFilter I 1 c.nce1 1

II
II

II

II
II

II
II

II

II
II
II

II

II

II

II

II
I

II

II

II

II
II
II
II

II

II

II

II

II

II

II

II

II
II

FIGURE 69 Set Input Trace File Name Selection Dialog Box

The Exit option closes the Analyze window.

Set y1put Trace Fi le Naroe •••

Set !:!_odule Naroe •••
Anal!;1z:er options!

TCAT/C User's Guide

__., ._s._x_it _______ __.
D Do not repor t function in file:

D Generate list of functions wi t h Cl > E
D Generate list of functions not included in rep,

• Do not update archive fi !es

FIGURE 70

5.5.2

• Cumulative tests

D Hit

• Not hit

D Newly hit

D Newly missed

D Log histogram

D Linear histograo,

D Reference 1 ist ing

File Pull-Down Menu

Action Pull-Down Menu

D Old Archive name :

D New Archive name :

D Rename the report fi l e to:

D Change the report width to;

D Sort report by o,odu 1 e nao,e

When you use TCAT, you first select the trace file, then the types of
reports you want and any coverage analyzer options. The Run Coverage
Analyzer reads in the information from these three sources. The coverage
analyzer then creates a file named Coverage, which contains the coverage
reports you selected.

The View Source option allows you select a module from the program,
look at its directed graph, and view source code for a particular segment.
Please see the accompanying documentation on theXdigraph utility for
usage.

143

CHAPTER 5: GUI Reference

FIGURE 71

5.5.3

FIGURE 72

144

D Hit

• Not hit

D Newl~ hit

D New)~ mi ssed

D Log hi s togram

Anal~zer options :

0 Do not report function in file: I
D Generate list of functions with Cl > ... I a_s ____ __. i, ,,i

D Generate I ist of functions not included in report

l!I Do not update archi ve f i 1 es

D Old Archive name:

D New Archive name:

0 Renarrie the report f i 1 e to:

Cl Linear histogra111

D Reference listing

D Change the repart width to;

D Sort report b~ modu le name

Action Pull-Down Menu

Help Button

The Help button provides you with on-line help for the Analyze window.

~tion

After you have executed !:f(IUr progrdflll !;1()u
need to anal~e the C1 coverage obtained
us ing the · cover" subs~ste11 which ~
control through the "anal~e~

""""·
T~1call~, ~ou anal~e one trace file rela­
ti ve to pas t test rnfor111-,tion s tored in an
"Archive File. " After deter111ining cover­
age and Making notes about what ~ ru9ht
wish to do next, ~ou create a new Archive
File. You use thi~ infOr'lllation for the
next "~leM of testing .

The "analyze" menu help$!::fOU select the
t~es of coverage reports ~ou want,. which
IIOOV les {or funct ions> !:IOU w-Mt the1t1 to
app l !:I to , and a v&r iet!:I of other options.
Please consu It ~r User t1anua I f or

Help Window for the Analyze Window

-
II

II

II
II
II
II
II
II
II

II

II

II
II
II

II

II

II
5.5.4

II

II

II

II

II
II

II

II
II

FIGURE 73

II

II

II

II

II

II

II

TCAT/C User's Guide

Past tests Check Button

The Past tests button tells the coverage analyzer to produce a Past report.
The Past Test report gives analysis of the Archive file only. It summarizes
the percentage of segments hit in each module, giving the Cl value for
each module and the program as whole. This button is defaulted off.

Action

(c) Cop~r19ht 1990-94 b!::f Software Research~ Inc.

Module
No. Nar~e

O: exari)ple.riiain
1: exarnple.proc_input
2: exari,ple.chk_char

Totals

(Archived) Past Tests

I Nurober Of
Number Of I Nuri1ber Of Segments
Se91,1ents: l Invocations Hit

27 I
24 I
3 I

54 I

1
15
15

31

21
15
2

38

I
Percent I

Coverage I

77.78 I
62.50 I
66.67 I

70.37 I

Ctrrent test message (s) (saved in archive) :
qui ck start test
1 cover: Coverage Anal~zer. [Ver 8.2 for SUN/UNIX (11/10/ 94)]
(c) Cop\:.fl"Ight 1990-94 b!:f Software Research ~ Inc.
+--------- ----- ----- ----- ---+- ----- --------- --------+----- ----- ----- ---------+
I
I
I
I Module

Past Report

Current Test Cumulative Sunnr1ar~

I ~-~ I ~-~ I
Number Of I No. Of Segments Cl% I No. Of Segments Cl% I

145

CHAPTER 5: GUI Reference

5.5.5

FIGURE 74

146

Cumulative tests Check Button

The Cumulative test button tells the coverage analyzer to produce a
Cumulative report. This report tells you how many times each module
was invoked, how many of its segments were hit, and its resulting Cl
coverage measure. It analyzes information from both the trace file and the
Archive file.

This button is defaulted on.

1tr11ewRep0rt

Action

,cover: Coverage Ana l~er. [Ver 8. 2 for SUN/UNIX (11/ 10/ 94)] l liill
(c) Cop~r19ht 1990-94 by Software Research . Inc.

--------------------------+
Current T e$t I

I
I I N~~ I ~-~ I
I Module
I Na111e :

NUJ1ber Of I No. Of Se911ent s CU I No. Of Segptents ClZ I
Se9111ents: I I nvokes Hit Cover I I nvokes Hit Cover I

•--------------------------+----------------------+------
I exafl'lple.~la tn 27 I
I exa,iple.proc_1 nput 24 I
I exa111p le.chk_char 3 I
+-----------------------+-----
I Total s 54 I

1 21 77.78
15 15 62.50
15 2 66.67

31 38 70.37

I
I
I

I

1
15
15

31

21 77.78 I
15 62.50 I

66,67 I

38 70.37 I
·------------------------+------------------------------------+
Current test ,nessage(s} (saved in archive}:
quick start tes t
,cover: Coverage Anal~er. [\ler 8.2 for S1.JVIJH X (11/ 10/94 i)
(c) Cop~r1!iit 1990-94 bid Software Research , Inc.

C1 Seg,ient Not HI t Repor-t.

No. HOOJle Nariie : Segffleflt Coverage Status !

Cumulative Report

II

II

II

II

II

II
II

II

II
II

II

II

II

II
II

II

II

II
5.5.6

II

II
II

II
II
II

II

II

II
FIGURE 75

II

II

II

II

II

II

II

TCATIC User's Guide

Hit Check Button

The Hit button tells the coverage analyzer to produce a Hit report. The
Hit report identifies all of the segments within each modules that were
exercised during your test suites. This button is defaulted off.

Action

quick start te~t
1 cover: Coverage finah1zer. ['./er 8.2 for SUN/UNI X (11/ 10/94) }
{c) Cop8r19ht 1990-94 by Software Research, Inc.

Cl Se91t1ent HI t Report.

No, Hodule Na/lile; Se9rtie1~t Coverage Statu~:

exarriple . 111.:i i n
1 2 3 4 5 6 7

10 11 12 13 17 18 19
25 21', 27

exampl e , proc_ 1nput
1 2 3 4 6 7

11 12 13 14 15 16
example.chk _char

Nurither of $egfflents H 1 t : 38
Total Nu111ber of Seg,ient~: 54

Cl Coverage Value: 70.37%
1cover: (01,1era9e Anal~zer. [Ver 8 .2 for SUH/UNIX (11/ 10/94}]
(c) Cop~right 1990-94 by Softwar e Research~ Inc.

Hit Report

8 9
21 23

10

147

CHAPTER 5: GUI Reference

5.5.7

FIGURE 76

148

Not Hit Check Button

The Not Hit button tells the coverage analyzer to produce a Not Hit
report. The Not Hit report gives each module name and an identification
number for each segment not hit in the current test. To identify the actual
code not executed, look up the segment identification number in the Ref­
erence Listing report. This button is defaulted on.

Action

Cl Seg!l'lent Not Hit Report.

No . t1odule NaAe: Segl!lent Coverage Status:

exariiple.111ain
14 15 16 20 22 24

example.proc_input
5 17 18 19 20 21 22

exallflle.chk_char

liu111ber of Ses,,ients Not H1 t: 16
Total Nufl\ber of Seg,ients: 54

Cl Coverage Value: 70.37%
,cover: Cover~ Anal~zer. (Ver 8.2 for SUN/UN IX (11/ 10/94))
<c> Copyright 1990-94 D-:1 Software Research, Inc.

Cl Se9oent Newly Hit Report.

No. l1odu le Na111e:

exafll)le.111ain

Not Hit Report

Se~t Coverage Status:

23 24

II

II

II

II

II
II
II
II

II

II

II

II
II

II
II

II

II

II
5.5.8

II
II

II

II
II
II

II

II
II FIGURE n

II

II
II

II
II

II

II

TCAT/C User's Guide

Newly Hit Check Button

The Newly Hit button tells the coverage analyzer to produce a Newly Hit
report. This report identifies which segment are hit in the present test
which were not hit in any prior test.

This button is defaulted off.

Cl Segrient Ne\l! l~ Hit Report.

No. Modu le Nar11e; Se9Ment Coverage Status :

exarnple.lllain
1 2 3 4 5 6 7

10 11 12 13 17 18 19
25 26 27

exati'lf' l e. proc _ 1 nput
1 2 3 4 6 7

11 12 13 14 15 16

example ,chk_char-

,cover : Coverage Anal~zer. [Ver 8. 2 for SUN/UNI X (11/ 10/94))
(c) Cop~right 1990-94 by Sof tware Research. Inc .

Cl Se9P1ent New I~ MI ssed Report .

No. Hodul e Na/lie : Segment Coverage Status:

Newly Hit Report

8 9
21 23

10

149

CHAPTER 5: GUI Reference

5.5.9

FIGURE 78

150

Newly missed Check Button

The Newly missed button tells the coverage analyzer to produce a Newly
Missed report. This report shows which segments were not hit in the cur­
rent execution that were hit previously.

The button is defaulted off.

w1elllReDOrt

Action

Cl Seg,ient Newl!:f Hissed Report.

No, Hcrl.Jle Naflle: Segment Cover age Status:

None found .

,cover: Coverage An<l l~zer. [Ver 8.2 for SLWUN lX (11/ 10/94}]
(c} Cop~right 1990-94 ~ Software Research , Inc.

Segr.ent l evel H1~to9rarii for Hodu le: ex-Mple.~1n

----- -----------------------•
I Nui11ber of Execut ions. Norfl'ldlized to Hax111lU111
I {Max i rv1u,i :: 39 Hits) X = One Hit
I (Sco le: 2.564 Each X = 0.780 Hits}

Se9f"lent Nuiriber Of I
Nunriber Execut ions >-1---- ---20- ----- --40--------60--------80------100

----------------------------------·-----
1

1 I X
3 I XXX

39 I XX
3 I XXX

Newly Missed Report

II

II

II

II

II

II

II

II

II

II
II

-
II

II

II

II

II

II
5.5.10

II

II

II

II
II
II
II

II

II
FIGURE 79

II

II
II

II

II

II

II

TCAT/C User's Guide

Log histogram Check Button

The Log histogram button tells the coverage analyzer to produce a Log
Histogram report. This report demonstrates the frequency distribution of
branches exercised in each module. This button is defaulted off.

Action

Segriient Level H1 sto9rar11 for Hodule: exarqpJe . rna 1n

+---------------------------------------+
I Nu~be-r of Executions. Norr,ulll 1zed to Hax lfl"II..IJ\I
I (Maxi 111u~ = 33 Hit$> X = One Hi t
I <Scale: 2. 564 Each X a 0. 780 Hits)

Se9•ent lu1ber Of I
Nu111ber Execut 1 ons >-1-------2(1--------40--------60--------80-- ----- 100

7
8
3

10
11
12
13

I
1 I X
3 I XX)(

39 I XX
3 I XXX

12 I XXXXXXXXXXXXXXX
1 I X

I XX
I X
I XX
IX
I XX
I X
I XX

Log Histogram Report

151

CHAPTER 5: GUI Reference

5.5.11

FIGURE 80

152

Linear histogram Check Button

Linear Histogram button tells the coverage analyzer to produce a Linear
Histogram report. This report graphs a mark for each branch hit during
testing. This button is defaulted off.

Action

,cover: Cwerage Anal~zer. (Ver 8.2 for SUN/UN IX (11/10/84))
(c) Cop~r1ght 1990-94 by Software Research, Inc.

Se9111ent le....e l H1 , to9ra111 for Module: exalllple .proc_1nput

I Nulitber of Executions . Norf'l'lalized to Hax1111Ur•
I <Hoxl •u• = 27 Hits) X = One Hi t
I (Sca le: 3.704 Each X = 0.540 Hits)

Segllient Nl.lfl'lber Of I
Nu111ber Execut ·1 ons) -1-------20--------40--------60--- -----80-------100

1
2
3
4
5 •
6
7
B
9

10
11

I
15 I)()()()()()()()XXXXXXXXXXXXXXXXXX
9 I XXXXXXXXXXXXXXXX

15 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
27 I)()()()()()()()XXX

I
I X
I XXXXX
I XXXXXXX
I XXXXXXXXXXX
I XXXXXXXXXXXX
I XXXXXXXXXXXXXXXX

Linear Histogram Report

II

II

II

II

II

II
II
II

II
II
II

II

II
II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

5.5.12

FIGURE 81

TCATIC User's Guide

Reference listing Check Button

The Reference listing button tells the coverage analyzer to produce a
Reference Listing report. This report shows the coverage level achieved
for all modules that are named in the specified reference listing, basename.
i.A. If a module is tested but the name is not found in the supplied refer­
ence listing file, then the that coverage is not reported. Similarly, if a name
appears in the reference listing but is not found in the trace file or the
Archive file, no coverage will be reports.

The button is defaulted off.

To obtain the Reference Listing report, you must specify the Reference
Listing file from a file selection dialog box (shown below). This file is a
version of your "C" program which has logical branches marked. The
coverage analyzer takes the information from the Reference Listing file
and then creates a report.

Filter

I ols/covera9e/tcat/demosl• . 1 .A I
Directories Files
~ C ~e-xa-mp-le-.1-.A~ C
:/demos/ ••

I f)

Selection

Reference Listing File Selection

153

CHAPTER 5: GUI Reference

FIGURE 82

5.5.13

5.5.14

5.5.15

154

Action

-- TCAT/C, Ver 8.2 for SUN (10/28/94) .

-- (c> C~ri9ht 1990 bid Software Research~ Inc. FILL RIGHTS RES

-- SEGMENT REFERENCE LI ST !HG

-- lnstr1..111entation date: Tue Jun 20 08:27:55 1995

-- Separate i.odules ald segMent def1m t1ons for each f"IOdule ~-e
-- indicated in this COflllTlented version of t he supplied source fi

extern struct _ i obuf {
int _cnt:
unsigned char *_ptr;
uns191"-.ed char ll!_base;
int _bufs i.::;
short _fla9:
char _f il e:

} _1ob[1;
extern struct _1obuf *fopenO;
extern struct _1obuf • fdopenO ;
extem struct _1obuf • freopen(>;

Reference Listing Report

Do not report function in file Check Button

The Do not report function in file button specifies the de-instrumenta­
tion file . This file lists the modules you do not want the coverage reports
to reflect. The default file is set to DEINSTRU.fns.

This option is defaulted off.

Generate list of functions with C1 > Check Button

The Generate list of functions with Cl> button specifies the module
threshold value. Any module with percentage coverage greater than or
equal to the threshold value (defaulted to 85) percentage will automati­
cally be written to the de-instrument file, defaulted to DEINSTRU.fns.

This option is defaulted off.

Generate list of functions not included in report Check Button

The Generate list of functions not included in report button tells the
coverage analyzer to print the list of modules excluded from instrumenta­
tion to be printed at the end of the coverage reports.

This option is used with the Do not report function in file option. This
option is defaulted off.

II

II

II
II

II
II
II

II
II

II

II

II

II

II

II
II

II

II
II

II

II

II
II
II

II
II
II
II

II
II

II

II

II

II

5.5.16

5.5.17

5.5.18

5.5.19

5.5.20

TCATIC User's Guide

Do not update archive file Check Button

The Do not update archive file button check button suppresses the cover­
age analyzer from updating the Archive file for the current run. This is
useful if you want the Archive file to be the basis for past test informa­
tion.

This option is defaulted on.

Old Archive name Check Button

Use this option to include data from an old Archive file in your reports.
You must specify the name of the old Archive file.

This option is defaulted off.

New Archive name Check Button

Each time you run the Coverage Analyzer, you will write over the con­
tents of the Archive file. If you want to keep a coverage run's Archive file
results, you can use this option. You must specify the new Archive name
in the specification region. If you don't include a file name, the accumu­
lated test data will automatically defaulted to the file name Archive.

This option is defaulted off.

Rename the report file to: Check Button

The Rename the report file to: button automatically allows you to specify
a file where coverage reports are written. This file is generally named
Coverage. If you want a different report file, use this option.

This option is defaulted off.

Change the report width to: Check Button

The Change the report width to: button allows you change the report
width, which is defaulted to 80 characters. Normally the reports gener­
ated by the coverage analyzer are wide enough to accommodate module
names up to 80 characters in length. The internal limit on name length is,
however, 128 characters. You can use this option to generate reports that
are wide enough to accommodate the full 128 characters.

This option is defaulted off.

155

CHAPTER 5: GUI Reference

5.5.21

156

Sort report by module name Check Button

The Sort report by module name button tells the coverage analyzer to
produce output reports with module names sorted alphabetically.

This option is defaulted off.

II

II

II

II

II
II

II

II

II

II
II

II

-
II
II
II

II

II

II
II.

II

II
II

II

II

II

II

II

II
II

II

II

II

II

CHAPTER 6

Co:m:mand-Line Activation
This chapter describes in detail the various command-line switches which perform tasks
similar to the X Window System graphical user interface (GUI).
LEVEL: If you are a beginning or intermediate TCAT user, you can skip this section on
first reading; it is intended for advanced users.

6.1

6.2

6.3

Command Line Usage

This chapter describes the main operating modes of TCAT. After working
with the GUI, you may want to work with the command line. Many of the
available command line options are equivalent to functions that can oth­
erwise be performed by choosing commands from the TCAT graphical
user interface. For experienced users it can mean more efficient testing.

'Xtcat' Command

You invoke the Xtcat system with the command:

Xtcat [-L lang]

Options and Parameters:

Invokes Xtcat for the "C" language interactively. No Options

-L lang Specifies the language. The following languages are
supported:

• -L C Supports the "C" language. This is the default.

• -L C+ + Supports the "C++" language.

• - L Ada Supports the Ada language.

• - L F77 Supports the FORTAN language.

ic lnstrumentor Command

TCAT instruments the source code of the system to be tested, that is it
inserts function calls at each logical branch. The instrumentation will not
affect the functionality of the program. When it is compiled, linked and
executed, the instrumented program will behave as it normally does,
except that it will write coverage data to a trace file . There is some perfor-

157

0

CHAPTER 6: Command-Line Activation

159

mance overhead due to the data collection process. The trace file is pro­
cessed by a report generator.

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
Cl coverage at every stage of testing while behaving logically equivalent
to the original program.

In its operation, TCAT's instrumentor parses your candidate source code,
looking for logical branches. When one is discovered, the instrumentor
inserts a function call in the instrumented version of the source code. It is
important to note that the resulting source code file is still a legal program
written in C, as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remem­
ber, the instrumented version will otherwise function as the uninstru­
mented version.

The complete syntax for command line calls to ic, or the instrumentor, is
listed below.

Options and Parameters:

ic [option[s]] basename .i

[option [s] l
-ce

-cw
-dil-DI file
-fn number
-fl number
-h -help
-I

-lj

-m

-m6

-n
-t

-u

-w
-x
-z

The ic command instruments submitted C language files. It takes a base­
name.i file produced from preprocessing and produces an instrumented
version of the source called basename .i.c .

It is required that you first preprocess the source file through a C prepro­
cessor before passing it to ic. The preprocessing command is:

II

II

II

II

II
II
II

II

II
II

II

-
II
11.
II

II

II

II
II

II

II

II
II
II

II

II

II

II

II

II

II
.II

II

II

TCAT/C User's Guide

cc -P filename . c

The following options may be used to vary the processing and reports
generated by the instrumentor. The options are listed in alphabetical
order.

file.ext [file.ext]

-ce

-cw

-DI file

-fl number

-fn number

File(s) to be instrumented. ext can be c or i. If there
are multiple files, then each is processed in the order
presented.

Conditional Expression Processing Switch. If this
switch is present, the instrumenter will process con­
ditional expressions of the form ? a: b found in the
submitted programs.

Conditional Expression Warning Suppression
Switch. Normally, conditional expressions are not
processed and the following warning is issued to the
user that a conditional expression was found:. 11 Con­
ditional Expressions Not Processed Warning II mes­
sage. (See the -ce switch explanation.)

When this switch is present, the instrumenter does
not warn you when a conditional expression is
found, and does not process it. When this switch is
not present, the instrumenter warns you instruments
the logical predicate associated with a ? a: b type ex­
pression.

De-instrumented Switch. Allows you to specify a line
of modules that are to be excluded from coverage re­
porting. Only the list of module names found in the
specified file is to be excluded from coverage report­
ing. The module names can be specified in any for­
mat. White space (tabs, spaces) is ignored.

Allows you to specify the maximum length of file
name characters that are allowable on the system. If
the length of a generated file name exceeds the num­
ber , then the instrumentor output will be redirected
to files named Temp.i.? . These files can be used in
subsequent processing.

The Flexname Switch. Allows you to specify the max­
imum characters of function names the instrumentor
recognizes. If the function name exceeds the number,
then the instrumentor will recognize as distinct only
the first number characters of the function name. For
instan~e, -f n 5 will recognize the first five charac­
ters as distinct. Characters beyond that point, howev-

159

CHAPTER 6: Command-Line Activation

-h

-help

-I

-lj

-m

-m6

-n

-t

-u

-w

-x

16D

er, will not be recognized for function name
purposes.

Help Switch. Forces output to show a summary of
available switches. Note : This is also the output pro­
duced by an illegal command.

Ignore Errors Switch. In certain rare cases, when the
underlying C compiler supports non-standard op­
tions and constructs, it may be desirable to "force" in­
strumentation to occur regardless of errors found.
This is done with the - I switch.

CAUTION: When instrumentation is forced using
this switch, there is a chance that the instrumented
software will not compile. For example, if you use the
- I switch to "instrument" a file of text material, you
would not expect the output to be compilable (and it
probably won't be), even though it may have been
"instrumented".

Process Set-Jump, Long-Jump Switch. If present, pro­
cesses setjmp and longjmp statements found in the
submitted C programs. If this switch is not present,
these statements may cause an error during instru­
mentation. Applies only to UNIX.

Recognizes Microsoft C 5.1 keywords during the in­
strumentation process.

Recognize Microsoft C 6.0 keywords during the in­
strumentation process.

No Null Edge Instrumentation Switch. Normally, the
instrumentor finds empty edges and instruments
them. If this switch is used, then such extra instru­
mentation is suppressed. This will affect the instru­
mentation of if and switch statements that do now
have an else statement.

Recognize Turbo C keywords during the instrumen­
tation process.

Forces the instrumentor to recognize _exit as a
keyword.

Recognize Whitesmith C keywords during the instru­
mentation process.

Will not recognize exit as a keyword.

II

II
II
II
II

II
II

II
II
II

II
II
II

II
II
II

II

II
II

II

II

II

II
II

II

II

II
II

6.3.1

II

II

•
II

II

II

TCAT/C User's Guide

-z Recognize MANX/ AZTEC C keywords during the
instrumentation process.

If there is an error, ic gives a response line, or usage line, indicating the
set of possible switches and options, which is the same as the -h output.

You can also look at the available options by entering ic -help. The
following will appear on your display:

TCAT/C Ins trumenter/Analyzer, Release 8.2 for SUN (09/14/92) .

Legal options are :

[-h] Show options

[-I] Ignore errors

[-m l Re cognize Microsoft 5.1 keywords

[-m6] Recognize Mi c rosof t 6 . 0 keywords

[-t] Recognize Turbo C keywords

[-u] Recognize •_exit • as e x it

[-w] Recognize Whitesmith C keywords

[- x] Will not r ecognize exit as keyword

[-z] Recognize MANX/AZTEC C keywords

[-di fil e] Specify the file conta ins list of functions not t o
ins trument

[- lj] Recognize setjmp/long jmp as global goto

[-cw] Do not report warning message on conditional expression

[- ce] Allow instrumentation of conditiona l expression

[-n] Do not instrument empty edges (ie . "e l se • and "default ")
[- fl number] Specify the maximum f ile name length output will go
to Temp . i .*

[-fn number] Specify the maximum length of function names

File Summary

This section describes TCAT file naming conventions for the instrumen­
tor ic.

i c [optiona l swit ches] basename . i

Input:

basename .i

Produces:

basename .i.c

basename .i.A

basename .i.E

basename .i.L

basename .i.S

Preprocessed source file

Instrumented source

Segment reference listing

Error listing

Segment and count (Used by the mkarchive utility)

Instrumentation Statistics

161

CHAPTER 6: Command-Line Activation

6.3.2

182

modulename.dig Module digraph file(s) (Used by Xdigraph source
viewing utility).

Please see Section 6.5 for further information on the mkarchive utility
and the supplied documentation on, the Xdigraph utility.

Instrumentation Directive ,./

The TCAT system permits u~~w.¢ /special passive "directive~in the
form of ~mment statemenf.(That can be used to turn the instrumenta­
tion process ON or OFF wiiliin a module's boundary. These comment
statements control Cl , Sl , ~oth Cl and Sl instrumentation.

Because these comments are passive, they can safely be placed in the orig­
inal source code so that successive re-instrumentations will follow the
same non-interfering directives.

Application of Directive

You can use these directiv4 to prevent instrumentation that would other­
wise ~du~ef to~ ;uch ou"t'put ofi~plies to a passage that does not need
to be furthe es e '\...

The de-instrumentation directive feature can, with some limitations (see
the examples on the following page), let you avoid instrumenting part of
a C module~o do thi,bracket the passage of code with: / *TCAT OFF * /
and / *TCAT ON * / to tum off instrumentation for Cl and Sl; / *TCAT
SCAN OFF * / and / *TCAT SCAN ON * / to bypass all of the informa­
tion in the passage; / *TCAT Cl * / and / *TCAT Cl ON * / to tum off
instrumentation for Cl; and / *TCAT Sl * / and / *TCAT Sl ON * / to
tum off instrumentation for Sl.

Note that in addition to these directives, there is also an automatic de­
instrumentation feature (-di file) that allows for selective de-instrumen­
tation of individual C functions. With this option, you may specify the
name of a function that is not to be instrumented, and the TCAT process
will disregard that name if it finds it. This effectively ignores entire mod­
ules from the instrumentation process.

Proper Directive Placement

Basically, you have the capability to tum on and tum off entire C struc­
tures within the program. However, the directives can be placed only in
certain locations within your C program, as shown next.

II

II

II

II
II
II
II

II

II
II

II
II

II
II
II

II

•

•
II
II

II
II

II

II

II
II

II
II
II

II

•
II
II

•

TCAT/C User's Guide

Processing of a file always begins with directive processing ON. There
can be as many directive instances in a program as you want. However,
they cannot span over a function definition boundary.

All the directives should be used in the same manner. Below are examples
of how you can use these directives:

1. Between the body of function, that is between the{ .. . } of a function, as
shown below.

or

or

procedure ex ample ()

body

}

procedure e x ample ()

/ * TCAT OFF * /

body

/ * TCAT ON * /

procedure ex ample ()

body

}

procedure example ()

/ * TCAT SCAN OFF * /

body
/ * TCAT SCAN ON * /

pro cedure e xample ()
{

body

163

CHAPTER 6: Command-Line Activation

164

or

procedure example ()

/ * TCAT Cl OFF * /

body

/ * TCAT Cl ON * /

procedure example ()

body

}

procedure example ()

/ * TCAT Cl OFF * /

body

/ * TCAT Cl ON*/

2. Beforethefirststatementofan if or while or for or switch
construct. In this case the placement has to be as shown in these
examples:

or

if (. . .) { body

! * TCAT OFF *!

if (. . .)
{ body }

/ * TCAT ON * /

.fi

. bp

i f (...) { body)

/ * TCAT SCAN OFF * /
if (.. .)

II

II
II

II

• •
II

II

II

II

II
II

II

•
II
II
II

•
II
II

II
II

•
II

II

II

II

II
II

• •
" II

•

or

or

{body}

/ * TCAT SCAN ON*/

if (...) body }

/ * TCAT Cl OFF * /

if (...)
{ body }

/ * TCAT Cl ON * /

if (...) body}

/ * TCAT Sl OFF*/
if (...)

{body}

/ * TCAT Sl ON*/

Here is the same kind of construction for a while:

or

while (.. .) { body

/ * TCAT OFF*/
while (.. .)

body

}

/ * TCAT ON * /

while (...) {body }

/ * TCAT SCAN OFF*/

while(...) {

TCAT/C User's Guide

165

CHAPTER 6: Command-Line Activation

186

or

or

body
}

/ * TCAT SCAN ON * /

while (.. .) { body

/ * TCAT Cl OFF * /

while (...) {
body
}

/* TCAT Cl ON * /

while (. . .) { body

/ * TCAT Sl OFF * /

while (. ..) {
body
}

/ * TCAT Sl ON * /

Improper Directive Placement

The placement of the directives cannot cross structural boundaries, and
the span from a / * OFF * / to a / * ON * / cannot cross a function
definition.

Below is an example of an illegal construction for a / * TCAT OFF * /
\ ON directive construction. This construction will result in compilation
errors:

/ * TCAT ON * /
if (.. .) / * TCAT OFF * / { body
while (. . .) {

/ * TCAT ON * /
body
}

/ * TCAT OFF * /

Additional Notes

II

II

II

II
II

II

II

II
II

II

II
II

II

• •
II

II

II

II
II

II

II

I
II

II
II
II

II
II

• • •
II

I

6.4

TCAT/C User's Guide

You can have as many pairs of the directives in any one file as you want.
However, the directives' pairs cannot span a function definition bound­
ary.

You can have multiple directives in any one function. In fact, you may
want to disable instrumentation in the innermost loops in a function that
is used a great deal as a way of keeping the instrumentation overhead
low.

cover Command

To get useful results from TCAT, you must analyze coverage reports. To
do this, the program cover is run to process the trace file and produce
several output reports. The cover command analyzes trace files produced
by instrumented programs and generates a set of coverage reports.

Reports generated by cover are stored by default in the file Coverage.
These reports are useful for performance analysis and also for "hot spot"
tuning. Depending on the options used, cover produces different
reports.

cover also archives the trace file information into an Archive file so that
the reports are cumulative.

The complete syntax for calls to cover is listed below. Items enclosed in
[..] are to be included zero or more times.

Options and Parameters

cover [tracefile[s) [option[s]]

[option[s] J

-a file

-b file

-c

- d [name [s l l
-Dil-di file

-DL
-f file

-h name [s)]

-help

-H

-1 name [s]]

-m

-n l -N

-NH

-nl file

-NM

-p

-q

167

CHAPTER 6: Command-Line Activation

168

-r file

-s
-SU

-T # l
-w width

-z file

[tracefile[sl] is the name of the trace file(s) that you wish for the coverage
analyzer to process. If there are no trace files given, then cover looks for
data in the default trace file name, Trace.trc. If there are no names given
and Trace.trc is not present, If there are multiple trace files, each trace file
is processed in the order presented.

CAUTION: The list of trace files must be the first set of arguments. The
list is ended by the first symbol that appears with a"-", i.e. by the first
optional switch.

The options are listed in alphabetical order .

-a file Old Archive File Name Switch. Allows you to include
data from an old archive file in your reports. On the
standard cumulative coverage report, this data will
be included in the "Cumulative Summary" column
test results, but not under the column "Current Test".
To test iteratively, progressing through a structured
series of tests towards higher Cl values, each run of
cover should include the cumulative archive file
from the previous test.

-b file

-c

-d name [s]

If you do not include an archive file, the "Cumulative
Summary" column figures will be the same as those
for "Current Test". Alternatively, if no -a option is
given, the file Archive is used by default. The -a op­
tion interacts with the other report options discussed
below.

Banner File Name Switch. This allows you to include
specific text, taken from the first line of the named file
as a title for your reports. A maximum of 80 charac­
ters is allowed for titles.

Cumulative Report Switch. This option prints the
Cumulative report only.

Module Name Delete Switch. Deletes named mod­
ules from the generated Archive file, if found in the
current execution. Subsequently, cover will never
have heard about these names. This switch is useful

II

I
II

I
II

II

II

II

•
II

II

II

I

•
II
II
II

II

II

II

II

II

II

II

II
II
II

•
II

II
II
I
II

'

~ EI I -di file

-DL

-f file

-h name[s]

-1 name[s]

TCAT/C User's Guide

in updating an extensive test record that would oth­
erwise be lost due to the complexity of editing the Ar­
chive file .

De-instrumented File Switch. Allows you to specify a
line of ~es that are to be excluded from coverage
reporting. Only the list of module names found in the
specified file is to be excluded from coverage report­
ing. The module names can be specified in any for­
mat. White space (tabs, spaces) is ignored. file is also
the file where new modules that pass the coverage
threshold value (see the -T switch) will be written to.

De-instrumented Module List Switch. Allows you to
see which modules are excluded from coverage re­
porting. This switch is used along with the -DI
switch. The list of excluded modules is printed at the
end of the coverage report.

New Archive File Name Switch. Places newly accu­
mulated test coverage data in the file you specify. If
you don't include a different name with this switch,
the accumulated test data will be placed in the default
name Archive .

CAUTION: Each time you run covei;;,\vou will write
over the contents of the Archive file Jniess you use
the -f switch to direct the Archive file to another
place. You may wish to remove the filename before
starting a new test sequence.

Linear Histogram Report Switch (-h) .

Logarithmic Histogram Report Switch (-1).

These two options produce two histogram reports
that graph the frequency distribution of the logical
branches exercised in a single module. The histo­
grams provide a module-by-module analysis of test­
ing coverage, combining current trace file data with
archive date included through the -a option or us­
ing the default Archive file . If the optional name ar­
gument is present, then the corresponding histogram
for only the named module is produced; otherwise,
cover produces histograms for all modules found.
There can be multiple names in the argument if you
want histograms of several modules. Also, the names
rnn be mix:ed. 1'etween linear and lo~arithmic histo­
grams.

169

CHAPTER 6: Command-Line Activation

-H

-help

-m

-N,-n

-NH

-nlfile

170

Hit Report Switch. This option produces the Hit re­
port. It lists the segments that have been hit one or
more times in current or past tests. This report ana­
lyzes the cumulative effect of the current trace file
and any archive data included through the use of the
-a option or using the default Archive file.

Help Switch. Shows a summary of available switches.

Minimal Output Switch. When present, cover sup­
presses banner information, list of current options
and trace file descriptions. The coverage report con­
tains only the reports requested.

Not Hit Report Switch. This option produces the Not
Hit report which lists segments that have not been
exercised. This report analyzes the cumulative effect
of the current trace file and any archive data included
through the use of the -a option or using the default
Archive file.

Newly Hit Report Switch. This option produces the
Newly Hi treport. Shows the segments by module
that were hit in the current execution that were not hit
previously. Thus this gives you an assessment of the
value of the most-recently added test(s). This shows
what the current test "gained". Output is the comple­
ment of the Newly Missed report.

Name List Switch. This switch specifies that only the
list of module names found in the specified file file is
to be reported on in the current coverage report. Cov­
erage on other module names that may appear in the
archive or supplied trace files are ignored; however,
the data is accumulated in the archive file.

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

The following reports are affected by the existence of
a file: . Cumulative Report

• Past Report

• Not Hit Report

• Hit Report

• Newly Hit Report

• Newly Missed Report

II

I
II

II

II

I
II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II
'--

II

•
II

-NM

-p

-q

-r report

-s

-SU

-T [#]

-w width

TCAT/C User's Guide

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro­
duced individual histogram reports.

Newly Missed Report Switch. This option produces
the Newly Missed report. Shows which segments, by
module, hit in any prior test but were not hit in the
current test. This shows what the current test "lost".
This output is the complement of the Newly Hit re­
port.

Past Report Switch. This option produces the Past re­
port. This option should be used in conjunction with
the -a option when you want to analyze the overall
performance of a set of past tests.

Quiet Output Switch. Suppress printout of current
version and release information (this can be used to
facilitate running cover in batch mode).

Coverage Report File Name Switch. Normally the re­
port is written to the file Coverage (the default name),
but you can rename the file with this switch. CAU­
TION: You will overwrite any file you name with this
switch.

Sort Switch. This option produces output reports
with module names sorted alphabetically.

Suppress Update Switch. During processing, cover
will suppress updating of the archive file, either the
default Archive or the file named by the -f switch.
cover will read the data in the archive file to form the
basis for the "past test" information.

Coverage Threshold Switch. # is a real number that
specifies threshold value. Any module with a cover­
age percentage greater than or equal to this threshold
value will be written to the de-instrumented file (see
the -DI file switch). If no # threshold is specified,
then the default value of 85 percent is assumed.

Report Width Switch. Normally the reports generat­
ed by cover are wide enough to accommodate mod­
ule names up to 21 characters in length. The internal
limit on name length is, however, 128 characters. You
can use this switch to force cover system to generate
reports that are wide enough to accommodate the full

1~~ character module names.

171

CHAPTER 6: Command-Line Activation

172

-z file

The width factor is the number of additional charac­
ters to be added to the report. The default value is
zero. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con­
tain long lines and may not be suitable for printing di­
rectly.

Annotated Reference Listing Switch. cover will ana­
lyze the specified archive file, any specified trace files,
and will produce a report that shows the coverage
level achieved for all modules that are named in the
specified reference listing (files with a .i.A exten­
sion).

The reference listing must be one that is produced by
a current release of the TCAT instrumentor. Refer­
ence listings produced by earlier versions may not
necessarily work correctly with this switch.

If a module is tested but the name is not found in the
supplied reference listing, then that coverage is not
reported. Similarly, if a name appears in the reference
listing and is not one that exists in the archive file, no
coverage will be reported.

In case there is an error, cover gives a response line (usage line) indicat­
ing the set of switches and options. You can also look at the available
options by entering cover -help. The following will appear on your
display:

TCAT: Coverage Analyzer . [Release 8.2 for SUN/UNIX 12/17/92]
(c) Copyright 1990 by Software Research, Inc.

Syntax :
-a file

cover [tracefile[s] [options]*= default
Old archive(* Archive)-nl-NNot Hit Report
Print title on report -NH Newly Hit Report -b file

-c Cumulative Report -NM Newly Missed Report
-d [name[s]]Delete modules named -nl fileReported module list
-DI Deinstrumented file -p Past Report
-DL List deinst modules -q Quiet Output
-f file New Archive filename -r fileReport file(* Coverage)
-help Print valid syntax -s Sort report by module name
-h [name[s]]Linear Histogram -SU Suppress update to archive
-H Hit Report -T (#]Threshold value to deinst
-1 [name[s]]Logarithmic Histogram-w widthChange report width
-m Suppress messages -z fileAnnotated reference listing

II

II

II

II

II

II
'---

II

II

II

II

II

II

II
"--'

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

•
II

II

II

II

6.4.1

6.4.2

6.4.3

TCAT/C User's Guide

File Summary

This section describes TCAT file naming conventions for cover.
cover [optional swi tches] [tracefile]

Inputs:

Trace.trc (or other file named in execution of pro­
gram)

Old Archive files

Produces:

Coverage reports Coverage

Archive New archive file which merges latest trace informa­
tion into cumulative data.

Trace File Argument

The cover command can handle many trace files in the same run. For
instance, it is possible to issue the command:

cover *.trc -c -n -1 .. . "

to report on all the trace files in the directory with the extension .trc. Of
course, one could also issue a command to input data from only one trace
file:

cover Trace . trc -c -n -1 ... "

Finally, the Trace.trc file is a default, so the above command is equivalent
to the following:

cover -c -n -1 ...

Archive Files

At the end of each run, cover also generates a new archive file that can be
used in the next run of cover. The default file name is Archive. The archive
files created by cover are similar to trace files in their format and content.
The significant difference is that they do not contain information on the
sequence in which segments were hit. They do, however, contain all other
data required for coverage analysis. cover allows you to perform a series
of incremental tests. By default, it takes the cumulative summary data
stored in the default archive file, Archive, produced by previous runs of
cover, and subrnit5 it as input to the current run of cover. This allows you
to add new test suites to exercise unhit segments without having to

173

CHAPTER 6: Command-Line Activation

include previous test suites. Thus, subsequent test suite size will be
smaller.

6.5 'mkarchive' Utility

6.6

6.6.1

174

The TCAT system also includes a utility program for creating null archive
files. This is mkarchive. This utility ensures that your coverage reports all
modules on your system whether or not they have been executed. Some­
times, when testing a subsystem, the initii:ll tests do not touch every mod­
ule in the program. When this occurs, the Cl measure will start at an
artificially high level and, as the tests touch more modules, the Cl value
will decrease.

Although more segments are being hit, more modules are included in the
percentage calculation, so the resulting value is lower. If you are not cer­
tain that you can detect whether a module has been skipped over in a
lengthy program, it is wise to always use this utility to ensure that your
testing coverage data is complete and accurate.

The mkarchive utility reads the archive input table *.i.L (Segment Count)
file produced by the instrumentation process and creates a "null" archive
file containing a complete count of all the modules and their segments in
the program being tested. This is a normal archive file and can be used
with cover to ensure accurate results in generating coverage reports.

To include the mkarchive data in your coverage reports, run mkarchive
before beginning the report generation process with cover. ·

The syntax for mkarchive if you have a one file program is:
mkarchive < x.i. L > null.arc

where x.i.L is the archive input table created during instrumentation, and
null.arc is the null archive file. To use mkarchive for multiple files pro­
gram, concatenate all *.i.L files into one file and execute mkarchive on
that one file. To include the null archive file in the coverage analysis step,
run cover with the -a option, as in the following example·:

cover Trace.trc -a null . arc

where Trace. trc is the trace file.

Command Summary

This section summarizes commands you use with TCAT.

Instrumentation, Compilation and Linking

You are required to preprocess the source file through a C preprocessor
before putting it to ic instrumentor. The instrumented program is then
compiled and linked with the appropriate runtime modules. Depending

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II
II

II
II
II

II
II

Ill
II
II
II

II

II

II
II

TCATIC User's Guide

on the size of your program and the development method that you use,
the following subsections describe how it is done.

Stand-Alone Files

The commands used are:

Preprocess cc -P basename . c

Instrument ic basename .i

Compile cc -c basename .i.c

Link cc basename .i.o crunl.o

Execute

Systems With make Files

To produce basename .i

To produce basename .i.c

To produce basename .i.o

To produce the executable
a.out

Run your program as usual.

(Press RETURN twice to ac­
cept the default values for
trace file message and
name.)

1. If you have make files where *.o files are created with built-in rules,
add the following built-in rule before other targets:
Built in rule for TCAT instrumentation . ..

. c . o :
cc $(CFLAGS) - P $*. c

ic $*. i

cc $(CFLAGS) -c $* . i . c
mv $* . i . o $ * . o

sample.a : sample . c

The above will depend on which one invokes built in rules .

2. Add crun <level> • o to the list of linked object modules.

3 . Then run the make file to produce the instrumented version of the
software.

make Files With cc Called In Directives

When cc is explicitly called in directives, then add ic commands to
thecc commands within the make file.

1. Replace cc w -P filename .c
ic filename . i

175

CHAPTER 6: Command-Line Activation

6.6.2

6.6.3

176

cc $(CFLAGS) -c filename . i .c

mv filename .i.o filename . o

2. Add crun <level> • o to the list of linked object modules.

3. Finally, run the make file to produce the instrumented version of the
software.

A System Which Does Not Use make Files

(Or which will not allow make file changes)

Go to the directories that contain the source code. There, type the follow­
ing commands:

cc -P *.c

ic *.i
cc -c *. i .c

cc *.i.o crun<?>.o

to create the instrumented source, objects and executable.

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented
program will add two prompts when the first instrumented code is exe­
cuted. You may fill in a value or press return each time. The prompts may
be suppressed by changing the provided runtime. Refer to Chapter 7 for a
more detailed description of runtimes available.

Coverage Analysis

Use the command:
cover [tracefile] -c -n -h - H -1 -NH -NM -p -z filename .i . A

to analyze all reports.

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the Cl coverage value
you obtain is acceptable.

II

II

II
II
II
II
II

II
II

•
II
I
II
II

II

II

II

II

II
II
II

II
II
II
II
II

II
II
II
II
II
II

• -

CHAPTER 7

Runtime Features
This chapter describes the available runtimes.
LEVEL: This chapter is intended for all users.

7.1 Runtime Descriptions

As mentioned, the test engineer using TCAT has a choice of many runt­
ime routines to change the behavior and performance of the instrumented
system under test. Different runtimes may be selected by linking in the
appropriate module.

Finally, you can write your own runtime package if you need to modify
TCAT to a particular situation, since the program that is needed is small.
For an embedded system where the target system has particular charac­
teristics, rewriting the runtime is a practical way to adapt TCAT.

There are a variety of runtime modules for each language.

The function of each runtime package is specified by the format of its
name as defined below:

clanguage>runclevel>.o •

For Example:
crunO.o - C, level 0, UNIX

TCAT is supplied with three standard runtimes:

crunO - Raw Trac e file ("quiet" runtime)

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the traCE:! file identification at the invoca­
tion of the program under test.

crunl - Standard Trace file

This is the same as c r u n O, but with prompts that ask the user for a test
descriptor and the name of the trace file. There is no internal processing
or buffering. The trace file is the full, unedited trace of program execu­
tion. This is the basic version .

177

CHAPTER 7: Runtime Features

7.2

178

cruna - Multi-Tasking (or forking runtime)

cruna provides for successful data collection when instrumented pro­
cesses run in parallel. cruna is designed for analysis of system calls such
as the spawn system command of C. A trace file will be produced for par­
ent and child processes.

Special Runtimes

NOTE: These runtimes are available as a separate purchase.

crun5 - In-Place Reduction

The Cl statistics of the entire program execution are accumulated in
memory. The trace file information is written after the program properly
exits.

crun5 allocates enough memory with dynamic memory allocation to do
full Cl reduction in place.

crunc - Cross Development

This is source code for runtime which you can cross-compile to use in
capturing executions of a cross-compiled executable on a target machine.

The tester will need to adapt the source code of runtime for his/her par­
ticular situation. For instance, one alternative with an embedded system
is to have the runtime write each trace file record to the development sys­
tem.

Another alternative is to have each record stored in a file on the embed­
ded system, which is then transferred to the development system.

II

II
II
II
II

II

' II
II
II
II

• •
II
II

I

•

II

II
II
II

II

II

II

II
II

II
II

•
II
II
II

II
II

CHAPTER 8

Custotnizing TCAT
This chapter explains where the setup information is stored and gives instructions on
changing it.

You customize TCAT by changing the X Window System resources or
setup files. This chapter explains where the setup information is stored
and gives instructions on changing it.

Resource files are text files. You can edit them with any standard UNIX
text editor. Most of the graphical user interface defaults are set in the SR
file supplied with the product. It needs to be put in the /usr/lib/X11/app­
defaults directory. If you install TCAT using the supplied installation
script, the contents of the SR file are automatically copied or concate­
nated to the SR file in that directory.

In the following figure is a list of the common GUI defaults. You can
change the set defaults by manually changing the SR file to avoid reset­
ting GUI parameters every time.

SR*geometry: +10+10

tcatC* instrument *instrumentFile . directory :
tcatC*instrument * instrumentFile.dirMask : * . c

tcatC*instrument *preprocessorCommand.value: cc -P

tcatC*instrument *preprocessorOptions . value:

tcatC * instrument *preprocessorSuf fix . value: . i

tcatC *preprocessSwitch : ON
tcatC *instrument * instrumentorCommand.value : ic

tcatC* instrument *_exitAsKeyword . set : False

tcatC *instrument *exitNotAsKeyword.set : False
tcatC *instrument *deinstrument . set: False
tcatC *instrument *deinstrumentFilename . value : DEINSTRU . fns
tcatC *execute *runtimeObj .directory :
tcatC *e x ecute*runtimeObj . dirMask : crun? . o
tcatC *e x ecute*compileCommand . value : cc -c

tcatC *execute *compileOptions . value : *. i.c

tcatC *execute* linkCommand . value : cc -o

tcatC *execute *linkOptions.value : * . i.o

tcatC*execute *makeCommand .va lue: make

tcatC*execute *makeOptions.value :

179

CHAPTER 8: Customizing TCAT

FIGURE 83

180

tcatC*execute *applicationName.value: a . out

tcatC *execute *applicationArguments.value :

tcatC*analyze *traceFilename . dirMask : *.trc

tcatC *analyze*viewSource . dirMask: *.dig

tcatC*analyze *referenceFilename . dirMask: *. i . A

tcatC *analyze *pastTests . set : False

tcatC*analyze *cumulativeTests . set: True

tcatC *analyze *hit . set : False

tcatC*analyze*notHit.set : True

tcatC*analyze *newlyHit.set : False

tcatC*analyze *newlyMissed . set : False

tcatC *analyze *logHistogram . set: False

tcatC *analyze *linearHistogram.set: False

tcatC*analyze *referenc eListing . set : False

tcatC*analyze*nonReportModule . set : False

tcatC*analyze*nonReportModuleFilename.value:

tcatC*analyze*thresholdReportModule.set : False

tcatC *analyze *thresholdReportModuleLevel . value: 85

tcatC *analyze*generateFunctionListNotinReport.set: False

tcatC *analyze*noUpdateArchive.set : True

tcatC *analyze*oldArchive.set : False

tcatC*analyze *oldArchiveName . value:

tcatC*analyze*newArchive . set: False

tcatC *analyze*newArchiveName . value :

tcatC *analyze*renameReport . set: False

tcatC*analyze*renameReportName . value :

tcatC*analyze *reportWidth . set : False

tcatC*analyze *reportWidthValue . value:

tcatC *analyze*sortReport.set : False

TCAT resource file

II
II
II
II
II
II
II
II
II
II
II

•
II
II
II

I
I

II

II
II
II
II
II

II
II
II

II
II

•
II
II
II

II
II

USER'S GUIDE

S-TCAT

System Test Coverage Analyzer

Ver 8.1

SOFTWARE RESEARCH, INC.

This document property of:

Name: ______________ _

Company: _____________ _

Address: _____________ _

Phone ______________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel : (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT­
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: June 21, 1995)

II
II
II
II
II

II

II

II
II
II
II

•
II
II

II

II

II

II

II
II
II
II
II

II

II
II

II
II

II
II

II

II

II

II

CHAPTER 9

Introduction
This User Manual is intended for both training and reference. It provides substantial
information on 5-TCAT /C, the System Test Coverage Analysis Tool for the "C" language.
This first chapter describes how the User Manual is organized. 5-TCAT/C, Release 8.2 or
later, is supplied with an OSF / Motifstyle graphical user interface.

9.1

9.2

Audience

The primary audience for this manual is the software quality assurance
tester or development staff who will use 5-TCAT/C to test newly created
or modified software programs written in "C". 5-TCAT/C is intended for
any of the following Software Engineering professionals:

1. The Software Quality Analyst who intends to develop a complete set
of tests for a system released by Research and Development.This per­
son should also consider TCAT/C, a companion SR coverage analyzer
used for logical branch level testing. It measures Cl coverage.

2. The R&D Engineer who wants to test subsystems and module inter­
faces at the unit or branch level for the highest possible code coverage
before product release or submission to the SQA department.

3. The Software Metrics or Independent Evaluation Group that will
measure and evaluate the testing of either sub or entire systems. S­
TCAT/C enables this group to "test the testers".The coverage data
might be combined with bug reports, complexity metrics or other
data to guide software quality management.

Purpose

5-TCAT/C can be used for either:

1. Unit testing, where the focus of attention is one or more intercon­
nected modules that will later contribute to a larger system.

2. Measurement of the completeness of a test suite for an entire system
consisting of a large number of modules.This is informally known as
the "big bang" testing approach. If you are already familiar with
some of the ideas of 5-TCAT/C, you may skip to Chapter 11 for opera­
tion details.

18J

CHAPTER 9: Introduction

9.3

184

Manual Organization

This User Manual is organized to aid the user, during implementation
and for usage.It is divided into the following four sections:

1. Chapter 10 gives a brief overview of 5-TCAT/C principles. It explains
the theories behind 5-TCAT/C and how it can better help in your test­
ing environment.

2. Chapters 11-14 explain how to use 5-TCAT/C.

3. Chapters 15-16 explain the appropriate commands, depending on
your platform.

4. Chapter 17 displays a step-by-step full 5-TCAT/C example.

5. Chapter 18 displays a step-by-step graphical user interface tutorial.

.II

II
II
II

•
II
II
II
II
II
II

II
II
II
II

I
II

II

II
II

II

II
II

II

II

II

II
II

II
II

II
II

II

II

--
CHAPTER10

Overview
This section provides an overview of coverage analysis principles and of 5-TCAT/C. It
describes how 5-TCAT/C will fit into the testing phase of the software life cycle.

10.1

10.2

Why System Test Coverage Analysis?

The primary purpose of system testing is to ensure the reliability of a soft­
ware system before it is released to the end user. Mostly, this means mak­
ing sure that the interfaces between system components are well­
exercised, so that latent defects can be removed.

Software should be thoroughly tested with a variety of input to provide
statistically verifiable means of demonstrating the product's reliability. In
other words, the testing process should cover, in some way, all the situa­
tions in which the program will be used. Although a worthy goal, imagin­
ing every possible use, as well as developing test data and running them,
is extremely complicated and time-consuming. A more realistic goal is to
test every interface between components within a system.

According to industry studies, achieving this goal yields significant
improvement in overall software quality. Hence, 5-TCAT improves the
quality of your software beyond conventional standards.

QA Problems Addressed

It is a sad fact of the software engineering world that, on average, without
coverage analysis tools, only around 40 percent of a system's interfaces
are thoroughly tested before release. With less than half the interfaces
actually tried many bugs go unnoticed, and are not revealed until after
release. Questions such as when to stop testing, or how much more test­
ing is required are not answered on the basis of data, but on ad hoc com­
ments and sketchy impressions. Software developers are forced to
gamble with the quality of the released software and make plans based
on inadequate data.

A related problem is that test case development is done in an inefficient
manner; that is, many test cases are redundant. Cases testing the same
interfaces over and over clutter test suites and take the place of other

185

CHAPTER 10: Overview

10.3

10.3.1

FIGURE 84

186

cases that would test previously unexplored areas. Often testers are
unsure of the direction to take and can waste SQA time devising the
wrong (i.e. ineffective) tests.

Cost Benefit Analysis

5-TCAT /C addresses the problems mentioned above, and can save your
organization much time and effort. As a matter of fact, the economics of
system interface coverage analysis are extremely favorable. Here are
some ways that the 5-TCAT product can save you money.

Improved Error Detection

Primarily, 5-TCAT/C provides increased error detection. Software Engi­
neering literature indicates that an average function call error rate is -6
defects per 1,000 lines of code (KLOC). With no coverage analysis, 40 per­
cent of the function calls are exercised leaving the product with 2.4
defects per KLOC. Assuming a uniform distribution of errors throughout
the source code, the simple act of raising the interface coverage rate can
uncover many errors.

According to SR 's experience in advanced industrial projects and reports
from customers, comprehensive interface coverage analysis can eliminate
another 80 to 90 percent of the latent software errors.

Without S-TCAT

40 defects/KLOC

+ 50%Crerage

20 defects/KLOC

Cost Benefit Analysis

With S-TCAT

40 defects/KLOC

85-90% !overage

+ 5 defects/KLOC

The economic value of the increased error detection will, of course, vary
considerably from organization to organization. One estimate of the
worth of coverage analysis is based on what some software consulting

II
II
II
II
II
II
II
II
II
II

II
II
II

II

II

I
II

II
II
II
II
II
II

II
II

II

II
II
II
II

II

II

fl
II

10.3.2

FIGURE 85

S-TCAT User's Guide

firms charge to find and remove errors, a price established in the open
market. The software testing industry, sized at $50 million in 1986 by For­
tune magazine, typically charges around $4,000 per function call error
fixed.

Applying this reasoning to S-TCAT/C use, you could save $9,600 or more
per KLOC! In practical terms, this means that a large project with over
20,000 lines of code might save as much as $192K.

Earlier Error Detection

Not only are more errors detected with S-TCAT/C, they are also discov­
ered earlier. It's a well-accepted truth in Software Development that the
earlier you catch and fix an error, the cheaper. Over and over, managers,
vendors and "software gurus" have shown figures and charts that detail
how much less it costs to rectify a defect detected early. A classic example
of this is the following, adapted from Barry Boehm's book (see figure
below):

1000

500

200

100

50

20

10

5

2

1

Larger Software

IBM­
sso

- 80%
Median

- 20%

Requirements D esign

·· ··· ··· ··

Smaller Software

Code Dev. Tests Acceptance Tes ts Operation

Phase in which error was detected and corrected

Increase in Cost-to-fix Throughout Life-cycle

Your organization can reduce its "cost-to-fix ratio" by a factor of 10 by
using S-TCAT/C and finding errors before system integration. In the dia­
gram, it costs $5,000 to $15,000 to fix errors after they have left the devel­
oper. The developer or the Software Quality Engineer (SQE) can identify
and fix problems much more inexpensively than the beta site or indepen-

187

CHAPTER 10: Overview

10.3.3

10.3.4

10.3.5

188

dent testing organization. This is not to say that beta sites or IV&V (Inde­
pendent Verification and Validation) work are not needed; instead, there
is a great cost advantage in letting detailed interface testing find more
errors for less cost.

More Efficient Testing

Using 5-TCAT/C, you can gain in guiding test case development. In gen­
eral, the product may be used to identify features missed by existing test
suites. The missing items then direct the addition of new test cases.

Minimal Test Set

5-TCAT/C can be used to develop the minimal covering test suite for a
system. It is useful for a tester to have the smallest test suite that will exer­
cise all the function calls of a system, since such test sets typically will
require significant time and computing resource to run.

SR recommends use of SMARTS, CAPBAK, and EXDIFF to automate test
suite execution, evaluation and analysis steps. These tools can signifi­
cantly reduce the cost of test suite execution and analysis.

5-TCAT/C can be used to identify and eliminate redundant test cases.
With the system interface coverage reports described in this manual, it is
possible to determine how much each new test case adds to the total cov­
erage of a test suite. If a new test adds less than a certain specified mini­
mum coverage threshold, say one percent, for example, it might be
reasonable to discard it. Having done so, the tester will achieve a better
(i.e. smaller), and thus easier to run, test suite.

Assessment of Progress

Coverage analysis with 5-TCAT/C can be valuable to important SQA
decisions, such as when to ship a product or how much further product
testing is needed. A coverage value of 51 > 95% has been set the recom­
mended threshold for proper system interface coverage. Generally, one
should stop improving test coverage when the marginal cost of adding a
new test is greater than the cost to visually and rigorously inspect the
associated code passage. Other considerations you may wish to take into
account are the added test cost and the risk of defects.

Coverage analysis data is important for reliability modeling and predict­
ing error rates. By tracking error rates and number of errors discovered as
a function of overall test effort it is possible to predict eventual product
latent defect rates. We encourage SQA managers to keep careful records
of errors found and corresponding coverage values.

II
II
II
II
II
II

II
II

II
II

II
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

-
II

II

II

II
II

II
II

10.4

10.4.1

10.4.2

S-TCAT User's Guide

Software Test Methods

Interface analysis as implemented through 5-TCAT/C is a powerful test­
ing technique, which can save you much time and trouble, and can
greatly improve software quality. However, it is plainly not the only test­
ing technique in existence. SR strongly recommends that you use S-TCAT
along with other techniques.

Testing methods vary from shop to shop, but most successful techniques
fall into a few general categories. The most common ones, which are usu­
ally performed in their natural sequence, are described below.

Manual Inspection

Programs are manually inspected for conformance to in-house rules
(standards) of interface style, format, and content as well as for correctly
producing the anticipated output and results.

This process is sometimes called "code inspection", "structured review"
or "formal inspection''.

Dynamic Analysis

This approach tests the dynamic properties of the software under real or
simulated operating conditions. The software is executed under con­
trolled circumstances with specific expected results.

It is important in this phase to test as many branches, function calls and
paths in the program as possible. Doing so assures that the tests you have
run have the greatest diversity-- and hence have the best chance of uncov­
ering defects.

To obtain statistics on the program parts that have been covered by your
tests can often be very difficult. Using automated coverage analysis tools
such as TCAT /C, 5-TCAT/C, or TCAT-PATH/C will produce data on
what has been validated and what has been left out of your testing.
Dynamic analysis can in aggregate uncover 75 to 90 percent of the
latent remaining software defects.

189

CHAPTER 10: Overview

FIGURE 86

10.5

10.6

790

Supporting
Documents

\

Stages in Software Testing

Source
Program

Manual
Analysis

Multiple-Module Testing

Archived
Test Files

Archived Test
Documents

Another consideration in getting the most out of 5-TCAT/C involves
determining the scope of your tests: whether to test a single program
module, multiple modules, or even an entire system. You can prepare, or
instrument, many modules with function call markers and run tests on
them as a group -- 5-TCAT /C keeps track of each module's level of inter­
face exercise by name.

Hierarchy of Coverage Metrics

Up to now we have referred briefly to coverage analysis. Let us look more
closely at this phrase. What is being covered? What does analysis of
results tell you? Interface coverage analysis provides a means of identify­
ing exactly which interfaces in your program systems have been hit, or
"exercised", by your tests. The goal is to run your program through a sim­
ulation of real operating conditions with many types and combinations of

II
II

II
II

II

II

II

II

II
II

11·
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II
II

II

II
II

10.7

10.8

S-TCAT User's Guide

test data, to explore as many parts of your program as possible. Analysis
of the results will lead to more thorough testing and, eventually, to a solid
and more reliable software product.

Coverage analysis can be performed at different levels. For example, you
can find out which program statements have been hit, or you can analyze
the structure of the program by testing which logical branches or seg­
ments have been hit. Statement coverage values can vary significantly
from logical branch coverage values, depending on properties of the pro­
gramming language and the programmers' style. TCAT/C measures logi­
cal branch coverage. An even more rigorous metric involves noting
which logical paths have been exercised. TCAT-PATH measures path cov­
erage.

When you complete unit level testing, it is appropriate to test system
interfaces. In particular, how thoroughly the function calls have been
exercised. 5-TCAT/C provides a functional call completeness measure.

S1 Measure

The value that measures the level of call-pair coverage is 51. This ana­
lyzes program testing in terms of the number of function calls -- inter­
faces from a calling module to a called module -- that are exercised by a
test. The 51 value can be the result of a single test or the accumulated
result of a series of combined tests on one or many modules. A definition
of 51 coverage percentage follows:

The percentage of a program's function calls that have been exercised
by one or more tests. An 51 value of 95 percent is a practical mini­
mum coverage level, detecting approximately 75 percent of the then
discoverable errors. This high value is usually the accumulated result
of a series of tests, since coverage from a single test is only typically
30 percent to 40 percent.

A program is considered 100 percent interface-tested only when every
function call has been correctly exercised by at least one test. That is,
when 51 equals 100 percent.

How Does S1 Relate to C1?

Cl means coverage means the percentage of logical branches exercised
during test. Logical segment coverage is an excellent way to measure the
completeness of individual module or small groups of module testing.
Function call or 51 coverage describes completeness of the testing of all
the interfaces of a complex system. It is important to understand how 51
measures test completeness. Suppose, for example, that the subroutine
calling ~tructure is like that given in the following picture:

191

CHAPTER 1 O: Overview

10.9

192

Sub-A :

Sub-B

Sub-B

Sub-C

Sub-D

Sub-B

Sub- B:

Sub-C

Sub-C
Sub-C

Sub-D

We'll focus on the two topmost modules, Sub-A and Sub-B. Sub-A has
three different calls to Sub-B, plus calls to Sub-C and Sub-D. Sub-B has
three calls to Sub-C and one call to Sub-D. We will assume that Sub-C and
Sub-D do not have any function calls. Our complete system structure con­
tains a total of nine function calls. One test of this system might call Sub­
A, which might call Sub-B only and then return. 5-TCAT /C reports on pre­
cisely which function calls are exercised by a test.

51 coverage analysis is particularly useful when a finished product has
been modified. In this case, the logical flow is usually well-tested,
although Cl testing of the modified modules is recommended. However,
it is difficult to take into account all the inter-related functions that a mod­
ification to the source code may incur.

By using the function tree graph capability of 5-TCAT/C, (cg, Xcalltree
utility) one can quickly find which function calls need to be tested. By
using 5-TCAT/C to monitor the actual testing, you can make sure the
proper modules are actually tested, thus eliminating errors and guess­
work as to whether the modification introduced new errors.

Advanced Coverage Metrics

There are several other coverage metrics under investigation in industry
and research. These metrics incorporate logical segment level coverage
and include other logical divisions of the program under test. One metric
is "all segments and all boundary conditions for loops", another is "all
data paths", that is, all paths between the setting and using of data ele­
ments.

One metric is "all segments and all boundary conditions for loops",
another is "all data paths"; that is, all paths between the setting and using
of data elements.

II
II
II
II

II
II

II
II

II

II

II

II

II
Ill

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II
II
II

II

II

II

S-TCAT User's Guide

One metric that includes Cl, boundary conditions, and all data paths is
called Ct. Ct measures the percentage of all logical paths that are exer­
cised. Ct is implemented by SR's TCAT-PATH, and according to customer
feedback, is ten times more rigorous than TCAT/C. In simple terms, pro­
grams that have 90 to 100% Cl coverage typically have 10-15% Ct cover­
age. Please consult the TCAT-PATH User's Guide for more information on
that utility.

193

CHAPTER 10: Overview II

II

II

II

II

II

II
II

II

II

II

II
II
II
II

II
194 II

II

II

II

II

II

II

II

II
II
II

II

II
II
II

II

II

II

CHAPTER 11

Instrum.entation
This and the next three chapters tell how to use 5-TCAT/C to increase test coverage and
detect more software errors.

11.1

11.2

There are two ways to access 5-TCAT: from the command line, and with
menus.The following command-line invocations are the focus of these
chapters.

1. Ins trumen ta tion (marking call-pairs)

2. Compiling and Linking with Runtime (recording and counting mark­
ers) and Executing

3. Path generation (generating complete path sets)

4. Coverage analysis (reporting call-pairs hit)

A description of how to use the menus appears in Chapter 14.

Overview

In brief, 5-TCAT/C instruments the source code of the system to be tested,
that is it inserts function calls at each call-pair. The instrumentation will
not affect the functionality of the program.When it is compiled, linked
and executed, the instrumented program will behave as it normally does,
except that it will write coverage data to a trace file.There is some perfor­
mance overhead due to the data collection process.The trace file is pro­
cessed by a report generator described later.

Finally, the user looks at the coverage reports to assess testing progress
and to plan new test cases.New test cases are added in subsequent passes
until a threshold percentage of S1 call-pair coverage has been reached.The
coverage reports guide the addition, or possibly the deletion, of tests.

Instrumentation

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
S1 coverage at every stage of testing while behaving logically equivalent
to the original program.

195

CHAPTER 11: Instrumentation

11.2.1

196

In its operation, 5-TCAT/C 's instrumentor parses your candidate source
code, looking for function call.When one is discovered, the instrumentor
inserts a function call in the instrumented version of the source code. It is
important to note that the resulting source code file is still a legal program
written in "C", as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remember,
the instrumented version will otherwise function as the uninstrumented
version.

The lnstrumentor

The complete syntax for command line calls to s-ic is listed below.
s-ic file.ext [file.ext]

[-ce]

[-cw]

[-DI deinst-file]

[-fl value]

[-fn value]

[-help]

[-I]

[-lj l
[-m l

[-m6]

[-n]

[-t]

[-u]

[-w]

[-x]

[-z]

This command instruments submitted "C" language file(~). It takes *. i
source file(s) and produces the instrumented file(s): *. i. c (for UNIX) or
*. ic (for MS-DOS or OS/2). *. c is the "C" source file, while*. i is the
preprocessed file.

It is required that the user preprocess the source file through a "C" pre­
processor before passing it to s-ic. Normally, the preprocessing com­
mand is: cc -P file. c (for UNIX) or Cl -P file. c (for DOS
running Microsoft C) These commands read file. c and produce
f i 1 e. i . The options are listed in alphabetical order.

file.ext [file.ext]

II
II
II
II
II

II
II

II

II

II

II

-
II
II
II
II

II

II

II

II

II

II

II

II

II
. II
II

II

II
II
II

II

II

II

S-TCAT User's Guide

File(s) to be instrument. ext can be "c "or "i ". If there
are multiple files, then each is processed in the order
presented.

-ce Processes conditional expressions of the form ? a: b.

-cw Suppresses the "Conditional Expressions Not Pro-
cessed" warning message.

-DI deinst-file De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from instru­
mentation. Only the list of module names found in
the specified deinst-file is to be excluded from
instrumentation. The module names can be specified
in any format. White space (such as tabs, spaces) is ig­
nored. This switch effects the instrumented (*. i. c)
file and the reference listing (* . i . A) file .

-fl value

-fn value

-help

-I

Allows the user to specify the maximum length of
filename characters that are allowable on the system.
If the length of a generated filename exceeds the val­
ue, then the instrumentor output will be redirected to
files named Temp . i . ?. These files can be used in
subsequent processing .

The flexname switch. Allows the user to specify the
maximum characters of function names the instru­
mentor recognizes. If the function name exceeds the
value, then the instrumentor will recognize as distinct
only the first value characters of the function name.
For instance, a - fn 5 will recognize the first five
characters as distinct. Characters beyond that point,
however, will not be recognized for function name
purposes.

Help Switch. Forces output to show a summary of
available switches. NOTE: This is also the output pro­
duced by any illegal command to s-ic.

Ignore Errors Switch. In certain rare cases, when the
underlying "C" compiler supports non-standard op­
tions and constructs, it may be desirable to "force" in­
strumentation to occur regardless of errors found.
This is done with the -I switch. CAUTION: When
instrumentation is forced using this switch, there is a
chance that the instrumented software will not com­
pile. For example, if you use the - I switch to "instru­
ment" a file of text material, you would not expect the

197

CHAPTER 11: Instrumentation

11.2.2

198

-lj

-m

-m6

-n

-t

-u

-w

-x

-z

output to be compilable (and it probably won't be),
even though it may have been "instrumented".

Processes setjmp and longjmp. This option works
only for UNIX.

Recognize Microsoft C 5.1 keywords during the in­
strumentation process.NOTE: This switch applies
only to MS-DOS and OS/2 versions. This switch may
produce unusual results if used in UNIX systems.

Recognize Microsoft C 6.0 keywords during the in­
strumentation process. NOTE: Applies only to MS­
DOS and OS/2 versions. This switch may produce
unusual results if used in UNIX systems.

Will not instrument empty edges (for example: if
without else or switch without default.)

Recognize Turbo C keywords during the instrumen­
tation process. NOTE: This switch applies only to
MS-DOS and OS/2 versions.

Forces the instrumentor to recognize _exit as exit.
NOTE: This switch applies only to MS-DOS and OS/
2 versions.

Recognize Whitesmith C keywords during the instru­
mentation process. NOTE: This switch applies only
to MS-DOS and OS/2 versions.

Will not recognize exit as keyword. NOTE: This
switch applies only to MS-DOS and OS/2 versions.

Recognize MANX/ AZTEC "C" keywords during the
instrumentation process. NOTE: This applies only to
MS-DOS and OS/2 versions. This switch may pro­
duce unusual results if used on UNIX systems. If
there is an error, s-ic gives a response line, or usage
line, indicating the set of possible switches and op­
tions, which is the same as the -h output.

Excluding Function Calls from Instrumentation

The S-TCAT fns file contains the list of function calls that are to be
excluded from instrumentation. If the user wants to exclude particular
functions from instrumentation, he should put those functions in this file.

The S-TCAT.fns file can be of any format, as long as the function names
are separated by white space. An example of the S-TCAT Jns file is sup­
plied with the product and is shown next:

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

I
II

II

-
II

II

II

II
II
II
II

-
II
II
II

II

II

II

II

assert

atof atoi atol

toupper c.olower _ toupper

ctirne local time

isalpha isupper islower
isspace

ispunct isprint

cuserid

ecvt fcvt gcvt

exit

exp log powe

fclose fflush

feof ferror clearerr
floor ceil frnod

fopen freopen fdopen

fread fwrite

frexp ldexp rnodf

fseek ftell rewind

getc getchar fgetc

getenv

getgrent getgrnarn

getlogin

getopt

getpwent getpwuid
endpwent
gets fgets

13tol ltol3

lognarne

rnalloc realloc calloc
rnkternp

monitor

nlist

perror
printf fprintf sprintf
putc fputc putw

S-TCAT User's Guide

tolower toascii
grntirne asctirne
isdigit isxdigit isalnurn

isgraph iscntrl isascii

sqrt

fi eno

fabs

getw

setgrent endgrent

getpwnarn setpwent

For example, printf is in the file, so every time printf is called in
the instrumented module, the instrumentor will not instrument that par­
ticular function call.

my _ function is not in the file, so the instrumentor will instrument
every my_function function call encountered.

199

CHAPTER 11: Instrumentation

11.3

NOTE: In order to use this exclusion feature, S-TCAT.fns should reside
in your working directory.

DOS Instrumentation

In DOS you must preprocess before instrumentation. Microsoft C uses the
/P option, Lattice, -P. Check your compiler manual for the particulars of
the command. Preprocessing may also be accomplished by the 'make' file.
An important point about the DOS version of TCAT is that some compil­
ers will not accept files that end with .ic. It is therefore necessary to
rename the program prior to final compilation of the instrumented code.

s-ic [optional switches] <filename>.i

The above command always produces an instrumented version of the
code in a file called <Jilename>.ic. Check for the optional switches avail­
able for processing various dialects of "C" such as Turbo C and Microsoft
C.

11.4 UNIX Instrumentation

11.4.1

200

As with DOS, in UNIX you must preprocess your code prior to instru­
mentation. This task can be accomplished with the following command:

cc -P filename.c

The preprocessed code can then be instrumented with the following
command:

s-ic [optional switches] filename.i

Instrumentation will create a number of files, one of them being <file­
name>. i. c:. It is this file which should be compiled and linked with the
appropriate runtime package.

Instrumenting With 'make' Files

Most often, S-TCAT/C will be used to develop test suites for systems that
are created with 'make' files. Make files cut the time of constructing sys­
tems, by automating the various steps necessary to build the system,
including compilation and linking.

Fortunately, it is possible to add a few statements to most 'make' files to
enable them to make an instrumented version of the system. The modifi­
cations fall into two general categories, based on whether or not the make
file explicitly names the compiler: cl for Microsoft C and cc for most
UNIX compilers.

If the 'make' file explicitly mentions the "C" compiler with a cc com­
mand (for example), it is possible to add the s-ic command and an

II
II
II
II

II

-
II

II
II
II

II

•
II
II

II

•
II

II

II
II

II

II

-
II

II

II
II

II

•
II
II

II

II

II

S-TCAT User's Guide

extra cc command for preprocessing, instrumenting and compiling
causing the make script to instrument and compile the " C" files in ques­
tion.

Make file lines such as:

UNIX :
sample . o : sample . c

cc-c sample . c

MS-DOS and OS/2 :
sample . obj : sample.c

cl /c sample . c

would be changed to:

UNIX :
sample . o : sample . c

cc - P $(CFLAGS) sample.c
s-ic sample . i
cc -c $(CFLAGS) sample . i . c
mv sample . i.o sample . o

MS-DOS and OS/2 :
sample . obj : sample . c

cl /P $(CFLAGS) sample.c
s-ic -m6 sample . i
rename sample . ic temp . c
cl /c $(CFLAGS) temp . c
rename temp . obj sample . obj

The other situation is where the compiler is not explicitly mentioned, but
given as a ''built-in" rule. The user can add the following ''built-in" rule:

UNIX:

.c . o :
cc -P $(CFLAGS) $*.c
s-ic $*. i
cc -c $(CFLAGS) $*. i . c
mv $*.i . o $* . o

MS-DOS and OS/2 :
. c . obj :

Cl /f $(~f~AGS/ $* . c

s - ic -m6 $*. i

201

CHAPTER 11: Instrumentation

11.4.2

rename $* . ic temp . c
cl /c $(CFLAGS) temp . c
rename temp . obj $* . obj

The other change necessary is to add SR runtime modules to the link
statement. Please refer to Section 12.1-12.2 for more information on the
runtime modules.

Example 'make' Files

This section gives several examples of how to create 'make' files that work
under MS-DOS and UNIX environments. The first example 'make' file is
an illustrative MS-DOS type 'make' file that is unmodified.

S A M P L E M A K E F I L E
----WITHOUT INSTRUMENTATION----

DOS version make script for SAMPLE

OBJS = sample . obj sampley . obj samplel . obj tree.obj ini­
t . obj \
error . obj dotest . obj help . obj log . obj ui . obj premain.obj
license . obj \
pretree . obj preprocl . obj preprocy . obj

CFLAGS
LFLAGS

/c /FPi /AL /DMSDOS /DLIMITED
/STACK :20000

sample . obj : sample . c

sampley . obj: sampley . c

samplel . obj : samplel . c

tree.obj : tree . c

license . obj : license . c

init . obj : init . c

error . obj : error.c

II

II

•
II

II

II
II
II

II
II

II

• •
II
II
II

II

II

•
II

II
II

•
II

II
II

II
II

•
II
II
II

II
II

FIGURE 87

S-TCAT User's Guide

dotes t . obj : dotest . c

help . obj : help . c

log . obj : log.c

ui . obj : ui . c

premain . obj : premain . c

pretree . obj : pretree . c

preprocl . obj : preprocl . c

preprocy . obj : preprocy . c

sample . e x e : $(0BJS)

s ample . obj license . obj help . obj \

sampley.obj samplel . obj tree . obj init . obj \

error . objdotest . obj log . obj ui . obj pre main . obj\
pretree . obj preprocy . obj preprocl . obj\
link @sample . lnk ;

Uninstrumented DOS Make File

The file below shows the modifications to the 'make' file needed to pro­
vide for automatic instrumentation. The modifications are shown in bold
face .

S A M P L E MAKE F I L E

- ---- ----- -WITHINS TR UM ENT AT ION- --­

DOS version make script for SAMPLE f ile

OBJS = sample . obj sampley . obj samplel . obj tree . obj ini ­
t . obj \
error . obj dotes t . obj help . obj log . obj ui . obj premain . obj
license . obj \

pretre~ ,9Rj p r e p rocl . obj preprocy . obj

203

CHAPTER 11: Instrumentation

CFLAGS
LFLAGS

.c . obj:

/c /FPi /AL /DMSDOS /DLIMITED
/STACK : 20000

cl $(CFLAGS} /P $*.c

ic -m6 $*.i

rename $*.ic temp.c
cl $(CFLAGS) /c temp.c

rename temp.obj $*.obj

sample . obj : sample . c

sampley.obj : sampley . c

samplel . obj : samplel . c

tree . obj : tree . c

license . obj: license . c

init . obj : init . c

error.obj: error . c

dotest.obj : dotest.c

help . obj : help . c

log.obj : log . c

ui . obj: ui . c

premain . obj : premain . c

pretree.obj: pretree . c

preprocl . obj : preprocl.c

preprocy.obj : preprocy . c

sample . exe : $(OBJS)
sample.obj license . obj help.obj \\

sampley . obj s amplel . obj tree . obj init . obj \
error.obj dotest . obj log.obj ui . obj premain.obj

\

II
II

•
II
II

II

II
II

-
II
II

• •
II
II

II
II

II
II

II

II

II

•
II

II

II

II
II

• •
II
II
II

II

FIGURE 88

S-TCAT User's Guide

pretree . obj preprocy . obj preprocl . obj
crunll . obj \

link @sample . lnk ;

Instrumented DOS Make File

205

CHAPTER 11: Instrumentation

206

The 'make' file below shows a typical UNIX / XENIX 'make' file before
modification.

SAMPLE

M A K E F I L E

Make file example ,

UNIX , XENIX

no instrumentation .

Uses make ' s knowledge of lex, yacc, cc .

##########

CCextras

CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -11
LFLAGS = -v
Lextras
Objects= sample.o sampley.o samplel . o tree . o init . o
error.o dotest . o log . o \

ui . o premain . o preprocy . o preprocl.o pretree . o
help . o license . o
Sources= sample.c sampley.c samplel . c tree.c init . c
error.c dotest.c log.c \

ui.c premain . c preprocy . c preprocl . c pretree . c
sample.h \

typedef.h error.h y . tab . h preproc . h help.c
license . c license . h
UNIX version. Compiles and links.
sample : $(Objects)

rm -f sample
cc $(Objects) $(LDFLAGS) $(Lextras) -o sample

sampley.c: sampley.y

yacc $(YFLAGS) sampley.y
mv y.tab.c
cp y . tab.h

sampley.c
ytab.h

samplel.c : samplel.l
lex $(LFLAGS) samplel . l
mv lex . yy . c samplel.c

preprocy . c : preprocy.y

II
II
II
II
II

II

II
II

--
II

I

•
II
II

•
II

II
II

II

II

II

•
II

II

II

• •
II
II
II

II
II
II

FIGURE 89

S-TCAT User's Guide

yacc $(YFLAGS) preprocy . y

cat y.tab . c I sed -e ' s/yy/xx/g' >

cat y.tab . h I sed -e 's / yy / xx /g ' >

rm y.tab . c

preprocl . c : preprocl.l

lex $(LFLAGS) preprocl . l

preprocy.c

pretab.h

cat lex . yy . c I sed -e ' s/yy/xx/g' > preprocl . c
rm lex.yy . c

lpr :

pr $ (Sources) I lpr

license . o: license . c license .h

Uninstrumented UNIX Make File

The changes needed have been made in the modified 'make' file shown
below. The modifications are shown in bold face.

SAMPLE

M A K E F I L E

Make file sample, with S- TCAT/C instrumentation

UNIX, XENIX

Uses make "s knowledge of lex , yacc , cc .

CCextras
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -11
LFLAGS = - v
Lextras
Objects= sample . o sampley.o samplel . o tree .o init . o
error.o dotest.o log . o \

ui . o premain.o preprocy . o preprocl . o pretree.o
help . o license.o

Sources= sample.c sampley . c samplel . c tree . c init . c
error . c dotest .c log .c \

ui . c premain.c preprocy.c preprocl . c pretree . c
sample . h typedef . h error.h \

y . tab . h preproc . h help . C license.c license . h

207

-
CHAPTER 11: Instrumentation

FIGURE 90

208

UNIX version. Compiles and links .
.c . o:

cc -P $ (CFLAGS) $*.c

s-ic $*.i

cc -c $(CFLAGS) $*.i.e.

mv $*.i.o $*.o

sample: $(Objects) crunl . o
rm -f sample
cc $(Objects) crunl.o $(LDFLAGS) $(Lextras) -o

sample

sarnpley . c : sampley . y

yacc $(YFLAGS) sampley.y
mv y.tab.c
cp y.tab . h

sampley.c
ytab . h

samplel.c : samplel . l
lex $(LFLAGS) samplel . l
mv lex . yy . c samplel . c

preprocy . c : preprocy . y

yacc $(YFLAGS) preprocy . y
cat y.tab . c I sed -e 's /yy/xx/g ' >

cat y.tab . h I sed -e 's /yy/ xx /g ' >

rm y.tab.c

preprocl . c: preprocl.l
lex $(LFLAGS) preprocl.l

preprocy.c

pretab . h

cat lex.yy.c I sed -e 's /yy/xx/g ' > preprocl.c
rm lex .yy . c

lpr :
pr $(Sources) I lpr

license.a : license . c license .h

Instrumented UNIX Make File

ll
I
II

II
II

II
II
II

II
II

II

I
II ---
II

II

II

•
II

II

II

II

II
II

II

II

II

II

II
II -
II

•
II

II

11.5

S-TCAT User's Guide

File Summary

This section describes S-TCAT/C file naming conventions for the instru­
mentor (s-ic).

MS-DOS or OS/2 :

s-ic [optional switches] filename.i

Input :

Produces :

UNIX :

<filename> . i

<filename> . ic

<filename> . iA

<filename> . iE

<filename> . iL

<filename> . iP

<filename> . iS

Preprocessed Source File

Instrumented source

Segment Reference Listing

Error listing

Call-pair count/module

(Used by mksarchive)

Call-pair Listing

(Used by cg/Xcalltree)

Instrumentation Statistics

s-ic [optional switches] filename.i

Input :

Produces :

<filename> . i

<filename> . i . c
<filename> . i . A

<filename> . i . E

<filename> . i . L

<filename> . i . P

<filename> . i . S

Preprocessed Source File

Instrumented source
Call - pair Ref.Listing

Error listing

Call-paircountforeachmodule
(Used by mksarchive)
Call-pair Listing
(Used by cg/Xcalltree)

Instrumentation Statistics

209

CHAPTER 11: Instrumentation

11.6 Embedded Systems

210

An added benefit resulting from 5-TCAT/C 's software instrumentation
strategy is that the tool may be used with embedded systems. Because 5-
TCAT/C 's output is a syntactically-correct program, the tool can be used
on programs that are cross-compiled for target systems. The sequence of
steps are: the instrumented code is cross-compiled, linked, then moved to
the embedded system.

After execution, coverage data collection occurs on the embedded system,
and the trace files are uploaded to the host. The specifics of transferring
trace files from the embedded system to the host is dependent on the sys­
tem in question.

II

II

II

II

II

II

II

II

II
II

II

I
I
II

•
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II -
II

II

II

II

CHAPTER12

Colllpiling, Linking and
Executing

This chapter explains how to compile, link and execute the instrumented program.

12.1

Once instrumentation has been completed, the instrumented version of
your "C" program must be compiled and linked with the runtime object
modules, sometimes called runtime routines.

The runtime routines are supplied by SR and will write to the trace file.
These modules are called from the instrumented code; the added function
calls, or "probes", call sub-functions inside the runtime modules.

There are several runtime objects for each computer as described in the
next section.

N OTE: Some unreachable code may occasionally be inserted by the
instrumentor. This may cause warning messages when compiling, but
they are not fatal and the compiler should proceed in spite of them.

Runtime Descriptions

As mentioned above, the test engineer using 5-TCAT/C for other lan­
guages has a choice of many runtime routines to change the behavior and
performance of the instrumented system under test. Different runtimes
may be selected by linking in the appropriate module. Some optimize
execution speed of the instrumented program, while others decrease the
size of the trace file, and still another starts and stops the trace data sam­
pling during execution of the program under test, depending on certain
rules that are written in a control file. This is further discussed in the next
section. Finally, the user can write his own runtime package if he needs to
modify 5-TCAT/C to a particular situation, since the program that is
needed is small.

For an embedded system where the target system has particular charac­
teristics, rewriting the runtime is a practical way to adapt 5-TCAT/C.

211

CHAPTER 12: Compiling, Linking and Executing

212

There are a variety of runtime modules for each language. The function
of each runtime package is specified by the format of its name as defined
below:

<language>run<level> . o (for UNIX)

or
<language>run<level><mo d e l> . obj (for DOS)
Ex amples :

crun0 . o
frun3 . o
prun2 . o
crun0m . o

C , level 0 , UNIX
Fortran 77 , level 3 , UNI X
Pascal , level 2 , UNIX
C, level 0 , OOS , medium memory model

Several versions of runtime are available depending on your needs. This
section describes runtimes common to both UNIX and MS-DOS or OS/2
systems. Special runtimes which apply only to UNIX are described in the
Section 12.2.

crun0 - Raw Tracefile ("quiet" runtime)

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca­
tion of the program under test.

crun1 - Standard Tracefile

This is the same as crunO, but with prompts that ask the user for Test
Descriptor and the name of trace file. There is no internal processing or
buffering. The trace file is the full, unedited trace of program execution.
This is the basic version.

MS-DOS Runtimes

MS-DOS has several runtimes available. You must first determine the
memory model you are using for memory management on your system.
You will then be able to easily choose from the following list of runtimes.
The standard runtimes are crunl, while the "quiet" runtimes are crun0.
Microsoft C has five memory models: S for small; M for medium; C for
compact; L for large; and H for huge. Turbo has six memory models: T for
tiny; S for small; M for medium; C for compact; L for large; and H for
huge.

II

II

II

II

II

II

•
II

II

II

II

II -
II --
II
'---

II

II
II

II

II

II

II

II

II

II

II

II

II

II

' II

II

II

II

II

12.2

S-TCAT User's Guide

The following is a partial list of runtimes for MS-DOS, as they appear on
the distribution diskette:

\ RUNTIME \ TURBO\ STD \CRUNlC . OBJ
\RUNTIME \ TURBO\STD\ CRUNl H. OBJ
\RUNTIME\TURBO\STD \ CRUNlL . OBJ
\RUNTIME\TURBO\STD\CRUNlM . OBJ
\RUNTIME\TURBO\STD\CRUNlS . OBJ
\RUNT IME \ TURBO \ STD \ CRUNlT . OBJ

\RUNTIME\ TURBO \ QUIET \CRUN0C . OBJ
\RUNT IME \TURBO \ QUIET \ CRUN0H.OBJ
\RUNTIME\TURBO \ QUIET \CRUN0L . OBJ
\RUNT IME \TURBO \ QUIET \ CRUN0M . OBJ
\RUNT IME \TURBO \ QUIET \ CRUN0S.OBJ
\RUNT IME \ TURBO\QUIET \ CRUN0T . OBJ
\RUNTIME\MSC51 \ STD\CRUN1C . OBJ
\RUNTIME\MSC51\STD\CRUN1H . OBJ
\RUNTIME\MSCSl\STD\CRUNlL . OBJ
\ RUNTIME\MSCSl\ STD\CRUNlM . OBJ
\RUNTIME \MSC51 \ STD\CRUN1S . OBJ
\ RUNTIME \MSCSl \ QUIET \CRUN0C . OBJ
\RUNT IME \MSC51 \ QUIET \C RUN0 H. OBJ
\RUNTIME \MSC51 \ QUIET \CRUN0L . OBJ
\RUNTIME \MSC51 \ QUIET \ CRUN0M.OBJ
\RUNTIME \MSC51 \ QUIET \ CRUN0S . OBJ

NOTE: Microsoft C 5.1 runtimes should be compatible with 6.0 updates.

Special Runtimes (for UNIX only)

crun2 - In-Place Reduction

The S1 statistics of the entire program execution are accumulated in
memory. The trace file information is written after the program properly
exits. crun2 allocates enough memory with dynamic memory allocation
to do full S1 reduction in place.

crun3 - Multiple Processes

crun3 allows the user to turn on and off trace sampling by changing a
control file, /usr/lib/stcat.cntl. The crun3 runtime checks the control file
after a specified number of trace records have been registered in memory,
and writes ~ archive file if the control file indicates that sampling is to
stop and data is to be collected.

213

CHAPTER 12: Compiling, Linking and Executing

214

The next file contains instructions to control trace sampling. For instance,
the first control file statement will cause the instrumented program init to
register 1,000 "hits", check the control file and then write the trace file
data into an archive file and then stop sampling.

Here is an example of the syntax of the control file: # is a comment.
Here the process named "init • is turned off , but will
requery # the 'stcat . control' file after 1000 segment
hits : init -1000
Here the process named •my . oracle " is turned on , and
#will# will requery the 'stcat.control ' file after 25000
segment hits : my.oracle +25000
Here , the process 'trick " has been told to record essen
#tially forever, and "bad " has been told to not record
test data# essentially forever:
trick +5000000000
bad -5000000000

Caution :
programs
startup .
they will
again.

multiple continuously executing instrumented
will always check the 'stcat.control ' file on
If their# name is NOT found anywhere , then
NEVER requery the# ' stcac . control' file

cruna - Multi-Tasking (or forking runtimes)

cruna provides for successful data collection when instrumented pro­
cesses run in parallel.

cruna is designed for analysis of system calls such as the "spawn" system
command of "C". A trace file will be produced for parent and child pro­
cesses.

crunc - Cross Development

Available as a separate purchase. This is source code for crun0-3, which
you can cross-compile to use in capturing executions of a cross-compiled
executable on a target machine. The tester will need to adapt the source
code of runtime for his/her particular situation. For instance, one alterna­
tive with an embedded system is to have the runtime write each trace file
record to the development system.

Another alternative is to have each record stored in a file on the embed­
ded system, which is then transferred to the development system.

II

II

II

II

II

II

II

II

II

II

II

II --
II --
II
'-...

II
~

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

12.3

S-TCAT User's Guide

Executing the Instrumented Program

The next step is to run your instrumented program and track which func­
tion calls have been exercised by the test data you supply. In essence, this
is a matter of noticing the not-hit call-pairs mentioned in the Not Hit
report, and looking up the corresponding code in the Reference Listing.

S-TCAT/C senses when call-pairs are hit by monitoring the markers
inserted during instrumentation and by accumulating the results in a
trace file and an archive file, which then becomes the basis for all subse­
quent 5-TCAT/C coverage reports.

To produce the trace file, first run your instrumented and compiled "C"
program and follow the S-TCAT/C prompts. If you use the standard runt­
ime routines, the system will respond with:

""Type in a description of the test run. Be as descriptive as needed for
your own information in referring to this test run. You can enter up to 80
characters of text in your message. This message will be recorded in the
trace file and used in scover reports. If you choose to enter no descriptive
text, just press the return key.

The system next will prompt you for an output filename:
Name of tracefile [defaul t is Trace . trc] :

Type in any name. The system will create a trace file with the name you
enter. To use the default name Trace.trc, just press the return key. The trace
file description and name are useful in keeping track of different test runs.
Consistent, clear naming conventions are useful in organizing different
groups of results. A common practice is to identify trace files with the file­
name extension.trc.

Performance Considerations

Sometimes, an instrumented program will produce very large trace files.
One solution to this is to compile a mixture of instrumented and un­
instrumented files so that the program is tested in pieces.

215

CHAPTER 12: Compiling, Linking and Executing II

II

Ill

Ill

II

II
~

II

Ill

II

II

Ill
~

II -

--
Ill
'-----

Ill
'--

-
216 II

II
II

II

II

II
II

II

II
II
II
II
II
II
II

II

II

II

CHAPTER 13

Coverage Reporting and
Analysis

To get useful results from 5-TCAT/C, you must analyze coverage reports.
To do this, the program scover is run to process the trace file and produce
several output reports. In general, the reports give the following informa­
tion:

1. Reports included in the current report.

2. A summary of past coverage runs.

3 . Current and cumulative coverage statistics.

4. A list of call-pairs that have been hit.

5. A list of call-pairs that have been missed.

6. Bar charts of the frequency of execution of each call-pair.

These reports are useful for performance analysis and also for "hot spot"
tuning. The two types of graphs, called histograms, show the frequency
distribution of call-pairs hit on either linear or logarithmic scales.

scover also archives the trace file information into an Archive file so that
the reports are cumulative. The diagram in Figure 91 shows the compo­
nents and interfaces of the system.

~17

CHAPTER 13: Coverage Reporting and Analysis

I Source Program

Run Coverage
Analyzer

Generates

Cumulative
Report

FIGURE 91

218

...

Generates

System Components

Instrumented
Program

Compile
Instrumented

Program

Link
Object

Run Applica­
tion

II

•
II

II

Error Lising II
II
II

Creates Executable
Ill
II
II
II

Newly Missed
Report II

II
II

II

II

II

II
II

II
II
II

II

II

II
II
II

II

II

II
II
II

II
II

13.1

13.1.1

13.1.2

S-TCAT User's Guide

Producing Reports

This section is an in-depth reference on scover and the reports it pro­
duces.

The scover command analyzes trace files produced by instrumented pro­
grams and generates a set of coverage reports.

Report Types

Reports generated by scover are stored by default in the file Coverage.
Depending on the options used, scover produces different reports. The
reports accomplish one or more of the following:

1. Summarize the S1 coverage achieved by current and cumulative tests
on a module by module bases. This is the Cumulative Report.

2. Indicate which call-pairs have been hit and which have been ignored
by your test cases. These are the Hit and Not Hit reports .

3. Analyze a current or a past test suite execution. The particular runs to
be investigated are selected by choosing the appropriate trace and
archive files. The trace file contains information from the most recent
run, and archive file contains information from previous runs. This is
the Past Report.

4. Indicate which call-pairs were hit in the current execution which
were not hit previously and vice versa. These are the Newly Hit and
Newly Missed reports.

5. Examine how often call-pairs in a module have been exercised. This is
a performance analysis at the function call level. The Logarithmic
Histogram and Linear Histogram reports are the reports of interest
here.

Trace File Argument

The scover command can handle many trace files in the same run. For
instance, in UNIX it is possible to issue the command:

scover *.trc -c -n -1 . ..

to report on all the trace files in the directory with the extension.trc. Of
course, one could also issue a command to input data from only one trace
file:

scover Trace.trc -c -n -1 ...

Finally, the Trace.trc file is a default, so the above command is equivalent
to the following:

scover -c -n -1 ...

219

CHAPTER 13: Coverage Reporting and Analysis

13.1.3

13.1.4

220

Archive Files

At the end of each run, scover also generates a new archive file that can be
used in the next run of scover. The default filename is Archive. The archive
files created by scover are similar to trace files in their format and content.
The significant difference is that they do not contain information on the
sequence in which call-pairs were hit. They do, however, contain all other
data required for coverage analysis.

scover allows the user to perform a series of incremental tests. By default,
it takes the cumulative summary data stored in the default archive file,
Archive, produced by previous runs of scover, and submit it as input to
the current run of scover. This allows the user to add new test suites to
exercise unhit call-pairs without having to include previous test suites.
Thus, subsequent test suite size will be smaller.

'scover' Syntax

The complete syntax for calls to scover is listed below. Items enclosed in
[..] are to be included zero or more times.

scover [tracefile [tracefile]J
[-a old-archive
[-b title]
[-c]

[-d name [name]
[-DI deinst-file J
[-DL]

[-f new-archive]
[-help]
[-h I -h name [name]
[-1 I -1 name [name]
[-HJ

[-NH]

[-NM]

[-ml
[-NJ

[-n]

[-nl namefile]
[-p]

[-q]

[-r report
[-s]
[-SU]

II
II
I
II
II

II
II

II

•
II
II

II

II
II

II

I
II

II
II

II
II

II

fl
IJ
II
II
II
II

II

II

II

II

II
II

[-T [threshold]]
[-w width]
[-Z reference listing

S-TCAT User's Guide

The options may be used to vary the processing and reports generated by
scover. The options are listed in alphabetical order.

[tracefile [tracefile]J

These are the names of the tracefiles that you wish to
process. If there are no trace files given, then scover
looks for data in the default trace file name, Trace.trc

If there are no names given, and Trace.trc is not
present then an error message is issued. If there are
multiple trace files, each trace file is processed in the
order presented.

CAUTION: The list of trace files must be the first set
of arguments. The list is ended by the first symbol
that appears with a "-", i.e. by the first optional
switch.

-a old-archive Old Archive File Name Switch.

-b title

You can include data from an old archive in your re­
ports. On the standard cumulative coverage report,
this data will be included in the "Cumulative Sum­
mary" test results, but not under the column "Test".
To test iteratively, progressing through a structured
series of tests towards higher Cl values, each run of
scover should include the cumulative archive file
from the previous test.

If you do not include an archive file, the "Cumulative
Summary" figures will be the same as those for
"Test". Alternatively, if no -a option is given, the file
Archive is used by default. The -a option interacts
with the other report options discussed below.

Banner File Name Switch.

This allows you to include specific text, taken from
the first line of the named file, title, as a title for your
reports. A maximum of 80 characters is allowed for ti­
tles.

-c Cumulative Report Switch. This option prints the Cu­
mulative Report only.

-a name !na.m~J Module Name Delete Switch. I£ this switch is present
then the named modules, if found in the current exe-

221

CHAPTER 13: Coverage Reporting and Analysis

-DI deinst-file

-DL

cution, are deleted from the generated Archive file.
Subsequently, scover will never have heard about
these names. This switch is useful in updating an ex­
tensive test record that would otherwise be lost due
to the complexity of editing the Archive file.

De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from coverage
reporting. Only the list of module names found in the
specified deinst-file is to be excluded from coverage
reporting. The module names can be specified in any
format. White space (such as tabs, spaces) is ignored.
deinst-file is also the file where new modules that
pass the coverage threshold value (see -T switch) will
be written to.

De-instrument Module List Switch. Allows the user
to see which modules are excluded from coverage re­
porting. This switch is used along with the -DI switch.
The list of excluded modules is printed at the end of
the coverage report.

-f new-archive New Archive File Name Switch.

-help

Newly accumulated test coverage data will be placed
in this file. If you don't include a different name with
this switch, the accumulated test data will be placed
in the default name Archive. CAUTION: Each time
you run scover, you will write over the contents of the
Archive file unless you use the -f switch to direct the
Archive file to another place. You may wish to re­
move the filename before starting a new test se­
quence.

Help Switch. Forces output to show a summary of
available switches. Note: This is also the output pro­
duced by an illegal command.

-h I -h name [name]

Linear Histogram Report Switch (-h).

-1 I -1 name [name]

Logarithmic Histogram Report Switch (-1)

These two options produce two "histogram" reports
that graph the frequency distribution of the segments
exercised in a single module. The histograms provide
a module-by-module analysis of testing coverage,
combining current trace file data with archive date in-

•
II

II

II
II
II
II
II
II
II
11
II
II
II
II

II

II

II
II
II
II

II

II
II
II
II

-
II

II
II

II
II

II
II

-H

-m

-N, -n

-NH

-nl namefile

S-TCAT User's Guide

eluded through the -a option or using the default Ar­
chive file. If the optional name argument is present,
then the corresponding histogram for only the named
module is produced; otherwise, scover produces his­
tograms for all modules found. There can be multiple
names in the argument if you want histograms of sev­
eral modules. Also, the names can be mixed between
linear and logarithmic histograms.

Hit Report Switch.

Lists the segments that have been hit one or more
times in current or past tests. This report analyzes the
cumulative effect of the current trace file and any ar­
chive data included through the use of the -a option
or using the default Archive file.

Minimal Output Switch. When present, scover sup­
presses banner information, list of current options,
and trace file descriptions. The coverage report con­
tains only the reports requested.

Not Hit Report Switch.

This option produces the Not Hit report which lists
segments that have not been exercised. This report
analyzes the cumulative effect of the current trace file
and any archive data included through the use of the
-a option or using the default Archive file .

Newly Hit Report Switch. Shows the segments by
module that were hit in the current execution that
were not hit previously. Thus this gives the user an
assessment of the value of the most-recently added
test(s). This shows what the current test "gained".
Output is the complement of the "Newly Missed" re­
port.

name List Switch.

This switch specifies that only the list of module
names found in the specified namefile file is to be re­
ported on in the current coverage report. Coverage on
other module names that may appear in the archive
or supplied trace files are ignored; however, the data
is accumulated in the archive file.

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

223

CHAPTER 13: Coverage Reporting and Analysis

-NM

-p

-q

-r report

-s

-SU

The following reports are effected by the existence of
a namefile:

Cumulative Report, Past Report, Not Hit Report, Hit
Report, Newly Hit Report, Newly Missed Report.

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro­
duced individual histogram reports.

Newly Missed Report Switch.

Shows which segments, by module, hit in any prior
test but were not hit in the current test. This shows
what the current test "lost". This output is the com­
plement of the Newly Hit report.

Past Report Switch.

Print only the Past Test report; this option should be
used in conjunction with the -a option when you
want to analyze the overall performance of a set of
past tests.

Quiet Output Switch.

Suppress printout of current version and release in­
formation (this can be used to facilitate running scov­
er in batch mode).

Coverage Report File Name Switch.

Normally the report is written to the file Coverage
(the default name), but you can rename the file with
this switch. CAUTION: You will overwrite any file
you name with this switch.

Sort Switch. This option produces output reports
with module names sorted alphabetically.

Suppress Update Switch.

During processing, scover will suppress updating of
the archive file, either the default Archive or the file
named by the -f switch. scover will read the data in
the archive file to form the basis for the "past test" in­
formation.

-T [threshold] Coverage threshold switch.

threshold is a real number that specifies the threshold
value. Any module with percentage coverage greater
than or equal to this threshold value, will be written

II
II
II
II
II

II
II
II

•
II
II

-
II
II
II
II

II

II
II
II

-
II
II

II
II
II
II
II
II
II
II

II

I
II

13.2

-w

-z

S-TCAT User's Guide

to the "de-instrumented" file. If no threshold is speci­
fied, then the default value of 85 percent is assumed.

width Report Width Switch.

Normally the reports generated by scover are wide
enough to accommodate module names up to 21
characters in length. The internal limit on name
length is, however, 128 characters. You can use this
switch to force scover system to generate reports that
are wide enough to accommodate the full 128 charac­
ter module names.

The width factor is the number of additional charac­
ters to be added to the report. The default value is
zero. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con­
tain long lines and may not be suitable for printing di­
rectly.

reference listing Annotated Reference Listing Switch.
scover will analyze the specified archive file, any
specified trace files, and will produce a report that
shows the coverage level achieved for all modules
that are named in the specified reference listing (file
with . i .A or • iA extension). The reference listing
must be one that is produced by a current release of
the TCAT/C instrumentor. Reference listings pro­
duced by earlier versions may not necessarily work
correctly with this switch.

If a module is tested but the name is not found in the
supplied reference listing, then that coverage is not
reported. Similarly, if a name appears in the reference
listing and is not one that exists in the archive file, no
coverage will be reported.

In case there is an error, scover gives a response line
(usage line) indicating the set of switches and options.

'mksarchive' Utility

The 5-TCAT/C system also includes a utility program for creating null
archive files . This is mksarchive. This utility ensures that your coverage
reports all modules on your system whether or not they have been exe­
cuted. Sometimes, when testing a subsystem, the initial tests do not touch
every module in the program. When this occurs, the 51 measure will

!;tart at an artificially high level and, as the tests touch more modules, the
51 value will decrease. Although more call-pair are being hit, more mod-

225

CHAPTER 13: Coverage Reporting and Analysis

226

ules are included in the percentage calculation, so the resulting value is
lower.

Most experienced 5-TCAT/C users are aware of this phenomenon and
use the mksarchive utility to monitor the total could-have-been-hit
count. If you are not certain that you can detect whether a module has
been skipped over in a lengthy program, it is wise to always use this util­
ity to ensure that your testing coverage data is complete and accurate.

The mksarchive utility reads the archive input table *.i.L or *.iL (Call­
pair Count) file produced by the instrumentation process and creates a
"null" archive file containing a complete count of all the modules and
their call-pairs in the program being tested. This is a normal archive file
and can be used with scover to ensure accurate results in generating cov­
erage reports.

To include the mksarchive data in your coverage reports, run mksar­
chive before beginning the report generation process with scover .

The syntax for mksarchive if you have a one file program is:
mksarchive < x.i.L > null.arc (for UNIX)

or
mksarchi < x.iL > null.arc (for DOS)

where x. i . L is the archive input table created during instrumentation,
and null.arc is the null archive file . To use mksarchive for multiple files
program, concatenate all *.i .L files into one file and execute mksarchive
on that one file. To include the null archive file in the coverage analysis
step, run scover with the -a option, as in the following example:

scover Trace.trc -a null . arc "

where Tr ace . trc is the trace file .

II
II

II
II

II

II

II

II

II
I
II

II

II

II

II

II

•

II
II
II
II
II
II

II
II

II
II
II
II
II

II

II

I
II

13.3

S-TCAT User's Guide

File Summary

This section describes 5-TCAT/C file naming conventions for scover .
scover [optional switches] [tracefile]

Input:

Produces:

Coverage

Archive

Trace . trc (or other file named in execution of pro­
gram)

Old Archive files

Coverage report

New archive file which merges latest trace informa­
tion into cumulative data.

227

CHAPTER 13: Coverage Reporting and Analysis -
II
II
II
II
II

II
II
II
II
II
II
II
II

II

II
228 II

II
II

II
II
II

II

II
II

II
II
II

II

II

II

II

II

II

CHAPTER 14

Menus
The second way to access S-TCAT is with menus, and this chapter will explain how to do
so. If you would rather use command-line invocation, you may skip this chapter and go
on to Chapters 15,-16, or the full S-TCATexample in Chapter 17.

14.1

14.1.1

S-TCAT/C ASCII Menus

The S-TCAT ASCII menus and their use are described below. Menus help
users in two ways: by providing a fixed structure for collecting test cov­
erage information and by providing a convenient way to customize a
sequence of operations.

Invoking S-TCAT

Start up S-TCAT in interactive mode with the command:
stcat [-r fil e]

where, fil e is the optional configuration file (re file) name.

The default name for the configuration file is stcat. re. If you don't specify a
configuration file, or if S-TCAT doesn't find the file stcat.rc in the current
directory, then S-TCAT issues a warning message and continues process­
ing, using default values. Remember that the content of the S-TCAT con­
figuration file, stcat.rc, always overrides the internally supplied (default)
values of all parameters.

229

CHAPTER 14: Menus

14.1.2

230

S-TCAT Menu Tree

The menu tree is shown in the diagram below.
S-TCAT

MAIN :

! __ ACTIONS :

__ OPTIONS:

___ FILES :

Selects ACTIONS or FILES or OPTIONS menus
Shows option settings
Shows current execution stats

Saves option settings
Exit from S-TCAT system
On-line help frames
!<system commands>

Selects basic S-TCAT operations
Shows option settings
Return to prior menu .
On-line help frames
!<system commands>

Helps select all user-settable options
Shows option settings
Return to prior menu .
On- line help frames
!<system commands>

Shows all current file settings
Allows changing file settings
Return to prior menu .
On-line help frames
!<system commands>

After 5-TCAT starts, you will see the title information, version control
indication, and the prompt "S-TCAT:MAIN: ". To see the available menu
options, type from any prompt within 5-TCAT:

? and then (RETURN) .

5-TCAT then displays the available options for that menu. This feature
works for all menus throughout 5-TCAT. The current menu is redrawn
whenever you give an unrecognized command.

Issuing Commands

II

II

II
II
II

II

II
II
II
II

II
II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II 14.1.3

II

II

II

II

II

S-TCAT User's Guide

You can issue commands by typing the first few letters of each com­
mand's name. The only requirement is that the letter sequence be unique
to that command. S-TCATwill inform you when a command you issue
matches two or more possible commands. To set variables (see the
options menu description, below) you must type the entire variable
name. This is done in order to be consistent with configuration file pro­
cessing.

Displaying Current Parameter Settings

You can display the current settings (options and filenames) known to S­
TCAT at any time using the settings command, get on-line help with the
help command, and exit the current menu using exit. The configuration
file reading in the settings is automatically used. However, the settings
can be changed if required.

S-TCAT Menu 'Stack'

You can move from the MAIN menu to any other menu at will. S-TCAT
remembers the sequence of your choice of menus in an internal "stack".
This means that when switching from one menu to another, you can
return to the immediately prior menu with the exit command. This fea­
ture is provided to prevent you from entering conflicting or incorrect data
during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the MAIN menu to exit the system. That is, your moves
between the three subsidiary menus are "stacked" and must be
"unstacked" before returning to the MAIN menu. If you press the DEL
key, you return immediately to the MAIN menu.

MAIN Menu

When you invoke S-TCAT, the following menu is displayed:
S-TCAT : MAIN:
Options:

actions-- Go to the ACTIONS menu
files-- Go to the FILES menu

options-- Go to the OPTIONS menu

settings-- List current settings for S-TCAT
options

help [opt]-- Display HELP text for a command

release-- Show release and version numbei

231

CHAPTER 14: Menus

14.1.4

232

save-- Save the current settings for S-TCAT
exit-- Exit from S-TCAT to system

ACTIONS Menu

The ACTIONS menu is displayed below:
S-TCAT : ACTIONS:

Options :
preprocess-- Run the preprocessor on desig­

nated module
instrument-- Run S-TCAT instrumentor on desig­

nated module

FILES Menu

compile-- Execute standard compilation step
link- - Execute standard linkage step
make-- Execute specified make command

go-- Execute instrumented program
scover-- Execute S-TCAT Coverage Analyzer
view-- View S-TCAT Coverage Report

files-- Go to the FILES menu
options-- Go to the OPTIONS menu

settings-- Display current runtime settings
help [opt]-- Display HELP text for command

release-- Show release and version number
exit-- Exit current level

The FILES menu is displayed below:
S-TCAT:FILES :
Options:

prefix <name>-- Base name ('prefix') of file processed
tracefile <name>-- Name of trace file (def.= Trace.trc)

archive <name>-- Name of trace file (default Archive)
report <name>-- Name of report file (def . Coverage)

actions-- Go to the ACTIONS menu
options-- Go to the OPTIONS menu

settings-- Display current runtime settings
help [opt]-- Display HELP text for command

release-- Show release and version number
exit-- Exit current level

II
II

II

II

II

II

II

II

II
II

II

II

II

II

II
II

II

II

II

II
14.1.5

II

II

II

II
,II

II

II

II
II 14.1.6

II

II

II

II
II

S-TCAT User's Guide

If you change the configuration file from this menu, the stcat.rc file (or the
file you specified on invoking 5-TCAT) is not automatically updated.
When you exit, 5-TCAT will prompt you about saving the current set­
tings.

OPTIONS Menu

The OPTIONS menu is displayed below:

S-TCAT : OPTIONS :
Opc:ions :

preprocess- Specify the preprocessor command
instrument-- Specify the instrument command

compile-- Specify the compiler command
link-- Specify the linker command
make-- Specify the make command

execute-- Specify the "go ' command
scover--Specify coverage analyzer command
view-- Specify view command for cov. report

actions-- Go to the ACTIONS menu
files-- Go to the FILES menu

settings-- Display current runtime settings
showmenu-- Toggle showmenu option on and off

help [opt]-- Display HELP text for a command
release-- Show release and version number

exit-- Exit to the system

Saving Changed Option Settings

Before leaving 5-TCAT, the user will be prompted to save the current set­
tings (unless this has already been done in the current execution of 5-
TCAT and the options have not been changed since they were last saved).

Upon exiting 5-TCAT, you are prompted:
Do you want to save current parameter settings (y/n) : y

Do you want to use default filename (stcat . rc) (y/n): n
Specify filename : example.re
Parameter settings saved in example . re.

233

CHAPTER 14: Menus

14.1.7

14.2

14.2.1

Running System Command

You may issue a command directly to the operating system by using the
! symbol, as follows:

S-TCAT:!<any system command>

5-TCAT regains control after the command is executed. This feature is
useful for editing files and for other activity within an S-TCAT session.

S-TCAT Configuration File

This chapter describes the S-TCAT configuration file. A sample file is
shown at the end of this chapter. The S-TCAT menu system reads the con­
figuration file before starting processing. This file can contain modifica­
tions to the default settings of a variety of S-TCAT parameters. The user
can specify which file to use, or S-TCAT will automatically use the
default name stcat.rc. This feature allows the user to set various run-time
parameters automatically. Command-line parameters, however, always
override the configuration file settings whenever command-line parame­
ters are present.

The S-TCAT configuration file is a simple ASCII text file that can be cre­
ated with an editor. Alternatively, you can create this file, by using the
save option from within an interactive invocation of 5-TCAT.

Configuration File Syntax

The following run-time parameters can be set in the configuration file.
Configuration file lines can contain any set of commands in any order.
Comment lines must begin with a# as the first character. All white space
(tabs and blanks) are ignored, except those appearing within quotes.

The latest occurring command prevails in the case of duplicate com­
mands. This feature may be useful when handling several configuration
files that differ only slightly.

<comment> A line beginning with# is treated as a comment.

help=<filename>This parameter defines the location of the on-line
helpframe information used by S-TCAT. Normally it
does not have to be re-set if the file of help informa­
tion is placed at the 'standard' location.

preprocess=<text>

This is the text of the command to be used to prepro­
cess the file whose prefix name is given below.

prefix=<name> This is the "basename" for the file you are processing.
5-TCAT automatically adds the appropriate suffix to

II
II

II

II

II

II

II

II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II
II

II

II

II

S-TCAT User's Guide

indicate the kind of file it is. For example, for a "C"
program the suffix is.c.

tracefile=<filename>

This filename is the one that is assumed to be used as
a trace file.

report=<filename>

This filename is the one that is assumed to be used for
coverage reports.

instrwnent=<text>

This is the text of the command used to instrument
the file whose prefix is given in the system settings.

compile=<text> This is the text of the command used to compile the
instrumented program.

link=<text> This is the text of the command used to link the in­
strumented program with the runtime package.

make=<text> This is the command text to run when the make com­
mand is run.

execute=<text> This is the text of the command to use to execute the
instrumented program.

scover=<text> This is the text of the command to use, including any
switches that might be needed, to analyze the named
trace file.

view=<text> This is the command to use to review the Coverage
Report.

archive=<filename>

showmenu

noshowmenu

This is the filename to use as the Archive File (perma­
nent test record) .

These switches determine whether the entire menu is
re-drawn on the screen when a command is issued.
You will probably prefer to use noshowmenu after
you are familiar with the program.

235

CHAPTER 14: Menus

14.2.2

236

Sample S-TCAT Configuration File

Below is an example of a typical S-TCAT configuration file.

Example of S-TCAT Configuration File .

noshowrnenu
help= " /usr/lib/stcat/stcat . hlp "

preprocess= "cc -P "

instrurnent= "s-ic "
prefix= "example "

report= "Coverage "

link= "cc * . i . o crunl.o "
c ompile="cc - c * . i . c "

make= " make "
execute= "a.out"

scover= "scove r -n -h "

view= "vi"
t racefile= "Trace . trc "

archive= "Archive "

II

II

II

II

II

II

II
II
II
II
II

II

II
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II
II

II

II

II

CHAPTER 15

Com.m.and Sum.m.ary: MS-DOS,
OS/2

This chapter gives a short command summary for S-TCAT/C running under MS-DOS or
OS/ 2.

15.1

15.1.1

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a "C" preproces­
sor before putting it to s-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime module.

Depending on the size of your program and the development method
used, the following subsections describe how it is done.

Stand-Alone Files

Here are the commands you would use with the Microsoft C 6.0 compiler
on MS-DOS or OS/ 2:

Preprocess:cl /P <filename>.c / * to produce <filename>.i * /

Instrument : s-ic -m6 <filename>.i / * to produce <filena­
me>.ic * /

Compile : cl /c /Tc <filename> . ic / * to produce <filena­
me> .obj * /

Link : cl <filename> . obj crunls.obj / * to produce <filena­
me> . exe * /

Execute : (Run your program as usual . Press RETURN twice to
accept the default values for trace file message and name .)

Note that -m6 is the s-ic switch for Microsoft C 6.0 compiler. /Tc is a
Microsoft C 6.0 option that allows for compilation of files with extensions
other than .c.

Also, note that crunls. obj is the runtime object module that comes
with S-TCAT /C. There are various runtime object files, depending on
compiler, runtime level, and memory model used. For more runtime
descriptions on MS-DOS runtimes, turn to Section 12.1.

237

CHAPTER 15: Command Summary: MS-DOS, OS/2

15.1.2

15.1.3

15.1.4

238

Systems With 'make' Files

1. In systems that have 'make' files where .obj files are explicitly listed as
targets, add the following built-in rule before other targets:

Built in rule for S - TCAT instrumentation ...
. c . obj:

cl $(CFLAGS) IP $* .c cl . $(CFLAGS) $ * .c
s-ic -m6 $*. i or
ren $* . i temp.c
cl $(CFLAGS) /c temp . c
ren temp.o $* . obj

sample . obj : sample . c

s-ic -m6 $*. i
cl $(CFLAGS) / c/Tc $*. ic

2. Add crun<level><model>. obj to the list of linked object mod­
ules. You must choose the version of runtime to use, based on the
runtime level and the memory model (small, compact, medium, large
or huge).

3. Run the 'make' file to produce the instrumented program.

'make' With 'cl', 'msc'

This section deals with situations that involve 'make' files for commonly
available PC-based compilers, such as Microsoft C, where compile state­
ments are explicitly mentioned.

1. Replace 'cl' (or 'msc ') with the following lines:
cl $(CFLAGS) /P <filename> . c
s-ic - m6 <filename> . i
ren <filename> . i temp . c
cl $(CFLAGS) /c temp . c
ren temp . o <filename> . o

2. Add crun<level><model>. obj to the list of linked object mod­
ules.

3. Run the make file to produce the instrumented program.

Systems Without 'make' Files

Go to the directories with the source code and follow the method for
stand alone files with each source code file (preprocess, instrument, com­
.pile). Finally, link all the object files with the appropriate runtime object
file.

II

II

II

II

II
II

II
II

II
II

II

II

II
II

II

•
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

15.1.5

15.2

S-TCAT User's Guide

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro­
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 12.2 for a
more detailed description of runtirnes available.

Coverage Analysis

Use the command:
scover [tracefile] -p -c -H -N -h

to analyze reports.

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the S1 coverage value you
obtain is acceptable. This is a general coverage reporting. For more infor­
mation, refer to Chapter 13.

239

CHAPTER 15: Command Summary: MS-DOS, 08/2 II

II
II
II

II
II

II

II
II
II

II

II
II

II

II

I
240 II

II

II
II

II
II
II

II
II
II
II

II
II
II
II

II

II
II

CHAPTER16

Com.m.and Sum.m.ary-UNIX
This chapter summarizes commands you use with S-TCAT/C in UNIX and UNIX-like
environments.

16.1

16.1.1

16.1.2

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a "C" preproces­
sor before putting it to s- ic instrumentor. The instrumented program
is then compiled and linked with the appropriate runtime modules.
Depending on the size of your program and the development method
that you use, the following subsections describe how it is done.

Stand-Alone Files

The commands used are:
Preprocess :

Instrument:
Compile:
Link :

cc -P <filename>.c / * to produce <filename>.i * /

s-ic <filename> . i / * to produce <filename>.i.c * /

cc -c <filename> . i . c / * to produce <filename> . i . o * /
cc <filename> . i . o crunl . o / * to produce a.out * /

Execute : (Run your program as usual . Press RETURN
twice to accept the default values for

trace file message and name .)

Systems With 'make' Files

1. If you have 'make' files where * . o files are created with built-in
rules, add the following built-in rule before other targets:

Built in rule for S-TCAT instrumentation ...
. c . o :

cc $(CFLAGS) -P $ *. c
s- ic $*. i
cc $(CFLAGS) -c $*. i.c

mv $*. i.o $* . o

sample . o : sample . c

The a bove will depend on which one invokes built in rules .

241

CHAPTER 16: Command Summary-UNIX

16.1.3

16.1.4

16.2

242

2. Add crun<level>. o to the list of linked object modules.

3. Then run the 'make' file to produce the instrumented version of the
software.

'make' files with cc called in directives

When cc is explicitly called in directives, then add s-ic commands to
the cc commands within the 'make' file.

1. Replace cc with the following lines:
cc $(CFLAGS) -P <filename>.C

e-ic <filename>,i

cc $(CFLAGS) -c <filename>.i.c

mv <filename>.i.o <filename>.o

2. Add crun<level>. o to the list of linked object modules.

3. Finally, run the make file to produce the instrumented version of the
software.

A system which does not use 'make' files

(Or which will not allow 'make' file changes)

Go to the directories that contain the source code. There, type the follow­
ing commands:

cc -P *.c
s-ic *.i
cc -c *.i.c

cc *.i.o crun<?>.o

to create the instrumented source, objects and executable.

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented
program will add two prompts when the first instrumented code is exe­
cuted. You may fill in a value or press return each time. The prompts may
be suppressed by changing the provided runtime. Refer to Section 12.2
for a more detailed description of runtimes available.

II
II
II
II
II
II
II
II
II
II

II
II
II
II

II

•
II

II

II
II
II
II

II
II

II
II
II

II

II

II

II

II

II
II

16.3 Coverage Analysis

Use the command:
scover [traceEile] -p -c -H -N -h

to analyze reports.

S-TCAT User's Guide

Review the reports produced, add new test cases, repeat whole process.
Continue adding tests to your test suites until the 51 coverage value you
obtain is acceptable. This is a general coverage reporting. For more infor­
mation, refer to Chapter 13.

243

CHAPTER 16: Command Summary-UNIX II

•
II
II
II
II
II
II
II
II

II
II

II
II
II

•
244 II

II

•
II
II

•
II

II
II
II
II

II
II
II
II

II

I
II

CHAPTER17

Full S-TCAT Exalllple
This chapter describes a full S-TCAT example, that includes a sample "C" program,
instrumented program and referenced listing.

17.1 Introduction

It is assumed that S-TCAT/C will be used on syntactically correct pro­
grams, that is programs that will compile cleanly before instrumentation.
Of course, S-TCAT/C will be used to verify that each program segment
or function call executes correctly under typical operating conditions.
Figure 92 show a sample "C" program with three function modules.

This example program will be used throughout the chapter to describe
each component of S-TCAT/C to better aid the user.
/ * EXAMPLE . C -- example file for use w. TCAT , STCAT , TCAT-PATH . * /

#include • stdio.h"

#include <ctype . h>

#define INPUT ERROR - 1

#de fine INPUTDONE 0

#define MENU_ CHOI CES 13

#define STD_ LEN 79
#define TRUE 1

#define FALSE 0

#define BOOL int

#define OK TRUE
#define NOT OK FALSE -

char rnenu[MENU_CHOICES] [STD_LEN] = {

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ",
What type of food would you like?\n ",

"\n

1 American sos \n "'
2 Chinese - Hunan Style \n "'

3 Chinese - Seafood Orient ed \n " '

4 Chinese - Conventional Sty le \n " /

5 Danish \n "'
6 Fr ench \n ",

245

CHAPTER 17: Full S-TCAT Example

};

7

8

" \n\n "

int char_index;

main(argc,argv)

Italian

J apanese
\n " I

\ n"'

/ * simple program to pick a restaurant*/

II

•
II

int argc ;

char *argv[] ; •

246

int i , choice , c,answer;

char str [STD_LEN];

BOOL ask, repeat;

int proc_input() ;

C = 3 ;

repea t = TRUE;

while(repeat) {

printf(" \n\n\n ") ;

for(i = O; i < MENU_CHOICES; i++)

printf ("ls", menu[i]);

gets(str);

printf(' \n ");

whi l e(choice = proc_input(st r))

switch(choi ce) {

case 1 :

printf(' \tFog City Diner 1300 Battery

break;

case 2:

982-2000 \n ");

printf(•\tHunan Village Rest839 Kearney 956-7868 \n ');
break;

case 3 :

printf('\tOcean Restaurant726 Clement 221-3351 \n ");
break;

case 4:

printf(" \ tYet Wah 1829 Clement

break;

case 5:

387-8059 \n ");

printf(" \tEiners Danish Res. 1901 Clement386-9860 \n ");
break;

case 6:

printf ("\tChateau Suzanne 1449 Lombard
break;

case 7 :

771-9326 \n ");

printf (" \tGrifone Ri stor ante 1609 Powell397-8458 \n ');
break ;

case 8:
printf(' \tFlints Barbecue

break ;

default :

4450 Sh attuck, Oak l and \n ");

•
II

II
II

•
II

II
II
II
II
II

•
II

II
I
II

• •
II
II

II
II
II

II

II

II
II

II

-
II

S-TCAT User's Guide

if(choice ! = INPUTERROR)

princf(" \t>>> %d: not a valid choice.\n", choice);

break;

for(ask = TRUE; ask;) {

printf(" \n\tDo you want to run it again? ") ;

while ((answer = get char ()) ! = ' \n ') {

swicch(answer)

case 'Y':

case ' y ' :

ask= FALSE ;

char index

break ;

case ' N ':

case 1 n 1
:

O;

ask= FALSE;

repeat= FALSE ;

break ;

default :

break ;
} } } } }

int proc_input(in_str)

char * in_str ;

int tempresult = 0 ;
char bad_str[B0] , *bad_ input ;
BOOL got_first = FALSE ;
bad_input = bad_s tr ;

while (isspace(in_str[char_index]))
char_index++;

for(; char_ index <= strlen(in_ str) ; char_ index ++) {
switch(in_ str[char_ index])
case ' 0 •:

case ' 1 ' :

case '2' :

case ' 3 ' :

case I 4 I :

case ' 5 ' :

case ' 6 ' :

case ' 7 ' :

case ' 8 ':

case ' 9 ' :

/ * process choice*/

cempresult = tempresult * 10 + (in_s tr[char_ index] - ' 0 ') ;
got_ firsc = TRUE;

break ;

247

CHAPTER 17: Full S-TCAT Example

FIGURE 92

248

default:

if(chk_char(in_str[char_ index]))

return(tempresult);

e lse {

if(char_index > 0 && got_first)

char_index-- ;

while(char_index <= strlen(in_str))

if (chk_char(in_s tr[char_index)))

break ;

else

*bad_ input++

char_ index++ ;

*bad_input = ' \0 ';

in_s tr [char_ index);

printf("\t>>> bad input : %s\n ", bad_str);

char_index++ ;

return(INPUTERROR);

} }

return(INPUTDONE) ;

BOOL chk_char(ch)

char ch;

if(i sspace(ch) 11 ch

return(OK);

else

r e turn(NOT_OK);

Sample "C" Program

' \0')

II
II

• •
I
II

II

II

II

II

II

-
II

II

II

II
II

II

' II
•
II
II
II

II
II
II

II

•
II
II

" II

II

17.2

S-TCAT User's Guide

Preprocess, Instrument, Compile and Link

The first stage in S-TCAT/C is to prepare your "C" program to provide
call-pair coverage data. Follow these steps:

1. Preprocessing the program. Most "C" compilers have this facility.

2. Instrumenting the program to insert markers at every segment posi­
tion .

/ *

The following program shows, in bold, the effects of S-TCAT/C
instrumentation on your "C" program:

Sl instrumentation by S-TCAT/C instrumenter:

Program s-ic, Release 8

Instrumented on Wed Jul 3 15:23:28 1991

SR Copy Identification No. 0.

-- (c) Copyright 1991 by Software Research, Inc . All Rights
Reserved.

This program was instrumented by SR proprietary software,
for use with the SR proprietary S-TCAT runtime package .
Use of this program is limited by associated software

license agreements.

* /

extern Strace () ;

extern Ftrace() ;

extern EntrMod() ;
extern Ex tMod () ;
extern TCATFH() ;

char menu[l3] [79] = {

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ",

" \n "'

" \n "'

What type of food would you like?\n" ,

1

2

American 50s \n " ,

Chines e

249

CHAPTER 17: Full S-TCAT Example

250

" \n\n "

} ;

3

4

5

6

7

8

Chinese

Chinese

Danish

French

Italian

Japanese

- Seafood Oriented \n ",

- Conventional Style \n" ,

\n u'

\n "'

\n "'

\n "'

int char_index;

main(argc , argv)

int

char

\n ");

argc;

*argv[) ;

int i, choice, c,answer;

char str[79);

int ask , repeat ;
int proc_input();

Strace(•rc•,Ox7504,0,0);

EntrMod (-1, •main", 3);

C = 3;

repeat= l;

while(repeat)

printf("\n\n\n ") ;
for(i = 0 ; i < 13 ; i++)

printf("%s", menu[i)) ;

(TCATFH(l),/*gets*/ gets(str)

printf("\n ");
while(choice = (TCATFH(2),/*proc_input* / proc_input(str))

for(ask

switch(choice)

case 1 :

printf(" \tFog City Diner 1300 Battery 982-2000

break;
TRUE; ask;) {

case 2:
printf(" \tHunan Village Restaurant 839 Kearney

956-7868 \n ");

\n ");

break;
case 3:

printf("\tOcean Restaurant726 Clement 221-3351

-
II
II

•
I
II

II

II

II

II

-
II

II

II

II
I
II

• •
II

\n ") ;

II
\n ");

II
'--

II
\n ");

II \n ") ;

II choice);

II

II

II

II

II

II

II

II

111111111111111
S-TCAT User's Guide

break ;

case 4 :

printf("\tYet Wah 1829 Clement

break ;

case 5 :

387-8056 \n ") ;

printf(" \tEiners Danish Rest . 1901 Clement386-9860

break;

case 6 :

printf(" \tChateau Suzanne 1449 Lombard 771-9326

break;

case 7 :

printf("\tGrifone Ristorant el609 Powell 397-8458

break;

case 8 :

printf("\tFlints Barbecue4450 Shattuck, Oakland

break ;

default :

if(choice != -1)

printf("\t>>> %d: not a valid cho ice . \n ",

break ;

for(ask = l ; ask ;)
printf("\n\tDo you want to run it again? ") ;
while((answer = (--((&_iob(0]))->_cnt < 0?

(TCATFH(3),/*_ filbuf* / _filbuf((&_iob [0]))

(int) * ((&_iob[0)))->_ptr++)) ! = '\n ') {
switch(answer) {

case ' Y' :

case ' y ':

ask= 0 ;

char index

break ;
case ' N':

case 'n ':

ask= 0 ;
repeat

break ;
default:

break;

ExtMod (• ma3.n ") ;

0 ;

0 ;

1!51

• CHAPTER 17: Full S-TCAT Example

252

Ftrace(O);

int proc_input(in_str)

char *in_str;

int tempresult = O;

char bad_str[80], *bad_input;

int got_first = O;
EntrMod (-1 , "proc_ input" , 5);

bad_input bad_ str ;

while(
(TCATFH(l),/*isspace* / isspace(in_str[char_index])

char_index++ ;

for(ask = TRUE ; ask;) {

for(; char_index <= (TCATFH(2) , /*strlen* / strlen(in_s tr)
) ; char_index++) {

switch(in_str[char_index])

case I O I:

case ' 1 ' :

case I 2 I:

case ' 3' :

case I 4 I:

case I 5 I :

case I 6 I :

case I 7 I :

case I 8 I :

case ' 9 ':

))

tempresult t empresult * 10 + (in_str[char_index] -
' 0 ') ;

dex]))) {

in_str)

char _ index])

got_first = l;

break;

default:

if((TCATFH(3) , / *chk_char* / chk_char(in_str[char_in-

{ExtMod ('proc_ input ") ;

return(tempresult) ;

else {
if(char_index > 0 && got_ first)

char_index--;
while(char_ index <= (TCATFH(4) , / *strlen* / strlen(-

if((TCATFH(S) , / *chk_char*/ chk_ char(in_str[-

I
II
'--

II

II

•
II

II

II

II

II

II

II

II

II

Ill

•
II

II

II

II

II

II
'---.

II

II
II

II

II

II

II
FIGURE 93

II

II

II

II

II

S-TCAT User's Guide

break ;

else
*bad_ input++

c har_ index ++ ;

in_s tr[char_ index] ;

*bad_input = ' \0 ';

printf(" \t>>> bad input : %s\n", bad_ str) ;

char_index++;

{ ExtMod("proc_ input ") ;

r e turn(-1) ;

Ex tMod ("proc_input ") ;

return(0) ;

ExtMod ("proc_input");

int chk_char(ch)

char ch ;

EncrMod(-1 , "chk_char ", 1) ;

if ((TCATFH(l), /*isspace* / i sspace (ch)

{ ExtMod("chk_ char");

return(l) ;

else

{ ExtMod("chk_ char");

return(0) ;

ExtMod ("chk_ char");

Instrumented Program Segment

11 ch ' \0 ')

253

CHAPTER 17: Full S-TCAT Example

17.3

254

Reference Listing

The Reference Listing file (that is filename.i.A or filename.ia for DOS) is
produced by the instrumentor and is used for manual cross-referencing
during a series of tests. The Reference Listing is a version of your "C"
program which has a call-pair (or function call) marked.

You will use this report by gathering the Not Hit call-pair from a Not Hit
report, and then looking up the related code in the Reference Listing.
After reviewing the exercised and not-exercised parts of the program,
you can design subsequent test cases to exercise more call-pairs.

Extensive call-pair and module notation have also been embedded and
the call-pair sequence numbers are listed along the leftmost column.

The header identifies the file as a Reference Listing and includes the
Release number plus a copyright notice. The code that s- ic adds
appears in bold in the following program.

S-TCAT/C, Release 8

(c) Copyright 1991 by Software Research , Inc. ALL RIGHTS
RESERVED.

CALL PAIR REFERENCE LISTING

Instrumentation date : Wed Jul 3 15 : 23:28 1991

Separate modules and call pair definitions for each module are
indicated in this commented version of the supplised source file .

char menu [13 J [7 9] = {

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n •,

" \n "'
What type of food would you like?\n •,

" \n "'

" \n\n"
} ;

1

2

3

4

5

6

7

8

int char_ index ;

main(argc,argv)

American S0s \n •,

Chinese
Chinese

Chinese
Danish

French
Italian
Japanese

- Hunan Style \n •,

- Seafood Oriented \n ",
- Conventional Style \n ",

\n •'

\n "'
\n " I

\n " '

II

II
'--

II

II

II

II

II

II

II

II

II

II

II

I
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

int

char

argc ;

*argv[J ;

int i , choice , c,answer ;

char str[79);

int ask, repeat ;

S-TCAT User's Guide

/** Module main**/

int proc_ input() ;

C = 3 ;

repeat= l ;

while (repeat)

printf(' \n\n\n ") ;

for(i = 0 ; i < 13 ; i++)

printf(' %s " , menu[i)) ;

gets (str) ;

/** call-pair 1 **/

printf(" \n ") ;

while(choice = proc_ input(str))

/** Call-pai r 2 **/

839 Kearney

221-3351 \n ") ;

8056 \n ") ;

switch(choice)

case 1:

printf (" \tFog City Diner 1300 Battery982-2000 \n ") ;

break;

case 2 :

pr intf (" \tHunan Village Re s taurant
956-7868 \n ") ;

bre ak ;

case 3 :

printf(' \tOcean Restaurant 726 Clement

break ;

case 4 :

printf(" \tYet Wah 1829 Clement

break ;

case 5 :

387 -

Clement
printf(" \tEiners Danish Restaurant 1901

386 - 9860 \n ") ;

771-9326 \n ");

ell }97 - 8458 \n ') ;

break ;

case 6 :

printf(" \tChateau Suzanne 1 449 Lombard

break;

case 7:

printf(" \tGrifone Ristorante 1609 Pow-

bre ak ;

255

•

CHAPTER 17: Full S-TCAT Example

256

for(ask TRUE; ask ;

case 8:
printf("\tFlints Barbecue 4450 Shat-

tuck, Oakland \n ");

break;

default:
if (choice ! = -1)

printf(" \t>>> Id : not a valid
choice.\n", choice);

break;

for(ask = l ; ask;) {
printf(" \n\tDo you want to run it again? ");
while((answer = (--((&_iob[0)))->_cnt < 0?

_filbuf((&_iob [0J)) (int) *((&_ iob[0]))->__ptr++)) != ' \n ') {

/ ** Call-pair 3 **/
switch(answer)

case 'Y':

case •y':

ask= O;

char index
break;

case ' N ' :

case ' n 1
:

ask= 0 ;
repeat

break ;
default :

break ;
} } } }

int proc_input(in_str)
char *in_str;

int tempresult = O;

O;

0;

char bad_str[80] , *bad_ input;

/ ** Module proc_input ** /

int got_ first = 0 ;
bad_input = bad_str;
while(isspace(in_str[char_index]))

/** Call-pair 1 **/
char_ index++ ;

for(char_index <= strlen(in_str) ; char_index++)

/* * Call-pair 2 **/
switch(in_str[char_index]) {

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

I
_II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

char_ index) - ' 0 ') ;

/** Call-pair 3 **/

S-TCAT User's Guide

case IO I :

case I 1 I :

case '2 ' :

case I 3 I :

case ' 4 ' :

case ' 5 ' :
case ' 6' :

case ' 7 t :

case '8' :

case ' 9' :

tempresult = tempresult * 10 + (in_str [-

got_first = l ;

break ;

default :

if(chk_ char(in_ str [char_index]))

return(ternpresult) ;

else {

if(char_index > 0 && got_first)

char_index--;

for(ask TRUE ; ask ;)

/** Call-pair 4 **/

/** Call-pair 5 **/

dex];

str) ;

return(0) ;

while(char_ index <= strlen(in_ str))

if(chk_char(in_ str[char_index]))

break ;
else

*bad_ input++

char_index++;

*bad_input = ' \0' ;

in_ str[char_ in-

printf("\t>>> bad input: %s\n ", bad_ -

char_ index++;

return(-1);
} }

int chk_char(ch)

char ch ;

/ ** Module chk_char ** /

257

CHAPTER 17: Full S-TCAT Example

FIGURE 94

258

if (is space (ch) I I ch ' \ 0 ')

/** Call-pair 1 **/

return(l) ;

else

return(O);

S-TCAT/C, Release 8

END OF S-TCAT / C CALL PAIR REFERENCE LISTING

Reference Listing

.II

.II
_II

II
II

II

II
II
II
II

II

II

II

II

II

II

II

II
17.4

II
II
II
II
II

II

II

II
II

•
II

II
FIGURE 95

II
II

II

II

• S-TCAT User's Guide

Instrumentation Statistics

The instrumentor also produces program statistics. They are organized
module-by-module.

S-TCAT/C, Release 8 .

(c) Copyright 1991 by Software Research , Inc . ALL RIGHTS RESERVED .

INSTRUMENTATION STATISTICS

Instrumentation date : Wed Jul 3 15 : 23 : 28 1991

MODULE 'main' :

MODULE ' proc_inpuc •:

statements= 42

compound statements 7

call pairs found= 16

call pairs instrumented

return statement= 0

statements= 22

compound statements 6

call pairs found= 6

16

call pairs instrumented 6

MODULE ' chk_char ':

S-TCAT/C .

return statement s = 3

statements= 2

compound statement

call pair found = 1

call pair instrumented= 1

return statements= 2

END OF S-TCAT/C INSTRUMENTATION STATISTICS

Instrumentation Statistics Sample

259

CHAPTER 17: Full S-TCAT Example

17.5

FIGURE 96

260

Call-Pair Listing

The Call-Pair Listing file (that is filename.i.P or filename.ip for DOS) is
produced by the instrumentor. It is used by the Xcalltree utility. It lists
all the call-pairs encountered in the filename.c file.

Below is the call-pair listing file for the example.c program.
main printf

main printf

main gets

main printf

main proc_input

main printf

main printf

main printf

main printf

main printf

main printf

main printf

main printf

main printf
main printf
main filbuf
proc_ inputstrlen
proc_ inputchk_ char
proc_inputstrlen

proc_ inputchk_ char

proc_ inputprintf

Call-Pair Listing Example

II

II
II

I
II
II
II

II

•
II

•
II
II

II
II

I
II

II

II
II

II
II

II
II
II
II

II

IJ
II

II

II
II

Ill
II

17.6

17.6.1

-S-TCAT User's Guide

Reading S-TCAT Reports

The last and most important step in test analysis is to obtain test coverage
analysis reports. This section details how to read reports: the Cumula­
tive, Past, Not Hit, Hit, Newly Hit, Newly Missed, Linear Histogram
and Logarithmic Histogram reports. These reports analyze the trace file
and archive data produced and present it in an easy-to-read format. Of
particular importance are the Cumulative and Not Hit reports. To obtain
these reports, use the following command and, if necessary, include the
trace file name.

scover [tracefile name] -c -n

This produces a file called Coverage which contains Cumulative and Not
Hit reports plus an archive file, Archive, which contains coverage data
accumulated to this point and can be used in later testing. View Coverage
to see your reports with any non-document editor such as VI or Word.
The following subsections describe each coverage report in detail.

Cumulative Report

As shown in the following figure, the Cumulative Report lists each mod­
ule by name and indicates the number of call-pairs. The report tells you
how many times each module was invoked, how many of its call-pairs
were hit, and its resulting S1 coverage measure. For instance, module
porc_input might have 5 call-pairs, or function calls. If 3 of them were
exercised, the S1 metric for that module would be 3 / 5 = 60.00%. For
the S1 metric, a hit call-pair is counted only once, regardless of how
many times it was actually hit. The report tells about the current and all
tests, including previous tests. Current test data comes from the latest
trace file - the cumulative summary information from the archive file . In
addition, any text you entered earlier as a trace descriptor is shown at the
bottom of the report.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

Selected SCOVER System Option Settings :

[-cl Cumulative Report YES

[-p] Past Report NO
[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh] Newly Hit Report NO
[-nm) Newly Missed Report NO

[-h] Histogram Report NO

[-1 J Log Scale Histogram NO

[-2) Reference Listing Sl -- NO

~61

• CHAPTER 17: Full S-TCAT Example

FIGURE 97

262

Options read : 1

S-TCAT: Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

+- -- ------ ---------------- --+------------------------+-----------------------
-+

Current Test Cumulative Summary

+------------------------+---------- --------------+
No . Of No . Of

Module

Name:

Number Of I No. Of Call-pairs Sl% I No . Of Call-pairs Sl% I

Call-pairs : I Invokes Hit cover I Invokes Hit Cover I

+---------------------------+------------------------+-----------------------

main

I proc_input

I chk_char

3 I

5 I

1 I

2

2

100 . 00

3 60 . 00

1 100.00

1

2

2

3 100.00

3 60.00

1 100.00

+------------------ ---- -----+------------------- --- --+-----------------------
-+

I Totals 9 I 5 7 77.78 I 5 7 77.78 I

+----------------- -- --------+------------------------+-----------------------
-+

Current test message(s) (saved in archive) :

Runtime vers 4 . 9, last updated 7/31/89

Cumulative Coverage Report

The cumulative coverage report contains the following information:

1. "Module Name" lists the names of each module in the program

2. Number of Call-pairs" lists the number of call-pairs in each module.

3. No. of Invokes" for "Test" gives the number of times the module was
called during the test run.

4. "No. of Call-pairs Hit" for "Test" indicates how many of the mod­
ule's total call-pairs were exercised during the test run.

5. "S1 % Cover" for "Test" provides a S1 value for each module for the
current test.

6. Cumulative Summary" refers to the second part of the report. This
provides data for testing to date, including any archived data that
has been submitted as input to scover with the -a option or the
default Archive file . In the run for this example no archive data was
included, so data for "Cumulative Summary" is the same as for
"Test".

7. "Totals" shows the total for each category of test coverage data. This
gives you immediate feedback on your program as a whole.

8. Current Test Message" displays the trace file descriptor text typed in
earlier.

II

•
II

II
II

II
II
II
II

II

II
II
II
II
II

I
II

II
17.6.2

II
II

II
II

II

II
II
II

II

-
II

II

II
17.6.3

II

II
II

S-TCAT User's Guide

Past Report

The Past Report (-p option) is similar in appearance to the standard
coverage report, but it analyzes only one set of data: an archive file. The
report summarizes the percentage of call-pairs hit in each module listed,
giving the 51 value for each module and the program as a whole.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

Selected SCOVER System Option Settings :

[-cl Cumulative Report NO

[-p] Past Report YES

[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh] Newly Hit Report NO

[-nm] Newly Missed Report NO

[-h] Histogram Report NO

r -11 Log Scale Histogram NO

[-Z] Reference Listing Sl NO

Options read : 1

S-TCAT : Coverage Analyzer . [Release 8]

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

+-----------------------------------+--------------- -----------------+

Module

No . Name

Number Of

Call-pairs :

(Archiv"ed) Past Tests

+--------------------------------+
Number Of

I Number Of Call-pairs
I Invocations Hit

Percent I
Coverage I

+-----------------------------------+--------------------------------+
0 : main

1 : proc_input

2 : chk_char

3 I

5 I

1 I

1

2

2

3

3

1

100.00 I

60 . 00 I

100 . 00 I

+-----------------------------------+--------------------------------+
Totals 9 I 5 77 . 78 I

+-----------------------------------+--------------------------------+

Current test message(s) (saved in archive) :
Runtime vers 4 . 9 , last updated 7/31/89

Not Hit Report

The Not Hit Report (-n option), illustrated below, analyzes your pro­
gram from an analytical perspective, showing which call-pairs were not
hit. You are given the module's name and the identification number for
each call-pair not hit in the current test . To identify the actual code not
executed and plan new test cases, look up the in the Reference Listing.
Por S-TCAT/C, this is the file filename.i.A (for UNIX) or filename.iA (for
DOS) .

263

CHAPTER 17: Full S-TCAT Example

FIGURE 98

264

Occasionally, all call-pairs in a module are hit during a test. When this
happens, a special message is displayed. However, in the example, each
module had call-pairs that were not hit. In most cases, at least one seg­
ment in each module has not been hit. This report ends with a short sum­
mary of test results, including the number of call-pairs hit in the
instrumented program, the total number of call-pairs in the instrumented
program, and the 51 coverage value for this test.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research , Inc . ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings :

[-cl Cumulative Report NO

[-p] Past Report NO

[-n] Not Hit Report YES

[-HJ Hit Report NO

[-nh] Newly Hit Report NO

[-nm] Newly Missed Report NO

[-h] Histogram Report NO

(-1] Log Scale Histogram NO

[-Z] Reference Listing Sl NO

Options read: 1

S-TCAT : Coverage Analyzer. [Release BJ

(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED .

S l Not Hit Report .

No .
1

Module Name:

main

Call-pair Coverage Status :

2 proc_input

3 chk_ char

Number of Call - pairs Not Hit :

Total Number of Call-pairs :
Sl Coverage Value :

Not Hit Report

All Call-pairs Hit. Sl 100%

4 5

All Call-pairs Hit . Sl 100%

2

9

77.78%

II
II
II

-
II
II
II
II
II
11

-
II

II

II
II

I
II

II
17.6.4

II

II

II
II
II
II
II
II
II
II

II
II
II FIGURE 99

II

II
II

S-TCAT User's Guide

Hit Report

The Hit Report (-H option) identifies all of the call-pairs which were
exercised in the present and past tests. It analyzes both the trace file and
archive files .

Here is a sample of the Hit Report.
Coverage Analyzer. [Release 8 J
(c) Copyright 1991 by Software Research , Inc. ALL RIGHTS RESERVED .

Se l ected SCOVER System Option Settings :

[- c] Cumulative Report NO
[-p] Past Report NO

[-n] Not Hit Report NO
[-H] Hit Report YES
[-nh] Newly Hit Report NO
[-nm] Newly Missed Report NO
(-h] Histogram Report NO
(-1] Log Scale Histogram NO
[-Z] Reference Listing Sl NO

Options read: 1

S-TCAT: Coverage Analyzer . [Release 8]

(c) Copyright 1991 by Software Research , Inc . ALL RIGHTS RESERVED .

Sl Call-pair Hit Report .

No . Module Name :

1 main

2 proc_input

3 chk_ char

Number of Call-pairs Hit :

Total Number of Call-pairs :
Sl Coverage Value :

Hit Report

Call-pair Coverage Status :

All Call-pairs Hit. Sl

1 2 3

All Call-pairs Hit . Sl

7

9

77 . 78%

100%

100%

265

CHAPTER 17: Full S-TCAT Example

17.6.5

FIGURE 100

17.6.6

266

Newly Hit Report

The Newly Hit Report (-NH option) identifies all call-pairs that are hit in
the present test but which were not hit in any prior test. Here is a sample
of the Newly Hit Report.

Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research , Inc. ALL RIGHTS RESERVED .

Selected SCOVER System Option Settings:

[-cl Cumulative Report NO

[-p] Past Report NO

[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh] Newly Hit Report YES

[-nm] Newly Missed Report NO

(-h] Histogram Report NO

(-1] Log Scale Histogram NO
[-Z] Reference Listing Sl NO

Options read: 1

S-TCAT: Coverage Analyzer . [Release 8]

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED.

Sl Call-pair Newly Hit Report.

No.
2

Module Name :
proc_input

Call-pair Coverage Status :

4 5

Newly Hit Report

Newly Missed Report

This report (-NM option) displays what the current test lost.
Coverage Analyzer. [Release 8]
(c) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED.

Selected SCOVER System Option Settings:

[-cl Cumulative Report NO
[-p] Past Report NO

[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh] Newly Hit Report NO
[-nm] Newly Missed Report YES

II
II

II

II
II

II
II
II
II

-
II
II

II
II

II

II

II

II
II

II

II
II

II FIGURE 101

II 17.6.7

II

II

II

II

II

II

II

II

II

II

S-TCAT User's Guide

[-h] Histogram Report NO

[-1 l Log Scale Histogram NO

[-Z] Reference Listing Sl NO

Options read : 1

S-TCAT : Coverage Analyzer . [Release BJ

(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

Sl Cal l-pair Newly Missed Report .

No .

2

Module Name :

proc_ input

Newly Missed Report

Linear Histogram

Cal l-pair Coverage Status:

4 5

This report (-h option) displays a mark for each time a call-pair is hit
during testing. The samples shown are for the modules main and
proc_input.
Coverage Analyzer . [Release 81

(c) Copyright 1991 by Software Research, Inc.

Selected SCOVER System Option Settings :

[-cl Cumulative Report NO

[- p] Past Report NO

[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh) Newly Hit Report NO

[-nm) Newly Missed Report NO

[-h] Histogram Report YES

[-1] Log Scale Histogram NO

[-Z) Reference Listing Sl NO

Options read : 1

S-TCAT : Coverage Analyzer . [Release 8)

(c) Copyright 1991 by Software Research, Inc .

Call-pair Level Histogram for Module: main

ALL RIGHTS RESERVED .

ALL RIGHTS RESERVED .

+------------------------------- ------ ------------+

Call-pair Number Of

Number of Executions, Normalized to Maximum

(Maximum

(Scale :

13 Hits) X One Hit

7.692 Each X = 0 . 260 Hits)

Number Executions >-1----- - -20--------40--------60--------80------100

+---------- ----- --- ---+--- ------- --------- -------- --- --------------------+

267

CHAPTER 17: Full S-TCAT Example

FIGURE 102

268

1

2

3

7

13

7

xxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxx

+----- ----------------+-------------------------------- -------- --- -------+

Average Hits per Executed Call-pair : 9 . 0000

Sl Value for this Module: 100 . 0000

S-TCAT: Coverage Analyzer . [Release 8)

(C) Copyright 1991 by Software Research, Inc. ALL RIGHTS RESERVED .

Call-pair Level Histogram for Module: proc_input

Call-pair Number Of

+---+
Number of Executions, Normalized to Maximum

(Maximum

(Scale:

18 Hits)

5.556

X One Hit

Each X = 0 . 360 Hits)

Number Executions >-1-------20--------40------- - 60--------80------100

+--------------- ----- -+---------------- --------------------- -- -----------+

1 14 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2 18 xx
3 12 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
4 5 xxxxxxxxxxxxx
5 5 xxxxxxxxxxxxx

+---------------------+-------------------------- ------------ ---------- --+

Average Hits per Executed Call-pair :
Sl Value for this Module:

Linear Histogram

10.8000
100 . 0000

II

II

II

II
II

II

II

II

II
II

II

II

II

II

II

I
II

II
17.6.8

II

II

II
II

II

II

II

II

II

II

II

II

II
II

II

II

S-TCAT User's Guide

Logarithmic Histogram

This report (-1 option) is similar to the linear histogram but translates
the data into logarithms to make the report more readable when some
call-pairs have been hit many times and others fewer times. The samples
are for the modules main and proc_input .
Coverage /\nalyzer . [Release 8 J

(c) Copyright 1991 by Software Research, Inc .

Selected SCOVER System Option Settings:

[-cl Cumulative Report NO

[-pl Past Report NO

[-n] Not Hit Report NO

[-HJ Hit Report NO

[-nh] Newly Hit Report NO

[-nm] Newly Missed Report NO

[-h] Histogram Report NO

[-1 l Log Scale Histogram YES

f-Z] Reference Listing Sl NO

Options read : 1

S-TCAT : Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc .

Call-pair Level Histogram for Module: main

ALL RIGHTS RESERVED .

ALL RIGHTS RESERVED.

+------------------------- -- ----------------------+
Logarithm of Executions , Normalized to Maximum

I (Maximum :;: 14 Hits)

Call-pair Number Of

Number Executions >------- - ---l----------10 - -- - -20----30---40--80-100

+------------------ ---+--- ------------------------- ---- -- --------- -------+

1

2

3

8

14

8

xxx
xx
xxx

+---------------------+--+

Average Hits per Executed Call-pair : 10 . 0000

Sl Value for this Module : 100 . 0000

S-TCAT : Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research, Inc .

Call-pair Level Histogram for Module : proc_input

ALL RIGHTS RESERVED .

+---+
Logarithm of Executions , Normalized to Maximum

(Maximum= 19 Hits)

Call-pair Number Of

269

CHAPTER 17: Full S-TCAT Example

FIGURE 103

17.6.9

270

Number Executions >-----------1----------10-----20----30---40--80-100

+---------------------+--+

15 xxx
2

3

4

5

19

13

5

5

xx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

+---------------------+--+

Average Hits per Executed Call-pair : 11 . 4000
Sl Value for this Module: 100 . 0000

Logarithmic Histogram

Reference Listing S1 Report

This report (-z option) analyzes the specified reference listing file and
produces a report that shows the coverage level achieved for all modules
that are named in the specified reference listing. The following figure
shows a partial reference listing of the example.c program. Statistics of
coverage appear in bold on the left-hand column.
Coverage Analyzer. [Release 8]

(c) Copyright 1991 by Software Research , Inc . ALL RIGHTS RESERVED .

Selected SCOVER System Option Settings :

[-cl Cumulative Report NO
[-p] Past Report NO

(-n] Not Hit Report NO

(-H] Hit Report NO
[-nh) Newly Hit Report NO
[-nm] Newly Missed Report NO

[-h) Histogram Report NO

[-1) Log Scale Histogram NO
[-Z) Reference Listing Sl YES

Options read : 1

S-TCAT : Coverage Analyzer. [Release 8)
(c) Copyright 1991 by Software Research, Inc . ALL RIGHTS RESERVED .

S-TCAT Coverage on Reference Listing Report, based on file exam­
ple . i . A.

II

II

II

II
II

II

II

II

II
II

II

II

II

II

II

II

II

II
II
II

II
II
II
II
II
II
II

II

II

II

II
II

II

II

S-TCAT User's Guide

(Coverage values for all tests processed are reported in left-hand
column .

indicates not hits on corresponding call-pair . Extra names
not

part of this listing but in the Archive file are ignored .)

-- (c) Copyright 1991 by Software Research , Inc. ALL RIGHTS
RESERVED.

-- CALL PAIR REFERENCE LISTING

Sl 100.00

char menu[l3) [79) = {

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ",

II \n " I

What type of food would you like?\n ",

"\n "'
American 50s \n" ,

Chinese - Hunan Style \n ",

1

2

3

4

5

6

7

8

Chinese - Seafood Oriented \n ",
Chinese - Conventional Style \n ",

" \n\n "
} ;

int char_ index;

main(argc , argv)

Danish

Fre nch
Italian
J apan ese

int

char

argc ;

*argv[) ;

int i , choice , c , answer ;

char str[79) ;

int ask, repeat ;

/ ** Module main ** /

int proc_ input();

C = 3 ;
repeat= l ;

while(repeat)

printf("\n\n\n");

for(i = O; i < 1'.l; i++)

\n" '

\n "'

\n "'
\n "'

271

CHAPTER 17: Full S-TCAT Example

Z72

1

2

Diner

printf("%s", menu[i));

gets(str);

/ ** Cal l-pa ir 1 ** /

printf (" \n ") ;

while(choice = proc_input(st r))

/ ** Call-pair 2 ** /

1300 Battery

switch(choice) {

case 1:

printf(" \tFog City
982-2000 \n ") ;

break ;
case 2:

printf(" \tHunan Village Restau-
rant 839 Kearney 956 -7 868 \n ') ;

rant

Wah

726 Clement

break;

case 3:

printf(' \tOcean Restau-
221-3351 \n ");

break;

case 4 :

printf(" \tYet
1 829 Clement 387-8056 \n ");

break ;

case 5:
pr intf(" \tEiners Danish Restau -

rant 1901 Clement 386 - 9860 \n ");

Suzanne

torante

cue

break;

case 6:
printf('\tChateau

1449 Lombard 771- 9326 \n ');

break;
case 7:

pr intf(' \tGrifone Ris-
1609 Powell 397-8458 \n ") ;

break;
case 8:

printf(' \ tFlints Barbe-
4450 Shattuck, Oakland \n ");

break;

de fault:

if(choice != -1)
printf(" \t >>> %d: not a valid

choice.\n", choice);
break;

for(ask = 1 ; ask;) {
printf("\n\tDo you want to run it

again? ") ;

II

II

II

II
II

II

II

II

II

II

II
II

II

II

II
II

II

II
II

II

II
II
II
II
II

II
II

II

II

II

II

II

II

II

FIGURE 104

17.7

S-TCAT User's Guide

while((answer= (--((&_iob[0]))->_cnt
< 0? _ filbuf((&_ iob[0])) : (int) * ((&_ iob[0]))->_ptr++)) ! = '\n ') (

1 / ** Call-pair 3 ** /

Sl 100 . 00

2

switch(ans wer)

case ' Y ':

case ' y ':

ask= 0 ;

char_ index 0 ;

break ;

case 'N ':

case ' n 1
:

ask= 0 ;
repeat 0 ·

bre ak ;

default :

bre ak ;
} } } }

int chk_ char(ch)

char ch ;

/ ** Module chk_ char ** /

if(isspace (ch) 11 ch
/ ** Call-pair 1 ** /

return(l) ;

else
return(0) ;

' \0 ')

Reference Listing S1 Report

Summary

After reviewing these reports (particularly the Cumulative Report and
the Not Hit Report), you will typically rerun the tests with different or
additional test cases, designed to exercise previously not-hit call-pairs
and achieve a higher S1 value. The higher the S1 value, the more com­
plete your testing. When you achieve a satisfactory value for S1 , for
example, 95 percent or more, you can stop testing.

273

CHAPTER 17: Full S-TCAT Example -
II

II

II

II
II

II

II
II
II

II

II

II

II

II

II
274 II

II

II

II

II

-
II

II

II

II
II

II

II

II

II

II

II

II

CHAPTER18

Graphical User Interface (GUI)
Tutorial

This chapter demonstrates using 5-TCAT in the OSF / Motif environment.

18.1 Invocation

FIGURE 105

To invoke, type:
Xstcat

The result is the main menu (shown below). This window has a window
menu button (available for all windows) that allows the user to restore,
move, size, minimize, lower and close the window. This menu button can
be used at any time during the X Window System program. For closing
main application windows, however, it is best to use the System menu's
Exit option to prevent any system crashes. The two buttons in the upper
right hand corner of the window allow the user to maximize or minimize
the window size.

Main Menu

275

CHAPTER 18: Graphical User Interface (GUI) Tutorial

FIGURE 106

18.2

276

To invoke with STW/COV, click first on Coverage and then on S-TCAT.
The S-TCAT main menu pops up.

STW/COV Invocation

Using S-TCAT/C

For first time use, always read the help menus. Below is main menu's
help, explaining 5-TCAT three stages of testing: instrument, execute and
analyze.

II

II

II

II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II FIGURE 107

II 18.2.1

II

II

II

II

II

II

II

II

S-TCAT User's Guide

Main Menu Help

Instrument

~t1on

Hel p for X~tcat Marn Windol,1

S-TCAT Ver 8.~

{c; Cop':f' l 9ht 1'39·1-19'34 by Softbilare Reseorch .

ALL RIGHTS RESER\£D

S-TCAT 111easi.re~ t he crnpleteries-~ of a t e~t
set us 109 the "ca l l-pa1r" or "interface
exer c ised" t est cof!lP let enes~ coverage
,ietnc "Sl " .

Nor 111a ll1J. t est sets are consider ed cQ1nPl ete
Jien the S1 val ue for t he test~ IS above 95,.
S-TCAT operates 1 n t hree stat es :
Ins t rtwientat 100, Executi on . and Ana l~ 1s .

S-TCAT instruments the source code of the program to be tested; that is, it
inserts function calls at each call-pair. Double-click on Instrument in
order to begin testing. There are a variety of options which can be selected
with the menu in Figure 108 (see next page):

1. Preprocessing can be turned on or off. If it is turned off, then the
instrumentor will not preprocess.

2. Preprocessor output suffix is set to. i , which is normally the exten­
sion for preprocessed "C" programs. This option is user editable.

3. Preprocessor Command is set to cc - P. Refer to Chapter18 for fur­
ther information. This option is u ser editable.

4. Preprocessor options are options in addition to the Preprocessor
command previously specified.

5. Instrumentor Command is set to s-ic. This option is user-editable.

6. Instrumentor options

• Recognize _exit as keyword corresponds to the command line -
u switch. Refer to Section 3.2.1.

• Do not recognize exit as keyword corresponds to the command
line -x switch. Refer to Section 3.2.1.

277

CHAPTER 18: Graphical User Interface (GUI) Tutorial

FIGURE 108

FIGURE 109

278

Do not instrument functions in file corresponds to the -DI

deinst switch. Specify a filename that contains lists of modules that
are to be instrumented. Refer to Section 3.2.1.

Specify maximum file name length corresponds to the -fl value
switch. Specify a number that will correspond to the maximum num­
ber of characters. Refer to Section 3.2.1.

Specify maximum function name length corresponds to the fn
value switch. Specify a number that will correspond to the maximum
number of characters. Refer to Section 3.2.1.

"'" " ' -,1nst~Ufllerlti ,0 -~ '111'1 "'

':,Ile !!Ct1on fie Ip

Preprocessing ~ Preprocessor output suf f ix: I . 1

Preprocessor· COl'llllldnd: ~ Preproce-ssor opt 1 ons- : I
I nstrllllentor COlffllald: ~
InstrtA11entor options:

Cl Recognize _ex1 t as ke~d

D Do not recogm ze exit as ke~ord

Cl Do not 1nstn.H11et1t f unctions 1n f 1 le: I DEINSTRU.fns I
Cl Speci f ~ 111ax1muM fil e name length : I
0 Spec1 f~ .axu1uJ111 funct ion nare length: I

Instrument Menu

8_ct1on

You need to process the source progra.s so
that ~ic coverage CM! be .-easured.

First, !dOU ~ need to pre-process the pro­
gra111 .

Next, HOI.J need to run the S-TCAT ins tru-
1111enter. Th i s produces a logical l";:J
equiYalent but ..od i f1ecl progra,ii th.at
includes. special software instru,-entation
"probes ••

v'¥ 1ous paraDeters and files have to be
suppl i ed to the instruMCnter for
best effect, For example, ~ con tell the
i nstrt.nenter to P&.:l attention to · _exit",
or to not pa~ attention t o "exit" { see
User ~al>. And ,. ~ can spec i f~ irnn i JWM.M
sens 1t1 vit~ lengths for t he ~es recog-

Instrument Help Menu

I
I

11!'; , ..

I

II

II
II

II
II

II
II

II

II

II

II

II

II

II

II

II

II

II
II

II

II
II
II

II

II
II
II

II

II
II

II

II

II
II

FIGURE 110

18.2.2

S-TCAT User's Guide

After selecting instrumentor options, do the following:

1. Make sure the Preprocessing switch in ON.

2. Click on the File pull-down menu. Drag the mouse down and select
Set File Name. A file pop-up window appears (refer to the picture
below). Select the file to be instrumented by either highlighting or
typing it into the Selection box. Press OK.

3. After establishing the file to be instrumented, click on the Action
pull-down menu. Drag the mouse down and select Preprocess and
then Instrument. Note: Instrument cannot be selected until prepro­
cessing has been completed.

NOTE: Current status and errors are displayed in the invocation box
from time to time. Frequently refer to the box while testing to see where
system crashes, errors and passes occur. When finished, click on Exit
under the File pull-down m enu.

Filter

I nuals/coverage/tcat/de111os/*. c j

Select ion

I /111anual s/coverage/tcat/ deri1os/ j

File Pop-Up Menu

Execute

ThQ En!CUtt:! menu compiles, linkB and execute5 the progr~rn. Normally,
the user compiles the instrumented source file and then links all the

279

CHAPTER 18: Graphical User Interface (GUI) Tutorial

FIGURE 111

280

source files with the runtime object module (which is specified under the
File pull-down menu). The user can also use the Make file. Both methods
are explained in this section.

Double-click on Execute to begin. The menu below appears.

Fi le Action !:!.elp

Campi !er command: I:c - c Campi !er options : *· i .c

~~~'!!!ii! :==== 
Linker comr~and: cc -o Linker options : I*· i .o 

:====::; 
Make command: I make I Make f i I e name: 

Application name: I a.out j App!ication arguments: 

Execute Menu 

There are a variety of options which can be selected from the Execute 
menu. 

1. Compiler command is used to invoke the compiler on the system. It 
is set to cc-c but is user-editable. 

2. Compiler options are the options for the compiler. It is set to * . i . c 
but is user-editable. 

3. Linker command is used to invoke link. It is set to cc-o but is user­
editable. 

4. Linker options are the options used in order to link. It is set to * . i . o 
but is user-editable. 

5. Make command is used to invoke the make utility. 

6. Make file name is where the make file is specified. It is fixed to 
Makefile but is user-editable. 

7. Application name is the command used to invoke the instrumented 
program. It is fixed to a. out but is user-editable. 

II 

II 

II 

II 

II 

II 

II 

II 

-
II 

II 

II 

II 

II 
II 
II 

II 



II 

II 

II 
II 

II 
II 
II 

II 

II FIGURE 112 

II 

II 

II 

II 

II 

II 

II 

II 

S-TCAT User's Guide 

8. Application argument is where command line arguments are speci­
fied. It is user-editable. 

Action 

After i nstrurrientat ion, \JOLI need to I ink 
\JOUr compiled prograr;,s with the "runtime"' 
module. There are severa l different run­
time modules !JOU can use , depending on 
the part i cu I ar features :,iou want: 

Level O: Fi xed trace file and no buffer­
ing. 

Level 1: User- selected trace file and no 
bufferrng. This is the most cornrnonl!J-used 
version. 

Leve l 2: User- se lected trace file and 
r,1inirrial buffering. 

Leve l 3: User-selected trace fi l e and 
moderate buffering. 

Execute Help Menu 

Execute one of two ways: 

1. Without Make File 

(a) Click on the File pull-down menu, drag the mouse to 
Set Runtime Object Module and click. A pop-up win­
dow appears (shown in Figure 113).Highlight or type in 
(the Selection Box) the necessary file . Click OK. Refer to 
the help frame and to Section 12.1 and 12.2 for SR sup­
plied runtime object modules. · 

(b) Set the compiler and linker commands (that is Com­
piler command, Compiler options, Linker command 
and Linker options) as appropriate. 

(c) Click on the Action pull-down menu and select Com­
pile. When completed, the invocation window will 
state so. 

(d) Click on Link. Invocation window will indicate when 
linking has occurred. 

(e) Click on Run Application. 

2. With Make File: make organizes all compiler and linker commands 

and files. 

281 



CHAPTER 1 B: Graphical User Interface (GUI) Tutorial 

FIGURE 113 

(a) Click on the File pull-down menu, drag the mouse to 
Set Runtime Object Module (shown in Figure 113) and 
click Highlight or type in (the Selection box) the neces­
sary filename. Click OK. Refer to the help frame and to 
Section 12.1 and 12.2 for SR-supplied runtime object 
modules. 

(b) Set the make commands (that is Make Command, 
Make file name, Application name and Application 
arguments) as appropriate. 

(c) Click on the Action pull-down menu and select Make. 
When completed the invocation window will state so. 

(d) Click on Run Application. 

Whichever method is chosen, the trace file is created. 

Directories Fi Jes 

~ 

Se lect ion 

Runtime Object Module Pop-Up Screen 

II 

II 

II 

II 

II 

II 

II 

II 

-
II 

II 

II 
II 

II 

II 
II 

II 



II 
18.2.3 

II 
II 

II 
II 

II 
II 
II 
II 

FIGURE 114 

II 
II 
II 
II 
II 
II 

II 
!=IGURE 115 

II 

S-TCAT User's Guide 

Analyze 

After executing your program, you can analyze the trace file using the 
cover command. Double-dick on Analyze and the menu below appears. 

l"-1 '. 

Report t'df'es : 

ID Past tests I 
• CuJ11U l at.1ve tests 

D Hit 

• Not hit 

D Newly hit 

D Newly fllllssed 

0 Log h1s.to9rafll 

D linear h1stogra111 

0 Reference I 1st1ng 

Analyze Menu 

!!<IP 

Anoi13Zer options: 

!J Do not report function in f1 le: I 
:====:U 

0 Generate list of functions with S1 :.- ~185 ____ ~ ,n 

D Generate 11st of furict1ons not included m report 

It Do not update archive f1 lee 

D Old Arch ive naf'.e: 

D New Archive nilfl\e: 

D P.e~ the report file to : 

D Change the report " 1dth to : 

D Sort report by ~ule na..-e 

cat ver ti • .! 

~ t i on 

After you have executed your pr-ograr,i !:fOU 
need to anal~e the S1 coverage obtained. 
'T'ou can do t his using the McoverM subsystefll~ w 
control through the "analyze" /llenU , 

T~ ically . ~ou anal!:,lze one t race file rela­
tive to past test 1nforn1at 1on stortd in an 
"Ar chi ve Fi le." After det er11iining cover-
age and making notes about what !::fOU n119ht 
wish t o do next. you creat e " new Arch1v~ 
File, You use t hi s 1nforfllation for t he 
next "c~ le" of testrng , 

The "ana l!::fze" menu helps ~u select the 
l!::fpes of covera9e reports !:fOU want, wh1ch 
modu les (or funct10ns ) !:fOU want theni to 
appl!;.i to, and a var1 et~ of other options . 

Please consult !jOur User Manual for 

Analyze Help Menu 



CHAPTER 18: Graphical User Interface (GUI) Tutorial 

284 

There are a variety of options which can be selected with the Analyze 
menu. 

1. Coverage Reports: 

(a) Past test corresponds to the -p command line option. 
(Refer to sections 5.1.4 and 10.6.2 for further informa­
tion.) 

(b) Cumulative test corresponds to the -c command line 
option. (Refer to sections 5.1.4 and 10.6.1 for further 
information.) 

(c) Hit corresponds to the -H command line option. (Refer 
to sections 5.1.4 and 10.6.4 for further information.) 

(d) Not Hit corresponds to the -n command line option. 
(Refer to sections 5.1.4 and 10.6.4 for further informa­
tion.) 

(e) Newly hit corresponds to the -NH command line 
option. (Refer to sections 5.1.4 and 10.6.5 for further 
information.) 

(f) Newly missed corresponds to the -NM command line 
option. (Refer to sections 5.1.4 and 10.6.6 for further 
information.) 

(g) Linear histogram corresponds to the -h command line 
option. (Refer to sections 5.1.4 and 10.6.7 for further 
information.) 

(h) Log histogram corresponds to the -I command line 
option.(Refer to sections 5.1.4 and 10.6.8 for further 
information.) 

(i) Reference listing corresponds to the -z command line 
option. (Refer to sections 5.1.4 and 10.6.9 for further 
information.) 

2. Analyzer Options: 

(a) Do not report functions in file corresponds to the -DI 
deinst-file command line option. (Refer to Section 5.1.4 
for further information). Specify the file in the supplied 
box. 

(b) Generate list of functions with Cl> corresponds to the 
-T [threshold] command line option (refer to Section 5.1.4 
for further information). Specify the coverage threshold 
percent in the form of a real or decimal number in the 
supplied box. 

II 
II 

II 

II 

II 

II 

II 
II 

-
II 
II 

II 
II 

II 
II 
II 

II 



II 
II 

II 

II 

II 

II 
II 
II 

II 
II 

II 

II 
II 
II 
II 

II 

II 

S-TCAT User's Guide 

(c) Do not update archive files corresponds to the -su com­
mand line option. (Refer to Section 13.1.4 for further 
information). 

(d) Old Archive name corresponds to the -a old-archive 
command line option. (Refer to Section 13.1.4 for further 
information). Specify the file in the supplied box. 

(e) New Archive name corresponds to the -f new-archive 
command line option. (Refer to Section 13.1.4 for further 
information). Specify the file in the supplied box. 

(f) Rename the report file to corresponds to the -r report 
command line option. (Refer to Section 13.1.4 for further 
information). Rename the file in the supplied box. 

(g) Change the report width to corresponds to the -w 
width command line option. (Refer to Section 13.1.4 for 
further information). Specify a decimal number in the 
supplied box. 

(h) Sort report by module name corresponds to the -s com­
mand line option. (Refer to Section 13.1.4 for further 
information). 

Analyze in the following way: 

1. Click on the File pull-down menu, drag the mouse to Set Input Trace 
File Name, and click. A trace file pop-up window appears (shown in 
Figure 116). Highlight or type in the file in the Selection box. Click 
OK. 

2. Select the coverage reports and analyzer options. For the purpose of 
this demonstration, Past Test, Cumulative Test, Hit, Linear Histo­
gram, and Reference Listing reports have been selected. 

(a) When selecting the Reference listing option, a reference 
listing pop-up window appears (shown in Figure 117). 
Select the file and click OK. 

3. Click on the Action pull-down menu and select Run Coverage Ana­
lyzer. 

4. Click on the Action pull-down menu and select View Report. View 
the reports by using the menu's scroll bars. Figures118 through 123 
reflect viewed reports. 

5. Click on the Action pull-down menu and select View Source. View 
Source associates a segment or node with its corresponding source 
code (refer to Chapters 23 and 24 for further information). 

(a) Click on this option and a pop-up window appears (see 
Figure 124). Select a file and click OK. For this demon-

285 



CHAPTER 18: Graphical User Interface (GUI) Tutorial 

FIGURE 116 

286 

stration, the main module has been selected (see Figure 
125). 

(b) Source view by clicking on a call-pair. 

Filter 

Directori es Files n~ Tr~e.trc ~ 

LJ~ ···~ ~ 
~ maa 
Selection 

Set Input Trace File Name Pop-Up Window 

Fi l ter 

I a ls/coverage/tcat/deMos/•. i . A I 

Selection 

I / Mt"M.Jal s/coverage/ tcat/ demos/ I 

II 
II 

II 

II 
II 

II 

II 

II 

II 
II 
II 

II 
II 

II 

II 
II 

II 



II 
II 

FIGURE 117 

II 
II 

II 

II 

II 
II 

II FIGURE 118 

II 

II 

II 

II 
II 
II 
II FIGURE 119 

II 

S-TCAT User's Guide 

Reference Listing Pop-Up Window 

-
Action 

1 scover·: Covera9e Ana lyzer. [Ver 8. 2 for SUN/UNIX (11/ 10/94 ) ) 
(c) Copyright 1990-94 by Software Research , Inc. 
+-----------------------------------+--------------------------------+ 

<Archived) Past Tes t s 
+--------------------------------+ 
I Number· Of 

Number Of I Nurober Of Ca I I -pa 1 rs Percent I Module 
No. Na'1€ Call -pairs : I Invocations Hit Coverage I 

O: example.rnain 
1: exarriple.proc_input 
2: exarnple.chk_char 

Totals 

2 I 
4 I 
0 I 

6 I 

Current test messa9e { s) ( saved 1 n arch 1 ve) : 
!:,iOU know 

1 
12 
12 

25 

1 scover: Coverage Analyzer. [Ver 8.2 for SUN/UNIX (11/10/94)) 
(c ) Copyright 1990- 94 by Software Research, Inc. 

100. 00 I 
50.00 I 

100 . 00 I 

66.67 I 

+---------------------------+------------------------+------------------------+ 
Current Tes t Cumulative Sufl)fl)ar!:.i 

+------------------------.+-----------------
No. Of No. Of 

Past Test Report 

1 scover: Coverage Anal~zer. [Ver 8.2 for SUN/UNIX (11/ 10/94) ) 
(c) Cop~right 1990-94 by Software Research. lnc . 
+---------------------------+------------------------+--------------

Current Test 

I ~.M I ~.M I 
Hodule 
Nar,ie: 

N=ber Of I No. Of Call-pairs S1% I No. Of Call-pairs S1% I 
Call-pairs: I Invokes Hit Cover I Invokes Hit Cover I 

I example.main 
I example.proc_input 
I example.chk_char 

2 I 
4 I 
0 I 

1 
12 
12 

2 100.00 
2 50.00 I 
O 100.00 I 

1 2 100.00 I 
12 2 50.00 I 
12 0 100 .00 I 

---------------+----------------------------------------+ 
I Totals 6 I 25 66.67 I 25 66 .67 I 
+---------------------------+-----------------+------------------------+ 
Current test 11"1essa9e{s) {saved in archive >: 
!jOu know 
1 scover: Coverage Anal~zer. [Ver 8.2 for SUN/ UNI X (11/ 10/ 94 ) ) 
(c) Cop~right 1990-94 by Software Research. lnc. 

Sl Call - pair Hit Repart. 

No. Module Name: Call-pair Coverage Status: 

Cumulative Report 

287 



CHAPTER 18: Graphical User Interface (GUI) Tutorial 

FIGURE 120 

FIGURE 121 

288 

~11 ~ 
~ -..:.. i ew"'~t 

Action 

1 scover: Coverage Ana l~er. [Ver 8.2 f or SUN/UNIX (11/ 10/94) ] 
(c} Cop!;lrisht 1990-94 ~ Software Research, Inc .• 

S1 Call- pair Hit Report. 

No. Hodu 1 e Na111e: Call -pai r Coverage Status: 
1 example.11cnn 

Al I Cal I-pairs Hi t. S1 = 100% 
2 exaf11Ple .proc_1nput 

l 2 
3 exarriple . chk_char 

All Call -pai rs Hit. S1 = 100% 

Nurtlber of Call-pairs Hit: 4 
Tota l Nu111ber of Call -pairs: 6 
S1 Coverage Va lue: 66.67% 
1 scover: Coverage Anal!:JZer. [Ver 8. 2 for SUN/UNIX (11/10/94 > l 
(c) Cc,p~r isht 1990-94 t,,J Software Research, Inc. 

51 Not Hit Report . 

No. Hodule Nar.e: Call -pai r Coverage Status: 
1 exafllple .111ain 

All Call -pairs Hit. Sl = 100% 

'" 

Hit Report 

Action 

,scover : Coverage AM l!;Zer. [Ver 8.2 for SUN/UNIX (11/10/94}) 
{c} Copw1ght 1990-94 ~ Soft.ware Research, Inc. 

Cal I-pair Level Histogrdlll for Nodule: exa111ple.111ain 

+------------------------------------------------• 
I l ogarithJI of Executions, Norr1alized to Maxi rtiuf'l'I 
I (Haxi~ulll = 12 Hi ts) 

Call-pair Imber Of I 
Nu.ber Executions >----------1---------10-----20----30---40--80-100 

+---------------------------------------+ 
I 

12 I XXXXXXXXX)O()()()()()(XXXXXXXXXXXXXXXXXXXX)()()()()()()()XXXXXX 
6 I XXXXXXXXXXXJOOOO()()()()(XXXXXXXXXXXXXXXX)()()()()()( 

I 

Average Hits per Executed Call-pair: 9.0000 
S1 Va lue for this Module: 100. 0000 
,scover : Coverage Ana l~er. (Ver 8. 2 for SUN/ UNI X <11/ 10/94>] 
(c) Cop~right 1990- 94 l>.,J Soft war e Research, Inc. 

Call-pair l evel Histogra,rt1 for Hodule: exalflple.proc_rnput 

Linear Histogram 

II 
II 

l !"'"U!J 

1111 II 

II 

II 

II 
-

..: .:.a! II 

II 

II 

II 

II 

II 

• 
II 

II 
II 

II 



• 
II 

II 

II 

II 

II 
II 
II 

FIGURE 122 

II 

II 

II 

II 
II 

II 
(I 

II FIGURE 123 

II 

S-TCAT User's Guide 

.. "'''" 
I Action 

-- S-TCAT/C , Ve, 8.2 fc.- SUN (10/28/94) . 

-- (cJ Copyr ight 1990 by Software Research . Inc. ALL RIGHTS RES 

-- CALL PA IR REFERENCE LI ST! NG 

-- Instr~ntat1on date: Tue Jun 2(1 15:08 :52 1935 

-- Separate 111odule::: and call pa1r def1n1t1ons f'or each ~odul e ar 
-- 1nd1cated 1n this cOP1111ented vers ion of the suppl 1sed soiree f 

extern struct. _1obuf { 
int _cnt: 
unsigned char *_ptr; 
unsigned char • _base; 
int _bufs 1::: 
~hort _fl ag: 
char f lle: 

} _,ob[ l: 
ext ern strl.-lCt _1 obuf 
extern struct _ 1 obuf 
ext ern struct _1obuf 

*fopen( J; 
• fdopenO: 
• freopen O : 

Reference Listing (Part 1 of 2) 

Action 

extern char • cter11i 1dO : 
extern char • cuser 1 d {) : 
extern char • t e1¥1pna111(); 
extern char • t1t1 pnaf1'1 () : 
extern char _ct!;_ipe_(]; 
char ll'lenu[ 13H 79] = { 

"SOFTWARE RESEARCH' S RESTAUP.ANT GU[IIE \n", 
~ What type of food would !;,iOU l ike?\n". 

"\n\ n" 
} ; 

int char _index; 
main < ar9c ,argv) 
tnt argc; 
char 111argv[J; 
{ 

A111er I can 50s \ n" , 
Ch inese - Hunan St~le \n", 
Ch tnese - Seafood Cr iented \ n", 
Ch inese - Conventional St~le \nM, 
Dan i sh \ nM, 
French \n~, 
Ita l 1Mi \ nM, 
Japanese \ n M , 

Reference Listing (Pa.rt 2 of 2) 

289 



CHAPTER 18: Graphical User Interface (GUI) Tutorial 

FIGURE 124 

290 

Filter 

I als/covera9e/tcat/ demosl•. i .P I 
Direct ories Files 

l'Blll!mll ~ ! mw ~ 
:/de•os/ •. 

I 
Selection 

C 
mt 

I verage/tcat/ demos/ example. i .Pd 

Source Viewing Pop-Up Window 

• 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

• 
II 

II 



• 
II 

II 
II 

II 

II 

II 

II 

II 
II 

II 

II 
II 

• • 
II 

II 

S-TCAT User's Guide 

E._Ile Qpt1on Zoo11 ln Zoori1 ~t ~tew Source itat1st1cs E,r1nt ~tat1on !!'IP 

) 

(c ) C~19ht 1990-94 Software P.esearch, Inc . 

FIGURE 125 Source Viewing 

291 



CHAPTER 18: Graphical User Interface (GUI) Tutorial 

292 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

-· 
II 

• 
II 

II 

II 



• 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 
II 
~ 

• 
II 

II 

CHAPTER19 

Testing Guidelines: S-TCAT/C 
This section presents some general guidelines that are of help during the rigorous soft­
ware testing process imposed by 5-TCAT/C. 

The user should realize that these guidelines may have exceptions. The 
purpose of stating them is to establish some basic scale information. 

1. The number of call-pairs in a candidate program is usually about 20 
to 30 percent of the number of statements. 

2. The number of tests required to achieve 51 >= 95% (a minimum 
threshold for test completeness) tends to be about 25 to 50 percent of 
the number of call-pairs. 

3. Typical programmers -- who do not have the benefit of detailed cov­
erage analysis -- normally produce programs that are only 25 to 50 
percent 51 tested. 

4. The execution-time overhead associated with instrumentation is in 
the neighborhood of 20 to 30 percent additional execution time and 
execution code. It can be higher if the program you are analyzing is 
very complex. 

5. The trace files produced from your instrumented program should be 
moderate in length. If they become too large, then you should con­
sider removing the instrumentation from some of the code. 

293 



CHAPTER 19: Testing Guidelines: S-TCATIC II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
I 
II --
II 

II 
294 II 



II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 

II 

II 

• 
II 

CHAPTER 20 

Syste:m Restrictions and 
Dependencies 

Certain restrictions exist in the way S-TCAT/C can be used. They are summarized here. 

• It is important to recognize that S-TCAT/C can only be used 
with "legal" "C" programs. Non-legal constructions may pass 
through S-TCAT/C, but results cannot be guaranteed. 

• The function names EntrMod, ExtMod , TCATFH, St race , 

and Ft race are reserved for the runtime calls. 

• Both the instrumentor ( s-ic ) and system coverage analyzer 
(scover) take identifiers (function or variable names) that are 
up to 128 characters long. 

• Conditional expressions in "C" (of the form " expr? expr: expr ") 
are not supported; they must be expanded to the explicit " if. .. [e­
lse] ... "form. 

295 



CHAPTER 20: System Restrictions and Dependencies 

296 

II 

II 

II 

II 

II 

II· 
II 

II 

II 

II 

II 

•• 
II 

II ---
11 -
II 

• 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 

II 

II 

II 

II 

CHAPTER 21 

References 

1. E. Kit, State of the Art "C" Compiler Testing, Tandem Computers, Inc., 
1988. 

2. E. Uren, E. Miller, J. Irwin, Automated Software Testing -- Case Studies, 
IEEE Conference on Software Maintenance, Austin, Texas, September 
1987. 

3. B. Boehm, Software Engineering Economics, Prentice-Hall, 1984. 

4. Software Research, Inc., TCAT-PATH User's Manual, 1989. 

5. W. G. Bently, E. F. Miller, Ct Coverage -- An Initial Evaluation, Confer­
ence Proceedings, Quality Week 1989, Software Research, Inc., San 
Francisco, California, May 1989. 

297 



CHAPTER 21: References II 

II 

II 

II 

II 

II· 
II 
~ 

II 

II 

II 

II 

II 
'--

II 
'--

II --
II 
'--.. 

II 
298 II 



II 
II 

II 

II 
II 
II 

II 

II 
II 
II 
II 

-
II 

II 

II 

II 
II 

CHAPTER 22 

Xdigraph Utility 
Xdigraph is a utility which helps the user graphically understand a program's structure 
and flow. 

22.1 

22.2 

22.2.1 

22.2.2 

Purpose 

The Xdigraph utility draws digraphs, based on archive files from TCAT 
and 5-TCAT. Digraphs are composed of edges and nodes. Edges are 
derived from segments (also known as logical branches) representing sets 
of consecutive program statements, or a program's "actions" (see Figure 
1). Nodes are the places or "states" where the actions occur. 

Xdigraph File Format 

The format for a digraph chart file is very simple. 

All digraph files: 

• # in Col. 1 is a comment and is ignored (except# digraph .. . ) 

• Each line specifies an edge as a set of four strings: # digraph,tail, 
head, edge-name. 

• The first blank line in any digraph definition region ends the scan 
for data (except if there are multiple-digraphs, explained below). 
Material after the first blank line is ignored. 

• The topmost node in the display is always taken as the first­
appearing node in the list of tail-nodes. 

• If the digraph is ill-formed for any reason, then an error may 
result. Xdigraph tries to draw a picture in all cases. 

Multiple digraph files: 

• A multiple digraph file contains digraphs for many modules, 
each of which is identified with a formatted comment as follows: 

• # digraph for 'module-name' in file 'file-name' This line precedes 
the digraph that corresponds to the module named "module-

299 



CHAPTER 22: Xdigraph Utility 

22.3 

900 

name" . There can be many digraphs in the file, each preceded by 
this line. 

• When there are multiple digraphs in the submitted file, Xdigraph 
always draws a picture of the first-occurring one. You can select 
OTHER digraphs from the file using the Load New Module but­
ton from the File pull-down menu. 

Invoking Xdigraph 

To invoke Xdigraph from the command line, type: 
Xdigraph filename 

Options: 

[ -A archive file ] 

[ -B filename ] 

[ -H filename ] 

[ -dig ] 
[ -h ] 

This will result in a digraph being drawn onscreen based on the file­
name given. The switches have the following values: 

-A archive file 

-B filename 

-H filename 

-dig 

-h 

Archive file name. Default is 'Archive'. 

Spine file .This will change the text string for the di­
graph's nodes; the program will use the text settings 
for the filename typed after -B. 

Highlight specified file . File called will come up in 
"highlight" mode; program searches for file with .pth 
extension. 

This switch specifies that the default TCAT.dig file 
will be drawn on the digraph. 

This switch brings up Xdigraph's help window. 

You can also invoke the utility by simply typing its name: 
Xdigraph 

In this instance, a blank main window will appear, and you can use the 
File pulldown menu to call up a file . 

II 
II 

II 

II 
II 
II 

II 

II 
II 
II 
II 

• 
II 

II 

II 

II 

II 



II 
II 

II 
II 
II 
II 
II 
II 
II 

• 
II 

II 
II 
II 
II 

II 
II 

FIGURE 126 

A 

B 

B 

B 

A C 

Succession State­
ment 

Statement A: 

Statement B: 

Alteration State­
ment 

statement A; 

if condition then 

statement B; 

else 

Iteration State­
ment --while 

Statement A; 

while condi­
tion loop 

Statement 

Case State­
ment -case 
element is 
when value-
1--

Statement 
A· 

Program edges as represented in a digraph 

TCAT/C User's Guide 

301 



CHAPTER 22: Xdigraph Utility 

22.4 

FIGURE 127 

Xdigraph Main Window 

1 

<c> Cop,,1ght 1992-1994 Soft wcire Research, 

Xdigraph Main Window 

Using Xdigraph, you can display a program's digraph and annotate it in 
a variety of ways. From Xdigraph's Main Window menu bar, nine 
options are available. 

22.4.1 File 

22.4.2 

22.4.3 

302 

This window allows you to select the file which will be displayed in the 
digraph. 

Options 

This window allows you to choose the characteristics of the nodes and 
edges displayed in the digraph, including shape, size, and color, as well 
as the scale for the Zoom In & Zoom Out options. 

Zoom In 

This window allows you to narrow the focus of the digraph, so that you 
can see it in more detail. There are maximum amounts that you can 
reduce or enlarge graphics, depending on what machine you are using. 

II 

II 

• 
II 
II 
II 
II 
II 
II 

• 
II 

II 
II 
II 
II 
II 
II 



II 
II 
II 
II 
II 
II 
·11 
II 
II 
II 
II 
II 
II 

II 
II 

I 
II 

22.4.4 

22.4.5 

22.4.6 

22.4.7 

22.4.8 

22.4.9 

TCAT/C User's Guide 

Zoom Out 

This window allows you to expand focus of the digraph, so that you can 
see it in wider perspective.There are maximum amounts that you can 
reduce or enlarge graphics, depending on what machine you are using. 

View Source 

This window allows you to view the source code for the current digraph. 

Statistics 

This window allows you to display pertinent statistics about the digraph, 
including node and edge counts, cyclomatic number, and path informa­
tion. 

Print 

This window allows you to set the parameters and print the digraph. 

Annotation 

This window allow you to set the maximum and minimum thresholds for 
the nodes and edges in the digraph, as well as its path file. 

Help 

If you have a problem using Xdigraph, click on Help. Click your mouse 
on the Action pull-down menu and select Search. You will then get an 
Enter String to search dialog box. Click on the blank area and type the 
name of the option or function with which you need help. 

NOTE: All these windows will be explained in further detail on the fol­
lowing pages. 

303 



CHAPTER 22: Xdigraph Utility 

22.5 

FIGURE 128 

22.5.1 

22.5.2 

304 

File Pull-Down Menu 

- 1 ii<iio,ooh·v..- 2.7 u11i8194> [ - 1 

~ I Qptiont Zoo,i In ZC>Ofll ~ t \ltew Sotrce 2.tatistlcs Pr1r,t Annotation 

b,.oad Hew Graph ••• 

Load New t!>dule ••• 

Set f!-ch1ve 

~xit 

Digraph File Pull-Down Menu 

Load New Graph 

!!elP 

! 

Click your mouse on the File pull-down menu shown above. Drag the 
mouse to Load New Graph. The File Message Box Pop-Up (Figure 129) 
will appear onscreen. 

Load New Module 

You use the Load New Module option if you have a multiple-digraph file 
and you want to choose a specific module in that file to be displayed. 

When you click on this button the display shows you the set of available 
module names, taken from the multi-module digraph file that you have 
selected. You can then choose the module to be displayed . As soon as 
you click on OK, Xdigraph replaces the picture you have (if any) with the 
one corresponding to the named module. · 

II 
II 

• 
II 

II 
II 
II 
II 

• 
II 

II 
II 
II 
II 
II 

• • 



II 

II 

II 
II 

II 
II 
II 

II 
II 

II 
II 
II 

II 
II 
II 

II 
·II 

22.5.3 

22.5.4 

TCAT/C User's Guide 

If you don't have a multiple-module digraph file then this window may 
show no names. This is not an error but indicates that there are no mod­
ule names specified. 

Set Archive 

The default Archive file is "Archive" but you can change this to any file 
you wish using the Set Archive option. After you push the button you 
will be given a file-selection popup. Select the file you want to use as the 
Archive file and click on Apply to confirm that choice. The current name 
of the Archive file is shown in the filename section of the window. 

NOTE: The Archive file can have two formats, one for branch coverage 
(from TCAT) and one for call-pair coverage (from 5-TCAT). It is important 
that the Archive file you are using reflects the kind of data appropriate for 
your display. Otherwise the annotation function will "fail" -- and the dis­
play will remain unannotated. 

Exit 

To close the current digraph window, select Exit from this pull-down 
menu. 

305 



--
CHAPTER 22: Xdigraph Utility 

22.5.5 

FIGURE 129 

22.5.6 

22.5.7 

306 

Digraph File Message Box 

1/ graphics/ documentat ion/di graph/ *. di 9 

Directori es Fi Jes 
r --------

- ~ : example . chk_char. di g 
example .ma in .dig 

screens example.proc_input.d ig 
if .d ig 
seg.di g 
sw i tch. di g 
while.di g 

·w/st w/graphics/ document ation/digraph/ 

Digraph File Message Box 

The message box in Figure above will pop up after you click the mouse 
on Load New Graph or Load New Module. The available options will 
allow you to choose the file to be represented in the digraph. 

Filter 

Allows you to limit the number of files that will be searched for; as above, 
only those ending in .dig will be included. 

Directories 

The directory from which the file is chosen to display in the digraph. 
Click on the chosen directory; it will show as darkened on the screen. Use 
the scroll bar at the bottom of this box if you cannot read the entire path­
name of the directory. 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 

• 
II 

II 
II 
II 

• 
II 



-
II 
II 
II 
II 
II 
II 

II 
II 
II 

-
II 
II 
II 
II 

• 
II 

22.5.8 

22.5.9 

22.5.10 

22.5.11 

22.5.12 

TCAT/C User's Guide 

Files 

The actual file name selected to display in the digraph. Click on the file 
name, and the choice will be displayed in the Selection box. Use the scroll 
bar at the bottom of the box if you cannot read the entire filename. 

Selection 

Displays the file name selected in the Files box, or you can type in 
another name. 

OK 

Click OK when the desired file name is in the Selection box. The file 
named will then be represented as a digraph. 

Filter Button 

Clicking on this button will activate the filter limitations specified in the 
Filter box at the top of the window. 

Cancel 

To exit the window, without saving any changes, click on the Cancel but­
ton. 

307 



CHAPTER 22: Xdigraph Utility 

22.6 

FIGURE 130 

22.6.1 

22.6.2 

308 

Options Window 

Zoom Scal e: 
. 5 

NODE CHARACTERISTICS: 

Shape: Circ le 

1.0 
Size: 

1.0 
Vert ical Spacing : 

1.0 
Aspect Ratio : 

, , Appl ':J Reset 

Xdigraph Options Window 

EDGE CHARACTERISTI CS: 

Unh ighl ighted Edge: j Fu! I tone c j 
1.0 

Eccentr ici t'::l: 

Default Co lor : 

Low- leve l Color: red 

Norrnal Co lor: ,1ell ow 

High-leve l Co lor: ~reen 

Close Help 

This window will allow you to choose the scale for the Zoom In and 
Zoom Out options, the size of the digraph's nodes, and the colors of its 
edges. 

Zoom Scale 

This is the setting which affects the Zoom In and Zoom Out options. The 
default setting is 0.5, meaning a 50% reduction or enlargement is scale 
each time these buttons are used. To change the setting, move the slide 
rule left or right. Each 0.1 represents 10%, so if you slide the rule to .3, for 
example, the reduction and enlargements will be 30% each time. There 
are minimum and maximum amounts that you can reduce or enlarge 
graphics depending on what machine you are using. 

Node Characteristics 

You can choose different sizes and shapes for the digraph's nodes. You 
can also change the space between nodes, and their height-to-width ratio, 
using this window. 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 



II 

II 

II 

II 

II 
II 

II 

II 

II 

-
II 

II 

II 

II 
II 

22.6.2.1 

22.6.2.2 

22.6.2.3 

22.6.2.4 

22.6.3 

22.6.3.1 

22.6.3.2 

22.6.3.3 

22.6.3.4 

22.6.3.5 

TCAT/C User's Guide 

Shape 

You have four choices for shapes: Circle, Box, Oval or Outlined (the cir­
cle is drawn but not filled). The default setting is Circle. 

Size 

You can also choose the size of the circle, box or oval. The default size is 
1.0. 

Vertical Spacing 

This is the amount of space between nodes. The default setting is 1.0. 

Aspect ratio 

The height-to-width ratio (for ovals or box shapes only). The default set­
ting is 1.0. 

Edge Characteristics 

Unhighlighted Edge 

There are three choices: fulltone, halftone (dashes) or blank (no visible 
lines). The default setting is fulltone. 

Eccentricity 

Determines the curvature of the generated display. The default value is 
1.0, meaning the edge between the two nodes is always drawn as a half­
circle: bigger values make the picture wider, and smaller values narrower. 

Default Color 

Selects the basic color of the digraph's edges and nodes.The default set­
ting is blue. 

Low-level Color 

In all cases, if the value of the chosen annotation is below the values indi­
cated for Threshold 1, the display is done in the Low-level color. The 
default setting is red. 

Normal Color 

If the value of the chosen annotation is between Threshold 1 and Thresh­
old 2, the Normal color is used .The default setting is yellow. 

309 



CHAPTER 22: Xdigraph Utility 

22.6.3.6 

22.6.3.7 

22.6.3.8 

22.6.3.9 

22.6.3.10 

310 

High-level Color 

If the value of the chosen annotation is above the value stated in Thresh­
old 2, then the High-level color is used.The default setting is green. 

NOTE: If you have a monochrome display, then the three colors are 
expressed as a narrow, normal, and triple-wide line. 

Apply 

If you click on the Apply button, all the current settings in the Options 
window will be displayed on the digraph. 

Reset 

If you click on the Reset button, all the default settings will be restored to 
the Options window. 

Close 

If you click on the Close button, you will exit the Options window. 

Help 

If you have a problem using the Options window, click on Help. Click 
your mouse on the Action pull-down menu and select Search. You will 
then get an Enter String to search dialog box. Click on the blank area and 
type the name of the option or function with which you need help. 

II 
II 
II 
II 

II 
II 

II 

II 
II 
II 

II 
II 
II 
II 
II 
II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

22.7 

FIGURE 131 

TCAT/C User's Guide 

Zoom In/Zoom Out Window 

Zoom In feature illustrated 

These buttons allow for a narrower or wider perspective of the digraph, 
depending on what you require. Click on the Zoom In button once to nar­
row the focus of the digraph, and click on the Zoom Out button to get a 
wider perspective of the digraph. Notice the difference between the 
digraph in Figure 6 , after clicking on Zoom In once, and the same 
digraph, depicted in Figure. 

The arrow (triangle) symbols on the right-hand side and bottom of the 
window are scroll bars, which you can use to move vertically or horizon­
tally in viewing the digraph. For example, in Figure 6 above, to see the 
parts of the digraph below the node labeled 15, you would click your 
mouse on right-hand side scroll bar "down" arrow, and click on it as 
many times as necessary to get to the desired viewing point. You can also 
point, click and hold the mouse down to get to a certain area of the 
digraph. 

NOTE: These features are limited by the display capabilities of your 
machine. 

311 



CHAPTER 22: Xdigraph Utility 

22.8 

FIGURE 132 

312 

View Source Window 

Action 

I•• Se9ment 26 <end_for> **I 
} 

I ** Segment 27 <end_whi le> **l 
} 
int proc_ input ( i n_str) 
char *in_str ; 
{ 

int tempresul t = O; 
char bad_s tr [BOJ, • bad_input; 

!•• Module exarnple.proc_input **I 

int 9ot_first = 0; I•• Segment 1 <> ••I 
bad_input = bad_str; 
while( ( (_ctype_ +1) [ in_s tr[char _index) )&010) ) 

I ** Segment 2 <st art_•hi le) **/ 
char _index++;"' 

I ** Segment 3 <end_whi le> ••! 
for( ; char_index <= str len( in_str); char_index++ ) { 

I•• Segment 4 <start_for> **I 
sw1 tch (in_st r[char_1ndexl ) { 

case "O': 

View Source Option Window 

tLe lp 

This option displays the source code for the program depicted in the 
digraph. If you click on an edge segment number in the digraph's main 
window, the View Source display will move to and highlight that partic­
ular edge's source code. The source code for the edge selected will appear 
in the middle of the window. 

The arrow (triangle) symbols on the right-hand side and bottom of the 
window are scroll bars, which you can use to move vertically or horizon­
tally in this window. 

II 
II 
II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 
II 



II 
22.9 

II 

II 

II 

II 

II 

II 

II 
II 

FIGURE 133 

II 

II 

II 
II 
II 

II 

II 
II 

Statistics Window 

Path Anal!:Js i s Statistics 

File name: 

Nwnber of nodes : 
Number of edges : 
[!:Jclomati c nu,,.,ber (E - N + 2) : 

Nurober of paths : 
Average path length (segroents) 
Miniroum length path (sego1ents) 
Maxiroum length path (segments) 
Mos t iteration groups : 

Path count b!:J iterat ion groups : 
0 i terat i on group(s) : 
1 i terat i on group(s) : 
2 iteration group(s) : 
3 iteration group (s) : 

Stopped at 3 iteration groups 

Statistics Option Window 

exarnp I e. pAoc_ input.d 

18 
33 
17 

176 
17.93 
3 
36 
3 

4 
48 
84 
40 

(Path 176) 
(Path 1) 
(Path 79 ) 

TCAT/C User's Guide 

This window displays the relevant statistical information for the digraph. 

If the file you are processing has multiple digraphs on it, then only the 
displayed digraph is reflected in the Statistics calculation. 

WARNING: In some cases, particularly if the digraph is very complex, 
the Statistics calculation will take a long time. Practical internal limits 
have been set on the STW facility that computes these statistics (i.e. apg 
from TCAT-PATH) but even so the calulcation may show the "hour glass" 
symbol. 

When the limits are exceed you will see the error message that results in 
the display where the statistics would ordinarily reside. 

NOTE: The statistics generated in this window are always for the digraph 
that is on the display. 

313 



CHAPTER 22: Xdigraph Utility 

22.9.1 

22.9.2 

22.9.3 

22.9.4 

22.9.5 

File Name 

The name of the program studied in this particular digraph. 

Node and Edge Count 

The total number of nodes and edges in the digraph. 

Cyclomatic Number (Cyclomatic Complexity) 

A number which assesses program complexity according to the pro­
gram's flow of control. This flow is based on the number and arrange­
ment of decision statements in the code. The cyclomatic number can be 
calculated using the formula: 

cyclo = e - n + 2 

where n is the number of nodes in the graph, and e is the number of 
edges or lines connecting each node. 

Average, Minimum and Maximum Path Lengths 

The mathematical mean of all the paths in the program, as well as (user­
defined) minimum and maximum possible lengths. 

Path Count by Iteration Groups 

The path count by iteration groups is the total number of distinct equiva­
lence classes of program flow, figured using the one-trip loop assumption 
(for details on how this computation is done, see the TCAT-PATH man­
ual). 

The total path count has been shown to be very highly correlated with the 
overall effort required to completely test a module. 

II 
II 
II 

II 

II 

II 

II 

II 

• 
II 

II 
II 

II 
II 

II 

II 
II 



II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 
II 

II 
II 

II 

II 
II 

22.10 

FIGURE 134 

22.10.1 

22.10.1.1 

22.10.1.2 

Print Window 

Paper Size Info. 

Top Margin: _I o_.2_5_­

Left Margin: _I o_.2_5_­

Page l•Ji dth: ._I G_·.5 _ _, 

Enl argement Factors 

Width: _I 1 __ -

Height: _I 1--~ 

0 To File: ;: : ~ .:. ~; ,., ... : .. 

D To Printer: t'.·.: .. ; .. ;,,.- .. •:• 

Bottom Margin: l~o_.2_5_-

Right Mar gin : I o.25 

Page Height: l._l_l _ _, 

Font Info, 

Font Size: ._I 1_2 _ ___, 

I 1p -c 

Cancel Print Help 

Print Dialog Window 

TCAT/C User's Guide 

The image you see will be printed to a standard print device. This win­
dow will allow you to configure it for your environment. 

Paper Size Information 

Top Margin 

The distance from the top of the page to the first line. Default setting is 
0.25 inches. 

Left Margin 

The distance from the left-hand side of the page to the first character of 
type. Default setting is 0.25 inches. 

315 



CHAPTER 22: Xdigraph Utility 

22.10.1.3 

22.10.1.4 

22.10.1.5 

22.10.1.6 

22.10.2 

22.10.2.1 

316 

Page Width 

The actual horizontal length of the paper you will be printing on. Default 
setting is 8.5 inches. 

Bottom Margin 

The distance from the bottom of the page to the last printed line. Default 
setting is 0.25 inches. 

Right Margin 

The distance from the right-hand side of the page to last character on the 
line. Default setting is 0.25 inches. 

Page Height 

Actual vertical measurement of the paper to be printed on. Default set­
ting is 11 inches. 

Enlargement Factors 

Width/Height 

The enlargement factors specify the size expansion, vertically or horizon­
tally, to be applied to this particular print activity; in effect, the total num­
ber of 8.5 inch by 11.0 inch sheets onto which to draw the picture. 

Selecting 1.0 means the picture will be printed on a single 8.5 inch x 11.0 
inch sheet. Hence, width = 1.0 and height = 1.0 means to draw the image 
on a standard page. 

If you change the Width to 2.0, for example, this means the picture will be 
drawn on two pages, i.e. in such a way that two 8.5 inch by 11.0 inch 
sheets can be pasted together to make a 17.0 inch by 11.0 inch image. 

When more than one sheet is involved, the software numbers each page 
so that assembly into a larger diagram is simple and straightforward. 

The software automatically sizes the image to fit into the smallest whole 
number of page equivalents. Also, the software sizes the diagram and the 
typefaces to ''best fit" the specified size. 

Some experimentation may be required to determine the optimum size 
for the diagram you are working with. 

NOTE: The picture drawn on the printer always includes all of the infor­
mation in the diagram, even if the entire diagram is not visible because of 
a zoom setting. 

II 

II 

II 

II 

II 
II 

II 

II 

II 
II 

II 

a 
II 
II 

II 

II 

II 



II 

II 

II 

II 

II 
II 

II 

II 

II 
II 

II 
II 

II 
II 

II 

• 
II 

22.10.3 

22.10.3.1 

22.10.4 

22.10.4.1 

22.10.4.2 

TCATIC User's Guide 

Font Information 

Font name/Font size 

The default font size, 12 pt, and the default font name, Trmes-Roman, nor­
mally provide good quality pictures. Times-Roman at 12 pt is commonly 
available on most printers. 

You can choose different typesizes and type fonts depending on the sizes 
and fonts available on your computer. 

Print locator 

To File 

Will create a PostScript (.ps) file, which you can use to have the digraph 
printed on any PostScript-compatible printer. 

To Printer 

You must name the printer to which the printing of the document will be 
sent. 

When the printing has been sent to either a .ps file or a printer, a message 
box, Print action completed, will pop up. Click OK to close it. 

NOTE: The print option requires use of a Postscript-compatible printer. If 
your machine is not attached to a PostScript compatible printer then the 
Print window option will be inoperative. 

317 



CHAPTER 22: Xdigraph Utility 

22.11 

FIGURE 135 

22.11.1 

318 

Annotation Window 

• NONE: Threshold 1 Thr eshold 2 

D Nhits: 1 1110 

D NZ: 0.10 i I o.90 

D Coroplex i t\,J: 100 1110 

D Ntokens: 50 I 10 

D Nlines : 25 II 5 

D User: 10 11100 

D High! ight: I roain.pth Path fi le: 

Reset Help 

Close 1 ... 1 ___ AP_P_l\J __ _, 

Annotation Thresholds Window 

In many cases, annotation of the display is accomplished by showing the 
results of coverage testing, as reflected in the repository of multi-test cov­
erage stored in the Archive file. 

There are a number of ways to annotate the digraph. Typically this 
involves choosing a different color depending on where a particular 
parameter falls into user-specified ranges (thresholds). 

There are five built-in annotation options and one user-defined annota­
tion. 

Threshold 1 & 2 

Threshold 1 represents the lower limit, and Threshold 2 the upper limit 
desired for each annotation. The user can change the values of any thresh­
old used by clicking in the window and typing in the new value. The val­
ues won't be applied to the current calltree unless you click the Apply 
button. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

22.11.2 

22.11.3 

22.11.4 

22.11.5 

22.11.6 

22.11.7 

22.11.8 

TCAT/C User's Guide 

None 

No annotation; the digraph is left alone. 

Nhits 

Number of times an edge is executed. The edge's color is based on this 
number. Default values: 110. 

N% 

The relative number of times an edge has been executed. The color 
depends on this number's relation to the highest number of times any 
edge is exercised. Default values: 0.1 0.9. 

Complexity 

Edge complexity value; the current value of the METRIC-produced edge 
complexity for this particular edge. Default values: 10 100. 

NOTE:This setting is available only for TCAT Ver 9 or later. 

Ntokens 

Number of textual tokens on the edge. This number is a rough indicator 
of complexity, because it relates to the segment length (how many state­
ments and how complex they are) . Default values 10 50. 

NOTE: This setting is available only for TCAT Ver 9 or later. 

Nlines 

The number of code lines associated with the edge. Default values: 5 25. 

NOTE: This setting is available only for TCAT Ver 9 or later. 

User 

The outcome of calling a user-defined function, "Xdigraph.user", if that 
function exists along the current search path, is the value used to color the 
display. Default value5; 10 100. 

319 



CHAPTER 22: Xdigraph Utility 

22.11.9 

22.11.10 

22.11.11 

22.11.12 

22.11.13 

22.11.14 

22.11.15 

320 

Highlight 

The path highlight options permits you to see how a path set--typically 
one produced by apg (all paths generator)--applies to a particular 
digraph. 

Each path in the set is shown highlighted. The path number is always 
shown "on screen". You can move forward or backward in the path set 
using the mouse buttons as follows: 

• Left button: move down one path in the path set (N-1) 

• Middle button: quit the highlighting activity. 

• Right button: Move up one path in the path set (N+l) 

Path File 

This indicates the file you've selected to represent in the digraph. 

Apply 

If you click on the Apply button, all the settings changes made in the 
Annotation Thresholds window will be displayed on the digraph. 

Reset 

If you click on the Reset button, all the default settings will be restored to 
the Annotation Thresholds window. 

Close 

If you click on the Close button, you will exit the Annotation Thresholds 
window. 

Help 

If you have a problem using the Annotation Thresholds window, click 
on Help. Click your mouse on the Action pull-down menu and select 
Search. You will then get an Enter String to search dialog box. Click on 
the blank area and type the name of the option or function with which 
you are experiencing difficulty. 

Colors 

The colors of the digraph display are based on the annotation thresholds. 
They are selected in the Options window (see Section n .3 for further 
detail), and are used to distinguish the annotation to "low", "normal", and 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

-
II 

II 
II 
II 

II 

II 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

FIGURE 136 

TCAT/C User's Guide 

"high". How these colors convey information is a function of which anno­
tation is chosen. 

NOTE: Whatever annotation option is selected for the digraph will be 
displayed in the upper left-hand corner of the main window, above an 
up-pointing arrow. In the example in Figure 11, the annotation is for User. 
If the Zoom In option is chosen, however, the corner where the annota­
tion message is displayed may not be visible, and if None is the annota­
tion chosen, no message will appear. 

Sample Annotation for User Threshold 

321 



CHAPTER 22: Xdigraph Utility 

22.12 Quick Reference Guide to Xdigraph Annotations 

I Display Coloring Reflects I 
~ What Information? Preset Low/High 

Nhits Absolute number of hits per 1.0/ I 0.00 
edge (segment), from local 
Archive file . The Archive 
file is must be from TCAT. If 
not, silence. 

N% Percent of total hits in mod- 10.00/90.00 
ule for this edge (segment), 
from local Archive file. The 
Archive file must be from 
TCAT. If not, silence. 

Complexity Requires use of TCATVer 9. 100.00/10.00 

Ntokens Requires use of TCAT Ver 9. 50.00/10.00 

Nlines Requires use of TCATVer 9. 25.00/5 .00 

User "(-1,0,1) = Xdigrapb.user 10.00 / 100.00 
N Lo Hi" for all N = edge-
number The default supplied 
sample script does some-
thing naive. 

Highlight Highlights Nth path, begin- (Path File) 
ning at N=l.(Path File) Left 
button moves up one path; 
right button moves down 
one path. Assumes 
<narne>.pth file exists; apg 
generates the path list. 

TABLE 1 Quick Reference Guide for Xdigraph Annotations 

322 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II 

II 
II 
II 

II 
II 

II 

II 

II 
II 
II 
II 
II 

II 

II 

II 
II 

CHAPTER 23 

Xcalltree Utility 
The Xcalltree utility displays the caller-callee dependence structure in a software pro­
gram. The call tree is shown for the specified call-pair file--the one used when you invoke 
Xcalltree--and based on files created using the TCAT or 5-TCAT tools. 

23.1 

23.2 

Calltree Defined 

A call-pair file's relationships are annotated on the calltree, and there are 
a number of ways to do this--ten built-in annotation options and one 
user-defined annotation. This information can then be displayed and 
printed out in a variety of ways. 

Xcalltree File Format 

The format for an Xcalltree chart file is very simple. 

• # in Column 1 indicates a comment. There is no limit on the num­
ber of# comments in a file . 

• The first blank link "ends the data". This means that the informa­
tion describing a call tree chart must appear before the first blank 
lines -- and that you can have no blank lines anywhere in the data 
region. 

• After the first blank line, the rest of the file is treated as a com­
ment. 

A comment will be ignored by Xcalltree. A data line consists of a 
call-pair. The fields are separated by white spaces. 

323 



CHAPTER 23: Xcalltree Utility 

23.3 

324 

Invoking Xcalltree 

Xcalltree can be invoked from the command line by typing: 
Xcalltree filename 

[-DJ 

[-r) 

[-ml 

[-h) 

If you do this, the filename typed will be represented in the Xcalltree 
main window (see Figure 137). The switches have the following values: 

-D Maximum depth of calltree. 

-r 

-m 

-h 

You can also simply type: 
Xca lltree 

Rootname for top-most file of calltree. 

Multigraph mode. 

This switch brings up the Xcalltree help 
window. 

A blank Xcalltree main window will appear. You would then select a file 
name from the File pull-down menu. 

II 
II 
II 
II 
II 
II 
II 

II 
II 

II 

II 

II 

II 
II 

II 
II 

II 



-
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 
II 
II 

II 

-
II 

23.4 

FIGURE 137 

23.4.1 

23.4.2 

S-TCAT User's Guide 

Xcalltree Main Window 

Xcalltree Main Window 

Using Xcalltree, you can display a program's calltree and annotate it in a 
variety of ways. From Xcalltree's main window menu bar, nine options 
are available. 

File 

This pull-down menu allows you to select the file which will be displayed 
in the calltree. 

Options 

This window allows you to choose the characteristics of the nodes and 
edges displayed in the calltree, including shape, size, and color, as well as 
the gcale for the Zoom In ~ i:oom Out options. 

325 



CHAPTER 23: Xcalltree Utility 

23.4.3 

23.4.4 

23.4.5 

23.4.6 

23.4.7 

23.4.8 

23.4.9 

9~C 

Zoom In 

This option allows you to narrow the focus of the calltree, so that you can 
see it in more detail. The amount you can Zoom In is limited to your dis­
play's capabilities. 

Zoom Out 

This option allows you to widen the focus of the calltree. The amount you 
can Zoom Out is limited to your display's capabilities. 

View Source 

This window allows you to view the source code for the current calltree. 

Statistics 

This window allows you to display pertinent statistics about the calltree, 
including links, number of callpairs, calltree depth, and number of recur­
sive modules. 

Print 

This window allows you to set the parameters and print the calltree. 

Annotation 

This window allow you to set the maximum and minimum thresholds for 
the nodes and edges in the calltree, as well as its path file. 

Help 

If you have a problem using Xcalltree, click on Help. Click your mouse 
on the Action pull-down menu and select Search. You will then get an 
Enter String to search dialog box. Click on the blank area and type the 
name of the option or function with which you.need help. 

NOTE: All these windows will be explained in further detail on the fol­
lowing pages. 

II 
II 
II 
II 

-· 
II 
II 

II 
II 

II 
II 
II 

II 

II 
II 

-
II 



II 
II 
II 
II 

II 
II 
II 

II 
II 
II 
II 
II 

II 

II 
II 

II 
II 

23.5 

FIGURE 138 

23.5.1 

23.5.2 

23.5.3 

S-TCAT User's Guide 

File Pull-Down Menu 
-I . :}\(;dJltr ee Ver '".: .7 <12/i)8,"94 l (). 

' -~_[_1 le j Qpl1on- Zooflll l,r1 ZDOl'l O(!t !.tel>! Source ~tot1st1C$ E,r-1 nt ~nnotat1on 

P !:_oad New Graph ••• 

·· load Ne"' ~ul t 1 Graph ••• 

Set E!_r ch1ve 

I · j 

~}p 

n 

I 

i 
I 
C 

:: 
:> 

: .. ' 
-: ~_-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-.:::-_-_:::-_-_:::-_:::-_-_-_:::-_-_:::-_-.:::-.:::-.:::-.:::-_-_:::-_:::-_~_ ' 

File Pull-Down Menu 

Load New Graph 

To display a call tree, click the mouse on the File pull-down menu. Drag 
the mouse to Load New Graph (Figure 138). The dialog box in Figure 139 
will appear onscreen. 

Load New Multi Graph 

If there is more than one call between two nodes, the calltree will show 
each connection if Load New Multi Graph is selected. This may be diffi­
cult to see on a large calltree, so the example included in our demos direc­
tory is simple enough to see these connections. 

Set Archive 

The default Archive file is Archive but you can change this to any file you 
wish using the Set Archive button. After you push the button you will be 
given a file-selection popup. Select the file you want to use as the Archive 

file and click on 01{ to confirm l:hal choi~~- The cummt name of the 
Archive file is shown in the filename section of the window. 

327 



CHAPTER 23: Xcalltree Utility 

23.5.4 

328 

NOTE: The Archive file can have two formats, one for branch coverage 
(from TCAI) and one for call-pair coverage (from 5-TCAI). It is important 
that the Archive file you are using reflects the kind of data appropriate for 
your display. Otherwise the annotation function will "fail" -- and the dis­
play will remain unannotated. 

Exit 

If you wish to close the present calltree, drag the mouse to Exit on the 
pull-down menu, and the current calltree will disappear from the screen. 

• 
II 
II 

II 
II 

--
II 
II 

II 

II 
II 

II 

II 

--
II 



• 
II 
II 
II 
II 
II 
II 
II 

II 

• 
II 
II 

II 

II 
II 

I 
II 

23.6 

FIGURE 139 

23.6.1 

23.6.2 

23.6.3 

S-TCAT User's Guide 

Calltree File Selection Dialog Box 

Directories Fi les 

ttmillffl4i 
.-----, r . 
a l l.LP ~ . 

mi ca! 1 tree/ •• 

:a 
Select ion 

phics/documentati on/cal I tree/ 

Calltree File Selection Dialog Box 

This window pops up after you select Load New Graph or Load New 
Multi Graph, and allows you to select the file to be displayed as a call­
tree, using the following options: 

Filter 

Allows you to limit the number of files that will be searched for; as above, 
only those ending in .i.P will be included. 

Directories 

The directory from which the file is chosen to display in the calltree. Click 
on the chosen directory; it will be highlighted on the screen. 

Files 

The actual file name selected to display in the calltree. Click on the file­
name, and the choice will be displayed in the Selection box. 

329 



CHAPTER 23: Xcalltree Utility 

23.6.4 

23.6.5 

23.6.6 

23.6.7 

330 

Selection 

Displays the file name selected in the Files box, or you can type in 
another name. 

OK 

Clicking on the OK button will cause whatever file is currently in the 
Selection box to be displayed in the calltree. 

Filter 

This button activates whatever filtering has been specified in the Filter 
box at the top of the window. 

Cancel 

To close the File dialog box without selecting a file for display, simply 
click on the Cancel button. 

• • 
II 

II 
II 

II 

-
II 

II 

• 
II 
II 

II 

II 
II 

• 
II 



• 
II 
II 

II 

• • 
II 
II 

II 

• -
II 
II 

II 
II 

I 
II 

23.7 

FIGURE 140 

23.7.1 

23.7.2 

23.7.3 

Option Window 

Zoo11i Scale : 

1.0 
Horizontal Spac1n9: [ [ 

Depth : 
2048 

Root Narne: 1 lflatn 

EDGE CHARACTERI ST ICS: 

Edge Color : 
steel blue 

l,,h 1 gh 1 1 ghted Edge : 
I Fu lltone c::i ! 

D1spla~ Mode: 
Fil led c::i 

Reset 

Option Window 

Zoom Scale 

S-TCAT User's Guide 

NODE CHARACTERISTICS: 

Aspect Ratio : 

Default Color: 

Low-leve l Color: 

Normal Color : 

H1 9h-level Color: 

Close 

1.0 

• r 
blue 

r ed 

!-tel low 

!=lreen 

Help 

.9 •• 

The percentage for the Zoom In and Zoom Out functions. The default 
setting is 0.2, which means there will be a 20% enlargement or reduction. 
This value can be changed by sliding the ruler to the left (smaller) or right 
(larger). Each 0.1 is equal to 10%, thus setting the ruler to 0.4 would mean 
a 40% reduction or enlargement of the calltree each time you click Zoom 
In or Zoom Out. 

Horizontal Spacing 

The space between the nodes in the calltree. The default setting is 1.0. 

Depth 

The Depth value specifies the number of layers of the tree that will be dis­
played. The default value, 2048, is "very large" and it is unlikely that any 

331 



CHAPTER 23: Xcalltree Utility 

23.7.4 

FIGURE 141 

332 

real-world calltree will be that deep. You would set the value to a smaller 
number, e.g. 10, if you want to limit the amount of detail on the screen. 
Using a smaller value for depth tells Xcalltree to disregard all calls below 
the specified value. 

Also note that the Connections option can be adjusted to have a maxi­
mum upward and downward extent. 

Root Name 

* AnnoteAppl!,iCB 
* AnnoteCloseCB 
* AnnoteResetCB 
* AnnoteSetCB 
* AnnoteToggleCB 
* AppExitCB 
* AppHelpCB 
* ApploadCB 
* ApploadFileCancelCB 

Root Name Selection Window Example 1 

The calltree on the display is normally the first-occurring one in the call­
pairs file that Xcalltree processes. Some callpairs files contain more than 
one tree, i.e. more than one single "root" module name and the associated 
calls. If you want to view a different calltree than the one on the display, 
you do this by clicking on the Root Name button. 

The resulting root-selection window is as shown in Figure 141. Every pos­
sible function name is shown in the list in the floating window. 

II 

II 

II 

• 
II 

II 

II 
II 
II 

II 
II 

II 

II 

II 
II 
II 
II 



• 
II 

II 

• 
II 

• 
II 
II 

• • 
II 

• 
II 

• 
II 

• 
II 

FIGURE 142 

23.7.5 

23.7.5.1 

Roots: 

N XmStringGetlt.oR 
N XrnTextGetString 
N Xr,,TextSetSelection 
N ~:rn T extSetStr i ng 
N Xr,,T 099l eBut.tonGetStat.e 
N Xm T 099leBl1ttonSetState 
N XtAddCallback 
N XtAddEvent Handler 
N XtAppCreateShell ,_ _________ ......, ~ 

Selection 

I Bui ldAppHelpMenu"' 

:,;,; ,ct ············ 

Root Name Selection WindowExample 2 

S-TCAT User's Guide 

Modules that are possible "roots" for the call tree, i.e . which are not called 
by another name in the file, are shown with a"*" (as in Figure 142). These 
are shown in alphabetical order at the top of the list. 

Modules that never call another module are shown with a "-" in front of 
the name (as in Figure 144). They are sorted to the bottom of the list. 

All other modules, those which are called by some root name or are in the 
downward chain from some root -- any one of which could be chosen as a 
new "root" name -- are in the middle of the list. Simply click on the name 
you wish to be the root and the new call-tree using that name is shown. 

NOTE: If the Depth Value is set to a low number only PART of a tree may 
be visible . 

Edge Characteristics 

Edge Color 

The actual color of the edge. D~fault g~tting is steel blue . 

333 



CHAPTER 23: Xcalltree Utility 

23.7.5.2 

23.7.5.3 

23.7.6 

Unhighlighted Edge 

The kind of unhighlighted edge to use: Fulltone, Halftone (dashes), or 
Blank (no lines). Default setting is Fulltone. 

Display Mode 

Determines whether the nodes are darkened (Filled) or outlined (Out­
line). Default setting is Filled. 

Node Characteristics 

23.7.6.1 Size 

23.7.6.2 

23.7.6.3 

23.7.6.4 

23.7.6.5 

23.7.6.6 

334 

The relative size of the box representing each nodule. Boxes are used for 
"normal" functions. Circles are used for self-referencing modules. Trian­
gles are used for modules that are invoked recursively. 

Aspect Ratio 

The height-to-width ratio of the box. 

Default Color 

Selects the basic color of the calltree's edges and nodes.The default setting 
is blue. 

Low-level Color 

In all cases, if the value of the chosen annotation is below the values indi­
cated for Threshold 1, the display is done in the Low-level color. The 
default setting is red. 

Normal Color 

If the value of the chosen annotation is between Threshold 1 and Thresh­
old 2, the Normal color is used (only when some edges are highlight­
ed).The default setting is yellow. 

High-level Color 

If the value of the chosen annotation is above the value stated in Thresh­
old 2, then the High-level color is used.The default setting is green. 

NOTE: If you have a monochrome display, then the three colors are 
expressed as a narrow, normal, and triple-wide line. 

II 
II 

II 

II 

II 

II 

• 
II 

• 
II 

II 

II 

II 

• 
II 
II 
II 



• 
II 

II 

II 
II 

• • 
II 

• 
II 
II 

• 
II 

II 

II 
II 

II 

23.7.6.7 

23.8 

FIGURE 143 

S-TCAT User's Guide 

Apply 

If you click on the Apply button, all the current settings in the Options 
window will be displayed on the calltree. 

Zoom In & Zoom Out Options 

. Xc-!ll ltree v2.7 [all.1.P] 

[de Qpt1ori Zoom ln Zoo"' O':!_t '.!!_1e1,.1 Source ~tatist i cs ~int f!inotat1on t!elp 

Zoom In Option illustrated 

These buttons allow for a narrower or wider perspective of the call tree, 
depending on what you require. Click on the Zoom In button once to nar­
row the focus of the calltree, and click on the Zoom Out button to get a 
wider perspective of the calltree. Notice the difference between the call­
tree in Figure 143, after clicking on Zoom In once, and the same calltree, 
depicted in Figure 137. 

The arrow (triangle) symbols on the right-hand side and bottom of the 
window are scroll bars, which you can use to move vertically or horizon­
tally in viewing the calltree. You can single-click the mouse as many times 
as necessary to get to the desired viewing point, or for quicker response 
simply click and hold the mouse down. 

This feature iB limited by your machine's display capabilities. 

335 



CHAPTER 23: Xcalltree Utility 

23.9 

FIGURE 144 

23.9.1 

336 

View Source Window 

Widget editlnputTH12J; 
flidget editlnputT2[12J; 
Widget t hresho ldlabell; 
lJidget t hresho ldlabel2; 
Widget annoteSeparator; 
extern char fl leName[ l; 
void l.4>dateAnncteToggle(toggle, state) 
int toggle, s tate; 
{ 

I** Module UpdateAnnote Toggle **I 

int i ; 
i f ( !state) {,._ 

Xm Togg 1 eBut tonSetState ( appAnnote To991 e [ to991 e J , 1, 0) ; 
I** Cal !-pair 1 **I 

} 

else { 

I** Cal !-pair 2 **I 

I** Ca l ! -pair 3 **I 

View Source Window 

Xffl T og91 eBut tonSetState ( appAnnote T ogg 1 e [ currAnnote T 0991 e J 

currAnnoteToggle = toggle; 
GetColor(currAnnote Toggle , thresholds[currAnnote T ogglel. t 

Description of Source Code Viewing 

The source-code text you see corresponds to the diagram. The text is posi­
tioned to show you the location of the call-pair you clicked on (or the first 
call-pair in the module, if you don't have a multi-graph on the screen). 
Also, if you click on the name of a function, Xcalltree will invoke Xdi­
graph and show you the detailed structure of that function. From Xdi­
graph you can view the source from that perspective, i.e. in terms of 
edges and nodes rather than call-pairs. 

II 
II 

II 

II 

II 

II 

II 

II 

I 
I 
II 

II 

II 
II 

II 

II 



II -
II 
II 

II 
II 

II 
II 

II 

• • 
II 

' II 
II 

I 
II 

II 

23.10 

FIGURE 145 

23.10.1 

23.10.2 

23.10.3 

Statistics Window 

..... ................................... .©#W 
m k#b:.ca iTt~~ee Ver 2. 7 < 11/ 30/94) - ¥. 

Statistics Window 

Displa1:ied Tree: 
Links: 
Call-Pairs : 
Module:s:: 
Depth: 
Recursive 

i ~ 385 w 
1178 i\ 
205 ii 
8 ti 
7 _, w 

-f 
All Available 

Links: 

ij 
Trees : it 

Call-Pairs: 
~1odules: 
Depth: 
Recursi•,Je 

642 fil 
1178 ,; 
289 
8 
3 

, .,, 

S-TCAT User's Guide 

The statistics you are given by Xcalltree are in two sections, the first per­
taining to the calltree that you see on the screen, and the second pertain­
ing to the entire file of information you supplied to the call to Xcalltree. 

Links 

This is the number of module-to-module connections in the diagram. 

Call pairs 

The total number of distinct, individual caller-to-callee connections in the 
diagram. 

Modules/Depth 

Modules is the total number of different names in the calltree, and depth 
indicates the maximum depth (either for links or for call-tree pairs) . 

337 



CHAPTER 23: Xcalltree Utility 

23.10.4 

23.11 

FIGURE 146 

23.11.1 

23.11.1.1 

338 

Recursive 

If the call tree is recursive, that is, if some module calls itself or calls some 
module for which there is a "self-referencing" chain, the number of such 
functions will be shown here. 

Print Window 

Paper Size Info. 

Top Margin : I 0.25 Bottom Margi n: ._I o_.2_5 _ _, 

Left Margin: ... I o_. 2_5 _ _, Right Margin : 
10.25 

Page Wi dth : ... I s_.5 _ ___, Page Height: 111 
En I argement Factors Font Info. 

Wi dth: ... I 1 __ ..., Font Name: I nes-Rornan I 
He ight: ... I 1 __ ..., Font Si ze: ... I 1_2 __ _, 

D ToF i le: 

D To Printer: _,_, ...... .,..... ._I l_p_-_c ____ __, 

Cancel Pri nt Help 

Print Window 

The image you see will be printed to a standard print device. This win­
dow will allow you to configure the printing for your environment. 

Paper Size Information 

Top Margin 

The distance from the top of the page to the first line. Default setting is 
0.25 inches. 

II 
'-

' II 

II 

II 

II 

II 

II 

II 

I 
II 

II 
II 
II 

• 
II 
II 



II 

II 

II 

II 

II 

II 

II 

II 

I 
II 

II 

II 

II 

II 

• • 
II 

23.11.1.2 

23.11.1.3 

23.11.1.4 

23.11.1.5 

23.11.1.6 

23.11.2 

23.11.2.1 

S-TCAT User's Guide 

Left Margin 

The distance from the left-hand side of the page to the first character of 
type. Default setting is 0.25 inches. 

Page Width 

The actual horizontal length of the paper you will be printing on. Default 
setting is 8.5 inches. 

Bottom Margin 

The distance from the bottom of the page to the last printed line. Default 
setting is 0.25 inches. 

Right Margin 

The distance from the right-hand side of the page to last character on the 
line. Default setting is 0.25 inches. 

Page Height 

Actual vertical measurement of the paper to be printed on. Default set­
ting is 11 inches. 

Enlargement Factors 

Width/Height 

The enlargement factors specify the size expansion, vertically or horizon­
tally, to be applied to this particular print activity; in effect, the total num­
ber of 8.5 inch by 11.0 inch sheets on which to draw the picture. 

Selecting 1.0 means the picture will be kept on a single 8.5 inch x 11.0 inch 
sheet. Hence, width= 1.0 and height= 1.0 means to draw the image on a 
standard page. 

If you change the width to 2.0, however, this means the picture will be 
drawn on two pages, i.e. in such a way that two 8.5 inch by 11.0 inch 
sheets can be pasted together to make a 17.0 inch by 11.0 inch image. 
When more than one sheet is involved, the software numbers each page 
(on the bottom center) so that assembly into a larger diagram is simple 
and straightforward. To assemble a diagram, start with sheet #1 in the 
lower left-hand corner . 

The software automatically sizes the image to fit into the smallest whole 
number of page equivalents. Also, the software sizes the diagram and the 

typ!:!fa~~S h~ ''best ht11 the specified she. 

339 



CHAPTER 23: Xcalltree Utility 

23.11.3 

23.11.3.1 

23.11.4 

23.11.4.1 

23.11.4.2 

340 

Some experimentation may be required to determine the optimum size 
for the diagram you are working with. 

NOTE: The picture drawn on the printer always includes all of the infor­
mation in the diagram, even if the entire diagram is not visible because of 
a zoom setting. 

Font Information 

Font name/Font size 

The default font size, 12 pt, and the default font name, Tunes-Roman, nor­
mally provide good quality pictures. Times-Roman at 12 pt is commonly 
available on most printers. 

You can choose different typesizes and type fonts depending on the sizes 
and fonts available on your computer. 

Print locator 

To File 

Will create a PostScript (.ps) file, which you can use to have the calltree 
printed on any PostScript-compatible printer. 

To Printer 

You must name the printer to which the printing of the document will be 
sent. 

When a printing has been sent to either a .ps file or to a printer, a message 
window saying Print action completed will pop up. Click OK to close 
this window. 

NOTE: The print option requires use of a PostScript-compatible printer. If 
your machine is not attached to a PostScript compatible printer then the 
Print window option will be inoperative. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 



II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 
II 

• 
II 

II 

23.12 

FIGURE 147 

23.12.1 

S-TCAT User's Guide 

Annotation Window 

II NONE: Thresho ld 1 Threshold 2 

0 SO: 0.50 0.50 

D N1nvokes : 

0 S1 : 0 .50 0. 90 

0 Cl : 0.60 0.85 

0 C~c lo: 25 12 

Cl Nsegs : 50 10 

D Npairs : 25 

D Nl ines : 

D Ntokens: I 1000 I 10() 

0 Npaths : 1300 I I 50 

0 User: 110 I I 100 

D Connect 1 ons 5 I 5 

Rese t Help 

Close 11 Appl~ 

Annotation Window 

Annotation of the display (using the Annotations button), in many cases 
is accomplished by showing the results of coverage testing, as reflected in 
the repository of multi-test coverage stored in the Archive file. 

There are a number of ways to annotate the calltree. Typically this 
involves choosing a different color depending on where a particular 
parameter falls into user-specified ranges (thresholds). 

There are ten built-in annotation options and one user-defined annota­
tion. 

Threshold 1 & Threshold 2 

Threshold 1 represents the upper limit, and Threshold 2 the lower limit 
desired for each metric. You can change the values of any threshold used 
in the annotation of the call tree by clicking in the window and typing in 
the new value. The values WON'T be applied to the current calltree 
unless you click the Apply button. 

341 



CHAPTER 23: Xcalltree Utility 

23.12.2 

23.12.3 

23.12.4 

23.12.5 

None 

No annotation is shown. 

so 
The current value of the SO metric is used to cover the display. 

Ninvokes 

The current number of invocations of the module is used to color the dis­
play. 

S1 

Call pair coverage. The current value of the S1 (module coverage) metric 
is used to color the display. 

23.12.6 C1 

23.12.7 

23.12.8 

23.12.9 

23.12.10 

342 

Branch coverage. The current value of the Cl (module coverage) is used 
to color the display. 

Cyclo 

Cyclomatic complexity. The value of the cyclomatic complexity is used to 
color the display. For this annotation to work, you must choose a file with 
a .dig suffix. 

Nsegs 

The number of segments in the module is used to color the display. 

NOTE: This annotation works only with TCAT Ver 9 or later. 

Npairs 

The number of call-pairs in the module is the metric used to color the dis­
play. 

Nlines 

Number of source lines. The number of non-blank lines in the module is 
the metric used to color the display. 

NOTE: This annotation works only with TCAT Ver 9 or later. 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

• 
II 

II 



II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

23.12.11 

23.12.12 

23.12.13 

23.12.14 

23.12.15 

23.12.16 

23.12.17 

23.12.18 

S-TCAT User's Guide 

Ntokens 

The number of tokens (i.e. non-blank strings, or "words") in the module 
is the metric used to color the display. 

NOTE: This annotation works only with TCAT Ver 9 or later. 

Npaths 

The number of paths in the selected module, as computed by apg, is the 
value used to color the display. 

User 

User-defined function. The outcome of calling a user-defined function, 
"Xcalltre.user", if it exists, is the value used to color the display. 

Connections 

The Connections option can be adjusted to have a maximum upward and 
downward extent. 

Apply 

After setting the desired thresholds, click Apply to display them in the 
current calltree. 

Reset 

To restore the default settings to the window, click on Reset. 

Close 

To exit the Annotation window, click on Close. 

Help 

If you have a problem using the Annotation window, click on Help. Click 
your mouse on the Action pull-down menu and select Search. You will 
then get an Enter String to search dialog box. Click on the blank area and 
type the name of the option or function with which you are experiencing 
difficulty. 

NOTE: In certain cases, the annotation you select may not be displayed 
immediately, dependinQ on the complexity of the calltree. In such 

instances the pointer will convert to a "clock" symboi, and you wUl have 

343 



CHAPTER 23: Xcalltree Utility 

FIGURE 148 

344 

to wait until it reverts to the pointer symbol for the annotations to take 
effect. 

When annotating the calltree, you may attempt to annotate an object file 
that is supplied through X or the machine language, to which you will 
not typically have the source code. In the case where you click on a mod­
ule of this type, the following message box will pop up: 

(S) Xca l I tree: Module 'XAI locColor' NOT DEFINED in reference f i le. 

Xcalltree "NOT DEFINED in reference file" message box 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



II S-TCAT User's Guide 

23.13 Quick Reference Guide to Xcalltree Annotations - Display Coloring Reflects Preset Low/ 
Function What Information? High 

II so Whether module was/wasn't invoked, from 50.00 I 50.00 
Archive file. Shows onlytwo colors on dis-
play, low and high . The Archive file must be 

II from S-TCAT If not, silence. 

Ninvokes Number of times module was invoked, from l / 25 
Archive file . The Archive file is assumed to 

II be one from S-TCAT If not, silence. 

SI SI value for module, from Archive file . Mod- 50.00 I 90.00 

II 
ule name must appearin Archive; else no 
default color. The Archive file is assumed to 
be one from S-TCAT If not, silence. 

II 
Cl CI value for module, from Archive file. 60 I 85 

Assumes module name appears in Archive; 
else no color. The Archive file must be from 
TCAT If not, silence. 

II Cyclo Cyclomatic number retrieved from a call to 25 /12 
apg <name>.dig -X cyclo.This annotation 
requires that TCAT-PATH have been run and 

II thus that the <name>.dig file for the module 
exists. NO error messages are given for 
<name>.dig's not found, but they keep the 

II default color. 

Nsegs The number of segments in the module. 50.00/10.00 

II 
Requires use of TCAT Ver 9. 

Npairs Number of call-pairs in module, from Archive 50.00/ 10.00 
file.The Archive file must be from S-TCAT If 

II 
not, silence. 

Nlines Number of source lines. The number of non- 250.00 I 50.00 
blank lines in the module is the metric used to 

II 
color the display 

Requires use of TCATVer 9. 

Ntokens The number of tokens (i.e. non-blank strings, 1000 / 100 

II or "words") in the module is the metric used to 
color the display. 

Requires use of TCAT Ver 9. 

II TABLE 2 Quick Reference Guide to Xcalltree Annotations 

II 

II 345 



CHAPTER 23: Xcalltree Utility 

346 

Display Coloring Reflects Preset Low/ 

~~---H_ig_h __ _ 

Npaths 

User 

Connections 

TABLE 2 

Number of paths in module retrieved from apg 300.00 / 50.00 
<name>.dig -X npaths. This annotation 
requires that TCAT-PATH have been run and 
thus that the <name>.dig file for the module 
exists. NO error messages are given for 
<name>.dig's not found. 

"(-1,0,1) = Xcalltree.user N Lo Hi" for all N= 10.00 I 100.00 
pair-number. The default supplied sample does 
something naive. 

Up and Down +5, -5 callers/callees from 
clicked function . 

Quick Reference Guide to Xcalltree Annotations 

II 

II 
II 
II 

II 
II 
II 
II 
II 
II 

II 
II 
II 

II 

II 

II 

II 



II 

II 

II 
II 

II 

II 

II 
II 

II 
II 

II 

II 

II 

II 

II 

I 
II 

Index of Terms 
Symbols 
. dig file 104 
. i.A file 104 
. i.c file 104 
. i.L file 104 
. Xdefaults file 107 
.dig file 24 

A 
-a option 169 
a.out 109 
ACTIONS menu 232 
Analyze Window 38 
Archive file 167, 217 
archive file 116,122,215,263,265 
Archive Files 220 

B 
bottom-up testing 7, 8 
boundary conditions 193 
branch coverage status 76 
branch/segment coverage 2 

C 
C compiler 111 
C1 and S1 instrumentation 162 
C1 coverage 2, 76, 87, 158 
C1 coverage value 75 
C1 value 74, 77, 174, 176 
call-pair coverage 2 
Call-Pair Listing file 260 
CAPBAK 11 
-ce option 159 

Change the report width to button 122 
command line instructions 16 
command line usage, TCAT 157 
commands, MS-DOS 237 
compile, modified program 73 
compilers, C 111 
compilers, UNIX 111 
Compiling 28 
compiling & running 3 
compiling, instrumented program 108 
Configuration File 234 
configuration file processing 231 
configuration file, S-TCAT 229 
cost benefit analysis, use of S-TCAT 186 
cover command 167 
coverage analysis reports 261 
coverage analysis tools 1 
coverage analyzer 73 
Coverage Analyzer Options 121 
Coverage file, creation of 122 
coverage reports 3 
Coverage Reports, definitions 42 
Cross Development 214 
cross-compile 178 
cruno - Raw Tracefile 212 
crun0.o 108 
crun1 - Standard Tracefile 212 
crun1.o 108 
crun1 .o file 30 
cruna.o 109 
cumulative coverage report 221 
Cumulative Report 219 
Cumulative report, defined 42 
customizing TCAT 179 
-cw 197 

347 



Index of Terms 

D 
data structures 6 
de- instrumentation feature 162 
default runtimes 176, 239 
default trace file name 110, 221 
De-instrumented File Switch 169 
De-instrumented Module List Switch 169 
demos directory 14 
development system 178 
Directed Graph Listing 24 
Directed Graph Listing file 104 
directive processing 163 
directives 162, 175 
DOS, preprocessing rules 200 
Dynamic 189 
Dynamic Analysis 6, 189 

E 
embedded system 210,211 
embedded system usage 178 
Error Listing 24 
error rate prediction 11 
example, instrumented program 245 
example.c 270 
example.c program 14, 20 
example.i file 22 
example.i.A 58 
example.i.c 58 
example.i.E 58 
example.i.L 58 
example.i.S 58 
EXDIFF 11 
Execute window 26 
Execute window, ivoking & using 106 

F 
-ffile 169 
file naming conventions, S-TCAT 209 
file naming conventions, TCAT 161 
filename.c file 260 
FILES menu 232 
-fl value 197 
for statement 164 
function call 196 
function calls 3, 34, 53 
function definition boundary 163 

348 

G 
Generate list of functions not included in 

report button 121 
Generate list of functions with C1> 

button 121 
graphical user interface 89 
GUI defaults 179 
GUI Operation 89 
GUI parameters 179 
GUI) Tutorial 275 
GUI, OSF /Motif style 89 

H 
-H 170 
-H option 265 
-h option 267 
header information 58 
-help 170 
Help window 91 
help, on-line 91 
Hit and Not Hit reports 219 
Hit Report 265 
Hit report 75 
Hit Report Switch 170 
host 210 

i.S file 104 
ic instrumentor 158 
if statement 164 
Ignore Errors Switch 197 
Instrument window 18 
instrumentation 3, 24, 53, 58, 98 
instrumentation, C1 & S1 162 
instrumentation, completion of 104 
instrumentation, single/multi modules 7 
instrumented program 73 
Instrumented source 161 
Instrumented Statistics file 24, 68, 104 
instrumenting 249 
instrumenting, with make files 99 
instrumentor 199, 241 
lnstrumentor command 101 
lnstrumentor options 101 
instrumentor options 159 

II 
II 
II 
II 

II 

II 
II 
II 

II 
II 
II 
II 
II 

II 

II 

II 

• 



II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 

L 
-I option 269 
Linear Histogram 267 
Linear Histogram Report Switch 169 
Linear Histogram report, listing 78 
linking, object files 109 
Linking the Application 32 
-lj 198 
Logarithmic Histogram report 269 
Logarithmic Histogram Report Switch 169 
Logarithmic Histogram report, listing 79 
logical branch 3, 98 
logical branch coverage 14 
logical branch marker 58 
logical condition 2 
logical path coverage 2 

M 
-m 170,198 
-m6 198 
Make command 115 
make file 111 
make files 112, 175 
make utility 115 
Manual Analysis 6 
memory models, Microsoft C 212 
Microsoft C 200, 238 
Microsoft C 6.0 compiler 237 
Minimal Output Switch 170 
mkarchive Utility 70 
mkarchive utility 174 
mksarchive 225, 226 
module testing 2 
modulename.dig 58 
MS-DOS Runtimes 212 
MS-DOS runtimes 237 
MS-DOS, UNIX environments 202 
Multi-Tasking runtime 214 

N 
-n 198 
-N, -n 170 
New Archive File Name Switch 169 
New Archive name button 121 
Newly Hit Report 266 
Newly Hit report 76, 77 

STW/Coverage/C User's Guide 

Newly Hit Report Switch 170 
Newly Missed Report 266 
Newly Missed report 77 
Newly Missed reports 219 
-NH 170 
-NH option 266 
-nl file 170 
-NM option 266 
Not Hit call-pair 254 
Not Hit report 76, 254 
Not Hit Report Switch 170 
Not Hit report, defined 42 
Not Hit reports 219 
null archive files 225 

0 
object code 73 
object modules 32 
Old Archive name button 121 
on-line help 91 
on-line help, S-TCAT 231 
OPTIONS menu 233 
OSF/Motif 89 

p 
-p option 263 
parsing, candidate source code 196 
parsing, source code 158 
passive "directives" 162 
Past Report 219, 263 
Past Test report 74 
percent coverage recommended 4 
Preprocessed source file 161 
Preprocessing 102 
preprocessing 22,23,57,131,249 
Preprocessing Source Code 57 
preprocessing source code 241 
preprocessing step 100 
Preprocessor command 101 
Preprocessor options 101 
Preprocessor output suffix 101 
program module 18 
program statistics 259 

a 
Quick Start 13 

349 



Index of Terms 

quick.trc file 40 
quiet 34 
quiet runtime 34, 73, 108,177,212 

R 
re file, S-TCAT 229 
recommended amount of coverage 53 
Reference Listing 24 
Reference Listing File 120 
Reference Listing file 254 
reference listing file 3, 53 
Reference Listing report 120 
Reference Listing report, defined 42 
Reference report, listing 80 
reliability modeling 11 
Resource files 179 
runtime modules, description 177 
runtime object module 30 
runtime object modules 108, 110 
run-time parameters, S-TCAT 234 
runtime routines 211 
runtime, forking 214 
runtimes, MS-DOS 212 
runtimes, non-standard 178 

s 
-h name 169 
-I name 169 
S1 call-pair coverage 195 
S1 coverage 2, 192, 195, 219 
S1 coverage, definition 191 
S1 metric 261 
S1 value 225,263,273 
S1/C1 coverage, relationship 191 
scover 217, 261 
scover command 219 
scover, syntax 220 
Segment Count Listing file 24, 70, 104 
Segment reference listing 161 
Set File Name option 20, 130 
Set Runtime Obj Module option 108 
s-ic 196 
Single- and Multiple-Module Testing 7 
SMARTS 11 
Sort report by module name button 122 
special runtimes 178 
special runtimes (UNIX) 213 

35D 

Specify maximum file name length button, 
defined 102 

Specify maximum function name length but-
ton, defined 102 

SR file 179 
Static Analysis 6 
S-TCAT ASCII menus 229 
S-TCAT configuration file 234 
S-TCAT configuration file, sample 236 
S-TCAT example 245 
S-TCAT.fns file 198 
stcat.rc file 229 
STW/Coverage 2 
switch statment 164 
syntax errors 57, 100, 131 
System pull-down menu 16 

T 
-t 198 
TCAT 2,200 
TCAT invocation window 16 
TCAT, GUI-version 16 
TCAT-PATH 2 
test cases 4 
testing methods 6 
threshold, proper coverage 11 
top-down testing 7, 8 
Trace Descriptor 215 
trace file 3, 24, 36, 110, 122,157,212,215, 

265 
trace file name, default 110 
trace file selection 40 
trace file, defined 108 
trace file, naming 118 
trace files, complete listing 168 
Trace.trc 110, 221 
transferring trace files 21 O 
T-SCOPE 2 
Turbo C 200 
tutorial 13 

u 
-u 198 
UNIX compilers 111 
UNIX Instrumentation 200 
UNIX, preprocessing rules 200 
UNIX/XENIX make file, example 113 

II 

II 

II 

II 

II 

-
II 

II 
II 

II. 

II 

II 

-­
II 

II 

II 

II 



II STW/Coverage/C User's Guide 

II unreachable code 211 

II 
V 
variable type rules 6 
View Report option 44 

II View Report window 123 
View Source option 71 
View Source window 48 

II 
viewing source code 48 

w 

II -w 198 
while statement 164 
window manager 14 

II X 
-x 198 

II X Window System 14 
Xcalltree utility 192, 260 
Xdefaults file 1 oo 

II 
Xtcat 16 

z 
II -z 198 

-Z file 172 
-Z option 270 

II 

II 

II 

II 

II 

II 

II 351 



Index of Terms a· 
I 
II 
II 
II 
II 

II 
11· 
II 

II 

II 
II 
II 

II 

II 

II 
9S~ • 



Segments 

5 6 

2 5 7 
;17 18 20 

. ·30 31 34 
8 49 50 

'. 7 58 60 
4 76 78 

92 94 96 
~ 

31 132 133 
1156 

1 


	STWC-00
	STWC-01
	STWC-02
	STWC-03
	STWC-04
	STWC-05

