\

|
Software
TestWorks

from Software Ref arch
/

Software TestWorks

ur)(?‘

STW/Coverage Tool Suite for C
(Book 2 of 2)

TCAT-PATH: Path Test Coverage Analyzer

T-SCOPE: Test Data Observation and Analysis System

*\ P
2

This document property of:

Name:

Company:
Address:

Phone

*\
e
)\

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT
Fax: (415) 957-0730

E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update July 17, 1995)

Table of Contents

PART I: TCAT-PATH USER’S GUIDE

CHAPTER 1: System Operalion..... . nssssiesnsssnssussmmssassasisvimnssms 1
1.1 System Features..........coocmiriiniiiiisirnes s s 1

1.2 System Information FIOW ...csussisisussimssssmsassssmsammsssasssssimmenvsssaassagsiss 1

1.3 Operating Modes ... isnireaiistissiams 2

1.4 TCAT-PATH Functional Methodology........cocceeeiiiiiiiiiiiiniinnneeneeneseeenna. 4
CHAPTER 2: Instrumentationaasssssssssssissssisssssssimmmsn sismsmsms 7
2.1 OVETVIBW .cvsusvsssssmssunsvssssesssmssssisses sassinsisussssssmress HesSNER RS RS H oS Ea e A mns 7

2.2 INSTrUMENTAYION «uciussureusmmoriammoumsuuemsmnsssssmssssins o5 immss s HER GURRET RS RO RN ERARE SRS 7
2270 The INSUMENIONcccooneronmannrerssnnsnmoninams s i 58 88emenmens bmas i s 5asass in foaisssasassans 8

2.22 The “C" INSIrUMENTONuiiiiiiiiii it e e e e e 8

2.3 Instrumenting With ‘make’ Files......ccccririiiciiiiecr e 11
2.3.1 Example MakKe' FileS......oiiiiiiiiiiie e 13

24 File SUMMArY ... snssssesss e s s e s s ee s e s e s e s s e e s s snnsasasnsnns 17

25 Embedded Systemscoeiiiiiiiicicicecee et e 17
CHAPTER 3: Compiling, Linking and Executingcccccccemmmnnmnnannes 19
3.1 Runtime Descriptions ...issisissssssininsassssssssninsssssnsssivsveisissssunsesvaasssios 19
3.1.1 <lang>trun0 - Raw Trace Filecccoiiiiiiiiiiieriieereeeee e 20

1

Table of Contents

3.1.2 <lang>trunl - Standard Trace File..usaswrssmnmmainssmmmmimsissess 20
3.1.8 MS-DOS RUNIIMES.......ccccrssmsnessscsonsasnsossasassassbsossinssbossis dhisies sevismesanssssess 20
3.1.4 Executing the Instrumented Program...........cccccceeiiiiiniiniinnenic 21
3.1.5 Performance Considerationscccccceeieeriiiiiiiiiiiiiiiiii e 22
CHAPTER 4: Utilitiescccunniscnnsnnnnnnns T SRR S ——— cenne 23
4.1 apg (Automatic Path Generator)ccccniimrrinmninncnsnnsnnnnsnenceanes 23
411 APG sususvsnsssnnssssmssssmsissss s oS S SRS 4SS SO YA S A e 20 23
015714 1[0 (= -SSR e 26

4.1.2 Sample apg OUIPULFT ..coumiuissmmsissmssmennsssmssossssssssssasissasrinmnnnssssassasassnss 27
Output of command: "apg -S example.main.dig" (ORIGINAL).........cccceovverennnen. 27

4.1.3 Sample apg OUPUL #2 ..ccccsesissmsmsismssssrmmsmsivssseissmssimssmasssasserssnyanass 27
Output of command: "apg -S example.main.dig" (REVISED):.......cccccoevveeinnnnne. 27

4.1.4 Processing Program Subgraphs with ‘apg’.........cccoeeeiiiiiiiiiincnecn, 28
4.1.5 Blocked Pairs Processing with ‘apg’..........ccccconnimreniniinnnniiee 29
4.2 cyclo (Cyclomatic Number Calculation)........ccccocmriremrissnnnissnnnssssnnnnns 29
4.3 pathcon ULility...........ccoomeemeereenaneacaccrisrsssssssissinsissnsnssnansassasasnanns 30
0 T B [0\ V7o Tot= 11 o g IS}V 01 - GO 30
4.3.2 Example INVOCAHON .couussmsesssmmssisssssssssvanusasmnnssssssnissosissnsissmngnssussnnssosses 31
4.3.3 OUPUL TOFMIAR. cosossssismsssummsnsmsmmsrsmsssssmms s sinsmm s ssass s o8 o s Eeas asmsaimss 32
4,34 EXAMPIE OURDUR cccossmnsormarserssasssmmnmunssnnsens sanassssasnssoss nmshinamnns s o 58 5515558 33
4.4 PAtNCOVOr URIlItYccoccariccraranisnsasmnisassonsansssaisisinsssassmnanmsinsinsisssavsasssvos 34
441 INVOCAtION SYNTAXoviiiiiiiiiiiiiii it 34
4:4.2 Example INVOCatON wu..uusssissssseviimssanssinssns sonssssasmsmssseianasinssssssasrsns 37
CHAPTER 5: Coverage Analyzer.........ccccccmmmnnennnnnnnnnnnnnannnnannns I - 5
5.1 ‘CLEOVRT" SYNAK civiiinmsmssassinsimamsssuanirmisssisiss st iamEsasssssssmsssa 41
CHAPTER 6: TCAT-PATH MENUS ..ccivursusnnsnsmsssansrsvesmonansssnanansussannasnase 45
6.1 TCAT-PATH ASCII MENUS ... snesesensee e s sessnsssassssssans 45
6.1.1 INVOKING TCAT-PATHooiiiieiiieiieiee ettt 46
6.1.2 TCAT-PATH MENU TIrEE ..eeeeiieeeeeeeeie ettt 47
ISSUING COMMANIAS! 110vvusvismmmsmmmaersnmmunsssmsiss sinamnsnsmss s caesssacssss vas s Lo ssos RO RATRATINS 48

Displaying Current Parameter Settingcccccceviiiiiiiiiiiiiniininiiniinnann, 48
TCAT=PATH MENLi “STACK'...coomssommsissusssmsssmmssnsssnspnms sy cimmsrsisssiss s ssssisssayinin 48

(20 B T Y/ F= 11 o 1Y, =1 o T 49
6:1.4 ACHONS MENU..ioiiumssimissmmsmsssssasssissess sisanssassssusnsnssssnsssas ssanessneesansrssosevasess 50
6.:1.5 FIles MENU ciuuscsvumsmivissnmsmisimsesasstsssnns oo sy s 5 iess s s dansessoansannssssy s sans 51
6:16 OPHONS MBI cusuunssussorvinsmmasmvensinossmmisssussssssnsess s sssmmbsassrnmatons s srrasss 52

ii

STW/COVERAGE/C User’s Guide

6.1.7 Saving Changed Option Settingsccoviiiiiiiiiiiiie e 53
6.1.8 Running System Commands.........c.c.uueeeiiiiiiiiiieiiiiiee e 54
6.1.9 Settings Command OUIPULcooeiiiiiiiiiiiiiiiiecieee e 55
6.2 TCAT-PATH Configuration File.......cs:cusssmvssessaransisssssassssmsnsassnsensesassns 55
6.2.1 Configuration File SyntaXcccccviiiiiiiiiiiiiniiiee e 56
6.2.2 Configuration File Processing.........ccooociiiiiiiiniiieieee e 58
6.2.3 Example TCAT-PATH Configuration Filecccccovverieiiiiiecieciieeeeeeeas 58
CHAPTER 7: Source Viewing Utility......ccccoeeiireieirnsnsccscneeeeeeeeeeeneneennns 59
71 INtrOAUCiON ciinciiiicusmsmsismsinncsisrmisiimtsmiiamsamsammassansnassnsassasssanannansasann 59
7.2 INVOCation SYNaXccccciririeiscinenerreineisiecesscscsssnsennsennneeesessess s ssssnnnnnnees 59
7.3 EXample INVOCAION ...:xuusmsusonsusssumsnssssassussissssnssssassssssssessssvsssssspasinsssnss 59

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, 0S/2 ..63

8.1 Instrumentation, Compilation and Linking........cccccccceiiriiiniiiscnncnnees 63
8:1:1 SIand-AlonNe File§ msuswimmunsssnsssrsnsssssssmmmessmiiasmsm i 63
8.1.2 Systems with ‘make’ FileS........coooviiiiiiiiiiieee e 64
8.1.3 ‘Make’ With ‘Cl', MSC .. oo e e e e e 64
8.1.4 Systems without ‘make’ FileS.........ccooiiiiiiiiiiieeeeee e 64
8.1.5 Program EXeCUNON :cicssumsssmmssnussssonssinsismmansissismsssmssisessssesssss siimems s 64

CHAPTER 9: TCAT-PATH Command Summary-UNIX.........cccceicnnnaees 67

9.1 Instrumentation, Compilation and Linking..........ccccocininiiiiiinnneneenneeeees 67
9.1.1 Stand=AloNe FileS cuisssmsssummmmmmsnnvsisssimmsmmisssis s isssmssmmasesssiaiives 67
9.1.2 ‘make’ files with cc called in directives...........ccooeevvieeeiiiiiiiiiie e, 68
9.1.3 A System Which Does Not Use ‘make' Files...........ccccooiiiiiiiiciiniiinnnnn. 68

9.2 Program EXeCcUtiON. . .ciscsnsinssinimsisssiasnssssssessinisssisisnissassassssssovsmnosasnne 68

CHAPTER 10: Full TCAT-PATH Example........ccccetmremmreeerreecnensssnsnasansnes 69
10.1 107 4 oo [T [o T o 69
10.2 Preprocess, Instrument, Compile and LinK.........ccceuriieieiiiicscsnnnnecnnees 73
10.3 Reference LiSting ...cccceeiiiiiiemiiiiiiceee e 78
10.4 Instrumentation Statistics.....cccccceeeiiiimeiciri e ———— 83
10.5 Path Generationc..ussssssssssssisisosssannassansssssssssassisisssssssssanssonssasisnssiss 85
10.6 TCAT-PATH RePOIS.....cccccccmiirinnnemniisssssneniesssssnnssenssnsnssssssssassssssnannanes 89
10.7 S UIIDITVATY svssssnsinssnnarsunmsssssssssssnsnssussntnensananasssiassssnsusmonnssssonessnssertnesssnsts 92

iii

Table of Contents

CHAPTER 11: Graphical User Interface (GUI) Tutorial........cccceuiiunns 93
1.1 INVOCAtION cussesanussssssssnsisnenssasssnsusnnsssssnsussansearsanssnssnsansnasassanssensansassnnnsunssse 93
1.2 Using TCAT-PATH .uiisisicusumssussnsssssnsussivsnssnssinsonsassassaiansasssanessavavssnss 95

V2.1 INSHUMBNE. crerremsrrremper s menessan i T e S s e wees 95

11.2.2 EXECUL....uiiiiiieii ettt s 99

11.2.8 Generate PANS: ...suseussiysmisssssammmssimmisss sossvinsssssvsasasisasmtisis vy 102

T1.2.4 ARBIYZE:. ... cvusonannssmnnesisnnnsmansinssnnonsndios SEasinss e i enssibinad peainssines s S50HERTIH 123
-CHAPTER 12: System Restrictions and Dependencies.................. 129
“C" Language: tP-iCcccoceiriiiiiiiiiiii e 130

Ada Language: tP-Iadasssrenesssossisisiisisoississssnivasssasissssansonsapniissiaesisiiavasess 130

FORTRAN Language: IP-it77 «osesnsivnmnssmsmsssmmssusssmmsssmvsimissvimis 130

PASCAL Language: to=Ipascalccusmasmiismsisasmmsmsisisisssemssmasassossssunvess 130

CHAPTER 13: On-Line Help Frames..........ccciummmmmmemnnsinnnnensennenennsnanns 131

CHAPTER 14: Coverage Measure Explained.......cccccovmeiiincrmnnnnnnnnnns 139
14.1 INITOAUCHION ... onunssnisnsssnssissssansussssnssanssssssssssonsvasssonsivnsesssesssnsearsnasansaninie 139
14.2 Example Paths .c.nsommmmmssmsassinisssmisisssismisaamimssissassiss 140
143 Noniterative Programscccccceriemmmnnsisesesinisssssemesensesisssesssssssssenns 140
14.4 Iterative Programs, Various Values of K........cccccccememriericncinicccennnen 141
14.5 The Exact Meaning of K. sssssssesssnnees 144
14.6 Complex Looping Structuresccccviveeemmemmrenissinnensenssssessessins 144
14.7 Practical Implications of Ct Coverage..........ccoommmmmrrrnrircensiscncnncnnnns 146
14.8 Theoretical CoNSIderatioNscsuserssnsussasssisssssansasssussssssmmisssssassusisss 146

PART II: T-SCOPE USER’S GUIDE

CHAPTER 15: T-SCOPE OVOrviewcusisseesissssussisssenssssssssansssnsnns 151
15.1 The QA Problem ...t e s eesnessssssssssssnssssssssnssnnns 151
15.2 TE SOIURION vxnnwsvunssnsussnnnnsnsnsuussnnsnexsennsnnn nusnssnssssnsssssnnssnssEamsnssasssnrssninns 151
15.3 SR'S SOIULION .ucovemseressnsnsmnenansssassnnssmnsssasansssessussnsmnssssnsanssnsasnssensnnsnasnass 152
15.4 0T 0 - | 153

iv

STW/COVERAGE/C User’s Guide

CHAPTER 16: Quick Start........ccccvveeriirmccsrnnnnnnnnnnns . ..155
16.1 Recommendationscccccvemriiiisimnin e e 155
16.1.1 STEP 1: Instrumenting Your Source Codeccccccovuveeevieeiireeeennenn. 155
16.1.2 STEP 2: Starting Up T-SCOPEccvtiiiiiiiiiiieeiee e 157
16.1.3 STEP 3: Creating an Executable..........c.cccoovvviiiiiiiiiiiiec e 159
16.1.4 STEP 4: Invoking T-SCOPEoiiiiiiiiiiieeieie e 161
16.1.5 STEP 5: Selecting Directed Graphscccoccuvvvirieiiiiiiiieie e 163
16.1.6 STEP 6: Selecting Coverage Charsccveeeiiiiiecniiec e, 165
16.1.7 STEP 7: Running the AppliCationcvswmmsmsmmsssimismivsssiimssomesoreess 167
16.1.8 STEP 8: ClEANUPccoiiiiiiiie ittt e ee e e e 170
16.1.9 STEP 9: Setting Up for S1 Coveragecccccoveeviiieieciee e 172
16.1.10 STEP 10: Running the Applicationccccocveviiiieeeiiiieecee e 174
16.1.11 STEP 10: ClEaNUPcociiieieie e e e e e e 176
16.1:12 SURIIARY: sussmunssnanssssmesmsssmsssmsssss s s sy s s i e 178
CHAPTER 17: Understanding the Interface................... SER————— 179
171 Basic OSF/Motif User Interface.......cccceecvmeeiiiiiiccccsnniniscss e cnneens 179
17.1.1 File Selection WINQOWSuussssuseummsssinsnsssmssmimsmsessisms s sssmviniosmnsss 179
17:1:2 G0 WINTOWS c:: cxcvsnninsa ssnmssnssmsmmmsnsinsssneioss 5 mamamssam i 6o tn i es s i s ik 181
17.1.3 MeESSAGE BOXES ..ottt 182
17.2 Main Window Features........ccccviimmmiriinisseninnnssnsesesnsns s snssesennas 183
17.2.1 Xoalltrale BUMON, w.uiomsmsivumsssrmmssmmsssssys s snsoms sise msssmmss s s iis sesdnssssxssss 183

FIle IMBNU .. e 184

ODHONS BUTTOM e svssomusanammeses corasmseiosis s w600 555 o080 i AT Tasss 184

Z00M IN BUTION 1ot e e 188

ZOOM OUL BUBKO.ccnt bt cion mnioiisasssssisssmss oo s s s s s s s sy s sassases 188

17:2.2 S1.Coverage BUHONususimssusmmmmssimnss sivvssvusiss s sisssssssis ssmastinivsaoan 189
17.2.3 Xdigraph BUuttoncooii 190

FHE MIONLE. . et it omennnn msimina ik S50 5605355755 545 H £ i 50 s v S EFER SR U R SRR TR HES 191

OPHONS BUON ,ocusumsmmusvsuussmysevsssyruasmmssmsssnseyosssmsimssesos s s s s Esoiss sassse 191

Z0OM IN BULO .viiiiiie ettt e e et eeenn e e et e e 194

17.2.4 ZoOM OUL BURO vvsivairssisusssmmnsvsssmsss s i ieasimsvios siesssossis s cavisinss svasames 194
17:2.5 C1 Coverage BUtOn sussswssssssummsmssasmssmms sy sy 195
CHAPTER 18: GUI Operation........ccccccuruees ereeereserrerssssssssssssessenenesnnnnnnn 197
18.1 Instrumenting Your Source Code..........ccocmmririinissmnnnssssnnnsesssssnnses 197
18.2 Creating an Executable........ccccovcimiiiiiiinmenin e ssssannnes 198
18.3 INVOKING T-SCOPEooeiiiiiiiirircete e rsens e s smnse s e s snene s 198
18.4 Selecting Directed-Graph DlsplaVS CEUTIEIIREp e ses e e e anananannes 199
v

Table of Contents

18.4.1 Adjusting a Directed-Graph's GEOMEtryccccceiiiveiiiiiiinicn i 201

18.5 Selecting C1 Coverage Chartsccccceeerrriiiiiiiciinssssnnssssennsnninesnneen, 202
18.6 Selecting Call-Graph Displaysccccccsmemiisissnssnnsiincssnsemmisssessne, 203
18.6.1 Adjusting a Call-Graph's GEOMELryccccovvreiiiiiiiiiiiieicee e 205

18.7 Selecting S1 Coverage Chartsccccccceeriiirinimnninniinssseeseneseneea, 206
18.8 Running Your Application........cccccniemirmninnsennennnnissesisssnnennn, 207
CHAPTER 19: Customizing T-SCOPe.......cccceirisssmmmmmemmermmssssssnnsnnnnnses 209
19.1 Location of Setup filescccorvvmririnniriinncir e, 209
CHAPTER 20: INA@X..ituuuuirrmmmnmnssmimmnnsssnnsensnssimsmnnsssssnnnssssssssnnsnsssssnnnnnnas 211

PLEASE NOTE: The documentation for TCAT and S-TCAT, the
other components of STW/COVERAGIE, is located in STW/COV-
ERAGE/BOOK 1.

vi

List of Figures

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE 25

FIGURE 26

W 0O N O A WN =

N DN NN = = oo e e oed o= b o -
B W N = O ©W ®©®N O O & WN =+ O

TCAT-PATH System Diagramcciuunnn 3
Uninstrumented DOS Make File..................... 13
Instrumented DOS MakeFile....................... 14
Uninstrumented UNIX Make File 15
Instrumented UNIX Make File....................... 16
Example pathconOutput0. 34
pathcover Reports. cccocvamsunsnssnensansmances 40
Source Viewing(Part1of2)........................ 60
Source Viewing (Part2of2)........................ 61
Sample “C" PrograiMi. - «s « s« ss o vis ae v eio s s & sis o 58 6759 57 72
Instrumented Program Fragment 77
Reference LIStiNG .« icscsersscenornnmasesssnonesan 82
Instrumentation Statistics 84
Digraph file for ‘main' module" 85
Digraph file for ‘proc_input'module 86
Digraph file for ‘chk_char' module 86
Digraph display for ‘proc_input' module 87
Coverage Report for ‘main'module.................. 90
Coverage Report for ‘proc_input' module 91
Coverage Report for ‘chk_char' module.............. 91
MaIn MenU . .cuisvesnivimsivasssassossnseessnssas 93
STW/COViInvocation.ccvvvecvnvencncannenas 94
Main:Menl Help..% 5 5% 555 v s 4% bds Bad 5 2 v ek 0 s 95
InstrumentMenu.............cciiiiiiiieirnennnns 96
Instrument HEIP MenNU: « o« v v s sim mio s vio wa o w0 6 s o 576 8 97
File POP-UpMENM s vnvnrreeeeeren e 98

Vii

List of Figures
FIGURE 27 Execute Menu: c« s s simes senmmminsaininmwis e wne e 99
FIGURE 28 ExecuteHelpMenuoiiiiiiinnnnn 100
FIGURE 29 Runtime Object Module Pop-Up Menu............... 101
FIGURE 30 Generate Paths Menucciiinnnnn, 102
FIGURE 31 Generate Paths HelpFrame 103
FIGURE 32 Generate Paths Pop-UpMenu 105
FIGURE 33 Generate Path Statistics Pop-Up Menu.............. 106
FIGURE 34 EditPaths Menu.c.oiiiiinirnnnnennenen 107
FIGURE 35 Edit Paths HelpFrame.cciiiinnt, 108
FIGURE 36 Set Path File Pop-UpMenu........................ 109
FIGURE 37 Save New Path File Pop-UpMenu 110
FIGURE 38 DisplayPathMenu..............cciiiiiiiiinnnn. 11
FIGURE 39 Display PathHelpFrame. 111
FIGURE 40 Set Module FilePop-UpMenu 112
FIGURE 41 Source VIEWING « « c«scxssurwssssssanssnssnsseesse 113
FIGURE 42 Path ConditionMenu..................ccoiininne. 114
FIGURE 43 Path Condition HelpFrame. 115
FIGURE 44 Set Module FilePop-UpMenu 116
FIGURE 45 Path ConditionMenu.................cccviinnnnans 117
FIGURE 46 Save New Pathcon File Pop-UpMenu............... 118
FIGURE 47 Generate Path Statistics Pop-UpMenu.............. 119
FIGURE 48 EditPaths Window.ttt it n s 120
FIGURE 49 Display Paths Menu...............ccciiiiinnnn.n 121
FIGURE 50 Set Highlight File Pop-UpMenu.................... 122
FIGURE 51 Highlighted PathDisplayt 123
FIGURE 52 Analyze Menu.viiiinnnnnnnnnnennnnnans 124
FIGURE 53 AnalyzeHelpFrame.coiiiiiniiinnnnnnnnn 125
FIGURE 54 Set Trace FilePop-UpMenu....................... 126
FIGURE 55 ViewReport Windowciiiiiinnnnnnnnns 127
FIGURE 56 Setting Up the Display (Initial Condition) 158
FIGURE 57 Creatingan Executable........................... 160
FIGURE 58 Invoking T-SCOPEc.cvnvicvnnmrnrnenencnns 162
FIGURE 59 Selecting Directed Graphsc00nats 164
FIGURE 60 Selecting C1 CoverageCharts 166
FIGURE 61 Running the Application.......................... 169
FIGURE 62 Completing a C1 Coverage Session 171
viii

STW/Coverage/C User’s Guide

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

63
64
65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
88
89
90

PreparingforS1Coverage.............ccvvuvunnns 173
Running the Application........................0. 175
Completing a S1 Coverage Session 177
File SelectionWindow.ccivinin.... 179
Search Pop-up/Help Window 181
MeSSage BOX « oo cwwsw v sm sswessessmssm e s s s 182
MainWindowciiiiiiiiiiiiiiiinennnnn 183
Call-Graph Displaycciiiiiniinnennnnnnes 184
Options Windowcoiiiiiiiiniiinnnns 185
Help WIRAOW « o« v o msm wiv 0 50 w6 o ws o w8 5 56 o 0 s 186
"Zoomed-IN" DISPIaY.: . o« s s 0 s wisvswammsmsssssmss 188
S1CoverageChartcviviiiiinnnnn.. 189
Directed Graph Display.cciiirieinnn... 190
Oplions Window : v.ccvsisnsssvssinasnasvsssnsis 191
Help WIRAOW . s i v svnrmsssnanssmus ses s msmmsssmiss 192
ZoomedInDisplayoiiiiiiiiiiiiiiiaa 194
CiCoverageChartccoiiiiiiiinrnnnnnns 195
InVOkiNg T-SCOPE .. c c cvx o 5 wswis i w5 5500 606 5 558 s 5 90 6 198
Selecting a Directed Graph Display. 199
Directed Graph Display.c.c0uuann. 200
Using the Digraph Options Window 201
Selecting aC1 Coverage Display. 202
C1 Coverage Chartcqueescnsoewiwsmiissessas 203
Selecting a Call-Graph Display 204
Call-GraphDisplaycciiiiiiiiiiiinnnns 204
Using the Call-Graph Options Window.............. 205
Selectinga S1 CoverageChart 206
S1CoverageChartciiiiiiiiinnannn. 207

ix

List of Figures

USER’S GUIDE

TCAT-PATH

Path Test Coverage Analyzer

Ver 8.1

This document property of:

Name:

Company:
Address:

Phone

!
N
- .lg

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT
Fax: (415) 957-0730

E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: July 14, 1995)

CHAPTER 1

System Operation

This chapter describes how TCAT-PATH operates and explains the major operating
modes for the package.

1.1

1.2

System Features

TCAT-PATH performs detailed path analysis of programs using a series of
processing steps. Features of the TCAT-PATH system include:

e Automatic generation of structural digraphs from submitted pro-
grams.

e Automatic generation of complete path sets based on a unique
SR-proprietary path analysis and equivalence class generation
algorithm.

e Display of structure of structural digraphs using a special
digraph visualization utility.

e Calculation of the cyclomatic complexity of programs.

e Automatic analysis of full trace files for instrumented programs

(the instrumentation is generated automatically by the built-in
TCAT-PATH instrumentor).

TCAT-PATH includes both command-line invocable processes and a fully
interactive system.

System Information Flow

Figure 1 shows an overall data flow diagram of the TCAT-PATH system
for “C" language.

The parts of the TCAT-PATH can all be command-line driven, and are
designed to be usable with the standard UNIX pipeline and redirection
facility.

In addition, a simple and friendly menu system (the user interface for the
interactive version of TCAT-PATH) assists novice users in creating special
“configuration” files which record the selection of run-time parameters,
and executing the programs with on-line help.

CHAPTER 1: System Operation

1.3 Operating Modes

As Figure 1 on the following page suggests, there are several main modes
for TCAT-PATH operation:

Analyzing a file to extract digraph information about the
included function(s) or procedures.

Viewing the digraph for a particular program, relative to a speci-
fied basis path.

Generating the set of paths that correspond to each program's
structure.

Running tests on the instrumented program to get a Ct-compati-
ble trace file of test coverage data.

Computing the Ct coverage of a module or set of modules and
producing reports.

TCAT-PATH User’s Guide

T
Instrumented tp-ic Reference
C file Listing
cyclo
—
User
Test
Data
Xdigraph
grapl I
TCAT-PATH arg
runtime
Link, load &
execute
Tracefiles ctcover Ct coverage
FIGURE 1 TCAT-PATH System Diagram

SLIYOdHA SN

CHAPTER 1: System Operation

1.4

TCAT-PATH Functional Methodology

The TCAT-PATH package consists of three main systems: the tp-i<lang>
instrumentor processor (see NOTE below), apg, and ctcover which can be
used individually as command-line invocable units, or with the TCAT-
PATH interactive menu system. In addition, there are several other sub-
functions and support scripts that can be used independently.

NOTE: The only language-dependent component of TCAT-PATH is the
instrumentor itself.

For simplicity, and because TCAT-PATH is available for a variety of lan-
guages, we refer to this element of the system in general terms as tp-
i<lang>. Typical forms for this command, which can be modified by the
user through the TCAT-PATH configuration file, are:

e tp-icf or “C" programs

e tp-iada for Ada programs

e tp-if77 for FORTRAN (f77) programs
e tp-ipascal for Pascal programs

e tp-icobol for COBOL programs

Chapter 12 describes special characteristics of the instrumentor with
which TCAT-PATH could be supplied.

Here is an informal description of how you can use the TCAT-PATH com-
ponents to measure path coverage.

The methodology for using TCAT-PATH is based on the following typical
scenario: you want to measure the Ct coverage values for a group of func-
tions that are coded a few at a time into several files.

e STEP 1: Create a Working Directory. Set up a directory in which
to keep all of your intermediate files. TCAT-PATH uses filename
extensions on basenames.

Your working directory should have copies of the source files,
plus any supporting files you need to run tests on these files after
they have been instrumented.

e STEP 2: Instrument and Generate Digraphs. You instrument and
generate digraphs by processing all of the files with the supplied
TCAT-PATH instrumentor (the specific digraph processor and
instrumentor depends on the language you are processing). If
some processed files contain more than one module (function),
then the tp-i<lang> command will split up the digraph data
and create separate digraph files each named after the corre-
sponding module.

TCAT-PATH User’s Guide

e STEP 3: Generate Paths.You use the apg command to generate
the path sets for each module. Some modules may have “too
many" paths. You have to make this determination; TCAT-PATH
does not impose internal size limits, but your situation and other
practicabilities may!

The script DoPTH can be used to generate all of the *.pthfiles for
all *.dig files in the working directory.

e STEP 4: Study Structure and Properties. Use cyclo and Xdigraph
to study the properties and structure of each *.dig file.

These two commands can help identify “too complex" modules,
and gain intuition about the internal structure of the software
you are analyzing. You may wish to avoid trying to analyze Ct
coverage for modules with more than 300 paths (for example).

NOTE: The script DoCYC helps you run the cyclo commands on all *.dig
files in the working directory.

e STEP 5: Generate Trace Files. You have to re-compile the instru-
mented programs (generated automatically by TCAT-PATH 's
tp-i<lang> command), and link them with the supplied runt-
ime object module.

e Then you execute the program as you normally would on an
uninstrumented program. The result of this will be one trace file
per test. If you have multiple tests you can append each test to
the end of each trace file (note that the trace files cannot be
reduced, because such files do not have essential segment
sequence information).

e STEP 6: Evaluate Ct Coverage. For each module, and for the set
of all trace files you think are appropriate, you call ctcover to pro-
duce the standard Ct coverage report.

This report contains an image of the *.pth file for reference pur-
poses. The script DoRPT can be used to handle generating the
*.rpt files for all basenames (for which there are *.pth files) in the
working directory.

CHAPTER 1: System Operation

CHAPTER 2

Instrumentation

This and the next four chapters tell how to use TCAT-PATH to increase test coverage and
detect more software errors. There are two ways to access TCAT-PATH: with command
line commands and with menus.

The following command line invocations are the focus of these chapters.
1. Instrumentation (marking segments)

2. Compiling and Linking with Runtime (recording and counting mark-
ers) and Executing

3. Path generation (generating complete path sets)
4. Coverage analysis (reporting path hit)

A description of how to use the menus appears in Chapter 6.

2.1 Overview

In brief, TCAT-PATH instruments the source code of the system to be
tested, that is it inserts function calls at each logical branch. The instru-
mentation will not affect the functionality of the program. When it is com-
piled, linked and executed, the instrumented program will behave as it
normally does, except that it will write coverage data to a trace file. There
is some performance overhead due to the data collection process.

The trace file is processed by a report generator described later. The file
resulting from instrumentation is then used for path generation. These
generated paths are also processed by the report generator.

Finally, the user looks at the coverage reports to assess testing progress
and to plan new test cases. New test cases are added in subsequent passes
until a threshold percentage of Ct logical path coverage has been
reached.The coverage reports guide the addition, or possibly the deletion,
of tests.

2.2 Instrumentation

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
Ct coverage at every stage of testing while behaving logically equivalent

to the original program.

CHAPTER 2: Instrumentation

221

2.2.2

In its operation, TCAT-PATH's instrumentor parses your candidate source
code, looking for logical branches. When one is discovered, the instru-
mentor inserts a function call in the instrumented version of the source
code. It is important to note that the resulting source code file is still a
legal program, as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remember,
the instrumented version will otherwise function as the uninstrumented
version.

The Instrumentor

This command reads a *.<lang> file and produces a *.dig file for each
module in the *.<lang> file. It also instruments the *.<lang> file and pro-
duces an instrumented version of the file and other reference and statisti-
cal files. For a complete listing on the files produced by the instrumentor,
please refer to Section 2.4, “File Summary.”

The generic syntax for command line calls to the instrumentor follows.

tp-i<lang> [options] file.ext [file.ext]

where,

file.ext File(s) to be instrumented. ext is language-specific
(e.g.”c” or “i” for a C file). If there are multiple files,
then each is processed in the order presented.

options Instrumentation options are also language specific.

Options for the “C" language are presented in the
next section. Options for other languages are listed in
Chapter 12.

The “C" Instrumentor

The complete syntax for command line calls to ic is listed below.
tp-ic file.ext [file.ext]
[-ce]
[-cw]
[-DI deinst-file]
[-£f1 value]
[-fn value]
[-help]
[-T]
[-13]
[-m]
[-m6]
[-n]

TCAT-PATH User’s Guide

[-t]

[-u]

[-w]

[-x]

[-z]
This command instruments submitted “C" language file(s). It takes *.i
source file(s) and produces the instrumented file(s): *.i.c (for UNIX) or *.ic
(for MS-DOS or OS/2). *.c is the “C" source file, while *.i is the prepro-
cessed file.

It is required that the user preprocess the source file through a “C" pre-
processor before passing it to tp-ic. Normally, the preprocessing com-
mand is:

cc -P file.c (for UNIX)

or

cl -P file.c (for DOS running Microsoft C)

These commands read file.c and produce file.i. The following options may
be used to vary the processing and reports generated by the instrumen-
tor.The options are listed in alphabetical order.

file.ext File(s) to be instrumented.ext can be “c” or “i”. If
there are multiple files, then each is processed in the
order presented.

-ce Preprocesses conditional expressions of the form ? a :
b.
-cw Suppresses the “Conditional Expressions Not Pro-

cessed" warning message.
-DI deinst-file

De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from instru-
mentation. Only the list of module names found in
the specified deinst-file is to be excluded from instru-
mentation. The module names can be specified in any
format. White space (such as tabs, spaces) is ignored.
This switch effects the instrumented (*.i.c) file and the
reference listing (*.i.A) file.

-f1 value Allows the user to specify the maximum length of
filename characters that are allowable on the system.
If the length of a generated filename exceeds the val-
ue, then the instrumentor output will be redirected to
files named Temp.i.?. These files can be used in sub-

sequent Processing.

CHAPTER 2: Instrumentation

-fn value The flexname switch.Allows the user to specify the
maximum characters of function names the instru-
mentor recognizes. If the function name exceeds the
value, then the instrumentor will recognize as distinct
only the first value characters of the function name.
For instance, a -fn 5 will recognize the first five char-
acters as distinct. Characters beyond that point, how-
ever, will not be recognized for function name

purposes.

-help Help Switch. Forces output to show a summary of
available switches.

NOTE: This is also the output produced by any illegal command to tp-ic.

-I Ignore Errors Switch. In certain rare cases, when the
underlying “C" compiler supports non-standard op-
tions and constructs, it may be desirable to “force" in-
strumentation to occur regardless of errors found.

This is done with the -I switch.

CAUTION: When instrumentation is forced using this switch, there is a
chance that the instrumented software will not compile.

For example, if you use the -I switch to “instru-
ment" a file of text material, you would not expect the
output to be compilable (and it probably won't be),
even though it may have been “instrumented".

-1j Processes setjimp and longjmp. This option only
works for UNIX.
-m Recognize Microsoft C 5.1 keywords during the in-

strumentation process. NOTE: This switch applies
only to MS-DOS and OS/2 versions. This switch may
produce unusual results if used in UNIX systems.

-mé Recognize Microsoft C 6.0 keywords during the in-
strumentation process.

NOTE: applies only to MS-DOS and OS/2 versions.
This switch may produce unusual results if used in
UNIX systems.

-n Will not instrument empty edges (for example: if
without else or switch without default.)

10

TCAT-PATH User’s Guide

2.3

-t Recognize Turbo C keywords during the instrumen-
tation process. Note: This switch applies only to MS-
DOS and OS/2 versions.

-u Forces the instrumentor to recognize _exit as exit.-
Note: This switch applies only to MS-DOS and OS/2
versions.

-w Recognize Whitesmith C keywords during the instru-
mentation process. Note: This switch applies only to
MS-DOS and OS/2 versions.

-X Will not recognize exit as keyword. NOTE: This
switch applies only to MS-DOS and OS/2 versions.
-z Recognize MANX/AZTEC “C" keywords during the

instrumentation process. NOTE: This applies only to
MS-DOS and OS/2 versions. This switch may pro-
duce unusual results if used on UNIX systems.

If there is an error, tp-ic gives a response line, or us-
age line, indicating the set of possible switches and
options, which is the same as the -h output.

Instrumenting With ‘make’' Files

Most often, TCAT-PATH will be used to develop test suites for systems
that are created with ‘make’ files.Make files cut the time of constructing
systems, by automating the various steps necessary to build the system,
including compilation and linking.

Fortunately, it is possible to add a few statements to most ‘make’ files to
enable them to make an instrumented version of the system. The modifi-
cations fall into two general categories, based on whether or not the make
file explicitly names the compiler.

For the rest of this section will assume the use of the “C" compiler. For
any other language, the user can substitute the corresponding command
in the language.

If the ‘make’ file explicitly mentions the “C" compiler with a cc command
(for example), it is possible to add the tp-ic command and an extra cc
command for preprocessing, instrumenting and compiling causing the
make script to instrument and compile the “C" files in question.

Make file lines such as:

UNIX:

sampleAO:sample.c

cc -c sample.c

11

CHAPTER 2: Instrumentation

MS-DOS and 0S/2:

sample.obj:sample.c

cl ¢ sample.c

would be changed to:
UNIX:

sample.o: sample.c
cc -P $(CFLAGS) sample.c
tp-ic sample.i
cc -c $(CFLAGS) sample.i.c
mv sample.i.o sample.o

MS-DOS and 0S/2:

sample.obj:sample.c
cl /P $(CFLAGS) sample.c
tp-ic -m6 sample.i
rename sample.ic temp.c
cl /c $(CFLAGS) temp.c
rename temp.obj sample.obj

The other situation is where the compiler is not explicitly mentioned, but
given as a “built-in" rule. The user can add the following “built-in" rule:

UNIX:

cc -P $(CFLAGS) $*.c
tp-ic $*.1

cc -c S$(CFLAGS) $*.i.c
mv $*.i.0 $*.0

MS-DOS and 0S/2:

.c.obj:

cl /P $(CFLAGS) S$*.c

tp-ic -m6 $*.i

rename $*.ic temp.c

cl /c $(CFLAGS) temp.c

rename temp.obj $*.obj
The other change necessary is to add SR runtime modules to the link
statement. (More on this in the next chapter.)

12

TCAT-PATH User’s Guide

2.3.1

FIGURE 2

Example ‘make' Files

This section gives on the following pages several examples of how to cre-
ate ‘make’ files that work under MS-DOS and UNIX environments.

The first example ‘make’ file is an illustrative MS-DOS type ‘make’ file
that is unmodified.

HHAHHH AR HRFHHABR AR B R AR HHHA SR AR SR AR B AR H SRR BB AR RS RS R AR RS R RS
##

SAMPLE M AKE FILE

-———-WITHOUTINSTRUMENTATTION--————=——=
##

##

DOS version make script for SAMPLE

##

HHHHHHHHHEHHH A RN HHH SR H RS AR R SR H S R H SRR

#

OBJS = sample.obj sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj help.obj log.obj ui.obj premain.obj license.obj \

pretree.obj preprocl.obj preprocy.obj

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000
sample.obj: sample.c
sampley.obj: sampley.c
samplel.obj: samplel.c
tree.obj: tree.c
license.obj: license.c
init.obj: init.c
error.obj:
dotest.obj: dotest.c
help.obj: help.c
log.obj: log.c
uil.objé ulse
premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy .obj: preprocy.c
sample.exe: $(0OBJS)
sample.obj license.obj help.obj \
sampley.obj samplel.obj tree.obj init.obj
error.obj dotest.obj log.obj ui.obj premai

rror.c

pretree.obj preprocy.obj preprocl.obj\
link @sample.lnk;

Uninstrumented DOS Make File

13

CHAPTER 2: Instrumentation

FIGURE 3

The file below shows the modifications to the ‘make’ file needed to pro-
vide for automatic instrumentation. The modifications are shown in bold

face.
HHAEAHHHHH AR A HHHH A SRR HEH R R
#4#
S AMPLE M AKE FILE
##
##h e WITHINSTRUMENTAT L@ Norew=sewaamea
##
##
DOS version make script for SAMPLE file
##
HEHHHHHHHEHHHSHHH S HHHH SRR HH B HE SRS R S S H R A

OBJS = sample.obj sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj help.obj log.obj ui.obj premain.obj license.obj\
pretree.obj preprocl.obj preprocy.obj

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000

<C:0bJ3:
cl $(CFLAGS) /P $*.c
tp-ic -mé6 $*.1
rename $*.ic temp.c
cl $(CFLAGS) /c temp.c
rename temp.obj $*.obj
sample.obj: sample.c
sampley.obj: sampley.
samplel.obj: samplel.c
tree.obj: tree.c
license.obj: license.c
init.obj: init.c
error.obj: error.c
dotest.obj: dotest.c
help.obj: help.c
log.obj: log.c
ui.obj: ui.c
premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy.obj: preprocy.c
sample.exe: $(OBJS)
sample.obj license.obj help.obj \
sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj log.obj ui.obj premain.obj \
pretree.obj preprocy.obj preprocl.obj \fBctrunll.obj\
link @sample.lnk;

[0}

Instrumented DOS Make File

14

TCAT-PATH User’s Guide

The ‘make'’ file below shows a typical UNIX/XENIX ‘make' file before
modification.

HHEAHHAHAHBHAHAHAHAHHH AR HHAHBH SR SR AR AR ARG H R B R HHAH AR R SR F R SR SR SR
##

S A M P L E M A K E FILE

##

Make file example, no instrumentation.
##

UNIX, XENIX

##

HEHHAHAHHHEHH AR HAHHHHHHFHHHH SRR SRR R H SRR SR B R H A R R H R H S
Uses make's knowledge of lex, yacc, cc.
HAHHAH AR HAHAHHHHHE R HH B HH AR H AR SR HAH SRR R R R0

CCextras =
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -1 -1ly -11
LFLAGS = -v
Lextras =
Objects = sample.o sampley.o samplel.o tree.o init.o error.o dotest.o
log.o \
ui.o premain.o preprocy.o preprocl.o pretree.o help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c error.c dotest.c
log.c \

ul.c premain.c preprocy.C preprocl.c pretree.c sample.h \
typedef.h error.h y.tab.h preproc.h help.c license.c license.h
UNIX version. Compiles and links.
sample: $(Objects)
rm -f sample
cc $(Objects) $(LDFLAGS) S$(Lextras) -o sample
#
sampley.c: sampley.y
yacc S (YFLAGS) sampley.y
mv y.tab.c sampley.c
cp y.tab.h ytab.h

#

samplel.c: samplel.l
lex $ (LFLAGS) samplel.l
mv lex.yy.c samplel.c

#

pPreprocy.c: preprocy.y
vacc $(YFLAGS) preprocy.y
cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h
rm y.tab.c

#

preprocl.c: preprocl.l
lex S (LFLAGS) preprocl.l
cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c
rm lex.yy.c

s

pr $(Sources) | lpr

license.o: license.c license.h

FIGURE 4

Uninstrumented UNIX Make File

15

CHAPTER 2: Instrumentation

FIGURE 5

The changes needed have been made in the modified ‘make' file shown

below. The modifications are shown in bold face.
L L L LT L L L T T s

S AMPLE

M AKE FILE

Make file sample, with TCAT-PATH instrumentation

UNIX, XENIX
#4#

HEHHHAHHHHAHAHA AR H AR H R AR H R HH SRR SRR AR AR R RS H AR H R B HAH R HA S
Uses make's knowledge of lex, yacc, cc.
HAHHHAHHHHHHHHHA AR H AR HHH S H B AR AR R R R AR R AR RS R R R R

CCextras =

CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d

LDFLAGS = -i -ly -11

LFLAGS = -V

Lextras =

Objects = sample.
ui.o premain.
Sources = sample.
ui.c premain.
\

o
o
C

o]

sampley.o samplel.o tree.o init.o error.o dotest.o log.o \
preprocy.o preprocl.o pretree.o help.o license.o

sampley.c samplel.c tree.c init.c error.c dotest.c log.c \
preprocy.c preprocl.c pretree.c sample.h typedef.h error.h

y.tab.h preproc.h help.c license.c license.h
Compiles and links.

UNIX version.
\{fB .c.o:

cc -P § (CFLAGS) s$*.c

tp=ie $*.i

cc =c §(CFLAGS) S*.li.c.

my S*.i.0 8$%.

i

o

sample: $(Objects)

rm -f sample
cc $(Objects)
#

ctrunl.o

\fBctrunl.o\fP $(LDFLAGS) $(Lextras) -o sample

sampley.c: sampley.y
yvacc $ (YFLAGS)
mv y.tab.c sampley.c
cp y.tab.h ytab.h

#

sampley.y

samplel.c: samplel.l
lex S (LFLAGS)
mv lex.yy.c samplel.c

#

samplel.l

preprocy.c: preprocy.y
preprocy.y

cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h

yacc $ (YFLAGS)

rm y.tab.c
#

preprocl.c: preprocl.l
lex $ (LFLAGS)
sed -e 's/yy/xx/g' > preprocl.c

cat lex.yy.c |

rm lex.yy.cC
lpr:

pr $(Sources)

preprocl.l

lpr

license.o: license.c license.h

Instrumented UNIX Make File

16

TCAT-PATH User’s Guide

24

2.5

File Summary

This section describes TCAT-PATH file naming conventions for the instru-
mentor (tp-ic).

MS-DOS or OS/2:

tp-i<lang> [optional switches] filename.i
Input:
<filename>.i Preprocessed source file
Produces:
<filename>.i<lang>Instrumented source
<filename>.iA Segment and node reference listing
<filename>.iE Error listing
<filename>.iL Segment count for each module
<filename>.iS Instrumentation Statistics

<module name>.digFile(s) containing digraph of the named module(s)

NOTE: Digraph filenames of module names that are more than 8 charac-
ters long are truncated to 8 characters.

UNIX:

tp-i<lang> [optional switches] filename.i
Input:
<filename>.i = Preprocessed source file
Produces:
<filename>.i<lang> Instrumented source
<filename>.i.A Preprocessed source file
<filename>.i.E Error listing
<filename>.i.L Segment count for each module
<filename>.i.S Instrumentation Statistics
<module name>.dig

File(s) containing digraph of the named module(s)

Embedded Systems

An added benefit resulting from TCAT-PATH's software instrumentation

strategy is that the tool may be used with embedded systems. Because
TCAT-PATH's output is a syntactically correct program, the tool ¢an be

17

CHAPTER 2: Instrumentation

used on programs that are cross-compiled for target systems. The
sequence of steps are: the instrumented code is cross-compiled, linked,
then moved to the embedded system.

After execution, coverage data collection occurs on the embedded system,
and the trace files are uploaded to the host. The specifics of transferring
trace files from the embedded system to the host is dependent on the sys-
tem in question.

1§

CHAPTER 3

Compiling, Linking and

Executing

This chapter explains how to compile, link and execute the instrumented program.

3.1

Once instrumentation has been completed, the instrumented version of
your program must be compiled and linked with the runtime object mod-
ules, sometimes called runtime routines.

The runtime routines are supplied by SR and will write to the trace file.
These modules are called from the instrumented code; the added function
calls, or “probes", call sub-functions inside the runtime modules.

There are several runtime objects for each computer as described in the
next section.

NOTE: Some unreachable code may occasionally be inserted by the
instrumentor.

This may cause warning messages when compiling, but they are not fatal
and the compiler should proceed in spite of them.

Runtime Descriptions

As mentioned above, the test engineer using TCAT-PATH has a choice of
many runtime routines to change the behavior and performance of the
instrumented system under test. Different runtimes may be selected by
linking in the appropriate module.

Finally, the user can write his own runtime package if he needs to modify
TCAT-PATH to a particular situation, since the program that is needed is
small. For an embedded system where the target system has particular
characteristics, rewriting the runtime is a practical way to adapt TCAT-
PATH.

The TCAT-PATH runtime system is compatible with the TCAT runtime
system but the TCAT runtime system is not compatible with TCAT-PATH.
That is, you can use the TCAT-PATH system with Cl-instrumented pro-

19

CHAPTER 3: Compiling, Linking and Executing

grams, but you cannot use TCAT's runtime system for TCAT-PATH. There
are a variety of runtime modules for each language.

The function of each runtime package is specified by the format of its
name as defined following:

<languagestrun<level>.o (for UNIX)

or

<language>trun<levels><model>.obj (for DOS)
Examples:
ctrun0.0 C, level 0, UNIX
ftrunl.o Fortran 77, level 1, UNIX
ptrunl.o Pascal, level 1, UNIX
ctrunOm.o C, level 0, DOS, medium memory model.

Several versions of runtime are available depending on your needs.

<lang>trun0 - Raw Trace File

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca-
tion of the program under test.

<lang>trun1 - Standard Trace File

This is the same as <lang>trun0, but with prompts that ask the user for
Test Descriptor and the name of trace file.There is no internal processing
or buffering. The trace file is the full, unedited trace of program execu-
tion. This is the basic version.

MS-DOS Runtimes

MS-DOS has several runtimes available. You must first determine the
memory model you are using for memory management on your system.
You will then be able to easily choose from the following list of runtimes
for “C" language. The standard runtimes are ctrunl, while the “quiet"
runtimes are ctrun0. Microsoft C has five memory models: S for small;
M for medium; C for compact; L for large; and H for huge.

Turbo C has six memory models: T for tiny; S for small; M for medium; C
for compact; L for large; and H for huge.

The following is a partial list of runtimes for “C" language on MS-DOS, as
they appear on the distribution diskette:

20

TCAT-PATH User’s Guide

3.1.4

\RUNTIME\TURBO\STD\CTRUN1C.OBJ
\RUNTIME\TURBO\STD\CTRUN1H.OBJ
\RUNTIME\TURBO\STD\CTRUN1L.OBJ
\RUNTIME\TURBO\STD\CTRUN1M.OBJ
\RUNTIME\TURBO\STD\CTRUN1S.OBJ
\RUNTIME\TURBO\STD\CTRUN1T.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOC.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOH.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOL.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOM.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOS.OBJ
\RUNTIME\TURBO\QUIET\CTRUNOT.OBJ
\RUNTIME\MSC51\STD\CTRUN1C.OBJ
\RUNTIME\MSC51\STD\CTRUN1H.OBJ
\RUNTIME\\MSC51\STD\CTRUN1L.OBJ
\RUNTIME\MSC51\STD\CTRUN1M.OBJ
\RUNTIME\MSC51\STD\CTRUN1S.OBJ
\RUNTIME\MSC51\QUIET\CTRUNOC.OBJ
\RUNTIME\MSC51\QUIET\CTRUNOH.OBJ
\RUNTIME\MSC51\QUIET\CTRUNOL.OBJ
\RUNTIME\MSC51\QUIET\CTRUNOM.OBJ
\RUNTIME\MSC51\QUIET\CTRUNOS.OBJ

NOTE: Microsoft C 5.1 runtimes should be compatible with 6.0 updates.

Executing the Instrumented Program

The next step is to run your instrumented program and track which logi-
cal paths have been exercised by the test data you supply. In essence, this
is a matter of noticing the not-hit paths mentioned in the coverage report
(refer to Chapter 6), and looking up the corresponding code in the Refer-
ence Listing.

TCAT-PATH senses when paths are hit by monitoring the markers
inserted during instrumentation and by accumulating the results in a
trace file and matching them with the paths in the path file.

To produce the trace file, first run your instrumented and compiled “C"
program and follow the prompts.

If you use the standard runtime routines, the system will respond with:

Trace Descriptor:

Type in a description of the test run. Be as descriptive as needed for your
own information in referring to this test run. You can enter up to 80 char-
acters of text in your message. This message will be recorded in the trace

file and used in coverage repofts.

21

CHAPTER 3: Compiling, Linking and Executing

3.1.5

If you choose to enter no descriptive text, just press the return key. The
system next will prompt you for an output filename:

Name of tracefile [default is Trace.trc]:

Type in any name. The system will create a trace file with the name you
enter. To use the default name Trace.trc, just press the return key. The trace
file description and name are useful in keeping track of different test runs.
Consistent, clear naming conventions are useful in organizing different
groups of results.

A common practice is to identify trace files with the filename extension
Arc.

Performance Considerations

Sometimes, an instrumented program will produce very large trace files.
One solution to this is to compile a mixture of instrumented and un-
instrumented files so that the program is tested in pieces.

2

CHAPTER 4

Utilities

This chapter covers the automatic path generation, cyclomatic number calculation,”“essen-
tial" path extractor, and path logical condition extractor.

4.1

4.1.1

The first utility generates a complete set of paths for a module, which is
used later for coverage reporting along with an execution trace file. The
last two utilities are intended for the user to study the structure and prop-
erties of the module in question. A cyclomatic complexity number can be
computed to identify “too complex" modules. A user can also get the
“essential" paths, i.e. a minimal subset of paths that will guarantee 100
percent branch level coverage (C1).

Additionally, a user can display the logical conditions (or predicates) that
need to be satisfied for a given path to be traversed. All utilities use the
digraph file produced from the instrumentation as input.

apg (Automatic Path Generator)

Automatic Path Generator (apg) processes a digraph file (*.dig file) into a
path file (*.pth file). This path information is the input to the coverage
analyzer (ctcover) which will be discussed in the next chapter.

apg

This program uses a SR-proprietary algorithm that generates sets of
equivalence classes of paths. The path classes are either non-iterative or
iterative. The output describes iteration in terms of “loop" or “cycles"” that
can be entered, and then exited (see Chapter 15).

apg uses the notation <..> for 0 and [..] for 1 or more repetitions; apg also
uses the {..} notation for groups of edges.

apg issues error messages if it is asked to generate paths beyond a maxi-
mum path count (the user can modify these values); see below.
apg file [module]
[-b]
[-c]
[-d maxdepth]
[-dig)

23

CHAPTER 4: Utilities

[-df filel
[-£1]
[-g]

-I

[-n]

[-p limit]
[-pth]

[-pf file]
[-ql

[-S]

[-X key file]
[-w width]

where the switches have the following values:

file [module]

-d maxdepth

Filename and Module Name Switch. This is the file base-
name that contains the digraph for the module to be
processed. The specific facts about the named module
are found after a special-format line in file.

The module name can be omitted if the -I switch is
used. If so, only the first-occurring digraph is actually
used.

Basis Paths Only Switch. If this switch is present, then
apg computes all paths but outputs only those paths
which have no iteration.

NOTE: A program must have at least one basis path;
otherwise, there is something wrong with the di-
graph.

Count Paths Only Switch. If present, apg computes the
total number of paths (regardless of the value set by
the -p switch) found. If the path count is large, apg
prints out intermediate messages so that you don’t
think it is failing. (The intermediate messages happen
every 1000 paths). CAUTION: If the path counts is
over 100,000 you should be prepared for a long wait.

Maximum Stack Depth Specification. This gives the
maximum stack depth to use during the equivalence
class computation. This number need to be about the
same size as the maximum length of the decision tree
that leads to a path. If 0 is specified, then the stack
depth has no internal limit (but it may be limited by
available memory).

24

TCAT-PATH User’s Guide

-dig

-df file

-£1

-p limit

-pth

-pf file

Multi-Module Digraph File Indicator. If present, this in-
dicates a multi-module digraph file, typically gener-
ated with the -dig option of the corresponding
instrumentor. The default file name is TCAT.dig.

Multi-Module Digraph File Name. The name of the file
to be used if -dig is present and the default is not to be
used.

Fixed-Length Filename Switch. Forces use of the fixed-
length option, corresponding to instrumentor’s out-
put.

Output Redirection Switch. The output of apg normally
goes to standard output; if the -g flag is present, then
the output is written to name.pth.

Ignore module name.

Path Numbering Switch. Causes each path to be pre-
ceded by a path number. For example, @2 : 13 4 <{ 4
}> 5 6. The number between the @ and : is the path
number (in this case, 2).

Maximum Paths Switch. This is the integer maximum
number of paths to generate.

If the total number of paths to be emitted is limit, then
the total number of paths calculated is 16* limit (this
number is generated internally only, however; it is
not generated for the output file). The default value is
limit= 300.

Output To Multi-Module Path File Switch. The output is
directed to the specified file, default TCAT.pth.

Output To Multi-Module Path File Name. The file name
given is used instead of TCAT.pth if -pth is present.

Quiet Output Switch. The quiet switch will suppress
version number and other extraneous outputs.

Path Statistics Switch. If present, after the path compu-
tation, apg prints a series of statistics that characterize
the set of paths. No paths are generated. Path statis-
tics are output to standard output. If the -g switch is
on, statistics are returned to the name.stt file, where

name is the module name.

25

CHAPTER 4: Utilities

41.1.1

-X key file Special Graphics Support Switch. When present the only

-w width

Other notes:

output indicated below, based on the value of the key,
is produced to standard output.

This output is intended for use in the graphical dis-
play functions of Xdigraph.

Output width specification. The output of apg is
"folded"--with \’s protecting the new-line characters-
-so that it is never wider than width characters. The
default value for width (i.e. without the -w switch) is
72

apg, Release 3

Path Analysis Statistics.

File name: testfile.dig

Number of nodes: 16

Number of edges: 20

Cyclomatic number (E - N + 2):12

Number of paths: 236

Average path length (segments):22.45

Minimum length path (segments): (Path 23)
Maximum length path (segments): (Path 464)
Most iteration groups:4 (Path 14)

Path count by iteration groups:
0 iteration group(s) :4

1 iteration group(s) :66
2 iteration group(s) :14
3 iteration group(s):0
4 iteration group(s):0
5 iteration group(s):16

There is a supplied script, DoPTH that reads the basename of the mod-
ule, calls apg, and writes the *.pth file for every *.dig file in the current

directory.

26

TCAT-PATH User’s Guide

4.1.2 Sample apg Output #1

4.1.21 Output of command: "apg -S example.main.dig" (ORIGINAL CONTENTS):

Path Analysis Statistics
File name: example.main.dig

Number of nodes: 12
Number of edges: 29

Cyclomatic number (E - N + 2):19

Number of paths: 155
Average path length (segments)
Minimum length path (segments)
Maximum length path (segments)

Most iteration groups: 5

Path count by iteration groups:
iteration group(s
iteration group
iteration group

iteration group

U W NN O

(s
(s
iteration group (s
(s
(s

iteration group
topped at 5 iteration groups

413 Sample apg Output #2

:55.70
:2(Path 155)
:73 (Path 64)

(Path 68)

4.1.3.1 Output of command: "apg -S example.main.dig" (REVISED CONTENTS):
Detailed Path Analysis Statistics

Processed file name:
Number of nodes (N):
Number of edges (E, segments):

Cyclomatic number (E - N + 2):

TOTAL NUMBER OF 1-TRIP PATHS:

Average path length (segments):

Minimum length path (segments):

Maximum length path (segments):

Highaat lavel iteratiom (loop):

example.main.dig

12

29

19

155

55.70
2 (Path No. 155)
73 (Path No. 64)
5 (Path No. 68)

27

CHAPTER 4: Utilities

41.4

Path count by iteration groups (including iteration
depth) :

BASIS PATHS (no iteration): 1
Level 1 loop(s): 1
Level 2 loop(s): 12
Level 3 loop(s): 26
Level 4 loop(s): 65
Level 5 loop(s): 0

Stopped at 5 iteration groups.

Processing Program Subgraphs with ‘apg’

In complex cases the TCAT-PATH user may wish to declare a subgraph of
the original program as one which is to be treated as a “unit” in relation to
processing of the larger graph. Doing this will, in many cases, decrease
the number of paths generated to a more manageable number (this is
often called “path factoring").

The following figure shows how apg handles one or more sub-digraphs
within the specified graph:
apg -s filename
or
apg -s ‘hereis.filename’
or

apg -s filename -s filename -s filename

(maximum of 16 such filenames)

where in each case the “filename" is another digraph (in the TCAT-PATH
standard format) where the first appearing node is the assumed entry,
and which can have any number of exits.

When apg encounters that entry node then it treats ALL of the nodes in
the named subgraph files as a SINGLE SEGMENT, labeled by the name
of the filename.This means that the GROUP of edges named in the -s file
acts like just one edge in regard to path generation. When this option is
used, an apg output path might look like the following:

2 5 14 <{ 16 "filenamel"™ 29 30 33 }> \\
44 49 50 51

28

TCAT-PATH User’s Guide

415

4.2

More about apg processing of subgraphs is found in Chapter 13

NOTE: apg processing of subgraphs may not be available in early ver-
sions of TCAT-PATH.

Blocked Pairs Processing with ‘apg’

When the number of paths that apg generates grows very large, it may be
desirable to prevent generation of some paths. Note that the user always
has the option of editing the *.pth file to remove paths. There is, however,
one feature of apg which can simplify what would otherwise be compli-

cated editing sessions.

The special flag -b can be used as follows to inform apg to not include
pairs of segments in any path. Here is a typical invocation of apg in this
case:

apg -b filename

where £ilename is the name of the file in the working directory that con-
tains a list of pairs of segments that should not be included (i.e., blocked
pairs).

The format for the blocked pair file is as follows:

This is a sample ‘blocked pair' file
for use with TCAT-PATH...

segment-1 segment-2
segment-a segment-b

segment-x segment-y

which means that the indicated pairs are to be used to “block" generation
of a path.

The user should be cautious with this capability, however. If critical pairs
are blocked, then apg may generate no paths. Generally, one must ascer-
tain from studying the program that two segments cannot co-exist in any
possible actual execution path before adding them to the file of blocked
names.

cyclo (Cyclomatic Number Calculation)

The cyclo command is a utility that computes the cyclomatic complexity,
sometimes referred to as the McCabe Metric, for the named digraph file.

The cyclomatic complexity is a characterization of the relative complexity

of a digraph based ot 4 gpecific count of the edges and nodes. The for-
mula for the cyclomatic complexity is (this is how the output appears):

29

CHAPTER 4: Utilities

4.3

4.3.1

Cyclomatic Complexity
= McCabe Metric
= E(n)
= edge - node + 2

= <value> \f1l

This metric is commonly used to assess the complexity of a module. If

E(n) is over 10, then the module is normally considered “too complex".
However, in some cases E(n) >> 10 for] “easy to test modules", and E(n)

is very small for “hard to test modules". User caution is advised.

Syntax:
cyclo name.dig [-ql
where,
name.dig is the name of the digraph file for which the cyclomat-
ic number is to be computed. The file is assumed to be
in standard digraph format.
[-q] This switch is used to quiet down the output pro-

duced to just the character string (without carriage re-
turn or newline) representing the computed

cyclomatic number.

This switch allows the output of cyclo to be combined
in expressions. For example, on UNIX systems one

could use the command fragment:
expr ‘cyclo -q filel’ + ‘cyclo -q file2’

Note: There is a supplied script, DoCYC that calculates the cyclomatic
number for each *.dig file in the current directory.

pathcon Utility

The purpose of the pathcon utility is to extract and display the logical
conditions (predicates) for a particular path given the sequence of seg-
ments in the path (which could be a complete path), the digraph file
(*.dig file), and the reference listing file (*.i.A or *.iA file).

Invocation Syntax

Syntax:
pathcon -A ref-listing -D dig-file [-g]
[-P path-file] [-N number [number]]

where,

30

TCAT-PATH User’s Guide

4.3.2

-A ref-listing ref-listing, produced by the tp-ic instrumentor, is
used for predicate referencing. This file has .i.A or .iA
extension.

-D dig-file dig-file is a digraph file for a module that specifies
the set of segments in “tail-node head-node segment-
name” format.

This file is produced by the tp-ic instrumentor and is
normally named module-name.dig, where module-
name is the module in question.

-g pathcon output normally goes to standard output. If
this option is specified, the output goes to a file
named module-name.con.

-N number number specifies the path number which logical con-
ditions are to be displayed. The path number is rela-
tive to the beginning of the path file. The user can
specify one or more path numbers by supplying the
numbers as part of arguments to pathcon. If this op-
tion is not specified, then pathcon will display all the
paths in the specified path file.

-P path-file path-file is a file that contains a set of paths from the
module-name module. If this option is not specified,
then pathcon will get the paths from the module-
name.pth file. This file is normally produced by the
apg utility of TCAT-PATH. The file can contain all or
a subset of the paths that apg generates.

Example Invocation

For example, using the example restaurant program in the full TCAT-
PATH example chapter, the command:

pathcon -D main.dig -A example.i.A

would instruct pathcon to generate the set of logical conditions for each
generated path in the main.pth file using the information in the main.dig
digraph file and example.i.A reference listing file. The output will go to
standard output.

The following command:

pathcon -D proc_input.dig -A example.i.A -g -N 3 169
would instruct pathcon to generate the set of logical conditions for paths
number 3 and 169 in the proc_input.pth file using the information in the
proc_inpuhdig file and the same reference listing as previously. The output

will go to the file named proc_input.con.

31

CHAPTER 4: Utilities

433 Output format
pathcon gives a detailed output for each path requested. Each path is
printed, along with the path number relative to the beginning of the path
file. Segments in the path are listed in rows. Segments that are inside the
<{ ... }> iteration symbols are not included, however, segments that are
inside the [{ ... }] iteration symbols are included. The latter indicates 1 or
more iterations of the loop and thus need to be included in the output.
The output format is shown below. Entries in italics are the entries that
pathcon generates. Each segment occupies a row and has the following
information:
PATH #: path-string
Segment Cycle Sense Predicate
22 2 Entry TRUE while(isspace(in_str[char_index]))

“H Indicates the number of lines in the report. Each line
corresponds to one segment, however, a segment
may be listed more than once if it is part of a 1 or more
iteration loop.

Segment Lists the segment name as in the digraph file.

Cycle Includes: Entry, Exit, Loop, AbExit, Ex/Ent.Indicates
which part of the loop this segment belongs to. If this
entry is left blank, it indicates that the current seg-
ment does not belong to a loop.

entry The current segment is hit before the loop is executed.

Exit The current segment is hit after the loop is exited.

Loop The current segment is inside the loop.

ADbExit The current segment is hit when loop is exited “ab-
normally". This is the case when the segment comes
after a loop with one (1) or more iterations (the [{ ...
}]symbols).

Ex/Ent This segment comes between two loops (e.g. segment
3 is such a loop in the following path: 12 <{ 2 }> 3 <{
451}>7)

Sense Includes: TRUE, FALSE, CASE. Indicates which sense
of evaluation of the predicate that will cause this seg-
ment to be hit.

TRUE The current segment is hit if the evaluation of
the predicate is TRUE.
32

TCAT-PATH User’s Guide

4.3.4

Predicate

Example Output

FALSE The current segment is hit if the evaluation of
the predicate is FALSE.

CASE The current segment is hit if the evaluation of
the switch statement is as indicated in the predicate
(for “C" language only).

Includes: NONE, ***, and predicate string. The logical
condition(s) that need to evaluated if the current seg-
ment is to be hit. Predicate for the first segment in a
module is indicated by the string NONE. If no predi-
cate is encountered, pathcon will output ***.

The output from the second example invocation from the previous sec-
tion is shown in the following figure.

PATH

3: 12<{2))»»345678910111213 14 [{456789 10 11 12 13 14
6 7 8 9 10 11

12 13 14 }] 15 17 18 20 21 <{ 20 21 22 }> 23

W oo Jo U0 W

2 o
B w D e o

w

char
16
17
18
19
20
21
22
23
24
25

26
27

_index++) {
5

e el e e -l BN o)
> W N o

~ o

Entry

Loop

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

Loop
Loop
Loop

TRUE NONE

TRUE while(isspace(in_str[char_index]))
FALSE while(isspace(in_str[char_index]))
TRUE for(; char_index <= strlen(in_str);
CASE switch(in_str[char_index]) {

TRUE case '1'

TRUE case '2':

TRUE case '3':

TRUE case '4':

TRUE case "'5":

TRUE case '6'

TRUE case '7':

TRUE case '8':

TRUE case '9':

TRUE for(; char_index <= strlen(in_str);
CASE switch(in_str([char_index]) {

TRUE case 'l':

TRUE case '2':

TRUE case '3':

TRUE case '4':

TRUE case '5'

TRUE case '6':

TRUE case '7':

TRUE case '8':

TRUE case '3':

TRUE case 'l':

TRUE case '2':

33

CHAPTER 4: Utilities

FIGURE 6
4.4

441

28 8 Loop TRUE case '3':

29 9 Loop TRUE case '4':

30 10 Loop TRUE case '5':

31 11 Loop TRUE case '6':

32 12 Loop TRUE case '7':

33 13 Loop TRUE case '8':

34 14 Loop TRUE case '9':

35 15 AbExit CASE switch(in_str([char_index]) {

36 17 FALSE if (chk_char (in_str[char_index])) {
37 18 TRUE if(char_index > 0 && got_first)

38 20 TRUE while(char_index <= strlen(in_str)) {
39 21 Entry TRUE if (chk_char (in_str [char_index])

40 23 Exit FALSE while(char_index <= strlen(in_str)) {
PATH 169: 1 3 4 15 16

Segment Cycle Sense Predicate

1 1 TRUE NONE

2 3 FALSE while(isspace(in_str [char_index]))

3 4 TRUE for(; char_index <= strlen(in_str);
char_index++) {

4 15 CASE switch(in_str[char_index]) {

5 16 TRUE if (chk_char(in_str[char_index])) {

Example pathcon Output
pathcover Utility

The purpose of the pathcover utility is to extract path and segment infor-
mation from a set of paths supplied in the input file. pathcover allows the
user to get “essential” paths, i.e. a minimal subset of paths from the input
file that would guarantee 100% C1 (branch or segment) level coverage.

It is assumed that the input file supplied to pathcover is the path file pro-
duced by the apg (all path generator) utility of TCAT-PATH.

pathcover will gives several sets of “essential” paths depending on user's
options. The user can get “essential" paths based on the order of occur-
rence of the segments in the original path file (“first" or “last" instance
found algorithm), or the user can rearrange the path file in certain order
and then apply the search algorithm. Finally, the user can also get infor-
mation on which segments are encountered most often in the input file.

Invocation Syntax

Syntax:
pathcover path-file [-c] [-£f] [-£fi] [-£1] [-fs]
[-g] [-1] [-1i] [-11] [-1s] [-mn] [-q] [-r]

TCAT-PATH User’s Guide

where,

path-file

-fi

-fl

-fs

-1i

A file that contains a set of paths for a particular mod-
ule. This file is normally produced by the apg utility
and named module-name.pth.

Prints out the population statistics on each segment
encountered in the path file. It reports on the number
of paths that contain a particular segment.

Prints out the “essential” paths based on the "first in-
stance found" algorithm. The search is done on the
original input path set (input file). This is pathcover
output if no options are specified.

Prints out the “essential” paths based on the “first in-
stance found" algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob-
tained by ordering the non-iterative paths first and
then the iterative paths.

Iteration is indicated by the <{ ... }> (0 or more itera-
tions) and the [{ ...}] (1 or more iterations) symbols.

Prints out the “essential" paths based on the “first in-
stance found" algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths. The sorted paths are obtained by ordering the
paths in ascending order based on the segment
counts in the path. Segments that are inside the <{ ...}>
(0 or more) iteration symbol are excluded from the
segment counts.

Prints out the “essential” paths based on the “first in-
stance found" algorithm.The search is done on the
paths sorted by the segment. The sorted paths are ob-
tained by ordering the paths in ascending lexico-
graphic order.

Prints pathcover output to a file called module-
name.cov, where module-name is the particular
module in question. pathcover output normally goes
to standard output.

Prints out the “essential" paths based on the “last in-
stance found" algorithm. The search is done on the
original input path set (input file).

Prints out the “essential" paths based on the “last in-
stance found" algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob-

35

CHAPTER 4: Utilities

-11

-1s

tained by ordering the non-iterative paths first and
then the iterative paths. Iteration is indicated by the
<{ ... }> (0 or more iterations) and the [{ ...}]

Prints out the “essential” paths based on the “last in-
stance found" algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths.

The sorted paths are obtained by ordering the paths
in ascending order based on the segment counts in
the path. Segments that are inside the <{ ...}>\(0 or
more) iteration symbol are excluded from the seg-
ment counts.

Prints out the “essential" paths based on the “last in-
stance found" algorithm. The search is done on the
paths sorted by the segment. The sorted paths are ob-
tained by ordering the paths in ascending lexico-
graphic order.

Each path is preceded by a path number. For exam-
ple,@2:134 <{4}>56. The number between the @
and : is the path number.

The quiet switch will suppress version number and
other extraneous outputs.

Prints out the “essential”" paths randomly. First and
last algorithms are ignored.

36

TCAT-PATH User’s Guide

44.2

Example Invocation

For example, using the same example “restaurant” program, the com-
mand sequence:

cc -P example.c

tp-ic example.i

apg main.dig -g

pathcover main.pth -c¢ -f -1 -g

would instruct pathcover to generate a report on the segment population
statistics and two sets of “essential” paths for the main module in exam-
ple.c file: one with “first instance found” algorithm and another with “last
instance found" algorithm.

The output is written to a file called main.cov, and it is shown in the next
figure.

pathcover -- Path Coverage Utility. [Release 1.1 -- 6/91]

(c) Copyright 1991 by Software Research, Inc.

Selected PATHCOVER Options:

[=¢&l Population Statistics -— YES
First Found ~~ YES
Last Found -—~ YES
First Found (Iteration) -- NO
Last Found (Iteration) -- NO
First Found (Length) -- NO
Last Found (Length) -- NO
First Found (Segment) -- NO
Last Found (Segment) -- NO

pathcover: POPULATION STATISTICS BY SEGMENT
Module:: “main” Option:: *-¢*

WA U s WN P
I~
1Sy

o
4
~

T T Y
w N
=
s

wm
Y
Iy

[EES
>
NO
oo

37

CHAPTER 4: Utilities

16 14
17 154
18 132
19 110
20 22
21 44
22 22
23 44
24 22
25 132
26 154
27 155
pathcover: FIRST INSTANCE FOUND BY SEGMENT
Module:: “main” Option:: “~-f*
Path# Path
1 1 123<{3)})>456<{5678291011 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 1925 }> 26 <{ 234 16 15 14 13 12 11 10 98 7 6 5 17
25 19 20 21 21. 22 23 23 24 18 26 }> 27
2 3 123<{3}>456<{567829 101112 13 14 15 16 }> 17 18
19 22 23 ={ 19 20 21 21122 23 23 24 }» 25 ={ 18 24 23 23 22 21
21 2019 25 }s> 26 <{ 2 34 16 15 14 13 12 11 1098 7 6 5 17
25 19 20 21 21 22 23 23 24 18 26 }> 27
3 5 123<{3)>456<{56789 101112 13 14 15 16 }> 17 18
19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21 21
20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 98 7 6 5 17 25
19 20 21 21 22 23 23 24 18 26 }> 27
4 8 123<{3}>457<{56789 1011 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
25 19 20 21 21 22 23 23 24 18 26 }> 27
5 15 123<{3)>458<{56789 101112 13 14 1516 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 98 7 6 5 17
25 19 20 21 21 22 23 23 24 18 26 }> 27
6 22 123 ={ 3 ¥=459«{ 5678910 11 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 1098 7 6 5 17
25 19 20 21 21 22 23 23 24 18 26 }> 27
7 29 123<{3)54510<{ 56789 10 11 12 13 14 15 16 }> 17
18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
17 25 19 20 21 21 22 23 23 24 18 26 }> 27
8 36 123 <{31}>4511<{5678 91011 12 13 14 15 16 }> 17
18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
17 25 19 20 21 21 22 23 23 24 18 26 }> 27
9 43 123<{3}>4512<{567 8910 11 12 13 14 15 16 }> 17
18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
17 25 19 20 21 21 22 23 23 24 18 26 }> 27
10 50 123<{3}>4513<{56789 1011 12 13 14 15 16 }> 17

36

———

TCAT-PATH User’s Guide

18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 98 7 6 5
17 25 19 20 21 21 22 23 23 24 18 26 }> 27

il 57 123<{3}>451415<{ 567 89 10 11 12 13 14 15 16 }>
17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
22 21 21 20 19 25 }> 26 <{ 2 334 16 15 14 13 1211 1098 7 6
5 1I7 25 19 20 21 21 22 23 23 24 18 26)} 27
12 64 12 3=2{3 451416 <{567 8910311 12 13 14 15 16 ¥>
17 18 19 2021 <{ 1920 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
22 21 21 260 19256 }>26<{ .23 41615 14 13 12 11 10987 6
5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
pathcover: LAST INSTANCE FOUND BY SEGMENT
Module:: "main" Option:: "-1"
Path# Path
i 77 123<{31}>41726<{ 2341615 14 13 12 11 10987 65
17 25 19 20 21 21 22 23 23 24 18 26 }> 27
2 84 1.2456<{ 56789 1011 12 13 14 15 16 }» 17 26 <{ 2 3. 4
16 15 14 13 12 12 1098 7 65 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
3 91 12457<{567891011 12 13 14 15 16 }>17 26 <{ 2 3 4
16 15 14 13 12 11 10 98 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
4 98 12458<{56789 1011 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 98 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
5 105 12459<{56789 101112 13 14 15 16 }> 1726 <{ 2 3 4
16 15 14 13 12 11. 1098 7 6 5 17 25 19 20.21 21 22 23 23 24
18 26 }¥» 27
6 112 124510<{ 567 89 10 11 12 13 14 15 16 }» 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9.8 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
@ 119 124511 <{56789 1011 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 .20 21 21 22 23 23 24
18 26 }> 27
8 126 124512 <{ 56789 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
9 133 124513 <{ 56789 1011 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 1% 14 13 12 11 10 9 87 6 5 17 25 19 20 21 21 22 23 23 24
18 26 > 27
10 140 12451415<{ 56789 10 11 12 13 14 15 16 }> 17 26 <{ 2
3416 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23
24 18 26 }> 27
1 147 12451416 <{ 56789 10 11 12 13 14 15 16 }> 17 26 <{ 2
3416 15 14 13 12 11 10 98 76 5 17 25 19 20 21 21 22 23 23
24 18 26 }> 27
12 148 12417 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9
8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
3 149 12417 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23

23 222121201925)>26<{23416151413121110987
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

39

CHAPTER 4: Utilities

14

&5

16

17

18

19

FIGURE 7

150

153

154

155

pathcover Reports

12417 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
23 23 22 21 21 20 19 25 }> 26 <{ 23 4 16 15 14 13 12 11 10 9
8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
12417 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
12417 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 22 21 21 20 19 25 }>26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
24 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4
6 15 14 13 12 11 10 98 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27
12417 26 <{ 2 3416 15 14 13 12 11 10 9 8 7 6 5 17 25 19
20 21 21 22 23 23 24 18 26 }> 27
1 27

[T

40

CHAPTER 5

Coverage Analyzer

This chapter covers the ctcover utility that generates Ct coverage report for a module. It
analyzes a *.pth and a *.trc file to produce a *.rpt report file. This is the command a user
will employ most often to check Ct coverage.

5.1 ‘ctcover' Syntax
Syntax:
ctcover name tracefile |[-f shortname]
where,
name is the name of the module to be analyzed.This name
can be of any length (but see below).
tracefile is the full trace file name to be analyzed.
-f shortname is used to permit the module name to be of any

length, but the output file is named shortname.rpt any-
way. You must make sure that shortname.pth exists
and contains the correct path information.

This option is primarily used for DOS, where filena-
mes are limited to eight characters.

Produces:

name.seg File with the extractions from the trace file for the
named module.

name.rpt File containing the Ct coverage report for the name
module.

Examples:

The command:

ctcover verylongmodulename trace.trc -f long

specifies that verylongmodulename is the name of the module to be
analyzed. The output of the above should be the file long.rpt.

Notes: The script DoRPT will run the command:
Ctcover <name> *.trc

41

CHAPTER 5: Coverage Analyzer

for all of the *.pth files that it finds. This will have the effect of producing
all of the *.rpt files possible within the current directory. However, this
script only works for modules that have the same name as the path file-
name (i.e. does not use the -f option).

Sample Output:
Here are sample outputs from ctcover:
Example 1:
Ct Test Coverage Analyzer Version 1.8
(c) Copyright 1990 by Software Research, Inc.
Module “getfil”: 5 paths, 3 were hit in 227 invocations.

60.00% Ct coverage
Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text
1 90 1 2
2 22 1 3 4 <{4 }>56
3 115 134 <{4 }>517
4 None 135 6
5 None 1357

Example 2:

Ct Test Coverage Analyzer Version 1.8

(c) Copyright 1990 by Software Research, Inc.
Module “putfld”: 6 paths, 6 were hit in 115 invocations.
100% Ct Coverage!
Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text
1 1 1.2 3

2 10 1245

3 22 1246

4 10 1789

5 71 17 8 10
6 1 1 7 11

Example 3:

Ct Test Coverage Analyzer Version 1.8

———

42

TCAT-PATH User’s Guide

(c) Copyright 1990 by Software Research, Inc.
Module “putbox”: 192 paths, 7 were hit in 22 invocations.
3.65% Ct coverage

Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text
1 None 123679 17 <{17 }> 18 19 20 21 22 23 <{22 23
24 }> 25 \

<{21 24 23 22 25 }> 26
2 None 123679 17 <{17 }> 18 19 20 21 22 24 {22 23
24 }> 25 \

<{21 24 23 22 25 }> 26
3 None 123679 17 «{17 }> 18 19 20 21 25
<{21 24 23 22 25 }> 26

. (intervening paths deleted for clarity)

159 None 1 11 13 17 <{17 }> 18 19 20 21 25 <{21 24 23 22

25 }> 26

160 None 1 11 13 17 <{17 }> 18 19 20 26

161 None 1 11 13 17 <{17 }> 18 19 27

162 15 1 11 13 17 <{17 }> 18 28

163 None 111 13 18 19 20 21 22 23 <{22 23 24 }> 25 '\
<{21 24 23 22 25 }> 26

164 None 1712 I3 18 19 20 21 22 24 ={22 23 24 ¥s 25 \

<{21 24 23 22 25 }> 26

165 None 1 11 23 18 19 20 21 25 =<{21 24 23 22 25 }> 26
166 None 1 11 13 18 19 20 26
167 None 1311 13 18 19 27
168 None 1 11 13 18 28
169 None 1 14 15 17 <{17 }> 18 19 20 21 22 23 <{22 23 24
J» 25 \
<{21 24 23 22 25 }> 26
170 None 1 14 15 17 <{17 }> 18 19 20 21 22 24 <{22 23 24
}> 25 \
<{21 24 23 22 25 }> 26
171 None 1 14 15 17 <{17 }> 18 19 20 21 25 \
{21 24 23 22 25 }> 26
172 None I 14 15 17 <{17 }> 18 19 20 26
173 1 i 15 17 <{17 }> 18 19 27

174 None

[
=

15 17 <{17 }> 18 28
. (intervening paths deleted for clarity)

192 None 1 16 18 28

i
1=

43

CHAPTER 5: Coverage Analyzer

44

CHAPTER 6

TCAT-PATH Menus

You can access TCAT-PATH with menus; this chapter will explain how to do so. If you
would rather use command line invocation, you may skip this chapter and go on to Chap-
ters 8 and 9 or the full TCAT-PATH example in Chapter 10.

6.1 TCAT-PATH ASCII MENUS

Menus help users in two ways: by providing a fixed structure for collect-
ing test coverage information and by providing a convenient way to cus-
tomize a sequence of operations.

45

CHAPTER 6: TCAT-PATH Menus

6.1.1

Invoking TCAT-PATH
Start up TCAT-PATH in interactive mode with the command:

where,

file

tcatpath [-r file]

is the optional configuration file (rc file) name. The
default name for the configuration file is tcatp.rc. If
you don't specify a configuration file, or if TCAT-
PATH doesn't find the file tcatp.rc in the current direc-
tory, then TCAT-PATH issues a warning message and
continues processing, using default values.

Remember that the content of the TCAT-PATH configuration file, tcatp.rc,
always overrides the internally supplied (default) values of all parame-

ters.

46

TCAT-PATH User’s Guide

6.1.2 TCAT-PATH Menu Tree

The organization and structure of the menus for the interactive TCAT-
PATH is shown in the diagram below:

TCAT-PATH:

| Selects ACTIONS or FILES or OPTIONS menus
\ Shows option settings

| Shows current execution statistics

| Saves option settings

\ Exit from TCAT-PATH system

| On-line help frames

| l<system commands>

|

+----ACTIONS:

| Selects basic TCAT-PATH operations
\ Shows option settings

| Return to prior menu

| On-line help frames

| !<system commands>

! Helps select all user-settable options
| Shows option settings

1 Return to prior menu

| On-line help frames

| !<system commands>

Shows all current options settings
Allows changing file settings
Return to prior menu

On-line help frames

!<system commands>

After TCAT-PATH starts, you will see the title information, version control
indication,
and the prompt

“TCAT-PATH:MAIN: "

To see the available menu options, type from any prompt within TCAT-
PATH:

and then
[RETURN] .

47

CHAPTER 6: TCAT-PATH Menus

6.1.2.1

TCAT-PATH then displays the available options for that menu. This fea-
ture works for all menus throughout TCAT-PATH.The current menu is
redrawn whenever you give an unrecognized command.

Issuing Commands

You can issue commands by typing the first few letters of each com-
mand's name. The only requirement is that the letter sequence be unique
to that command. TCAT-PATH will inform you when a command you
issue matches two or more possible commands.

To set variables (see the options menu description, below) you must type
the entire variable name. This is done in order to be consistent with con-
figuration file processing.

Displaying Current Parameter Settings

You can display the current settings (options and filenames) known to
TCAT-PATH at any time using the settings command, get on-line help
with the help command, and exit the current menu using exit. The config-
uration file reading in the settings is automatically used. However, the
settings can be changed if required.

TCAT-PATH Menu ‘Stack'’

You can move from the MAIN menu to any other menu at will. TCAT-
PATH remembers the sequence of your choice of menus in an internal
“stack". This means that when switching from one menu to another, you
can return to the immediately prior menu with the exit command. This
feature is provided to prevent you from entering conflicting or incorrect
data during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the MAIN menu to exit the system. That is, your moves
between the three subsidiary menus are “stacked" and must be
“unstacked" before returning to the MAIN menu.

If you press the DEL key, you return immediately to the MAIN menu.

48

TCAT-PATH User’s Guide

6.1.3 Main Menu

All commands may be abbreviated when no ambiguity exists, e.g.
“options" can be shortened to “o” because no other command in the
TCAT-PATH menu starts with “o”.

When TCAT-PATH is activated the following menu options are displayed:

TCAT-PATH:MAIN:
Options:
save
stats

actions
files
options

settings
help [opt]

release

exit

-- Save the current settings for TCAT-PATH.
-- Show current usage values for TCAT-PATH.

-- Go to the ACTIONS menu.

-- Go to the FILES menu.
-- Go to the OPTIONS menu.

-- List the current settings for TCAT-PATH options.
-- Display HELP text for a command.
-- Show release and version numbers for this TCAT-
PATH copy .
-- Exit from TCAT-PATH to system

49

CHAPTER 6: TCAT-PATH Menus

6.1.4 Actions Menu

The Actions menu is displayed below:

TCAT-PATH:ACTIONS:
Options:
preprocess
instrument
apg
cyclo
digpic
ctcover
files
options
settings
help [opt]
exit

Runs the preprocessor command on the program.

Instrument/generate digraph of program.

Run apg on *.dig file.

Compute cyclomatic number on *.dig file.

Run digpic on *.dig file.

Compute Ct path cover.

Go to the

Go to the options
nt

n me settings.
Display HELP text for command
Exit current level

50

TCAT-PATH User’s Guide

6.1.5 Files Menu
The Files menu is displayed below:

TCAT-PATH:FILES:

Options:
prefix <name> -- Base name of module being processed.
digraph <name> -- Name of digraph file (default ‘prefix'.dig).
path <name> -—- Name of path file (default ‘prefix'.pth).
tracefile <name> -- Name of trace file (default ‘prefix'.trc).
report <name> -- Name of report file (default ‘prefix'.rpt).
basis <name> -- Name of basis path file (default ‘prefix'.bas).
actions -- Go to the ACTIONS menu.
options -- Go to the OPTIONS menu.
settings -- Display current runtime settings.
help [opt] -- Display HELP text for command
exit -- Exit current level

51

CHAPTER 6: TCAT-PATH Menus

6.1.6 Options Menu
The Options menu is displayed below:
TCAT-PATH:OPTIONS:
Options:
maxnodes <#> -- Maximum number of nodes digraph will process.
maxedges <#> -- Maximum number of edges digraph will process.
loopcount <#> -- Value of K to use in apg executions; default
K =
maxprint <#> -- Maximum number of paths apg prints; default 300.
maxpath <#> -- Maximum number of paths apg calculates.
basis <#> -- Basis path default number if non-zero.
centerline <#> -- Centerline offset for a digraph picture.
space <#> -- Spaces between nodes in digraph picture, default 1
width <#> -- Maximum width of the image produced; default = 80.
maxcalls <#> -- Maximum number of calls ctseg produces.
chnghelp <file> -- Specify a new on-line documentation <file>.
actions -- Go to the ACTIONS menu.
files -- Go to the FILES menu.
settings -- Display current runtime settings.
help [opt] -- Display HELP text for a command
exit -- Exit to the system
52

EEEEEREAESE

TCAT-PATH User’s Guide

6.1.7

Saving Changed Option Settings

Before leaving TCAT-PATH, or before running a digraph analysis, instru-
mentation, path generation, and/or coverage analysis session, the user
will be prompted to save the current option settings (unless this has
already been done in the current execution of TCAT-PATH and the
options have not been changed since they were saved).

This part of an interactive session appears as follows (assuming you wish
to save all current options in the file example.rc):

TCAT-PATH:

Do you want to save the current parameter settings
(y/n):

Y

Do you want to use the default filename (“tcatp.rc”)
(y/n):

n
Specify filename:
example.rc

Parameter settings saved in “example.rc”.

Note that TCAT-PATH will normally prompt you about saving current
settings when you finally exit the system (via an exit command in the
TCAT-PATH MAIN Menu).

53

CHAPTER 6: TCAT-PATH Menus

6.1.8

Running System Commands

You may execute a command available to the underlying operating sys-
tem by using the “!” symbol, as follows:

TCAT-PATH: ! <command>
Control is returned to TCAT-PATH after the command is executed.

This feature is useful for editing files and other activity within a TCAT-
PATH session.

54

TCAT-PATH User’s Guide

6.2

Settings Command Output

The current set of options values is available from ALL TCAT-PATH
menus, using the settings command.

An example of the output produced by the settings command is shown
below. The values shown are the actual default values assigned as if there
were NO configuration file present. This is also the set of values that will
be written during TCAT-PATH exit if you choose to save the values.

Current TCAT-PATH Options Settings Are:

Parameters:
maxnodes = 500
maxedges = 1000
loopcount = X
maxprint = 300
maxpath = 4800
basis = 300
centerline =0
space = I
width = 80
maxcalls = 10000
documentation = /usr/tcatpath/tcatpath.hlp
Files:
prefix = example
digraph = example.dig
path example.pth

tracefile example.trc
report = example.rpt
basis_file =

config_file = tecatp.xrc

TCAT-PATH Configuration File

This section describes how to construct or edit TCAT-PATH configuration
files. A sample file is shown at the end of this chapter.

All the commands in the TCAT-PATH system can read a configuration file
(the default name is tcatp.rc) before starting processing.

This feature allows the user to set various run-time parameters automati-
cally. Command-line parameters, however, override the configuration file
settings when command-line parameters are present.

The TCAT-PATH configuration file is a simple ASCII text file that can be
created with an editor.

Alternatively, you can create this file, and give it any name you like, by
using the save option from within an interactive invocation of TCAT-

PATH.

55

CHAPTER 6: TCAT-PATH Menus

6.2.1

Configuration File Syntax

The following run-time parameters can be set from the configuration file.
These parameters are shown here in the same order as they are displayed
with a “settings” command within the interactive menus of TCAT-PATH.

<any comment>A line that begins with a # is treated as a comment.
maxnodes=<number>

The maximum number of nodes tp-i<lang> will pro-
cess.Default is 500. An impractical limit is probably
2500.

maxedges=<number>

The maximum number of edges tp-i<lang> will
process. Default is 1000. An impractical limit is prob-
ably 2500.

loopcount=<number>

The value of K to use in apg executions; default K = 1.
(At present, only K = 1 can be used.)

maxprint=<number>

The maximum number of paths for apg to print. De-
fault is 300. A practical limit is probably 1000.

maxpath=<number>

The maximum number of paths for apg to calculate.
apg gives a message at the end of execution to show
the total number of paths it would have printed; or it
issues an error message when the “maxpath" param-
eter is exceeded.The default value is 4800. A practical
limit is probably around 10,000.

maxcalls=<number>

The maximum number of calls to be processed by ct-
seg, which is called by ctcover. The default is 10000.
This is probably a practical limit.

help=<pathname>

The fully specified path name for the file containing

the TCAT-PATH help frame information (interactive

operation only). The default location is:
/bin/tcatpath/helpframes

This location is installation-dependent. If this filena-

me is not specified correctly then the TCAT-PATH on-

line help frames will not work correctly.

56

TCAT-PATH User’s Guide

prefix=<name> The module or function name to be used as the base
name or filename prefix for all subsequent process-
ing. This is referred to in the following option de-
scriptions as “<*>".
If no prefix is specified then TCAT-PATH will not be
able to process any files, generate any digraphs, or an-
alyze path coverage. Accordingly, the default as-
signed value for the prefix is example.

digraph=<name.dig>

The name of the digraph file. If not specified, TCAT-
PATH assumes you mean <*>.dig. The default value
is example.dig

path=<name.pth>The name of the file of paths. If not specified, TCAT-
PATH assumes you mean <*>.pth. The default value
is example.pth.

tracefile=<name. trc>

The name of the trace file (generated during your pro-
gram execution). If not specified, TCAT-PATH as-
sumes you mean <*>.trc. The default value is
example.trc.

report=<name.rpt>

The name into which to write the Ct coverage report.-
The default name is example.rpt.

57

CHAPTER 6: TCAT-PATH Menus

6.2.2

6.2.3

Configuration File Processing

Lines in the configuration file can contain any of these commands in any
order. Comment lines must have a “#” as the first character.

All white space (i.e. tabs and blanks) in the configuration file is ignored.

All arguments (when appropriate) are treated as character string tokens
(i.e. no internal white space).

The latest-occurring command in case there are duplicate commands pre-
vails.(this feature may be useful when handling several configuration
files that differ only slightly).

Example TCAT-PATH Configuration File
Below is an example of a typical TCAT-PATH configuration file.

Sample options setting commands (configuration file)
width=20
=example

basis_file = example.basis

Redefine the maxima for “apg” operation...
maxprint= 1000
maxedges=10000

Value to keep updated archive records (Cl analysis)...
report=my.archive
End of example configuration file

58

CHAPTER 7

Source Viewing Utility

This utility is only available on X Window System environments.There is a more complete
explanation of source viewing utilities Xdigraph and Xcalltree in STW/Coverage/Book I.

7.1

Kl

7.3

Introduction

Source viewing associates a segment or node with its corresponding
source code. By simply clicking the mouse, the user is able to see source
relating to a node or segment.

For the purpose of source viewing, nodes are indicated by circles. A seg-
ment (or edge) is a directed line connecting two nodes (or circles).

Invocation Syntax

Source viewing is invoked with the following command:
Xdigraph dig-file -Sref-listing[-SC number]

where,

dig-file The dig-file is the file that specifies the set of segments
in “tail-node head-node segment-name" format. This
is what is normally produced by tp-ic and named
module-name.dig. This is the source file that the user
can view.

-Sref-listing The Reference Listing file (that is filename.i.A) is pro-
duced by the instrumentor.

[-SC number] This switch is optional. number specifies the number
of lines of source code above and below the clicked
segment or node that are to be displayed. The default
value is 10.

Example Invocation

This section refers to the full TCAT-PATH example chapter (Chapter 10).
For TCAT-PATH, the digraph files will be one of the following modules:
main, proc_input, or chk_chr.

The reference Listing is always example.i.A, which is the “C" program.

59

CHAPTER 7: Source Viewing Utility

FIGURE 8

In the following two pages is an example of source viewing, using main
module. The first demonstrates the mouse's pointer (indicated by an
arrow in the display) selecting a segment. For edges, the segment number
must be clicked on. For nodes, the pointer must click somewhere inside
the circle.

The second picture demonstrates the result. For this, hold down the
mouse button, and the source code will be displayed for as long as the
button is held down.

NOTE: If the node/segment numbers are not visible, it is probably
because the window size is too small. In this case, increase its size.

The main module on the following pages is invoked with the following:
Xdigraph main.dig -S example.i.A

To source view with graphical user interfaces, see Chapter 11. Below is an
example of the mouse pointer clicking on Segment 2.

graph VYer 2.7 (11/18/

[example . main,dig - e.znfvle,mamlz

File Options Zoom In Zoom Qut ¥ Statistics Print Annotation

Source Viewing (Part 1 of 2)

60

TCAT-PATH User’s Guide

Below is an example of the source code displayed as the mouse button is

held down.

digra

File Options Zoom In Zoom Dut VYiew Source Statistics Print

finnotation

Ll i graph Ver 2,7 - Yiew Source:
J' { = digragh Y

E Hction

int char_index:
main{argc

int

char

. ansuer:

/%% Hodule example.main %%/

/%% DIGRAPH NODE 1 *x/ int proc_input{):
%% Seguent 1 <> %%/
c=3

print
DIGRAPH NODE 3 wx/ 21 <13
Segment 3 <start_for> /
", menul1]}:
Segment. 4 <end_for>

c) Copyright 1390-34 Software Research, Inc.

Source Viewing (Part 2 of 2)

NOTE: For further information on STW's source-viewing graphics capa-
bilities, please refer to the chapters on Xdigraph and Xcalltree in Cover-

age Book L.

61

CHAPTER 7: Source Viewing Ultility

62

CHAPTER 8

TCAT-PATH Command
Summary for MS-DOS, OS/2

This chapter gives a short command summary for TCAT-PATH for “C" running under
MS-DOS or OS/2.

8.1 Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C" preproces-
sor before putting it to tp-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime module. Depend-
ing on the size of your program and the development method used, the
following subsections describe how it is done.

8.1.1 Stand-Alone Files

Here are the commands you would use with the Microsoft C 6.0 compiler
on MS-DOS or OS/2:

Preprocess: cl /P <filename>.c /* to produce <filename>.i */

Instrument: tp-ic -mé <filename>.i /* to produce <filename>.ic */

Compile: cl /c /Tc <filename>.ic/* to produce <filenames>.obj */

Link: cl <filename>.obj ctrunls.obj/* to produce <filename>.-
exe */

Execute: (Run your program as usual. Press RETURN

twice to accept the default values for
trace file message and name.)

Note that -mé is the tp-ic switch for Microsoft C 6.0 compiler. /Tc is a
Microsoft C 6.0 option that allows for compilation of files with extensions
other than .c.

Also, note that ctrunls.obj is the runtime object module that comes with
TCAT-PATH. There are various runtime object files, depending on com-
piler, runtime level, and memory model used. For more runtime descrip-
tions on MS-DOS runtimes, turn to Section 3.1.

63

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, 0S/2

8.1.2

8.1.3

8.1.4

8.1.5

Systems with ‘make’' Files

1. Insystems that have ‘make' files where .obj files are explicitly listed
as targets, add the following built-in rule before other targets:

Built in rule for TCAT instrumentation...

.€.0b7 3
cl $(CFLAGS) /P $*.c cl. $(CFLAGS) /P $*.c
tp-ic -m6 $*.1 or tp-ic -m6 S$*.1i
ren $*.1 temp.c cl $(CFLAGS) /c /Tc
g§¥ e

cl $(CFLAGS) /c temp.c
ren temp.o $*.obj
sample.obj: sample.c

2. Add.cM ctrun<level><models.obj to the list of linked object
modules. You must choose the version of runtime to use, based on the
runtime level and the memory model (small, compact, medium, large
or huge).

3. Run the ‘make'’ file to produce the instrumented program.

‘make' With ‘cl', ‘msc'
This section deals with situations that involve 'make’ files for commonly

available PC-based compilers, such as Microsoft C, where compile state-
ments are explicitly mentioned.

1. Replace ‘cl' (or ‘msc') with the following lines:
cl $(CFLAGS) /P <filename>.c
tp-ic -m6 <filename>.i
ren <filename>.i temp.c
cl $(CFLAGS) /c temp.cC
ren temp.o <filename>.o
2. Add ctrun<levels><models>.obj to the list of linked object mod-
ules.

3. Run the make file to produce the instrumented program.

Systems without ‘make' Files

Go to the directories with the source code and follow the method for
stand alone files with each source code file (preprocess, instrument, com-
pile). Finally, link all the object files with the appropriate runtime object
file.

Program Execution

Run your program as usual.

64

TCAT-PATH User’s Guide

NOTE: With the default runtimes (runtime level 1), the instrumented pro-
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

65

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, OS/2

66

CHAPTER 9

TCAT-PATH Command

Summary-UNIX

This chapter summarizes commands you use with TCAT-PATH for “C" in UNIX and
UNIX-like environments.

9.1

9.1.1

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C" preproces-
sor before putting it to the tp-ic instrumentor. The instrumented program
is then compiled and linked with the appropriate runtime modules.

Depending on the size of your program and the development method
that you use, the following subsections describe how it is done.

Stand-Alone Files

The commands used are:

Preprocess: cc -P <filename>.c /* to produce <filename>.i */
Instrument: tp-ic f /* to produce <filename>.i.c */
Compile: cc =¢ /* to produce <filename>.i.o */
Link: cc <filename>.i.o ctrunl.o /* to produce a.out */

Execute: (Run your program as usual. Press RETURN twice to accept the
default values fortrace file message and name.)
1. If you have ‘make’ files where *.o files are created with built-in rules,
add the following built-in rule before other targets:

Built in rule for TCAT-PATH instrumentation...

B oMo
cc $(CFLAGS) -P $*.c
tp-ic $*.1

cc $(CFLAGS) -c¢ $*.i.c

mv §*.i.0 $*.0
sample.o: sample.c
The above will depend on which one invokes built

in rules.

2. Add ctrun<level>.o to the list of linked object modules.

67

CHAPTER 9: TCAT-PATH Command Summary-UNIX

3. Then run the ‘make’ file to produce the instrumented version of the
software.

9.1.2 ‘make’ files with cc called in directives

When cc is explicitly called in directives, then add tp-ic commands to
the cec commands within the ‘make'’ file.
1. Replace cc with the following lines:

cc $(CFLAGS) -P <filename>.c

tp-ic <filename>.i

cc $(CFLAGS) -c <filename>.i.c

mv <filename>.i.o <filename>.o

Add ctrun<level>.o to the list of linked object modules.

Finally, run the make file to produce the instrumented version of the
software.

9.1.3 A System Which Does Not Use ‘make’ Files
(Or which will not allow ‘make’ file changes)
Go to the directories that contain the source code.

There, type the following commands:
cc -P *.c
tp-ic *.i
cc -c *.i.c

cc *.,i.o ctrun<?>.0

to create the instrumented source, objects and executable.

9.2 Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro-
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

68

CHAPTER 10

Full TCAT-PATH Example

This chapter describes a full TCAT-PATH example that includes a sample “C" program,
instrumented program, referenced listing, digraph files for each module, cyclomatic num-
ber calculations, digraph pictures, and coverage reports.

10.1

Introduction

It is assumed that TCAT-PATH will be used on syntactically correct pro-
grams, that is programs that will compile cleanly before instrumentation.
Of course, TCAT-PATH will be used to verify that each program segment
or logical branch executes correctly under typical operating conditions.

Figure 10 shows a sample “C" program with three function modules.

This example program will be used throughout the chapter to describe
each component of TCAT-PATH to better aid the user.

/* EXAMPLE.C --example file for use with TCAT, STCAT, TCAT-PATH. */
#include "stdio.h"
#include <ctype.h>

#define INPUTERROR =
#define INPUTDONE
#define MENU_CHOICES 1
#define STD_LEN i
#define TRUE 1

#define FALSE 0

#define BOOL int
#define OK TRUE
#define NOT_OK FALSE

char menu[MENU_CHOICES] [STD_LEN] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n”),
“ What type of food would you like”),

“xNn”,

“ 1 American 50s \n”),

L 2 Chinese - Human Style \n”),

o 3 Chinese - Seafood Oriented \n”),

" 4 Chinese - Conventional Style \n”"),
" 5 Danish \n”"),

" 6 French \n"),

69

CHAPTER 10: Full TCAT-PATH Example

ian

~
H
=

" 8 Ja

Ita
panese

int char_index;

main(argc,argv)
int

/* simple

argc;

char *argv|(];

¢

1

int i, choice, c,answer;
char str[STD_LEN];
BOOL ask, repeat;
int proc_input () ;
¢ = 35
repeat = TRUE;
while(repeat) {
printf ("\n\n\n");
for{i = 03

\n*),

n"),

program to pick a restaurant */

i < MENU_CHOICES; i++)

printf("%s", menuli]);
gets(str);
printf("\n");
while(choice = proc_input (str)) {

switch (choice)

case 1:

printf ("\tFog City Diner 1300 Battery 982-2000 \n");

break;
case 2:

printf ("\tHunan Village Rest 839 Kearney 956-7868 \n");

break;

case 3:

printf ("\tOcean Restaurant 726 Clement 221

387-8056

printf("\tEiners Danish Rest 1901 Clement

=3351 \n"

\na¥) #

386-9860 \n");

)i

printf ("\tChateau Suzanne 1449 Lombard 771-9326 \n");

break;
case 7:
printf("\t

break;

case 8:

printf ("\tFlints Barbecue 4450 Shattuck,

break;
default:

70

Oakland

Grifone Ristorante 1609 Powell 397-8458 \n");

\n");

TCAT-PATH User’s Guide

hoice != INPUTERROR)

c
printf("\t>>> %d: not a valid choice.\n", choice);
a

for(ask = TRUE; ask;) {
printf ("\n\tDo you want to run it again? ");

while((answer = getchar()) != '\\n') {
switch (answer) {
case *Y%g

case 'y':

ask = FALSE;
char_index = 0;
break;

case 'N':

case 'n':
ask = FALSE;
repeat = FALSE;
break;

default:

break;

int tempresult = 0;
char bad_str[80], *bad_input;
BOOL got_first = FALSE;

bad_input = bad_str;

e(isspace(in_str[char_index]))
char_index++;

for(; char_index <= strlen(in_str); char_index++) {
switch(in_str[char_index]) {

(
case '0'

.y

case ' :
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':

/* process choice */

tempresult = tempresult * 10 + = 1Q');
- o

got_first = TRUE:

break;

71

CHAPTER 10: Full TCAT-PATH Example

default:
if (chk_char (in_str[char_index])) {

return(tempresult) ;

else {
if(char_index > 0 && got_first)
char_index--;
while(char_index <= strlen(in_str)) {
if (chk_char (in_str([char_index]))
break;
else
*bad_input++ = in_str[char_index];
char_index++;
}
*bad_input = '\\O0';
printf ("\t>>> bad input: %s\n", bad_str);
char_index++;
return (INPUTERROR) ;
} o}
return (INPUTDONE) ;

BOOL chk_char(ch)

char ch;

{
if (isspace(ch) || ch == '\0")
return (OK) ;
else
return (NOT_OK) ;
}

Sample “C" Program

FIGURE 10

72

TCAT-PATH User’s Guide

10.2

Preprocess, Instrument, Compile and Link

The first step in TCAT-PATH is to prepare your “C" program to provide

segment coverage data. You start by:

1. Pre-processing the program. Most “C" compilers have this facility.

2. Instrumenting it to insert markers at every segment position.

The program on the next pages shows, in bold, the effects of TCAT-PATH

instrumentation on your “C" program:

-- Cl1 instrumentation by TCAT-PATH/C instrumenter:

-- Program tp-ic, Release 8

-- Instrumented on Wed Jan 30 14:21:08 1991

-— SR Copy Identification No. 0.

-- (c) Copyright 1990 by Software Research, Inc. All Rights
Reserved.

-- This program was instrumented by SR proprietary software,
-- for use with the SR proprietary TCAT runtime package.

-- Use of this program is limited by associated software

-- license agreements.

i

extern SegHit ()

extern Strace();
extern Ftrace();
extern EntrMod() ;
extern ExtMod() ;

\

char menu(13][79] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \\n",
L What type of food would you like?\n",

EXE

" i American 50s \n",

" 2 Chinese - Hunan Style \n",

N 3 Chinese - Seafood Oriented \n",

L 4 Chinese - Conventional Style \n",
" 5 Danish o ;

" A French \n",

" 7 Italian Np®,

73

CHAPTER 10: Full TCAT-PATH Example

int char_index;

main (argc,argv)

int argc;
char *argvl[];
{
int 1, choice,

char str([79];

int ask,

int proc_i

repeat;

nput () ;

Japanese 1 L

C,answer;

\Strace("IC",0x7504,0,0);
\EntrMod (27, "main", -1);

SegHit (1) ;

¢ = 33

repeat

i

{ while(repeat)

{

pr

SegHit (4

gets (str

7

{

18

SegHit (2);

printf("\n");

{

7868 \n");

while(choice = proc_input (str)) { SegHit (5);

{

1

switch (choice)

case 1:SegHit (6) ;

break;

case 2: SegHit(7);

printf ("\tHunan Village Rest 839 Kearney

break;

case 3: SegHit (8);
printf ("\tOcean Rest 726 Clement 221-3351 \n");

break;

case 4: \SegHit (9);\

printf("\tYet Wah 1829 Clement 387-8056 \

break;

case 5: \SegHit (10):;

74

printf ("\tFog City Dinl300 Battery 982-2000 \n");

956=

n");

T ——

TCAT-PATH User’s Guide

printf ("\tEiners Danish Restaurant 1901 Clement
386-9860 \n");
reak;
case 6: SegHit (11);
printf ("\tChateau Suz 1449 Lombard 771-9326\n");
break;
case 7: SegHit (12);
printf ("\tGrifone Rist1609 Powell397-8458 \n");
break;
case 8: SegHit (13);
printf ("\tFlints Barbg 4450 Shattuck Oaklan \n");
break;
default: \SegHit (14);
if (choice != -1) { SegHit (15);

printf ("\t>>> %d: not a valid choice.\n",
choice) ;

} else SegHit (16);
break;
} })})} SegHit (17); };

{ for(ask = 1; ask;) { SegHit (18);

printf ("\n\tDo you want to run it again? ");
{while((answer = getchar()) != '\n') { SegHit (19):;

{\ switch (answer)

case 'Y': SegHit (20);
case 'y': SegHit (21);
ask = 0;
char_index = 0;
break;
case 'N': \SegHit (22);\
case 'n': \SegHit (23);\
ask = 0;
repeat = 0;
break;
default: \SegHit (24);\
break;
AR
} \} SegHit(25); };\
} \} SegHit (26); };\
} \} SegHit (27); };\

\ExtMod ("main"); \
\Ftrace(0);\

75

CHAPTER 10: Full TCAT-PATH Example

int proc_input (in_str)
char *in_str;
int tempresult = 0;
char bad_str[80], *bad_input;
int got_first = 0;
\EntrMod (24, "proc_input™",-1);\
\SegHit (1) ;\

bad_input = bad_str;

\{\ while(isspace(in_str[char

_st i
char_index++; \} SegHit (3); }:\

\{\ for(; char_index <= strlen(in_str); char_index++) \{ Seg-
Hit (4);\
{
\{\ switch(in_str[char_index])
case '0' \SegHit (5) ; \
case 'l': \SegHit (6) ;\
case '2' \SegHit (7) ; \
case '3‘' \SegHit (8) ; \
case '4‘' \SegHit (9) ;\
case '5': \SegHit (10);\
case '6': \SegHit (11);\
case '7': \SegHit (12);\
case '8': \SegHit (13);\
case '9': \SegHit (14);\
tempresult = tempresult * 10 + (in_str[char_index]
- '0');
got_first = 1;
break;
default: \SegHit (15);\

if (chk_char (in_str[char_index])) \{ SegHit (16) ;)\

{ \{ExtMod ("proc_input") ;\

return (tempresult); \}\

AR
else \{ SegHit (17);\
{

if (char_index > 0 && got_first) \{ SegHit
char_index--; \} else SegHit (19)
R (i

\{\ while(char_index <= strlen

if (chk_char (in_str[char_index])

reak; \}\

———

\ {

Seg-

76

TCAT-PATH User’s Guide

FIGURE 11

else \{ SegHit (22);\
*bad_input++ = in_str[char_index]; \}\
char_index++;
} \} SegHit(23); }:\

*bad_input = '\0';
printf("\\t>>> bad input: %s\\n", bad_str);
char_index++;
\{ ExtMod("proc_input");\
return(-1); \}\
PR
IR UAN
} \} SegHit (24); };\

\{ ExtMod("proc_input");\

return(0); \}\

\ExtMod ("proc_input") ;\

int chk_char (ch)

char ch;
{

\EntrMod (3, "chk_char",-1);\

\SegHit (1) ;\

if (isspace(ch) || ch == '\0"') \{ SegHit (2); { ExtMod("chk_-
char") ;\

return(l); \} }\
else \{ SegHit(3); { ExtMod("chk_char");\
return(0); \} }\

\ExtMod ("chk_char") ; \
}

Instrumented Program Fragment

77

CHAPTER 10: Full TCAT-PATH Example

10.3 Reference Listing

The Reference Listing file (that is filename.i.A or filename.ia for DOS) is pro-
duced by the instrumentor and is used for manual cross-referencing dur-
ing a series of tests. The Reference Listing is a version of your “C"
program with segments (or edges) and nodes marked.

You will use this report by gathering the "Not Hit" paths from report files,
and then looking up the related code in the Reference Listing. After
reviewing the exercised and not-exercised parts of the program, you can
design subsequent test cases to exercise more paths.

Extensive segment, node and module notation have also been embedded
and the segment and node sequence numbers are listed along the leftmost
column.

The header identifies the file as a Reference Listing and includes the
Release number plus a copyright notice.

The code that tp-ic adds appears in bold in the following program.

-- TCAT-PATH/C, Release 8

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

-- SEGMENT REFERENCE LISTING
-- Instrumentation date: Wed Jan 30 14:21:08 1991

-- Separate modules and segment definitions for each module are

-- indicated in this commented version of the supplied source file.

char menu[1l3][79] = {
"SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",
" What type of food would you like?\n",

“\n“l
u 1 American 50s \nt;
L 2 Chinese - Hunan Style \n-",
" 3 Chinese - Seafood Oriented \n",
" 4 Chinese - Conventional Style \n",
L 5 Danish Na™,
L] 6 French o™ ;
“ 7 Italian gY,
L 8 Japanese \n",
"\n\n"
¥
T

78

~_——--lIIII.I.IlIIll

TCAT-PATH User’s Guide

int char_index;
main(argc,argv)
int argc;
char*argv(];

{
int i, choice, c,answer;
char str([79];

int ask, repeat;

\/** Module main **\
\/* DIGRAPH NODE 1 *\

int proc_input () ;
\/** Segment 1 <> **\
c = 3;
repeat = 1;
\/* DIGRAPH NODE 2 *\ while(repeat) {
\/** Segment 2 <start while> **\
printf (*\n\n\n");
\/* DIGRAPH NODE 3 *\ for(i = 0; i < 13; i++)
\/** Segment 3 <start for> **\
printf("%s", menu(i]);

\/** Segment 4 <end for> **\

\/* DIGRAPH NODE 4 *\ while(choice = proc_input (str)) {
\/** Segment 5 <start while> **\
\/* DIGRAPH NODE 5 *\ switch(choice) {
case 1:
\/** Segment 6 <case alt> **\
printf ("\tFog City 1300 Battery 982-2000 \n");
break;
case 2:
\/** Segment 7 <case alt> **\
printf ("\tHunan Rest 839 Kearney 956-7868 \n");

case 3:
** Segment 8 <case alt> **\
printf ("\tOcean Rest 726 Clement 221-3351 \n");
break;
case 4:
** Segment 9 <case alt> **\
printf ("\tYet Wah 1829 Clement 387-8056 \n");
break;
case 5:
\/** Segment 10 <case al *RY

("\tEiners Dan Rest 1901 Clt 386-9860

79

.....---———7
CHAPTER 10: Full TCAT-PATH Example

break;
case 6:
\/** Segment 11 <case alt> **\
printf ("\tChateau Suzl449 Lomb 771-9326 \n"):;
break;
case 7:
\/** Segment 12 <case alt> **\
printf ("\tGrif Rist 1609 Powell397-8458 \n");
break;
case 8:
\/** Segment 13 <case alt> **\
("\tFlints Barbg 4450 Shattuck Oak \n");

h

print
break;
default:
\/** Segment 14 <case alt> **\
\/* DIGRAPH NODE 6 *\ if(choice != -1)
\/** Segment 15 <if> **\
printf("\t>>> %d: not a valid choice.\n",
choice) ;
** Segment 16 <implied else> **\
break;

/** Segment 17 <end while> **\
/* DIGRAPH NODE 7 *\ for(ask = 1; ask;) {
/** Segment 18 <start for> **\
printf ("\n\tDo you want to run it again? ");

/* DIGRAPH NODE 8 */ while((answer = getchar()) != '\n') {
/** Segment 19 <start while> **\
/* DIGRAPH NODE 9 *\ switch(answer) {

case 'Y':
/** Segment 20 <case alt> **\
/* DIGRAPH NODE 10 *\ case 'y':
/** Segment 21 <case alt> **\

ask = 0;
char_index = 0;
break;

case 'N':

/** Segment 22 <case alt> **\

/* DIGRAPH NODE 11 *\ case 'n':

/** Segment 23 <case alt> **\
ask = 0;
repeat = 0;
break;

default:
/** Segment 24 <case alt> **\

reak;

/** Segment 25 <end while> **\

80

TCAT-PATH User’s Guide

/** Segment 26 <end for> **\

/** Segment 27 <end while> **\

/* DIGRAPH NODE 12 *\ int proc_input (in_str)
char *in_str;

{
1

int tempresult = 0;

char bad_str([80], *bad_input;

/** Module proc_input **\

/* DIGRAPH NODE 1 */ int got_first = 0;
/** Segment 1 <> **\/
bad_input = bad_str;
/* DIGRAPH NODE 2 */ while(isspace(in_str[char_index]))
/** Segment 2 <start while> **/
char_index++;
/** Segment 3 <end while> **/
/* DIGRAPH NODE 3 */ for(; char_index <= strlen(in_str); char_in-
dex++) {
/** Segment 4 <start for> **/
/* DIGRAPH NODE 4 */ switch(in_str[char_index]) {
case '0':
/** Segment 5 <case alt> **/
/* DIGRAPH NODE 5 */ case 'l':
/** Segment 6 <case alt> **/
/* DIGRAPH NODE 6 */ case '2':
/** Segment 7 <case alt> **/
/* DIGRAPH NODE 7 */ case '3':
/** Segment 8 <case alt> **/
/* DIGRAPH NODE 8 */ case '4':
/** Segment 9 <case alt> **/
/* DIGRAPH NODE 9 */ case '5':
/** Segment 10 <case alt> **/
/* DIGRAPH NODE 10 */ case '6':
/** Segment 11 <case alt> **/
/* DIGRAPH NODE 11 */ case '7':
/** Segment 12 <case alt> ***/
/* DIGRAPH NODE 12 */ case '8':
/** Segment 13 <case alt> **/
/* DIGRAPH NODE 13 *\/ case '9':
/** Segment 14 <case alt> **/

3
|

tempresult = tempresult * 10 + (in_str[char_i

"
=

1

got._first = 1j
break;
default:

/** Segment 15 <case alt> **/

81

CHAPTER 10: Full TCAT-PATH Example

/* DIGRAPH NODE 14 */ if(chk_char(in_str[char_index])) {
**/

return(tempresult) ;

/** Segment 16 <if>
else {
/** Segment 17 <else> **/
/* DIGRAPH NODE 15 */ if(char_index > 0 && got_first)
/** Segment 18 <if> **/
char_index--;
/** Segment 19 <implied else> **/
/* DIGRAPH NODE 16 */ while(char_index <= strlen(in_str)) {
/** Segment 20 <start while> **/
/* DIGRAPH NODE 17 */ if(chk_char (in_str [char_index]))
/** Segment 21 <if> **/\
break;
else
/** Segment 22 <else> **/
*bad_input++ = in_str([char_index];

char_index++;

}
/** Segment 23 <end while> **/
*bad_input = '\0’';

printf ("\t>>> bad input: %s\n", bad_str);

})
/** Segment 24 <end for> **/
return(0) ;
/* DIGRAPH NODE 18 */ }
int chk_char (ch)
char ch;
/** Module chk_char **/
{
/* DIGRAPH NODE 1 */
/** Segment 1 <> **/
/* DIGRAPH NODE 2 */
if(isspace(ch) || ch == '\0")
/** Segment 2 <if> **/
return(l) ;
else
/** Segment 3 <else> **/
return(0) ;
/* DIGRAPH NODE 3 */

TCAT-PATH/C, Release 8
END OF TCAT-PATH/C SEGMENT REFERENCE LISTING

FIGURE 12 Reference Listing

82

4———-Illlllllllllllll

TCAT-PATH User’s Guide

10.4

Instrumentation Statistics

The instrumentor also produces program statistics. They are organized
module-by-module.

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

-- INSTRUMENTATION STATISTICS
-- Instrumentation date: Wed Jan 2 15:23:28 1991

MODULE 'main’':
statements = 42

compound statements = 7

branching nodes = 12
e

segments instrumented = 27

ional statements (if, switch) = 3

f

statement =

condi

else statement added = 1
switch statements = 2
switch statement cases = 14
default statement added = 0

iterative statements (for, while, do) = 5
for statements = 2
while statements = 3
do statements = 0

MODULE 'proc_input':
statements = 22

compound statements = 6

branching nodes = 18

segments instrumented = 24

ional statements (if, switch) = 4
tatements = 3
S

tatement added = 1

switch statement = |

83

7

CHAPTER 10: Full TCAT-PATH Example

switch statement cases = 11
default statement added = 0
iterative statements (for, while, do) = 3
for statement = 1
while statements = 2

do statements = 0

exit statement = 0

return statements = 3

MODULE ‘'chk_char':
statements = 2

compound statement = 1

branching nodes = 3

segments instrumented = 3

conditional statement (if, switch) = 1
if statement = 1
else statement added = 0

switch statement = 0

o

switch statement case =

default statement added = 0

iterative statements (for, while, do) = 0
for statements = 0
while statements = 0

do statements = 0

exit statement = O

return statements = 2

-- TCAT-PATH/C, Release 8.

-- END OF TCAT-PATH/C INSTRUMENTATION STATISTICS

FIGURE 13 Instrumentation Statistics

84

TCAT-PATH User’s Guide

10.5

Path Generation

The next step is to generate a complete set of paths for all modules of
interests. apg processes a digraph file (*.dig file) into a path file (*.pth file).
This path information is needed for a generating coverage report, which
will be discussed in the next section.

The example program has three modules, and thus has three digraph files
resulting from the instrumentation. The three digraph files are shown in
the following figure:

digraph for ‘main.dig’

i % i
2 3 3
33 3
3 4 4
4 5 5
5 4 6
5 4 7
5 4 8
5 4 9
5 4 10
5 4 11
5 4 12
5 4 13
5 6 14
6 4 15
6 4 16
4 7 17
7 8 18
8 9 19
9 10 20
10 8 21
9 8 21
9 11 22
11 8 23
9 8 23
9 8 24
8 7 25
7 2 26
2 12 27

Digraph file for ‘main' module"
digraph for ‘proc_input.dig'

2

2 2 2
2 3 3
3 4 4
4 5 §
5 6 6

85

CHAPTER 10: Full TCAT-PATH Example

N s o WD

W W 0 W J J o

1
L ol e Y e B o B o o JENES NENS BY'o)
=}

H = o o

= i O

1
4 1
11 12 12
4 12 12
12 13 13
4 13 13
13 3 14
4 3 14
4 14 15
14 18 16
14 15 17
15 16 18
15 16 19
16 17 20
17 16 21
17 16 22
16 18 23
3 18 24
FIGURE 15 Digraph file for ‘proc_input' module
digraph for ‘chk_char.dig'
-
2 3 2
Z2 3 3
FIGURE 16 Digraph file for ‘chk_char' module
The user can also at this time run cyclo and digpic on the digraph files
and study the structure and properties of the modules in question. If any
of the modules appears to be too “complex", the user can break up the
module into smaller and easier to test modules.
The cyclomatic number for those three modules mentioned above are
shown below:
Module main
cyclo [Release 3]
Cyclomatic Number = Edges - Nodes + 2 = 29 - 12 + 2 = 19
cyclo [Release 3]
86

TCAT-PATH User’s Guide

FIGURE 17

Module proc_input

Cyclomatic Number = Edges

cyclo [Release 3]

Module chk_char

Cyclomatic Number = Edges

Nodes + 2 = 33 - 18 + 2 = 17

Nodes + 2 = 3 -3 + 2 = 2

The cyclomatic number for module main and proc_input is quite large.
The digraph display of module proc_input below suggests that the mod-

ule is quite complex.

| [[5] 0 <

e 111l (I |

| [[61]1<0 | < |

o171 [
[7 110 < | < |

- 1819

- 23 20

=222

Digraph display for ‘proc_input module”

87

CHAPTER 10: Full TCAT-PATH Example

apg generates more than 100 paths for both of the modules mentioned
above. The paths are not reproduced here, but the user can refer to them
in the next section.

88

TCAT-PATH User’s Guide

10.6

TCAT-PATH Reports

The last and most important step in test analysis is to obtain test coverage
analysis reports. This section details how to read reports generated by
ctcover.

The commands on the following page are to be executed to get the cover-
age reports for all three modules.

ctcover main Trace.trc
ctcover proc_input Trace.trc(for UNIX)
ctcover chk_char Trace.trc

ctcover main Trace.trc
ctcover proc_input Trace.trc -f proc_inp(for DOS)
ctcover chk_char Trace.trc

The following are the coverage reports for all three modules from the
example program. The reports for main and proc_input modules are inten-
tionally truncated due to the the size of the reports.
Ct Test Coverage Analyzer
(c) Copyright 1990 by Software Research, Inc.

Module "main": 155 paths, 1 were hit in 1 invocations.

0.65% Ct coverage
Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

fa—y

None 1 23 <{ 3 }>456<{56789 1011 12 13 14 15 16 }> \
17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 \\
23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 \\
10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
2 None 1 2 3 <{ 3 }>456<{ 567891011 12 13 14 15 16 }> \
17 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \\
22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

3 None 1 23 <{ 3 1}>456<{567891011 12 13 14 15 16 }> \\
17 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 \
23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 \
7 6517 25 19 20 21 21 22 23 23 24 18 26 }> 27

4 None 1 23 <{ 3 }>456<{56789 10 11 12 13 14 15 16 }> \
17 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \
22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \
6 517 95 10 20 21 21 22 23 23 24 18 26 }> 27

5 1123<{31}>456<{56789101112 13 14 1516 }> \\

89

CHAPTER 10: Full TCAT-PATH Example

17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \
22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

. (intervening paths deleted for clarity)...

152 None 1 2 4 17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 \
24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 \
10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

153 None 1 2 4 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26 <{ 2\
3416 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23\
24 18 26 }> 27

154 None 1 2 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 19 \
20 21 21 22 23°23 24 18 26 }»> 27

155 None 1 27

FIGURE 18 Coverage Report for ‘main' module

Ct Test Coverage Analyzer
(c) Copyright 1990 by Software Research, Inc.

Module "proc_input": 176 paths, 12 were hit in 12 invocations.

6.82% Ct coverage

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 None 1 2 <{ 2 }>3 456 7 89 10 11 12 13 14 <{ 4 5 6 7 8 9 \
10 11 12 13 14 6 7 8 9 10 11 12 13 14 }> 24

2 None 1 2 <{ 2 }>3 4546 7 89 10 11 12 13 14 [{ 4 56 7 8 9 \
10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

3 None 1 2 <{ 2 }>3 4546 7 8 9 10 11 12 13 14 [{ 4 56 7 8 9 \
10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 \

<{ 20 21 22 }> 23
. (intervening paths deleted for clarity)...

17 None 1 2 <{ 2 }>3 4 78 9 10 11 12 13 14 <{ 4 5 6 7 8 9 10 11 \
12 13 14 6 7 8 9 10 11 12 13 14 }> 24

18 112<{2}>34789 1011 12 13 14 [{ 4 56 7 8 9 10 11 \
12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

19 None 1 2 <{ 2 }>3 4789 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11 \
12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20 21 22

}> 23

.. (intervening paths deleted for clarity)...

25 None 1 2 <{ 2 }>3 48 9 10 11 12 13 14 <{ 4 56 7 8 9 10 11 12

W
13 14 6 7 8 9 10 11 12 13 14 }> 24

90

T—

TCAT-PATH User’s Guide

FIGURE 19

FIGURE 20

26 112<{2}>348291011 12 13 14 [{ 456 7 8
\\

13 14 6 7 8 9 10 11 12 13 14 } 15 16
2.7 None 1 2 <{ 2 }>3 489 10 11 12 13 14 [{ 4 56 7 8
W

13146 78 9 10 11 12 13 14 }] 15 17 18 20 21 <{
23

. (intervening paths deleted for clarity)...
167 None 1 3 4 14 [{ 456 7 8 9 10 11 12 13 14 6 7 8 9

AX
14 3] 15 17 19 20 22 <{ 20 21 22 }> 23

168 None 1 3 4 14 [{ 456 7 89 10 11 12 13 14 6 7 8 9
¥\

14 1] 15 17 19 23
169 113 4 15 16
170 None 1 3 4 15 17 18 20 21 <{ 20 21 22 }> 23
171 None 1 3 4 15 17 18 20 22 <{ 20 21 22 }> 23
172 None 1 3 4 15 17 18 23
173 None 1 3 4 15 17 19 20 21 <{ 20 21 22 }> 23
174 1134 15 17 19 20 22 ={ 20 21 22 }> 2
175 None 1 3 4 15 17 19 23
176 113 24

Coverage Report for ‘proc_input' module

Ct Test Coverage Analyzer

(c) Copyright 1990 by Software Research, Inc.
Module "chk_char": 2 paths,
100% Ct Coverage!

Test descriptor: sample restaurant program run

P#
1 111 2
2 913

2 were hit in 20 invocations.

8 10 11 12

o
-
Y
[y
N
=
w

91

I—

CHAPTER 10: Full TCAT-PATH Example

10.7 Summary

After reviewing the coverage reports you will typically rerun the tests
with different or additional test cases, designed to exercise previously
not-hit paths and achieve a higher Ct value. The higher the Ct value, the
more complete your testing. When you achieve a satisfactory value for Ct,
you can stop testing.

92

CHAPTER 11

Graphical User Interface (GUI)
Tutorial

This chapter demonstrates using TCAT-PATH in the OSF/Motif X Window System envi-

ronment.

1.1

FIGURE 21

Invocation

To invoke, type:
Xtcatpath

The result is the main menu (shown below). This window has a window
menu button (available for all windows) that allows the user to restore,
move, size, minimize, lower and close the window. This menu button can
be used at any time during the X Window System program. For closing
main application windows, however, it is best to use the System menu's
Exit option to prevent any system crashes. The two buttons in the upper
right hand corner of the window allow the user to maximize or minimize
the window size.

T

Instrument

e
g
Execute

Main Menu

93

CHAPTER 11:

Graphical User Interface (GUI) Tutorial

To invoke with STW/COYV, click first on Coverage and then on TCAT-
PATH. The TCAT-PATH main menu pops up.

Y Ver 2.6 Ll]

Regression

Process

Instrument

FIGURE 22

STW/COV Invocation

94

TCAT-PATH User’s Guide

11.2

11.2.1

Using TCAT-PATH

For first time use, always read the help menus. Below is main menu's
help, explaining TCAT-PATH four stages of testing: Instrument, Execute,

Generate Path, and Analyze.

Action

Help for Xtcatpath Main Window

TCAT-PATH, Yer 8,2

{c} Copyright 1990-1934 by Software Research,

ALL RIGHTS RESERVED

TCAT-PATH measures the completeness of a
test set using the “path” completeness

coverage metric, Ct,

Normally, test sets are considered complete
when the Ct value iz above S0,

TCAT-PATH instruments your source program,
which you then re-compile and link with the
TCAT-PATH "runtime" program, After each
test you can analyze each tracefile using a

Main Menu Help

Instrument

TCAT-PATH instruments the source code of the program to be tested, that
is it inserts function calls at each logical branch. Click twice on Instru-

ment in order to begin testing.

There are a variety of options which can be selected with the menu in Fig-

ure 22 :

e Preprocessing can be turned on or off. If itis turned off, then the
instrumentor will not preprocess.

e Preprocessor output suffix is set to .i, which is normally the
extension for preprocessed “C" programs. This option is user

editable.

e Preprocessor Command is set to cc -P. Refer to Chapter 8 for fur-
ther information. This option is user editable.

* Preprocessor options are options in addition to the “Preproces-

sof command" previously specified.

95

CHAPTER 11: Graphical User Interface (GUI) Tutorial

e Instrumentor Command is set to tp-ic. This option is user edit-
able.

e Instrumentor options

Recognize _exit as keyword corresponds to the command
line -u switch. Refer to Section 2.2.1.

Do not recognize exit as keyword corresponds to the com-
mand line -x switch. Refer to Section 2.2.1.

Do not instrument functions in file corresponds to the -DI
deinst switch. Specify a filename that contains lists of mod-
ules that are to be instrumented. Refer to Section 2.2.1.

Specify maximum file name length corresponds to the -f1
value switch. Specify a number that will correspond to the
maximum number of characters. Refer to Section 2.2.1.

Specify maximum function name length corresponds to the
fn value switch. Specify a number that will correspond to the
maximum number of characters. Refer to Section 2.2.1.

Instrumentor command;

Instrumentor options:

Preprocessor output suffisx:

Preprocessor options:

2l Recognize _exit as keyword

21 Do not recognize exit as keyword

2 Do not instrument functions in file: | DEINSTRU,fns §

£l Specify maximum file name length:

2l Specify maximum function name length:

FIGURE 24

Instrument Menu

96

TCAT-PATH User’s Guide

You need to process the source programs
that dynamic coverage can be measured,

First, you may need to pre-process the
program,

Mext, you need to run the TCAT-PATH instru-
menter, This produces a logically

equivalent but modified program that
includes special software instrumentation
"probes, "

Yarious parameters and files have to be
supplied to the instrumenter for

best effect, For example, you can tell the
instrumenter to pay attention to "_exit",
or to not pay attention to "exit" {see

Uzer Manuall, You can specify minimum
zensitivity lengths for the names recog-

FIGURE 25

Instrument Help Menu

After selecting instrumentor options, do the following;:

1.
2.

Make sure the Preprocessing switch is ON.

Click on the File pull-down menu. Drag the mouse down and select
Set File Name. A file pop-up window appears (refer to the picture
below.) Select the file to be instrumented by either highlighting or
typing it into the Selection Box. Press OK.

After establishing the file to be instrumented, click on the Actionpull-
down menu. Drag the mouse down and select Preprocess and then
Instrument.

NOTE: Instrument cannot be selected until preprocessing has been com-
pleted. When both preprocessing and instrumenting are in progress, the
menu's optionsare grayed out and the cursor becomes a stop watch.
When the options are darkened, then you can progress to the next step.

97

CHAPTER 11: Graphical User Interface (GUI) Tutorial

NOTE: Current status and errors are displayed in the invocation box
from time to time. Frequently refer to the box while testing to see where
system crashes, errors and passes occur.

When finished, click on Exit under the File pull-down menu.

:_popu

Filter

coverage/C/tcatpathC,demo/*, o

Directories Files

iC.demod, , exanple,i,c

ge/C/tcatpathC, demo/exanple, o}

%Filterl %Eancel

FIGURE 26 File Pop-Up Menu

98

.

T ———

TCAT-PATH User’s Guide

11.2.2

Execute

The Execute menu compiles, links and executes the program. Normally,
you compile the instrumented source file and then link all the source files
with the runtime object module (which is specified under the File pull-
down menu). The user can also use the Make file. Both methods are
explained in this section.

Click once on Execute to begin. The menu below appears.

File Action

Compiler commands

Linker command; . %Linker options:

wosnsnnonodt

Make command: make %Make file name:

Application name:

FIGURE 27

Execute Menu

There are a variety of options which can be selected from the Execute
menu.

1. Compiler command is used to invoke the compiler on the system. It
is set to cc-c but is user-editable.

2. Compiler options are the options for the compiler. It is set to *.i.c
but is user-editable.

3. Linker command is used to invoke link. It is set to cc-o but is user-
editable.

4. Linker options are the options used in order to link. It is set to *.i.o
but is user-editable.

5. Make command is used to invoke the make utility.

6. Make file name is where the make file is specified. It is fixed to
Makefile but is user-editable.

7. Application name is the command used to invoke the instrumented
program. Itis fixed to a.out but is user-editable.

99

CHAPTER 11: Graphical User Interface (GUI) Tutorial

8. Application argument is where command line arguments are speci-

fied. It is user-editable.

After instrumentation, you need to link
your compiled programs with the "runtime"
module, There are different runtime
modules you can use, depending on the
particular features you want:

o Level 0; Fixed trace file and no
buffering,

Level 1: Uszer-szelected trace file and
no buffering, Thiz is the most commonly-us
version,

NOTE: You cannot "buffer” the tracefile,
because doing so lozez the sequence infor-
mation that iz used by TCAT-PATH to deter-
mine which path class was executed,

Fleaze consult your User Manual for

FIGURE 28

Execute Help Menu

Execute one of two ways:
Without Make File

1.

Click on the File pull-down menu, drag the mouse to Set Runtime
Object Module and click. A pop-up window appears (shown in Fig-

ure 29).

Highlight or type in (the Selection box) the necessary file. Click
OK. Refer to the help frame and to Section 3.1 for SR-supplied

runtime object modules.

Set the compiler and linker commands (that is Compiler com-
mand, Compiler options, Linker command and Linker options)

as appropriate.

Click on the Action pull-down menu and select Compile. When
completed, the invocation window will state so.

100

TCAT-PATH User’s Guide

FIGURE 29

Click on Link. Invocation window will indicate when linking
has occurred.

Click on Run Application.

2. With Make File: make organizes all compiler and linker commands
and files.

Click on the File pull-down menu, drag the mouse to Set Runt-
ime Object Module (shown in Figure 29) and click.

Highlight or type in (the Selection box) the necessary file. Click
OK. Refer to the help frame and to Section 3.1 for SR-supplied
runtime object modules.

Set the make commands (that is Make Command, Make file
name, Application name and Application arguments) as appro-
priate.

Click on the Action pull-down menu and select Make. When
completed the invocation window will state so.

Click on Run Application.

Whichever methods is chosen, the trace file is created.

Filter

lfatw.E.EHpdeuct!l1bﬁctrun*.o4

Directories Files

A == P
t/1ibd, . - [ctrunl,o
t/1ibAH1IRG '
;t/1ib/shared

/stw,2,B/praduct/lib/ctrund, o,

AFlltBP] gtancell

Runtime Object Module Pop-Up Menu

101

CHAPTER 11: Graphical User Interface (GUI) Tutorial

11.2.3 Generate Paths

After executing your program, you need to generate a set of paths for any
module. apg processes a digraph file (*.dig file) into a path file (*.pth

file). This path information is necessary for generating a coverage report.

To begin, click once on Generate Path and the menu below appears.

File Action

M Path Limit 1000 21 Report Width:

(1] Paths
& Selected Paths

Generate Paths Menu

FIGURE 30

102

TCAT-PATH User’s Guide

FIGURE 31

Generate Paths Help Frame

In this menu you use the TCAT-PATH built-in
"apg" program to henerate a set of paths
that will be used to measure the test com-
pleteness of each module you analyze,

You have to generate a "path set" for

each separate module.

If you use the "All Paths" option then

the programs will show you all of the
equivalence ¢ that can be executed.
CAUTION: Sometimes the number of paths
generated can be quite large and you may
want to edit the path set for a particular
module. There is a separate merw for doing
this.

Normally. the numeric limit for paths generate

15 300, You can set this to a

higher limit. Also. the “"path file" has
" inserted to make the file easier to

read: the default width is 80 characters,

You can set a different default as indi-

cated,

Another way to generate sets of paths is to
use one of the built-in algorithms for
finding a set of paths that "covers" all

of the edges. TCAT-PATH provides a number
of alternatives for this:

st The set of non-iterative
is used first, then..,
Essential Edges: The set of paths that
first 1ncludes each edge which is on only

one of the original set of paths.

Unconstrained Edges: The set of edges

There are a variety of options which are available from the Generate Path
menu:

1.

Path Limit is the the (integer) maximum number of paths to generate.
It corresponds to the command line [-p limit] option. Refer to Section
4.1.1 for further information.

Report Width specifies that the report is never to be wider than
width characters. It corresponds to the command line [-w width]
option. Refer to Section 4.1.1 for further information.

All Paths are all the structurally visual paths. It is equivalent to run-
ning apg on a *.dig file. Refer to Chapter 4 for further information.
Selected Paths selects paths from All Paths. Because All Paths can
be overwhelmingly large, you may want to select only particular

paths from the Selected Paths option. The following paths may be
selected:

* Basis Paths: The set of non-iterative paths. It corresponds to

the apg's -b command line switch. See Section 4.1.1 for fur-
ther information).

103

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Essential Edges: The set of paths that first includes each
edge which is on only one of the original set of paths. It has
not been implemented at this time.

Unconstrained Paths: The set of edges that will imply execu-
tion of other edges in the program. It has not been imple-
mented at this time.

Essential Paths: The set of paths that include one essential
edge, that is an edge that lies on no other path.

e Path Set and Algorithm: Paths can be arranged in the
following ways:

Original refers to the original path set that was gener-
ated by apg. (This is accomplished when you select All
Paths from the Generate Paths menu. It corresponds to
the-f (first found alogorithm) or the -1 (last found algo-
rithm) in pathcover. Refer to Section 4.5.1 for further
information.

Iteration arranges the path set in terms of increasing iter-
ation complexity.

It corresponds to the -fi (first found alogorithm) or the -li
(last found algorithm) in pathcover. Refer to Section
4.5.1 for further information.

Length arranges the path set in ascending order. It corre-
sponds to the -fl (first found alogorithm) or the -11 (last
found algorithm) in pathcover. Refer to Section 4.5.1 for
further information.

Sorted arranges the path set in natural order according to
the names of the segments. It corresponds to the -fs (first
found alogorithm) or the -Is (last found algorithm) in

pathcover. Refer to Section 4.5.1 for further information.

Random arranges the path set in random order. It corre-
sponds to the -r switch. First found and last found algo-
rithms are ignored. Refer to Section 4.5.1 for further
information.

1. To generate All Paths:

Click on the All Paths option.
Specify the Path Limit and Report Length if desired.

Click on the File pull-down menu and click on Set Module
Name. The box in Figure 32 pops up. Highlight or type in
the module in the Selection box and click on OK.

104

| TTTT———————EE

TCAT-PATH User’s Guide

FIGURE 32

Generate Paths Pop-Up Menu

odule Sele

Modules:

example,main

[:

Selection

Click on the Action pull-down menu. Drag the mouse to
Generate Paths and click.

Click on the Action pull-down menu. Drag the mouse to
Generate Path Statistics and the menu below pops up. View
the reports by using the menu's scroll bars. After viewing,
click on Action and Exit.

105

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Detailed Path Analysis Statistics

Processed file name: Shomes 16/ stw
{ Hunber of nodes (NI:

Mumber of edges {(E, seqmentsi

Cyclomatic number (E - M + 233

TOTAL WUMBER OF 1-TRIF PATHS:

FIGURE 33

Generate Path Statistics Pop-Up Menu

At this time, you can use other available utilities with the Action pull-
down menu. These utilities are optional, not necessary.

Click on Edit Paths and the window below pops up.

Note: If you do not use the “Selected Paths" option, then the “All Path
List" and the “Selected Path List" scrolled text windows will contain the
same paths.

106

TCAT-PATH User’s Guide

All Path List:

Selected Path List:

Selected Path Number:

i iDelete

FIGURE 34

Edit Paths Menu

107

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Rction

If the "automatic methods" of generating
paths are not successful or 1sfying. you
can choose to edit the path set manually,

all p
riumbe:

You can select a particular path number and
choose to add or delete it from the
selected path set,

At all tim e selected pa you have

included are shown in & window.

editing you can use th
one against which Ct cover-
are made,

et of "path conditions" t
o create additional
softuare,

The path conditions can be generated for
path in your path set, To see the
el

ditions for each path you can
r, TCAT-PATH then ger
corresponding path conditions and shows the
text of those conditions in a window,

ect a path

#8GENERATEPATH

In this menu you use the TCAT-PATH built-in
"apg" program to Renerate of pat
that will be used to measu est com-

FIGURE 35

Edit Paths Help Frame

108

TCAT-PATH User’s Guide

Filter

I:ﬁcoveragefﬁftcatpathﬂ.demoﬁ*.pthE

Directc Files

example,chk_char,pth
example,main,pth
example,proc_input,pth

Selection

l'demD&chuerage#fﬁtcatpathf,dem0{$

ik | [Fidter | Concel

FIGURE 36

Set Path File Pop-Up Menu

1.

Your module name should be carried over from the Generate Paths
menu. If not or to select a different module (assuming you have
already generated paths for it), then click on the File pull-down menu
and select Set Path File. The window similar to the one in Figure 36
pops up. Select a file by highlighting or typing in the path (*.pth) file.
To add or delete a path in the Edit Paths menu, simply type in or
highlight the number in the Select Path Number Selection Box.

Click Add or Delete and the Selected Path List will change accord-
ing.
If you wish to save the path (*.pth) file, then select the Saved to New

Path File under the Action pull-down menu. A window similar to
the one below will appear. Select a file in the usual manner.

109

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 37

Filter

IEorﬁtdgen.demnﬁdate.genf*‘pth'

Directories Files

o o= AN n

w'date,gen/, .,

Save New Path File Pop-Up Menu

110

TCAT-PATH User’s Guide

Click on Display Paths and the window below pops up. It allows you to
view source.

Dizplay Geometr

&1 Display Size

21 Foreground Color:

I Background Color:

Yiew Source

FIGURE 38 Display Path Menu

— -
atpath Wer 3.2 (10/26/34} - HelpiiEssiiag

Action

sieved {1f not
enerate Path®

o

(optional).

o Click the "View Source” button.

wou to see the set
of edges th 1tuted & path from uour
selected These edges are

hichlight

are highlighted, you can proceed to the
next path, To get path highlighting
displayed:

o Select the module to be viewed (if not
already selected in “"Gererate Path”
menu},

Set the higlight path file,
o Set the basis path file (optional’.

o Set the geometries and colors

(optiona
el
E
I >4
= e ey

FIGURE 39 Display Path Help Frame

111

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Filter

Jeoverlage/C/

Directories

/date.gens,

w'date,gend, .,

FIGURE 40 Set Module File Pop-Up Menu
e Select the module to be viewed (if not already selected in the
Generate Path menu). Do so by clicking on the File pull-down
menu's Set Module Name. Choose the file in the usual manner.

e Set Basis Path File under the File pull-down menu, if necessary.
The basis path file establishes the set of nodes that appear on the
vertical axis.

¢ To choose where to geometrically view source, select the x and y
coordinates with the Display Geometry option. This is optional.
Click first on the button and then type in the desired coordinates'
positions. If not used, the display will pop up based on the
default established for T-SCOPE's (Test Data Observation and
Analysis Tool) Xdigraph syntax.

e The display's width and height can be selected from the Display
Size option. Click first on the button and then type in the desired
width and height. If not used, the display will pop up based on
the default established for T-SCOPE (Test Data Obervation and
Analysis Tool) .

112

TCAT-PATH User’s Guide

FIGURE 41

¢ You can also choose the foreground and background colors with
this menu.

e After making selections, click on View Source. Based on your
selections or the defaults, the module's display pops up.

e If the display is not the size you want or placed not where you
want, you can resize or move as needed.

e Source view by clicking on a node or a segment and holding
down the mouse button.

e When finished, press any key, and the display is deleted.

NOTE: Highlight Paths is used only with Selected Paths.

To exit from the Display Path menu, click on Exit under the File pull-
down menu.

o

ic) Copyright 1990-84 Software Research, Inc.

Source Viewing

Generate Path Condition is the other option. Click on it, and the menu
below pops up. It extracts and displays the logical conditions for a partic-
ular path given the sequence of segments in the path (which could be a
complete path), the digraph file (*.dig), and the reference listing file (*.i.A
or *1A). See Section 18.4 for further information.

113

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Path Conditions:

For “example,main’
{5678910111213

a*

Cycle Sense Predicate

TRUE NONE
TRUE while{repeat
FALSE fordi rdp
TRUE while{choice
CASE switch{choic
TRUE while{choice
CASE switch{choic
CASE switchichoic
CASE suitchichoic
CASE switchichoic
switchichoic
switchichoic
switchichoic
switcht
switch
if{choice !=
ifichoice
while{c
while{{answe
while{({

OO Od RO b

. ue
TS, 7 29 S switch{answe
e Conditions ;

FIGURE 42 Path Condition Menu

114

T ———————

TCAT-PATH User’s Guide

=zzociated with each path in the program is
set of "path conditionz" that you can

use to create additional tests for your
zoftware,

The path conditions can be generated for

ANY path in your path szet, To zee the
conditions for each path you can select a path
number, TCAT-PATH then generatez the
corresponding path conditions and shows the
text of those conditions in a window,

##CENERATEPATH

In thiz menu you use the TCAT-PATH built-in
"apg" program to generate a set of paths
that will be used to meazure the test com-
pleteness of each module you analyze,

Yfou have to generate a "path set" for

FIGURE 43 Path Condition Help Frame

115

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Filter

JSeoverage/C/tcatpathl, demo/ %, dig

Directc Files
5 exanple,chk_char,dig

example,main,dig

example,proc_input.dig

|

ction

FIGURE 44 Set Module File Pop-Up Menu
e Your module name should be carried over from the Generate
Paths menu. If not or to select a different module (assuming you
have already generated paths for it), then click on the File pull-
down menu and select Set Module. A window similar to the one
in Figure 44 pops up. Select a file in the usual way.

e Select a path number by either clicking (and, thus, highlighting)
the number or typing in a number in the Selected Path Number
Box.

e Click Generate Conditions.

e TCAT-PATH then generates the corresponding path conditions
and shows the text of those conditions in the Path Conditions
scrolled text window.

e To view the text, use the scoll bars.

116

TCAT-PATH User’s Guide

Fath Condition

/tcatpathl, demo/ex

File

Path Number

10
1

13
14
15
16
17
18
19

Selected Path Number

Path Conditions:

nerate Conditions

path conditions for “example.main”
PATH 8: 1 2 4 5 12 [{ g

241826432

56789

¥ 27

1011 12 13

*

Segment

Cycle

Sense

Predicate

) = LN s O RO

1]

) T O T

Entry
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

TRUE
TRUE
FALSE
TRUE
CASE
TRUE
CASE
CRSE
CRSE
CASE
CASE
CRSE
CASE
CARSE
CASE
TRUE

NONE

while(repeat
for{i = 0; i
while{choice
switchi{choic
while{choice
switchi{choic
switch{choic
switch({choic

switch{choic {
switchichoic |

switch{choic
switchichoic
switchi{choic
switch{choic
if(choice !=
if{choice !=
while{choice
while{{answe
while{{answe
switch{answe
case "y
case 'y4':

switch{ansue |

FIGURE 45

Path Condition Menu

The path conditions will automatically be saved to <module_n-

ame>.con.#, where # corresponds to the module number. If

you wish to save the file to a different pathcon file, click on the

Save to Path Conditions File. A window similar to the one
below pops up. Select a file in the usual manner.

117

CHAPTER 11: Graphical User Interface (GUI) Tutorial

opupi

Filter

Jooverage/CitcatpathC, demos/ %, con, %

Directc Files

exanple,main,con, g
exanple,proc_input,con,l
example,proc_input,con, 2

Selection

t/demos/coverage/C/teatpathC, demos/

FIGURE 46 Save New Pathcon File Pop-Up Menu
To generate Selected Paths:

NOTE: Because Selected Paths is very similar to All Paths, this section
will be in summary form. Please refer to (1) for detailed information.

1. Click on the Selected Paths option.

2. Select any or all of the paths and arrange the Path Set to your specifi-
cations.

NOTE: Essential Edges and Unconstrained Edges have not been imple-
mented at this time.

3. Specify the Path Limit and Report Length, if desired.

4. 1If you haven't already set the module name, click on Set Module
Name, then do so now.

118

TCAT-PATH User’s Guide

2 Report Widths

Bovsoovoncassconsnonosnsi:

FIGURE 47 Generate Path Statistics Pop-Up Menu

Click on the Action pull-down menu. Drag the mouse to Gener-
ate Paths. Then select Generate Path Statistics. When generated,
Selected Paths will automatically generate path statistics for All
Paths, whether you generated All Paths or not.
The available options are the same as All Paths.

e Edit Paths: All additions and deletions appear in the
Selected Path List scrolled text windows.

119

CHAPTER 11: Graphical User Interface (GUI) Tutorial

/16/stu,

3 9 10 11 12 13
910111213
910 11 12 13
910 11 12 13 H
7891011121
7891011121

R R R R R RS RS N RS
NECF S N A NN

o

41 1"111““(“:
3 910 11 12 .
9101112
910 11 12

.C91“111‘1¥
789101112

FIGURE 48 Edit Paths Window
e Display Paths generates for All Paths, whether you selected All

Paths or Selected Paths. Source view the same way youwould

for All Paths.

¢ Selected Paths, however, allows you to highlight particular
edges. To activate, select Set Highlight File from the File
pull-down menu. Select the file (*.pth file) in the usual man-
ner. See the Figure on the following page.

Note: The module name and the highlight file name must be from the
same module.

120

—

TCAT-PATH User’s Guide

File

2 Display Geometry

2 Display Size

21 Foreground Colors

21 Background Color:

FIGURE 49 Display Paths Menu

121

———

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Yer 2,7 - Annotation Threshol

Threshold 1 Threshold 2
1 (|10
10,00 | 90,00
100 |10
50 10

21 mirs, o5 5

2 Uszers 10 100

20 Highlight:

Fath file: |gxample.main,pth

Close | If Apply |

FIGURE 50 Set Highlight File Pop-Up Menu

e After selecting the highlight file, click on Highlight and the
appropriate path(s') edges are highlighted in the display.

e If you have more than one path in your file click on the mouse
button and the next highlighted path is displayed.

¢ When finished, press any key and the display will disappear.

122

TCAT-PATH User’s Guide

digraph

File Options Zoom In Zoom Out Print Annotation

Annotation: User

li7 to1
f

24 om (g

x:

FIGURE 51 Highlighted Path Display

11.24 Analyze

After generating paths, you can analyze the trace file using the ctcover
command. Click on Analyze and the menu below pops up.

123

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Analyze

List of Modules

example, chk_char
example,main
example,proc_input

.

Selected Module

E =

FIGURE 52

Analyze Menu

124

TCAT-PATH User’s Guide

After you have executed your program you
need to analyze the Ct coverage obtained,
You can do this using the "ctcover" subsys-
tem which you control through the "analyze"
menu, Typically, you analyze one trace
file at a time, TCAT-PATH does not have
the "archive"-ing feature TCAT and S-TCAT
have, After you select a trace file,
zelect a module you want to get the cover-

age report on from the List of Modules,
Then click on "Generate Repart.," You can
then examine the report for that particular
module by clicking on "View Report”,

{ ##End

For further information please contact:

Software Resze

FIGURE 53 Analyze Help Frame

To use:

1.

Click on the File pull-down menu and select Set Trace File. A pop-up
window similar to the one below appears. Highlight or type in the
file of your choice.

125

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Directories

N == P

sthC,demos, .

Selection

ge/C/tcatpathl, demo/Trace, tre)

Filter I %Carn:e.l

Select the module. This accomplished by clicking on the module
(and, thus, highlighting it) or manually typing in the module.

FIGURE 54 Set Trace File Pop-Up Menu

2.

3. Click on Generate Report.

4. Click on View Report.

5. You can view the report by using the scoll bars.

6. When finished, select Exit under the Action menu.

At this point, you have successfully used TCAT-PATH.

126

BN B BN BN BN

TCAT-PATH User’s Guide

{ Hodule

» Copyright 1991 by Software R

5.26% Ct coverage
4 riptor: ctseg Ver 1,7 {10/
ht 1930-34 by Software R
: 4,7 CpCtlr, last updated

HIT/HOT-HIT REPORT

s
"

L
(=g

None
None
Hone
Hone
Hone
None
None
None
Hone
None

el o R

LR R R s

2 L0 00 =) T
o

e = SUN SNy SERy Sy Y
R M3 B3 B3 B3 B B3 R I R3 RS
R S N N N S S S SN

(3 Ry Rdy Rl Ry ey R R RE 2 NES Ryl

— OO

1212111098765
10 11 12 13 14 15

10 11 12 :
10 11 12
10 11 12

(TR Tu N dugiul

. Inc, ALL RIGHTS RESERYED,

aa

011
011

0 11 1
011 12
10

» INGs
xample,main": 19 pathz, 1 were hit in 1 invocations,

13

ARSI

R B3R BRI RO

FIGURE 55

View Report Window

127

CHAPTER 11: Graphical User Interface (GUI) Tutorial

128

CHAPTER 12

System Restrictions and
Dependencies

It is important to recognize that TCAT-PATH can only be used with “legal" programs.
Non-legal constructions may pass through TCAT-PATH, but results cannot be guaran-

teed.

The TCAT-PATH package can measure very complex programs. In some
cases, however, programs are so complex that analysis of them will be too
time consuming or will require too much execution space.

TCAT-PATH has certain pre-defined limits to prevent “overload" of the
system components. An example of such limits is the following set,
defined for the language. Other limits may be in effect for other lan-

guages.

tp-i<lang> gives up processing beyond a threshold number of
program edges or nodes. This limit is defaulted at 5000 nodes per
invocation.

apg has limits on the total number of paths emitted, and on the
total number of paths computed without being printed. This
threshold is defaulted at 300 printed paths (or 4800 computed
paths).

ctcover has limits on the total number of records processed (after
which it ceases processing paths). This threshold is defaulted at
100,000 segments per call. Also, path processing is memory lim-
ited; an error message is issued in case the limits are exceeded.

ctcover analysis system allocates memory dynamically and it can
run out of memory. When it does it indicates when, and what
caused the overload. The stack sizes within the system are chosen
to represent a capacity that should not be exceeded in practice,
except for extremely complex (or intentionally complex) pro-
grams.

Certain restrictions exist in TCAT-PATH instrumentor (language proces-
sor). They are summarized here.

129

CHAPTER 12: System Restrictions and Dependencies

“C” Language: tp-ic

¢ The function names EntrMo,ExtMod,SegHit, Strace , and Ftrace
are reserved for the runtime calls.

e The instumentor (tp-ic) can take identifiers (function or variable
names) that are up to 128 characters long.

¢ Conditional expressions in “C" (of the form “expr ? expr : expr”)
are not supported; they must be expanded to the explicit “if...[e-
Ise]...” form.

e The tp-ic language analyzer in TCAT-PATH does not support
switch statement instrumentation in exactly the same way as
does TCAT. The difference is due to special handling of empty
“case:” statements. Generally, TCAT-PATH is a more complete
model of program flow.

* Conditional expressions are not processed by TCAT-PATH. Con-
ditional expressions should be converted at the source level to
simple “if ... else" statements, which will have the same effect and
which are processed by TCAT-PATH.

¢ For various reasons, "goto" statements are not processed by
TCAT-PATH,; their presence in a program could cause misunder-
standings about Ct coverage.

Ada Language: tp-iada

No restrictions exist for processing of Ada programs.

FORTRAN Language: tp-if77

FORTRAN statements such as ASSIGN and GOTO-ASSIGN are not sup-
ported.

PASCAL Language: tp-ipascal

No restrictions exist for processing of Pascal programs.

130

CHAPTER 13

On-Line Help Frames

The interactive mode of TCAT-PATH provides the user with an on-line help frame facility.

From any interactive mode menu, you can obtain help by typing:
help

or
help?

or

help <command-name>

TCAT-PATH responds by showing the user a screen of data describing
how to use the selected commands. The available help frames are shown
on the following pages.

Note: the actual help frames will vary slightly with the particular version
of the TCAT-PATH system that you have. This is done to ensure that the
on-line assistance exactly matches that needed for your system.

131

CHAPTER 13: On-Line Help Frames

##tcatpath.h00
v 1
; HELP !
: Usage: help [opt]

3 3
\ Help is available for the following commands and categories.

! Substitute | E
] any of the words below in place of [opt] to get its help screen. :
Z Abbreviations are acceptable, as long as they are not ambiguous. E
: E
\ apg rcfile ! '
: ctruntime release 1 !
\ cyclo save ,
: digpic settings '
E digraph tcatpath

\ exit terminology ‘
S menu trace file E
' :

##tcatpath.h0l
> TCAT-PATH -- Path Test Coverage Analysis Tool HELP

>>> General Information

TCAT-PATH provides commands that measure the pat coverage
of instrumented programs.

\
'
N
‘
)
N
\
N
‘
.
\
N
E
TCAT-PATH commands can generate a program digraph, can generate a .

full set of equivalence classes of flow (the
path set), can instrument a program, and can measure \
how many paths are executed in a test that involves one E
or more invocations of the test object. :
\
\
.
.
H
.
\
\
\
\
)
\
N
\
N

132

TCAT-PATH User’s Guide

##tcatpath.h02

'
'
'
'
'
'
'
\
'
\
'
'
\
'
v
\
\
'
'
'
\
\
\
'
'
'
\
'
'
\
\
\
'
\
'
'
'
'
\
\
\

'
'
'
'
'
\
'
\
'
'

exceptions, |

TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>> ACTIONS Menu

vV V V

>>>> apg

The apg command generates sets of paths from the digraph file
derived from a source program.

The syntax for the apg command is as follows: ;
apg name E
where,
name is the basename of the module/function being
analyzed. The filename name.dig must exist
in the local directory. .

Paths are expressed as a sequence of segments; the notation

<{a, b, c}> is used to designate zero or more repetitions, in any
order, of the named segments.

See also: digraph, cover, ctcover.

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> ACTIONS Menu
>>>>> cyclo

This command computes the cyclomatic number (McCabe metric) for the
underlying program.

The cyclomatic number is given by the formula:
E(n) = e - n + 2

where e 1is the number of edges in the program, and n 1is the
number of nodes in the program. Generally, but with some

programs with a cyclomatic number greater than 10 present unusually
difficult test situations.

133

CHAPTER 13: On-Line Help Frames

##tcatpath.h04

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> ACTION Menu

E>>>>> digpic

\ This command reads a digraph file and generates a picture of the
Eprogram structure you are analyzing. If you wish to vary the

| picture you must alter the "basis path." The command syntax is:
digpic name [-B 'file'] [-C center]
[-R rows] [-W width]
name is the name of the file for which you want a picture
center 1is the column number you wish to use

width is the width of the picture (default = 80)

The default basis path is simply the sorted list of names of nodes

\
\
\
h
\
\
\
.
.
\
! rows is the number of rows (default = 1) between nodes
N
\
\
\
H in the digraph file.

\

\

\

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> ACTIONS Menu
>>>>> digraph

This command generates a digraph file from the specified file
and also instruments the program.

The syntax for this command is as follows:

where,
name.c is the name of the program you wish processed
In interactive mode, type "help <command name>" to get help

screens (like this one) on most topics. For detailed information

: digraph name.c
E please consult the TCAT-PATH User's Manual.

134

TCAT-PATH User’s Guide

##tcatpath.h06

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> TCAT-PATH -- Menu Descriptions

TCAT-PATH has four basic interactive menus:
TCAT-PATH menu: used to select submenus
ACTIONS menu: used to decide on operating modes
OPTIONS menu: used to choose execution options

FILES menu: used to define file names

>>> All Menus
>>>>> settings

The TCAT-PATH system permits you to specify a number of options.

Many of these options are specified via the TCAT-PATH configuration

file.

Options that you can include in this file, for later use or for
editing, include:

basename of files to be used (must be specified)
maximum number of digraph nodes to process (default 500)
maximum number of paths to generate (default 4800)
maximum number of paths to display (default 300)

basis path to be used in digraph display

maximum number of module invocations (default 1000)

For more information about user settable options please consult
TCAT-PATH User's Manual.

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP

135

CHAPTER 13: On-Line Help Frames

##tcatpath.h08

' > TCAT-PATH -- Path Test Coverage Analysis Tool HELP

i >>> ACTIONS Menu

>>>>> ctruntime

Once your program is instrumented (see the "digraph" command) you

need to recompile it and link it with the supplied runtime library.

The particular version of runtime you use may change depending
on the language of the programs you are processin

The runtime programs capture essential trace file data from the
system you are testing. The ctruntime generates a standard
trace file, ready for processing by "ctcover".

TCAT-PATH measures the Ct coverage value of programs under test.
Here are terms used during TCAT-PATH operation.

digraph (directed graph) -- The flowchart for the function or
procedure being studied.

segment -- A part of the flowchart (digraph) that connects one node

to another; a decision-to-decision path.

path -- A sequence of segments within the program. A path may be
structurally infeasible but logically unexecutable due to
data flow within the program.

tracefile -- The record or sequence of segments hit during a test.
The trace file is generated with the instrumented program.

Ct coverage -- The percentage of paths executed in one test or many

tests from the Ct path set generated by "apg".

cyclomatic number (McCabe metric) -- A measure of internal complexity

of a module based on properties of its digraph.

136

TCAT-PATH User’s Guide

Path Test Coverage Analysis Tool HELP

> TCAT-PATH
>>> Trace File Description

)
1

:

|

i

! The trace file contains data about all of the functions that

Z were executed during the current test. You need to process it

1 with the "ctcover" command to learn what path coverage level you
E have obtained.

H

i

|

|

)

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> TCAT-PATH Menu

>>>>> save

The save command permits you to save the values of options
that you may have chosen during a TCAT-PATH execution.

When you type save the system prompts you for information
about whether, and where, you wish parameter values to be
saved.

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> TCAT-PATH Menu
>>>>> release

The release command causes TCAT-PATH to display release
and version information. This information may be useful
in identifying system problems.

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> All Menus
>>>>> exit

The exit command causes control to return to the TCAT-PATH
menu, or, if you are in the TCAT-PATH mene, to return to
the system.

137

CHAPTER 13: On-Line Help Frames

##tcatpath.hl4

>>> rcfile

H
|

!

i

1

4 . . .

d The rcfile communicates option values to TCAT-PATH

. at startup time. It also is used by the main TCAT-PATH verbs:
)

] digraph, ic, apg, and ctcover.
i
/
|
i
/
'
i
‘
'
;
1
!

Values can be set and switches chosen permanently. Values
set during execution can be saved for later use.

##tcatpath.hl5
> <CHANGE THE HEADER. ..+ wuososoees > HELP
s

The "!" command allows you to invoke and execute programs at

system level from within SMARTS's internal menus. This will,

example, permit you to send text files to the printer or
call up a system directory.

> <CHANGE THE HEADER.vcoeeeunenn > HELP

>>> 1!

from within SMARTS's internal menus. For example, if the
previous system level command was to print out a text file, typing

.
:
i
i
i
i
i
i
i
? The "!!" command permits execution of the previous system level
i
'
i
i
i
! "!1!" will print the text file out again.

i P g

i

i

138

CHAPTER 14

Coverage Measure Explained

14.1

Introduction

Coverage measures describe the effect of a test - or a set of tests - has on
exercising the structure of a software system. The goal of a test coverage
metric is to ensure tests are as diverse as possible. The objective is to
ensure a test is more diverse than those which are chosen by reference to
functional specifications alone, or are chosen based on a programmer's
intuition.

For example, the popular C1 test metric describes the percentage of pro-
gram segments that a test exercises. A segment is a part of the program
with the property that if any part of it is executed, then all parts of it are
executed.

Similarly, the S1 test metric is a system test completeness measure that
calculates the percentage of possible call-pairs that a test - or a group of
tests - exercises.

Here is a formal definition of the Ct test metric:

Ct Test Coverage Metric: The Ct test coverage metric measures
the number of times each path or path class in a program is exer-
cised, expressed as a percentage of the total number of paths, cal-
culated up to a specified iteration count K, within the program.

Note that the Ct metric depends on the user specifying a minimum itera-
tion count value, K. Normally we keep K = 1, but Ct can be defined for
other values of K as well.

The key to understanding Ct is to understand how a “path is calculated".
This will be explained by using some example program passages.

139

CHAPTER 14: Coverage Measure Explained

14.2 Example Paths
A path is a sequence of logical segments that can occur in a program. A
path exists for each invocation (i.e. execution) of a program. Paths can be
classified according to whether or not they have possible repetitions. Pro-
grams that do have potential repetition are called iterative programs; oth-
erwise the program is called noniterative.
Noniterative programs have a fixed finite numbers of paths; the number
may be large if the program is complex.
Iterative programs have a countably finite number, but without details of
program data flow we have to assume that iterations can be of any repeti-
tion count. The problem with iteration in terms of path calculations is to
know when to “stop" the iteration.
14.3 Noniterative Programs

Consider the program passage shown below(the example is not intended
to be in the syntax of any particular programming language, and should
be understandable independent of language). The lower-case letters a, b,
c... represent sequences of statements. The predicates x, y,... are functions
that return logical values of some kind.
PROGRAM ONE:

a

IF (x)

%

ELSE

END

a

IF (y)

e

ELSE

END A

g

140

o ————

TCAT-PATH User’s Guide

14.4

In the example below, a, b,... represent fixed sequences of statements,
called “segments". Depending on what the values for the predicates x and
y are, the program can take any one of these paths, i.e. sequences of seg-
ments (the notation will be explained in more detail on the following
page):

PROGRAM ONE:

abdeg
2z acdeg
abdfag

In this case there are only four possible paths, numbered above. There is
no chance for repetition, so the iteration count value, K = 0, tells us all
there is to know about this program's behavior. For K = 1, there are no
added paths because there is no iteration

possible in the program.

For a noniterative program, the number of possible paths is a combinato-
rial function that is computable in advance. There may be a large number
of paths but which ones are is known by analysis of the structure of the
program and can be computed in advance.

It is important to note that some structurally suggested paths may be log-
ically infeasible. In the example above this means that even though there
is a structurally possible sequence “a c d f g”, it is not know for certain
that the actual predicates “x” and “y” will permit edge c and edge f to be
“co-executed". To determine this requires knowledge of the details of the
program.

Iterative Programs, Various Values of K

For iterative programs, one must keep track of the number of times each
loop is traversed. This is illustrated in the example below, in which paths
with varying values of K are calculated.

PROGRAM TWO:
a

WHILE (x)
b

END WHILE

(o

WHILE (y)
a

ENDWHILE

e

141

CHAPTER 14: Coverage Measure Explained

In the previous program, the paths are a function of the minimum num-
ber of times the program traverses each loop. Hence, the paths have to be
shown in terms of the loop count, maximum, K.

The notation .. <{edge}> ... isused toindicate that the edge is exe-
cuted at least once and possibly more times. It is important to note that
the paths are not inclusive upward; that is, even when K = 2, for example,
the notation ... <{a}> ... still means exactly one or more repeti-
tions of edge a. To show that a path is supposed to have two repetitions of
a particular edge, write . . .a <{a}>

Here are the paths in the example program, stated in terms of the various
possible values of K:
PROGRAM TWO:

K = 0:
1 a c e
K =1
1 a e e
2 a c <{d}> e
3 a <{b}> c e
4 a <{b}> c <{d}> e
K = 2
1z a
2z a d
3= c d <{d}> e
4: ab e
5is ab c d e
6: ab c d <{d}> e
7: a b <{b}> c e
8: a b <{b}> c d e
Y a b <{b}> c d <{d}> e
K=3
1 a c e
2 a c d e
3 a cdd e
4 a c dd <{d}> e
5% ab c e
6: ab il ol e
7: ab cdd e
8: ab c d d <{d}> e
9 abb e e

142

TCAT-PATH User’s Guide

10: abb d e
1%e abb d d e
12 abb d d <{d}> e
13 a b b <{b}>c e
14 abb<{b}l>cad e
153 a bb<{bl>cdd e
16: abb<{bl>cdd<{d}> e

As noted on the previous page, the notation. .. <{b}> ... means that
the edge b is executed one or more times. Note that the order of these
path classes is grouped to make it easy to see what the sequence actually
is. Automatic generation of the paths may result in a different order.

It is important to understand the set of paths varies significantly as the
value of K varies. For example, note that when K = 2 you have to include
three paths that involve various repetition counts of the edge b, as fol-
lows:

PROGRAM TWO:

K =2

1 a c e
and

2 ab c e
and

3 a b <{b}>c e

Here Path 1 requires that edge b is used zero times; Path 2 requires that it
be used exactly one time; and, Path 3 requires that it be used two or more
times.

When you increase the value of K, the growth in path groups is evident:
PROGRAM TWO:

K =3

1 a c e
and

2 ab c e
and

3+ abb c e
and

4: a bb<{bl>c e

143

CHAPTER 14: Coverage Measure Explained

14.5

14.6

Note that Path 3 now loses its <{b}> term, only to have it installed again
in Path 4.

It should be easy to see that a large value for K will produce a very large
set of paths. However, the programs that generate the path class groups
will always generate a set of paths that is universal in the sense that every
actual program execution will fall into a single, unique class.

The Exact Meaning of K

From these examples we can begin to understand the intended meaning
of the value of K:

The minimum iteration count, K, is a requirement on a set of
actual test paths of a program. The value of K is intended to be
the threshold value above which iterations are grouped into
equivalence classes which include multiple instances of iteration.

K=0
means that the test set will map paths that include any repetitions

of an edge or node as an equivalence class. (This is a degenerate
case that is included for consistency.)

K=1
means that the test set must include some paths that involve NO

repetition of edges or nodes, and will map paths that involve one
or more repetitions of an edge or node as an equivalence class.
K=2

means that the test set must include some paths that involve NO
repetition of edges or nodes, some that involve SINGLE repeti-
tions of edges or nodes, and will map paths that involve two or

more repetitions of an edge or node as an equivalence class. And
so forth...

While all of the paths for some value of K are larger than one may be very
interesting theoretically,in practice it is usually enough just to deal with
paths generated when K = 1.

Complex Looping Structures

Sometimes programs have structures that make the processing and repre-
sentation of the paths very complicated. Consider the following;:

PROGRAM BIG:

144

TCAT-PATH User’s Guide

IF (x)
e
ELSE
d
IF (x)
e
ELSE
f
ENDIF
ENDIF
IF (y)
EXIT
ELSE
a’
ENDIF
END WHILE
]
ELSE
k
ENDIF
EXIT

END PROGRAM

In this program the loop has two possible exits: One is the normal exit, g,
and the other is the abnormal exit e, which is the last fragment executed
before the RETURN statement. It is best if programs did not have such
multiple entry and /or multiple exit statements; but, in practical reality
they do.

To do so involves using the notation ..<..>.., which means that the
contents of the <..>'s can be any path composed of any sequence of the
segments named.Using this new notation here is the generated path set
for this program.

PROGRAM BIC:

o2 o N o N o S

uos W N e
[T VR TR T T}
0o o uw

Q

U]

o o v o~
a
jag

(B

uos W N

145

CHAPTER 14: Coverage Measure Explained

14.7

14.8

6z abcei<{cdfigel>h
T3 abceil<{cdfigel}l>7]
8: abcdfix<{cd£fdigel>h
9: abcdfi<{cdTfigel>]3]
10: abcdgi<{cdfigel>h
11: abcdgi<{cdfigel}>7

The above program is keeping track of the way to enter the program'’s
one-entry, two-exit loop structure, but once the loop is begun don't worry
about the finish of the iteration except for how the exit was taken (i.e.
either on segment g or h).

Practical Implications of Ct Coverage

C1, called “branch coverage", tests each segment independently. Ct,
called “path coverage", relative to a given value of K tests all of the paths
up to the specified iteration count K.

Ct coverage probably will take as many as ten times the number of tests
to achieve a high Ct percentage of coverage, as will the tests needed to
attain the same CI coverage level for the same module. Exactly how
many is a function of the complexity of the module and the diversity of
the tests.

Ct tests for a module which will be more robust than the corresponding
(potentially smaller) set for C1.

That is, Ct tests can be expected to be stronger tests that tend to reveal
more errors and more-fully demonstrated program behaviors.

To a first approximation, the set of Ct-type paths for a program represent
the set of “verification conditions" that would need to be applied to a pro-
gram if formal proof of correctness methods were used to analyze the

program.
Theoretical Considerations

The explanations above are based on exploiting properties of finite
sequential machines, which are universally able to model computer pro-
grams. Most of the ideas used in developing path sets can be found in
books on finite automata.

A finite automata with a unique starting and a unique ending state traces
a set of transitions that can unambiguously be described with regular
expressions (REs).

146

TCAT-PATH User’s Guide

Each path from start to end, possibly including denumerably infinite
paths, is described with regular expressions. The path descriptions that
use the <{ . .}> operations are such REs.

Every computer program can be represented with only three primitive
programming units: succession, iteration, and alteration. Consequently,
the path classes described above can always be generated for any finite
nonrecursive program, so long as one is willing to accept a program
structure implied by the paths that does not correspond to the original
program. This latter happens only when the program is not “pure struc-
tured"; when a program is pure-structured it translates directly into the
constructions above.

The general question of selecting the “right" set of equivalence classes is
related to the issue of choosing verification conditions for proofs of cor-
rectness of programs. The thinking in relation to Ct coverage is that (a) the
set of paths should be unambiguously able to describe the actual behav-
ior of programs, and (b) should approximate what would be done in a
formal proof.

Some programs contain constructions that make generating the classes of
flow more difficult. For example, a multi-exit loop contains several differ-
ent kinds of flow and is complicated to reduce automatically. However,
every program can be represented in “pure structured" form, with IF's,
WHILE's and succession statements; hence the equivalence classes are
always possible to express even though they may be difficult to discover.

147

CHAPTER 14: Coverage Measure Explained

148

USER’S GUIDE

T-SCOPE

Test Data Observation and Analysis System

Ver 3.1

*\
2
2\

This document property of:

Name:

Company:
Address:

Phone

*\
'ﬁ
Ny

625 Third Street

San Francisco, CA 94107-1997
Tel: (415) 957-1441

Toll Free: (800) 942-SOFT

Fax: (415) 957-0730

E-mail: support@ soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT-
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: July 14, 1995)

CHAPTER 15

T-SCOPE Overview

This chapter explains the basics of T-SCOPE, including its role in testing and how it fits in
with its companion STW/Coverage tools

15.1

15.2

The QA Problem

It is a sad fact of the software engineering world that, without coverage
analysis tools, only around 50 percent (on average) of the source is actu-
ally tested before release. With little more than half of the logic actually
covered, many bugs go unnoticed until after release.Worse, the actual
percentage of logic covered is unknown to SQA management, making
any informed management decisions impossible.

Questions such as when to stop testing, or how much more testing is
required are not answered on the basis of data but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with
the quality of the released software and make plans based on inadequate
data.

A related problem is that test case development is done in an inefficient
manner, that is many test cases are redundant. Cases testing the same
logic clutter test suites and take the place of other cases which would test
previously unexplored logic. Often testers are unsure of the direction to
take and can waste SQA time devising the wrong tests.

The Solution

The primary purpose of testing is to ensure the reliability of a software
program before it is released to the end user. To ensure a reliable and solid
product, the software should be thoroughly tested with a variety of input
to provide statistically verifiable means of demonstrating its reliability. In
other words, a suite of test cases should cover, in some way, all the possi-
ble situations in which the program will be used.

Although a worthy goal, imagining every possible use, as well as devel-
oping test data and running them, is extremely complicated and time-
consuming. A more realistic goal is to test every part of the program.
According to industry studies, achieving this goal yields significant

151

CHAPTER 15: T-SCOPE Overview

15.3

improvement in overall software quality. Coverage analysis improves the
quality of your software beyond conventional levels.

SR's Solution

Software Research, Inc. offers a solution: the STW/Coverage tool suite.
STW/Coverage ensures tests are more diverse than those which are chosen
by reference to functional specification alone, or are chosen based on a
programmer's intuition. STW/Coverage ensures tests are as complete as
possible, by measuring against a range of high quality test metrics:

C1, or branch/segment coverage, measures module testing at the
unit or module testing level; it accesses the completeness of indi-
vidual modules or small groups of module testing.

S1, or call-pair coverage, measures all the interface of a complex
system to be exercised.

Ct, or equivalence class coverage, measures the number of times
each path or path class in a module is exercised.

With the three test metrics, STW/Coverage ensures tests are as complete as
possible. STW/Coverage includes the following products:

TCAT does coverage at the logical branch (or segment) level and
the call-graph level. It employs the C1 metric. You can choose to
test a single module, multiple modules or the entire program
using the CI metric.

S-TCAT does coverage at the call-pair level. It employs the 51
metric. After individual modules have been tested, you can test
all the interfaces of the system using the S1 metric.

TCAT-PATH does coverage at the logical path level. It employs
the Ct measure. It can easily be programmed to include or
exclude the program's modules from analysis. This allows you to
emphasize certain critical modules. Once these are identified,
TCAT-PATH allows you to extract and display the logical condi-
tions that will cause that particular path to be exercised. Based on
these conditions, you can design new test suites to exercise the
path.

T-SCOPE provides dynamic visualization of test attainment dur-
ing unit testing and system integration. It is a companion tool for
TCAT and S-TCAT. While these tools report the status of modules
after-the-fact, T-SCOPE visually and dynamically demonstrates
such things as segments and call-pairs hit or not hit..

T-SCOPE is the focus of this manual. For complete information on use of
the other STW/Coverage products, please consult the proper user guides.

152

T-SCOPE User’s Guide

15.4 Format

This section is divided into five chapters:

T-SCOPE OVERVIEW discusses what T-SCOPE is and how it is
used.

QUICK START demonstrates running a basic T-SCOPE session.
UNDERSTANDING THE INTERFACE defines T-SCOPE's GUI
features.

GUI OPERATION explains how to use the X Window System
graphical user interface menu.

CUSTOMIZING T-SCOPE describes the Xdefaults file, where you
can change T-SCOPE GUI defaults.

153

CHAPTER 15: T-SCOPE Overview

154

CHAPTER 16

Quick Start

This chapter is a tutorial and shows step-by-step how to run a basic T-SCOPE test session,
from initial setup to viewing coverage reports.

16.1

16.1.1

Recommendations

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This will give you a feel for how the
system is organized and permit you to perform coverage analysis testing.

STEP 1: Instrumenting Your Source Code

T-SCOPE, as mentioned, is a companion tool for TCAT and S-TCAT (see
STW/Coverage Book I). T-SCOPE allows you to visualize coverage as a
program is executed. In order for it to work, you must have already have
used TCAT or S-TCAT to instrument the source program, and compile the
instrumented program to create an object file.

T-SCOPE takes over from there. It links the object file to its supplied runt-
ime module to create an executable. As the program executes, T-SCOPE
dynamically updates its charts to show you the exercised program parts
of a program and coverage percentages.

For the first part of this tutorial, you will need to use TCAT to create an
object code file.

1. Using the TCAT User’s Manual as reference, go to the SR/demos/cover-
age/tcatC.demo directory. A program named example.c should be listed
there. This is our target program.

2. Instrument example.c to place special markers at each logical branch
and then compile the instrumented version.

3. If you followed (2), you should have created the following files:

An object file named example.i.o. This will file will be linked with T-
SCOPE supplied runtime object module to create an executable.
Three directed-graph files: main.dig, proc_input.dig and chk_char.dig.
When used with T-SCOPE, these displays will dynamically display
branches as they are exercised during execution.

155

CHAPTER 16: Quick Start

4.

Move these files over to your working SR/demos/coverage/tscope.demo
directory. Steps 3 through 8 of this tutorial show you how to display
C1 coverage.

In Steps 9 through 11, you will be trying to display S1 coverage. To
create an object file:
Using the S-TCAT manual as reference, go to the SR/demos/coverage/

stcatC.demo directory. A program named example.c should be listed
there. This is our target program.

Instrument example.c to place special markers at each logical branch
and then compile the instrumented version.
If you followed (2), you should have created the following files:

e An object file named example.i.o. This file will be linked with

T-SCOPE supplied runtime object module to create an exe-
cutable.

e A call-graph file named example.i.P which displays the caller-
callee relationship of the example.c program.

Do not move these files over to the SR/demos/coverage/tscope.demo
directory until Step 9.

156

T-SCOPE User’s Guide

16.1.2

STEP 2: Starting Up T-SCOPE

Before you begin, make sure you are in the X Window System running a
window manager (e.g. mwm, olwm, etc.)

You should start with the screen organized in a particular way, as shown
in Figure 56.

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command

xterm &

from an existing window. The xterm window will serve as the T-SCOPE
invocation window.

Move the window to the upper left of the screen. Go to the SR/demos/cov-
erage/tscope.demo directory. This directory is supplied with the product,
and it consists of an example C program named example.c.

This application allows you to select from several types of foods. By
selecting various foods, you are actually exercising various logical
branches (or segments) of the example program. The goal is to achieve
the highest amount of C1 (logical branch) coverage possible for this pro-
gram through your input. The more selections you make, the higher the
coverage.

157

CHAPTER 16: Quick Start

When initiating this quick start session, your display should look like
this:

FIGURE 56

158

T-SCOPE User’s Guide

16.1.3

STEP 3: Creating an Executable

When you used TCAT, you should have compiled the example.c program
to create an object file named example.i.o. In this step you are going to link
it with T-SCOPE's supplied runtime object module tsruntime.o.

1. In the working T-SCOPE directory type:
cc -o a.out example.i.o tsruntime.o

2. This should create an executable named a.out.

159

CHAPTER 16: Quick Start

When creating an executable, your display should look like this:

FIGURE 57

Creating an Executable

160

T-SCOPE User’s Guide

16.1.4

STEP 4: Invoking T-SCOPE
Now, invoke T-SCOPE.

1.

Position the mouse pointer, so that it is located in the invocation win-
dow.

Activate it by clicking the mouse pointer on it. This window becomes
the main control window. During your session, all status messages
and warnings are displayed in this window.
To invoke T-SCOPE, type:

Xtscope
When you type in this command, the T-SCOPE window pops up.
Move the T-SCOPE window to the upper right of the screen. You can
move a window by clicking on its title bar and dragging it.

If you want to start over, you can terminate T-SCOPE by clicking on
the Exit button.

161

CHAPTER

16: Quick Start

FIGURE 58

When invoking T-SCOPE, your display should look like this:

Invoking T-SCOPE

162

T —

T-SCOPE User’s Guide

16.1.5

STEP 5: Selecting Directed Graphs

Once an executable is created, you can select a module's directed-graph
and coverage chart. These displays will allow you to dynamically view
coverage.

In this step, you are going to select the directed graph displays for each of
example.c's modules: main.dig, proc_input.dig, and chk_char.dig:

1.
2.

Click on the Xdigraph button.

A Digraph Selection Box box pops up. The three directed graphs
should be listed in the Files list box.

First, select chk_char.dig's directed-graph display by:
* Double clicking on chk_char.dig in the Files list box.

e Or, highlighting chk_char.dig in the Files list box and selecting
OK.

e Or, typing chk_char.dig in the Selection entry box and select-
ing OK.
chk_char's directed-graph pops up.
Select the directed-graph displays for main.dig and proc_input.dig just
as you did for (3).
Arrange the three directed-graphs so that the invocation and T-

SCOPE windows are not covered. When you execute the example.c
program, these windows must be clear.

163

CHAPTER 16: Quick Start

When selecting directed-graphs, your display should look like the one
below:

FIGURE 59 Selecting Directed Graphs

164

T-SCOPE User’s Guide

16.1.6

STEP 6: Selecting Coverage Charts

In this step, you are going to select the C1 Coverage charts for each of the
program's modules. During a program's execution, these strip charts
show the actual percentage of coverage obtained.

1.
2.

N o a s

Click on the C1 Coverage button.

A C1 Module Box box pops up. example's three modules should be
listed in the Modules list box.

First, select main by highlighting it.

Click on the OK button.

The C1 value chart for main pops up.

Follow the steps in 1-5 for proc_input and chk_char.

Arrange the three value charts so that the invocations window and
the T-SCOPE windows are not covered up.

165

CHAPTER

16: Quick Start

When selecting C1 coverage charts, your display should look like the one
below:

FIGURE 60

PrerRPPRe

ol

| Ti’»%@?

Selecting C1 Coverage Charts

166

T-SCOPE User’s Guide

16.1.7

STEP 7: Running the Application

At this point you should have an executable named a.out and all the dis-
plays available for example.c should be displayed on your screen. In this
step you are going to run that executable. By running the program, you
will be exercising the program and watching the directed-graphs and C1
coverage charts dynamically update.

This application is designed to ask you which type of food in the San
Francisco, CA area you would like to eat. By selecting particular types of
food, you are actually exercising creating test cases to exercise the pro-
gram's logical branches. The more combinations you select, the more
branches you will exercise.

To run the application:

1. Make sure the Enter command to run specification region says a.out

for the name of your executable.

Click on the Go button in the T-SCOPE window.

The T-SCOPE window's options will gray out and the program will
start up in invocation window.

4. It prompts you:

What type of food would you like?
5. In order to get the most coverage from this test case run, type in
12345678
for the eight types of foods listed and press Enter.

6. Eight restaurants that reflect the eight types of food you selected will
be displayed, the directed-graphs dynamically display the exercised
logical branches, and the value charts update the percentage of cover-
age.

In the directed-graph, please take note of the following:
e Thick lines signify logical branches that have been exercised.

e Thin lines signify logical branches that have not been hit. On
color monitors these lines are represented by the color yel-
low.

For color monitors only:

* The color pink represents the most recently executed logical
branch. .

e The color yellow represents a logical branch that has been hit
less than five times.

* The color green represents a logical branch that has been hit
between five and 15 times.

« The color ted represents a logical branch that has been hit
more than fifteen times.

167

CHAPTER 16: Quick Start

The default colors and lower and upper thresholds amounts can be
set for each directed-graph in the Digraph Options window. Please
refer to Section 3.2.4.2 for further information.
After the restaurants are displayed, the program prompts you:

Do you want to run it again?
During an ordinary testing situation, you would normally run the
application a couple of times, selecting various combinations of food
types. For now, however, just type in n for no. You'll soon have plenty
of opportunities to run several test cases.

The final coverage percentages for each should be:
e chk_char = 66.66%
e main = 55.56%
e proc_input = 62.50%

An ideal testing situation warrants around 85 percent or higherC1
coverage. In the case of example.c you could rerun the program using
various test case selections.

168

T-SCOPE User’s Guide

When running the application, your display should look like this:

Dizplau Optaon:

e
S —

FIGURE 61 Running the Application

169

CHAPTER 16: Quick Start

16.1.8 STEP 8: Cleanup

To complete the session for CI coverage:

1. Close the directed-graphs and C1 Coverage charts by clicking on the
File menu and selecting Exit.

2. Close the T-SCOPE window by clicking on the Exit button.

170

T-SCOPE User’s Guide

When completing the C1 session, your display should look like this:

FIGURE 62

Completing a C1 Coverage Session

171

CHAPTER 16: Quick Start

16.1.9

STEP 9: Setting Up for S1 Coverage

In this step you are going to set T-SCOPE up to work for S1 (call-pair)
coverage.

s

12.

In Step 1 of this tutorial you should have instrumented for call-pair
markers and then compiled that instrumented program to create two
files named example.i.o and example.i.P. Copy these file to your current
working T-SCOPE directory.

Create an executable named a.out by typing:
cc -o a.out example.i.o tsruntime.o

Invoke T-SCOPE by typing:

Xtscope
and then move the window to the upper right hand corner of the
screen.

Click on the Xcallgraph button.

A Call Graph Selection Box pops up.
Select the example.i.P call-graph.

The example.i.P's call-graph pops up.
Click on the S1 Coverage button.

A S1 Selection Box pops up.

. Select the example.i.P file.
. The S1 Coverage chart pops up. During program execution this chart

will display the percentage of coverage achieved for each executed
test case.

Arrange the call tree and the value chart so that the invocation and
the T-SCOPE windows are not covered.

172

T-SCOPE User’s Guide

When preparing for dynamic S1 coverage, your displays should look like
this:

i .
e B : 5 i
]
:
‘
| T
iL J
: :
:
4 .
] = ; - ,
ot - Ir -] e
,
—
1bus
SRS v

FIGURE 63

173

CHAPTER 16: Quick Start

Make sure the Enter command to run specification region says a.out

Run the program just as you did in Step 7, making sure to select all
As the call-graph updates its exercised call-pairs, please take note of
e Thick lines signify call-pairs that have been exercised.

e Thin lines signify call-pairs that have not been hit. On color
monitors these lines are represented by yellow.

e The color pink represents the most recently executed call-
e The color yellow represents a call-pair that has been hit at
e The color green represents a call-pair that has been hit

e The color red represents a call-pair that has been hit more

The default colors and lower and upper thresholds amounts can be
set for a call-graph with the Call Graph Options window. Please

When the program prompts you if would like to run the application

The S1 coverage value should be 28.57 percent. For a program to be
adequately exercised, S1 coverage should be 90 percent or higher. S1's
goal is try to exercise all of the interfaces of a program, which means

16.1.10 STEP 10: Running the Application
To run the application:
1.
for the name of your executable.
2. Click on Go button in the T-SCOPE window.
3.
eight types of food listed.
4.
the following:
For color monitors only:
pair.
least five times.
between five and 15 times.
than fifteen times.
refer to Section 3.2.1.2 for further information.
5.
again, type in n.
6.
strategically planning effective test cases beforehand.
174

T ———EE

T-SCOPE User’s Guide

After running the application, your display should look like this:

FIGURE 64 B

Running the Application

175

CHAPTER 16: Quick Start

16.1.11 STEP 10: Cleanup

To complete the session for C1 coverage:

1. Close the call-graph and S1 Coverage chart by clicking on the File
menu and selecting Exit.

2. Close the T-SCOPE window by clicking on the Exit button.

176

T-SCOPE User’s Guide

When completing the S1 session, your display should look like this:

FIGURE 65

Completing a S1 Coverage Session

177

CHAPTER 16: Quick Start

16.1.12

Summary

If you successfully completed the preceding 11 steps, you've seen and
practiced the basic skills you need to use T-SCOPE productively.

In this chapter you should have learned how to:

Link the created TCAT or S-TCAT runtime object file with the T-
SCOPE supplied runtime module.

Invoke T-SCOPE.
Select various displays.
Run an application and watch the displays dynamically update.

For best learning, you may want to:

Repeat Steps 1 - 11 without the manual and experiment by run-
ning the application several times and looking at the amount of
coverage your test input receives.

Repeat Steps 1 - 11 with a small application of your own.

Turn to the chapters on the user interface and operation where
you had difficulties. The table of contents and the index can help
you locate the topic you want.

178

CHAPTER 17

Understanding the Interface

This chapter covers the basic X Window System graphical user interface operations of T-
SCOPE. It demonstrates using T-SCOPE from the OSF/Motif X Window System.

171 Basic OSF/Motif User Interface

This section demonstrates using the file selection dialog boxes, help
menus, message dialog boxes, option menus, and pull-down menus.

If you are familiar with the OSF/Motif GUI style, you can go on to Sec-
tion 17.2.

1714 File Selection Windows

T-SCOPE's file selection windows allow you to select a directed-graph
display or a call-graph display.

s

igraph Selection B

Zhome/12/kluepfel /tzcope/*.dig

Directories Files

example,chk_char.dig z

F|GURE 66 Fnle éelect{on Window

179

CHAPTER 17: Understanding the Interface

Filter entry box Specifies a directory mask. When you click the Fil-
terpush button,the directory mask is used to filter
files or directories thatmatch this mask (or pattern).

Directories list box Lists directories in path defined in the Filter entry
box. Use it to locate the desired directory.

Files list box Lists files in the path defined in the Filter entry box.

scroll bars Move up/down and side/side in the Directories and
Files list boxes. You use them to search for the appro-
priate directory or file.

Selection entry box Selects and enters a file name.

Use the three push buttons at the bottom of the dialog box to issue com-
mands:

OK Specifies a directory mask. Accepts the file in the Se-
lection entry box as the new file or the file to be
opened and then exits the dialog box.

Filter Applies the pattern you specified in the Filter entry
box. It lists the directories and files that match that
pattern.

Cancel Cancels any selections made and then exits the dialog

box. No file is selected as a result.

To use a file selection dialog box:

1. You can restrict the file selection operation to a named region(direc-
tory path) by typing in a directory path name in the Filter entry box
or by clicking on a path name in the Directories entry box. Then click
on the Filter push button.

2. To select a keysave file name, do one of these three things:
e Double click on the file in the Files entry box.

e Highlight the file in the Files entry box or type in the file
name in the Selection entry box and click on OK.

e Highlight or type in the file name and press the Enter key.

180

T-SCOPE User’s Guide

17.1.2

FIGURE 67

Help Windows

T-SCOPE provides on-line help for each of window.This brings up the

text corresponding to where you invoke the help. In other words, if you
invoke it at the Main window, the Help window displays information
pertinent to Main window. Here's how to use the help.
1. Click on the Help button.

2. The Help window pops up with text corresponding to the point at
which it was invoked.

3. You can use the scroll bars to move up/down and side/side. If you
don't see what you need, you can search for specific text. To do this:

Click on the Action menu and select the Search option. A dialog box

(shown below) pops up.

e Type in the pattern you want to search for and then click on
OK or press the Enter key.

e If the pattern is found, then the window automatically scrolls
to the location of the specified pattern.

e If you select another Help button from another window

while the current one is displayed, the Help window scrolls
to the content of the new window.

e To close the window, click on Action and select Exit.

ST scope Yer 3.1 (11/09/34) - Help:

Action

T-SCOPE, Yer 3.1

'!iiﬁ;

{c) Copyright 1990-13934 by Software Research, H

ALL RIGHTS RESERVED.
Help for Main Mindow

T-SCOPE helps the tester visualize the
effect of C1 (logical branch! and/or S1
{call-pair} testing by displaying a range
of information dynamically — as the tester
interacts with the program. It does this
with the following displaus:

Directed Graph Display: The directed graph
displays are generated for each module from
TCAT instrumentation on a program (named
modulename.dig}, which shows a module’s

Search Pop-up/Help Win

dow

181

CHAPTER 17: Understanding the Interface

1713 Message Boxes

Pop-up message dialog boxes have three purposes:
e They display warnings and error information.
e They ask you to verify that you want to perform a task.
e They ask you to enter a command.
To remove a message box after you have read it or to tell T-SCOPE to go

ahead with a command, click on the OK button. If you want to cancel a
command, click on the Cancel button.

FIGURE 68 Message Box

182

ﬁ

T-SCOPE User’s Guide

17.2 Main Window Features

All the functionality necessary to operate T-SCOPE is accessible from the
Main window.

tzcope Ver 3,

Display Options

icalltree I;ijdigr-aph I

1 Eicn)er*agel iC1 E-:vver‘agel

Enter command to rung

Ia.out

FIGURE 69 Main Window
It includes the following features:
e Xcalltree button: Selects a program's call tree display.
e 51 Coverage button: Selects a program's S1 value chart.
e Xdigraph button: Selects a program's directed-graph displays.
e C1 Coverage button: Selects a program's C1 value chart.

e Enter command to run: specification region: Specifies the name
of a program's executable.

¢ Go button: Executes the named executable in the Enter command
to run: specification region.

* Exit button: Closes the Main window.
e Help button: Provides on-line help for the Main window.

17.21 Xcalltree Button

The Xcalltree button brings up a Call Graph Selection Box from which
gs up P
you selecta program's call-graph file, filename.i.P, generated from S-TCAT.

183

7—

CHAPTER 17: Understanding the Interface

FIGURE 70

Shown below is a call-graph from our supplied example program named
example.i.P. It displays example's functions and its call-pair connections
during a test case's execution.

The features of the call-graph window are described next.

3 File Options Zoom In Zoom Out

proc_input) _filbuf

strlen chk_char

{c} Copyright 1990-94 Software Research, Inc,

Call-Graph Display

17.21.1 File Menu
Exit: Closes the call-graph.

17.2.1:2 Options Button
The Options button invokes the Call Graph Options window, which
allows you to adjust the geometry of a call-graph.

184

T-SCOPE User’s Guide

FIGURE 71

200H OPTIONS:

Faon Beales m Highlight Color:

ANIMATION CHARACTERISTICS:

EDGE CHARACTERISTICS:

fAspect Ratio: W

Low-level Color:

1.0 Mid-level Color:

vellow

High-level Color: e
| qreen

Number Of Hits Threshold

Lower Threshold: Upper Threshold:

Ir

15

Reset I Close | Help WI

Options Window

At the bottom of the window, there are four buttons:

Apply
Reset

Close
Help

This button applies information you change from the
Call Graph Options window to the call-graph.

This button sets the Call Graph Options window to
the default settings.

This button exits the Call Graph Options window.

Displays on-line help for the Call Graph Options
window.

185

CHAPTER 17:

Understanding the Interface

FIGURE 72

Action

Help for Optiohs window,

At the bottom of the window, there are
four buttons:

o Apply, This button applies informa-
tion you change from the Options win-
dow to the call-graph,

o Reset, This button sets the Options
window to the default settings,

Close, This button exits the Options
window,

The following options are available in
the windows:

Help Window

The following options are available from this window:

e ZOOM OPTIONS change the percentage a call-graph zooms in
or zooms out.

Zoom Scale corresponds to the magnitude a call-graph's
Zoom In and Zoom Out buttons redraw the call-graph. The
Zoom Scale default is set at .5 which magnifies the call-graph
by 50 percent if the Zoom In button is used or reduce it by 50
percent if the Zoom Out button is used.

Moving the slide ruler to the left decreases the zoom percent-
age; moving it to the right increases the zoom percentage.

e EDGE CHARACTERISTICS allow you to set the following
options which apply specifically to the functions' appearance in
the call-graph:

Size determines the size of the functions. The default is set to
1.0 which represents the real size of the functions.

Moving the slide ruler to the left decreases the size of the-
functions.

e Aspect Ratio changes the length to width ratio of a function. The
default is set to 1.0. This default translates to a 1 to 1 ratio
between the length and width.

186

T-SCOPE User’s Guide

Moving the slide ruler to the right decreases the height of the
functions. Moving it to the left of 1.0 creates a 1 to <1 width to
length ratio. Moving it to the right of 1.0 creates a 1 to >1
width to length ratio.

ANIMATION CHARACTERISTICS options allow you to
change the colors which reflect the dynamic coverage of a pro-
gram.T-SCOPE dynamically shows the exercised call-pairs and
their functions through colors.

Highlight Color reflects the color of the call-pairs and their
functions that are the most recently executed in an executed
test case. Default = pink.

Low-level Color reflects the color of the functions before test
case execution and the color of the call-pairs and their func-
tions during test case execution when call-pairs are exercised
equal to or less than the number of times specified in the
lower threshold. Default = yellow.

Mid-level Color reflects the color of the call-pairs and their-
functions during program execution when call-pairs are exer-
cised between the lower and upper thresholds. Default =
green.

High-level Color reflects the color of the call-pairs and their-
functions during program execution when call-pairs are exer-
cisedequal to or more than the number of times specified in
the upper threshold. Default = red.

Lower Threshold specifies the lower coverage threshold
number.The default is 5. When a call-pair is hit five times or
less, it is colored yellow or the color specified for the Low-
level Color.

Upper Threshold specifies the upper coverage threshold
number.The default is 15. When a call-pair is hit 15 times or
more,it is colored red or the color specified for the High-level
Color.

187

CHAPTER 17: Understanding the Interface

17.2.1.3

Zoom In Button

The Zoom In button reduces the display to the magnitude specified in the
Call Graph Options window's Zoom Scale option.

Below is an example of call-graph zoomed in three times.

File Options Zoom In Zoom Out

main

P

/i S

A\

S R

proc_input _filbuf

FIGURE 73

17.2.1.4

"Zoomed-In" Display
Zoom Out Button

The Zoom Out button undoes the last Zoom In applied.

NOTE: You can not Zoom Out or minimize the initial call-graph display.

188

T-SCOPE User’s Guide

17.2.2

S1 Coverage Button

S1 Coverage button brings up a S1 Selection Box where you can select a
program's call-graph file generated from S-TCAT. When you select the
call-graph file, a chart like the one below pops up.

After each test case for a program is executed, it updates to reflect the per-
centage of coverage achieved. It consists of a File menu that allows you to
close the window.

51 0,00 2

S1 Coverage Chart

189

CHAPTER 17: Understanding the Interface

17.2.3

Xdigraph Button

The Xdigraph button brings up a Digraph Selection Box from which you
select a particular module's directed-graph that you want to see dynami-
cally show exercised logical branches during test case execution.
Directed-graph files are listed as modulename.dig.

Shown below is one of the directed-graphs from the supplied example
program named main.dig during a test case's execution.

The Xdigraph window is described next.

scope: Kdigraph e@yle.mam.dr

File Options Zoom [n Zoom Out

Directed Graph Display

180

T-SCOPE User’s Guide

17.2.3.1

17.2.3.2

File Menu

Exit: Closes the directed-graph.

Options Button

The Options button invokes the Digraph Options window, which allows
you to adjust the geometry of a directed-graph's nodes and edges.

Digraph Optionbilcs

Z00M OPTIONS:

Zoom Scale:

NODE CHARACTERISTICS:

Shape:

Size:

Rspect Ratio:

EDGE CHARACTERISTICS:

Eccentricity:

H'

ANIMATION CHARACTERISTIC

Highlight Color:
pink

Lou-level Color: |red
Mid-level Colors

High-level Color:

Number Of Hits Threshold

Lower Threshold: Upper Threshold:

‘ [[1s

Close Help

Apply I Reset

FIGURE 76

Options Window

At the bottom of the window, there are four buttons:

Apply

This button applies information you change from the

Digraph Options window to the directed-graph.

Reset

default settings.

Close
Help

This button sets the Digraph Options window to the

This button exits the Digraph Options window.

Displays on-line help for the Digraph Options win-
dow

191

CHAPTER 17: Understanding the Interface

FIGURE 77

Help for Options window,

At the bottom of the window, there are
four buttons:

o Apply. This button applies informa-
tion you change from the Options win-
dow to the directed araph,

o Reset, This button sets the Options
window to the default settings,

o Close. This button exits the Options
window,

The following options are available in
the window:

o ZOOM OPTIONS change the percentage a

Help Window

The following options are available from this window:

ZOOM OPTIONS change the percentage a directed-graph can
zoom in or zoom out.

Zoom Scale corresponds to the magnitude a call-graph's
Zoom In and Zoom Out buttons

redraw the directed-graph. The Zoom Scale default is set at
.5 which magnifies the call-graph by 50 percent if the Zoom
In button is used or reduce it by 50 percent if the Zoom Out
button is used. To change the default:

Moving the slide ruler to the left decreases the zoom percent-
age; moving it to the right increases the zoom percentage.

NODE CHARACTERISTICS allow you to set the following
options that apply specifically to the directed graph's nodes, or
decision points.

Shape determines the shape of the node. Node shapes are
defaulted to circles. Other available shapes include boxes
ovals, or outlined circles. To change the default chape, click
on the option menu and drag the mouse to the desired
option.

Size determines the size of nodes. The default is set to 1.0.

182

T-SCOPE User’s Guide

Moving the slide ruler to the left decreases the size of theno-
des; moving it to the right increases the size.

Aspect Ratio changes the length to width ratio of a node. The
default is set to 1.0. This default translates to a 1 to 1 ratio
between the length and width. A ratio different from 1 to 1
does not work for circles--only for oval or box-shaped nodes.

Moving the slide ruler to the right decreases the height of the
functions. Moving it to the left of 1.0 creates a 1 to <1 width to
length ratio. Moving it to the right of 1.0 creates a 1 to >1
width to length ratio.

EDGE CHARACTERISTICS allow you to change the edge
shape, or logical branch shape.

Eccentricity determines ellipse eccentricity of edges, chosen
from a base value of 1.0 (the default) with a slide ruler. Mov-
ing the slide ruler to the left of 1.0 decreases the eccentricity;
moving it to the right increase eccentricity.

ANIMATION CHARACTERISTICS allow you to change the
colors which reflect the dynamic coverage of a program. T-
SCOPE dynamically shows the exercised edges.

Highlight Color reflects the color of the edge that is the most
recently executed from an executed test case. Default = pink.

Low-level Color reflects the color of the edges before test
case execution and the color of the edges during test case exe-
cution when they are exercised less than the number of times
specified in the lower threshold. Default = yellow.

Mid-level Color reflects the color of the edges during pro-
gram execution when they are exercised between the lower
and upper thresholds. Default = green.

High-level Color reflects the color of the edges during pro-
gram execution when they are exercised equal to or more
than the number of times specified in the upper threshold.
Default = red.

Lower Threshold specifies the lower coverage threshold
number.The default is 5. When a call-pair is hit five times or
less,it is colored yellow or the color specified for the Low-
level Color.

Upper Threshold specifies the upper coverage threshold
number.The default is 15. When a call-pair is hit 15 times or
more,it is colored red or the color specified for the High-level
Color.

193

CHAPTER 17: Understanding the Interface

17.2.3.3 Zoom In Button

The Zoom In button reduces the display to the magnitude specified in the
Digraph Options window's Zoom Scale option.

Below is an example of directed-graph zoomed in three times.

File Options Zoom In Zoom Out

FIGURE 78 Zoomed In Display

17.2.4 Zoom Out Button
The Zoom Out button undoes the last Zoom In applied.

NOTE: You cannot Zoom Out or minimize the initial directed raph dis-
play.

194

T-SCOPE User’s Guide

17.2.5

C1 Coverage Button

C1 Coverage button brings up a C1 Module Box from which you can
select a module. When you select a module, a C1 Coverage chart like the
one below pops up.

After each test case for a program is executed, it updates to reflect the per-
centage of coverage achieved.

It consists of a File menu that allows you to close the window.

FIGURE 79

C1 Coverage Chart

195

CHAPTER 17: Understanding the Interface

196

CHAPTER 18

GUI Operation

This chapter covers the basic X Window system graphical user interface (GUI) usage of T-

SCOPE.

18.1

Instrumenting Your Source Code

In order to dynamically view C1 (logical branch) or S1 (call-pair) cover-
age, you must use TCAT (for C1 coverage) to instrument for logical
branches or S-TCAT (for S1 coverage) to instrument for call-pairs. Instru-
mentations modifies a program so that special markers are positioned at
every logical branch or call-pair in each program module. Later, during
program execution, these markers allow T-SCOPE to dynamically display
when a branch or call-pair is exercised.

In order for T-SCOPE to understand the meaning of the markers, you
must also compile the instrumented version of the program to create and
object file which can then be linked with T-SCOPE's supplied runtime
object module. This runtime object module interprets the object file's
instructions and creates and executable.

To instrument a program and compile it, follow the instructions in the
user manuals for TCAT or S-TCAT. This creates the following files:

e An object file named example.i.o. This file will be linked with the
T-SCOPE supplied runtime object module to create an execut-
able.

e If you used TCAT: Directed-graph files for each program module
(modulename.dig). Directed-graphs, as you may remember,display
the control flow of a module.

e The directed-graphs displays are used with T-SCOPE to dynami-
cally display branches as they are exercised during execution.

e If you used S-TCAT: A call-graph file for the instrumented pro-
gram (filename.i.P). Call-graphs display the caller-callee function
relationship of a program.

Move these files over to your working T-SCOPE directory.

197

CHAPTER 18: GUI Operation

18.2

18.3

Creating an Executable

Now, to link the object file (basename.i.o) with T-SCOPE supplied runtime
object module tsruntime.o to create an executable, execute the command:

cc -o applicationname basename.i.o tsruntime.o

e cc -ois the standard command to compile.
e applicationname is the name of executable you are creating.

e basename.i.o is the name of instrumented program object file.

* tsruntime.ois T-SCOPE's supplied runtime objectmodule.
Invoking T-SCOPE

Once an executable is created, all that is left is to select the types of dis-
plays you would like T-SCOPE to dynamically update before executing
the program. First, invoke T-SCOPE:

Xtscope
The Xtscope window pops up.

If you used TCAT to create an executable, please go to Sections 18.4 and
18.5; if you used S-TCAT, please go to Sections 18.6 and 18.7.

tscope Ver

Display Options

ixcalltree I %Kd1graph I

is1 Eoverage|§C1 Eoueragel

Enter command to rung

3.out

FIGURE 80

Invoking T-SCOPE

198

T-SCOPE User’s Guide

18.4 Selecting Directed-Graph Displays

These instructions apply only if you created an executable with TCAT's
object file (filename.i.0). If you used S-TCAT, please refer to Section 18.6.

Once an executable is created, you can select a module's directed-graph
and coverage chart. These displays will allow you to dynamically view
CI coverage.

To select a directed-graph display:

1. Click on the Xdigraph button.

2. The Digraph Selection Box box pops up. All of your application's

modules should have a corresponding directed-graph that was cre-
ated during instrumentation listed in the Files list box.

3. Select a module's directed-graph display by:
e Clicking on the directed-graph name in the Files list box.
e Or, highlighting the directed-graph in the Files list box and
then selecting OK.

e Or, typing the directed-graph name in the Selection entry
box and then selecting OK.

Chetr |

7 e G

FIGURE 81 .

Selecting a Directed Graph Display

4. The directed-graph pops up. During test case execution, exercised
logical branches will be represented by thick lines; unexercised logi-
cal branches will be represented by thin lines.

199

CHAPTER 18: GUI Operation

5.

Select as many of you application's directed-graphs as you want as
long as the Xtscope window's Go button and the invocation window
remain clear.These windows are needed to run your application.

Because mid-size and large applications will have many directed-
graphs, it is recommended that you display only those graphs that
are essential. If you know, for instance, from using TCAT that your
test cases exercised all of the logical branches for a particular module,
than don't display that module's directed graph. The purpose of T-
SCOPE is to not only determine which modules were not exercised,
but also to determine how your test cases can be better improved to
exercise all logical branches in a module.

Hdigraph example.main,di

Options Zoom [n Zoom Out

FIGURE 82

Directed Graph Display

200

T-SCOPE User’s Guide

18.4.1

FIGURE 83

Adjusting a Directed-Graph's Geometry

When you have a module's directed-graph displayed, you may want to
change the threshold numbers and their colors, node or branch character-
istics. You can do this by changing the defaults in the Digraph Options

window. Simply click on the directed-graph's Options button and the

window pops up. Please refer to Section 17.2.3.2 for further instructions.

If you want to make permanent changes to all of the directed-graph dis-
plays, you can edit the SR file. Please see Chapter 19 for further informa-

tion.

ZOOM OPTIONS:

Zoow Scale: LI

NODE CHARACTERISTICS:

Shape: Circle =

—

fispect Ratio: R

Highlight Color:

Low-level Color:

Mid-level Color: |uellow

High-level Color:

Number Of Hits Threshold

EDGE CHARACTERISTICS: Lower Threshold: Upper Threshold:
1.0 .
Eccentricity: [| 5 i 15
|~ fApply I Reset Close I i Help

Using the Digraph Options Window

201

CHAPTER 18: GUI Operation

18.5 Selecting C1 Coverage Charts

Besides selecting a module's directed-graph, you can also select a mod-
ule's C1 Coverage chart once an executable is created. C1 Coverage charts
update the percentage of coverage achieved after each test case is exe-
cuted.

To select a chart for a program's module(s):

1. Click on the CI Coverage button.

2. The C1 Module Box box pops up. All of your application's modules
are listed in the Modules list box.

3. Select a module by highlighting it and then select the OK button.

Modules
proc_input
chk_char

i Cancel

FIGURE 84

Selecting a C1 Coverage Display
4. The C1 Coverage value chart for the module you select pops up.
5. Select as many charts as you want as long as the Xtscope window's
Go button and the invocation remain window clear.
202

T-SCOPE User’s Guide

FIGURE 85
18.6

S . o
ﬁ; Module: main Cly 0,00 #
T

C1 Coverage Chart
Selecting Call-Graph Displays

These instructions apply only if you created an executable with S-TCAT's
object file (filename.i.0). If you used TCAT, please refer to Section 18.4.

This section explains how to select an applications call-graph file (filena-
me.i.P). As you may recall from Section 18.1, this file is created from
instrumentation. It represents a program's flow, or its caller-callee func-
tion relationship. During program execution, this display dynamically
shows you the exercised the call-pair, allowing you to easily find the
unhit call-pairs.

To select a call-graph display for S1:

1. Click on the Xcallgraph button.

2. The Callgraph Selection Box box pops up. Your application's call-
graph file should be listed in the Files list box.

3. Select a module's call-graph display by:
e Clicking on the call-graph name in the Files list box.

¢ . Or, highlighting the call-graph in theFiles list box and then
selecting OK.

e Or, typing the call-graph name in the Selection entry box
and then selecting OK.

203

CHAPTER 18: GUI Operation

Filter

[;uctfdemosfcowerageﬂtftscopet.demoi*.i.P;

lirectories

ge/C/tscopel,demas, .

Selection

[amoafcoverage/t/tscopeﬁ.demo/example.1.P

FIGURE 86 Selecting a Call-Graph Display
4. The call-graph pops up. During test case execution, executed call-
pairs will be represented by thick lines.

{tscope: Kcalltree example.i.

Options Zoom In Zoom Out

proc_input _filbuf
\%\ﬂ‘—‘x

—_—

strlen chk_char

{c» Copyright 1990-94 Software Research, Inc.

Call-Graph Display

FIGURE 87

204

T-SCOPE User’s Guide

18.6.1 Adjusting a Call-Graph's Geometry

When you have a program's call-graph displayed, you may want to

change the threshold numbers and their colors, and function characteris-
tics. You can do this by changing the defaults in the Call Graph Options
window. Simply click on the call-graph's Options button and the window

below pops up. Please refer to Section 17.2.1.2 for further instructions.

If you want to make permanent changes to all of the call-graph displays,
you can edit the SR file. Please see Chapter 19 for further information.

Z00M DPTIONS:

EDGE CHARACTERISTICS:

—
pepect Fatio: LI

ANIMATION CHARACTERISTICS:

Highlight Color: | Bk i

Low-level Color:

red

Mid-level Color:

yellow

High-level Color:

qreen

Number Of Hits Threshold

Lower Threshold: Upper Threshold:

N R

Close I i Help I

FIGURE 88 Using the Call-Graph Options Window

205

CHAPTER 18: GUI Operation

18.7 Selecting S1 Coverage Charts

Besides selecting a module's directed-graph, you can also select a mod-
ule's S1 Coverage chart once an executable is created. The S1 Coverage
chart updates the percentage of coverage achieved for the program after
each test case is executed.

1. Click on the S1 Coverage button.

2. The S1 Selection Box box pops up. Your application'scall-graph file
(filename.i.P) should be listed in the Files list box.

3. Select the file by:
e Clicking on the call-graph name in the Files list box.

e Or, highlighting the call-graph in the Files list box and then
selecting OK.

Filter

juct/demos/coverage/C/tacopeC, demos*, 1 P

Directories Files

qe/C/tscopeC,demo/,
qe/C/tscopel.demo/. .

A |

E :%Fxlt.erl éliarn:ell Help l

e s

FIGURE 89 Selecting a S1 Coverage Chart
4. The S1 Coverage chart pops up. During your application's execution,
this chart will dynamically update the percentage of call-pair cover-
age achieved after each test case is executed.

206

T-SCOPE User’s Guide

e
SRR RRRRRRR

ifModule: example S1: 0,00 Z

S

FIGURE 90
18.8

é1 Cover;age éhart
Running Your Application

Once you have your application's directed-graph or call-graph and cover-
age charts displayed, you can run your application:

1. When you created an executable in Section 18.2 you should have cre-
ated an executable named applicationname. Put applicationname in
the Xtscope window's Enter command to run specification region.

Click on the Xtscope window's Go button.
Run your application just as you would normally.

Unlike a regular run of your application, however, the instrumented
version of your application displays hit logical branches or call-pairs
as thick lines.

For color monitors:

e The color pink represents the most recently executed logical
branch or call-pair.

e The color yellow represents a logical branch or call-pair that
has been hit less than five times or the number of times speci-
fied for the lower threshold.

e The color green represents a logical branch or call-pair that
has been hit between five and 15 times or the number of

times specified for the mid-level threshold.

207

CHAPTER 18: GUI Operation

e The color red represents a logical branch or call-pair that has
been hit more than 15 times or the number of times specified
for the upper threshold.

These threshold colors and numbers can be set in the Digraph
Options window or the Call Graph Options window.

208

CHAPTER 19

Customizing T-Scope

This chapter explains where the setup information is stored and gives instructions on
changing it.

19.1 Location of Setup files

You can customize T-SCOPE by changing the X Window System
resources or setup files. These files are text files, which you can edit with
any standard UNIX text editor. Most of the graphical user interface
defaults are set in the SR file supplied with the product. It needs to be put
in the /usr/lib/X11/app-defaults directory. If you install T-SCOPE using the
supplied installation script, the contents of the SR file are automatically
copied or concatenated to the SR file in that directory.

On the following page is a list of the common GUI defaults. You can
change the set defaults by manually changing the SR file to avoid reset-
ting GUI parameters every time.

209

Customizing T-Scope

tscope*font: 6x13

htColor.value:

tscope*hi

tscope*lolevelColor.value: vellow
tscope*normlevelColor.value: green
tscope*hilevelColor.value: red
tscope*cgMinThreshold.value: 5
tscope*cgMaxThreshold.value: 15
tscope*dgMinThreshold.value: 5
tscope*dgMaxThreshold.value: 15
tscope*commandText .value: a.out
!

! options

L

tscope*zoomScale.value: 5
tscope*nodeSize.value: 10
tscope*nodeAspectRatio.value: 10
tscope*edgeEccentricity.value: 10

210

Index

Symbols

*.dig file 85

.dig file 23, 102

.o files 67

.pth file 23, 85, 102, 109
.pth file, editing 29

.pth files 42

.rpt files 42

A

a.out command 99

Action menu 109

Actions menu, TCAT-PATH 50
Adjusting a Directed-Graph's Geometry 201
analysis reports 89

Analyze menu 123

Animation Characteristics options 187
apg 23, 34, 85, 88, 102

apg (Automatic Path Generator) 23
apg output path 28

apg, limitations 129

apg, processing of subgraphs 29
available runtimes 68

B

-b flag, apg 29
blocked names, apg 29

C

C compilers 73
C1 (logical branch) coverage 157
C1 coverage 168, 197

C1 Coverage button 199, 202

C1 Coverage chart 202

C1 Coverage charts 165

C1 coverage, related to pathcover utility 34
Cicoverage 152

call-graph file 197, 203

cc commands 68

Compiler command option 99
Compiler options 99

compiling instrumented program 197
configuration file syntax, TCAT-PATH 56
configuration file, TCAT-PATH 46
count paths only switch 24

Ct coverage 146, 152

Ct Test Coverage Metric, definition 139
Ct value 92

ctcover 23, 42, 89

ctcover command 123

ctcover utility 41

ctcover, limitations 129

ctcover, sample outputs 42

ctcover, syntax 41

cyclo command 29

cyclomatic complexity 29

cyclomatic number 87

cyclomatic number calculation 23

D

default colors, digraphs 168
default runtimes 68

-DI deinst switch 96

digraph 53

digraph file 102

digraph file (*.dig file) 23

digraph format, standard 30
Digraph Options window 191
directed-graph files 155

Do not instrument functions in file

211

Index

option 96

Do not recognize exit as keyword option 96

DoCYC script (cyclo) 30
DoPTH script 26
DoRPT script (ct cover) 41

E

EDGE CHARACTERISTICS, T-SCOPE 193

Enter command to run spec. region 207
essential path extractor 23

essential paths 34

example program, TCAT-PATH 69
example.c program 155

example.i.o. 155

example.i.P file 184

Execute menu 99

F

-f option 42

-f option (ctcover) 42

-f shortname (ct cover) 41

-f1 value switch 96

filename.i.A 78

filename.i.P 206

fn value switch 96

FORTRAN Language
tp-if77 limitations 130

G

Generate Path options 103

Generate Path Statistics 105
Generate Paths menu 109, 116
graphical user interface defaults 209

H

help command 48
help, TCAT-PATH 48

instrumenting program 73
Instrumentor Command option 96
instumentor (tp-ic), limitations 130
integer max. number of paths switch 25

invocation, TCAT-PATH 93
iterative programs 140

L

linked object modules 68
Linker command option 99
Linker options 99

logical branch execution 200

Main Menu, TCAT-PATH 49
Make command option 99
Make file name option 99
maximum loop count 25
maximum path count 23
McCabe Metric 29

Menu Tree, TCAT-PATH 47

N

name switch (ctcover) 41
noniterative programs 140

(0

object file 155

on-line help frames, TCAT-PATH 131
Options Menu, TCAT-PATH 52
OSF/Motif GUI style 179

OSF/Motif X Window System 93

P

path classes 147

path conditions 117

path file 102

path file (*.pth file) 23

path logical condition extractor 23
pathcon 31, 32

pathcover utility, definition 34
pathcover utility, switches 35, 36
preprocessing 97

Preprocessing option 95
pre-processing program 73
Preprocessor Command option 95
Preprocessor output suffix option 95

212

STW/Coverage/C User’s Guide

proc_input 87 U
pure-structured program 147
UNIX text editor 209

R X
Recognize _exit as keyword option 96 X Window System 157
Reference Listing file 78 X Window system graphical user
runtime object module 155 interface 197

X Window System resources 209
S Xdefaults file, T-SCOPE 153

Xdigraph button 199
S1 (call-pair) coverage 172
S1 coverage 152, 197
S1 Coverage chart 176, 206
S1 test metric, definition 139
Saved to New Path File 109
saving current settings, TCAT-PATH 53
segment and node sequence numbers 78
Set Runtime Object Module 100
setup files, T-SCOPE 209
Specify max. file name length option 96
Specify max. funct. name length option 96
SR file 209
SR file, editing 201
SR file, location 209
S-TCAT 199
STW/Coverage tool suite 152
sub-digraphs, apg use of 28
switch, cyclo 30

v

tcatp.rc 55

tcatp.rc file 46

TCAT-PATH configuration file 55
TCAT-PATH configuration file, sample 58
TCAT-PATH, ASCIl menus 45
TCAT-PATH, available menu options 47
TCAT-PATH, interactive mode 46
TCAT-PATH, set variables 48
TCAT-PATH, system restrictions 129
threshold colors, setting 208

tp-ic instrumentor 67

tracefile switch (ctcover) 41

213

Index
214

E e EEEEEmERHE

o e ilo o]
mm:.zi»ﬁu

sprml)

O
R

e

Pt

i

St

Software Research

625 Third Street
San Francisco, CA 94107

o\
D2

	STWC-06
	STWC-07
	STWC-08

