
.,,_ ...
Software
TestWor s·"

II
II

II

II
II
II
II

II
II

II

II
II
II
11-

II

-
II

_Software TestWorks

STW /Coverage Tool Suite for C

(Book 2 of 2)

TCAT-PATH: Path Test Coverage Analyzer

T-SCOPE: Test Data Observation and Analysis System

SOFTWARE RESEARCH, INC.

This document property of:

Name: _______________ _

Company: _____________ _

Address: ____________ _

Phone ______________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel: (415) 957-1441
Toll Free: (BOO) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, 5-TCAT, TCAT
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update July 17, 1995)

II

II

II

II
II
II
II

II
II

II

II

II
-11

II

II·
11·

II

-~
II·
II

II'
11·
II
11·

II·
II

Table of Contents

PART I: TCAT-PATH USER'S GUIDE

CHAPTER 1: System Operation ... 1

1.1 System Features ... 1

1.2 System Information Flow ... 1

1.3

1.4

Operating Modes .. 2

TCAT-PATH Functional Methodology .. 4

II CHAPTER 2: Instrumentation .. 7

II
II

II

II

II

II
II

2.1

2.2
2 .2.1
2 .2.2

2.3
2.3.1

2.4

2.5

Overview .. 7

Instrumentation .. 7

The lnstrumentor 8
The "C" lnstrumentor 8
Instrumenting With 'make' Files .. 11
Example 'make' Files 13
File Summary .. 17

Embedded Systems ... 17

CHAPTER 3: Compiling, Linking and Executing 19
3.1 Runtime Descriptions .. 19

3.1.1 <lang>trunO - Raw Trace File 20

' I

Table of Contents

3.1.2 <lang>trun1 - Standard Trace File 20
3.1 .3 MS-DOS Runtimes 20
3.1.4 Executing the Instrumented Program 21
3.1.5 Performance Considerations 22

CHAPTER 4: Utilities .. 23
4.1

4.2

4.1.1

4.1.2

4.1.3

4.1.4
4.1.5

4.3
4.3.1
4.3.2
4.3.3
4.3.4

4.4
4.4.1
4.4.2

apg (Automatic Path Generator) ... 23
apg 23
Other notes: 26

Sample apg Output #1 27
Output of command: "apg -S example.main.dig" (ORIGINAL) 27

Sample apg Output #2 27
Output of command: "apg -S example.main.dig" (REVISED): 27

Processing Program Subgraphs with 'apg' 28
Blocked Pairs Processing with 'apg' 29

cyclo (Cyclomatic Number Calculation) ... 29

pathcon Utility ... 30
Invocation Syntax 30
Example Invocation 31
Output format. 32
Example Output 33
pathcover Utility ... 34
Invocation Syntax 34
Example Invocation 37

CHAPTER 5: Coverage Analyzer ... 41
5.1 'ctcover' Syntax .. 41

CHAPTER 6: TCAT-PATH Menus ... 45
6.1 TCAT-PATH ASCII MENUS ... 45

6.1.1 Invoking TCAT-PATH 46
6.1.2 TCAT-PATH Menu Tree 47

Issuing Commands 48

Displaying Current Parameter Setting 48

TCAT-PATH Menu 'Stack' 48

6.1.3 Main Menu 49
6.1.4 Actions Menu 50
6.1 .5 Files Menu 51
6.1.6 Options Menu 52

ii

-11

II

II

II
·11

II

II

II

II

II

II

II

II
II

II
II

II
II
II

II
II

II

II

II

II

II

II

II

II

II

6.2

6.1.7
6.1.8
6.1.9

6.2.1
6.2.2
6.2.3

STW/COVERAGEIC User's Guide

Saving Changed Option Settings 53
Running System Commands 54
Settings Command Output 55

TCAT-PATH Configuration File .. 55

Configuration File Syntax 56
Configuration File Processing 58
Example TCAT-PATH Configuration File 58

CHAPTER 7: Source Viewing Utility .. 59
7.1 lntroduction ... 59

7.2 Invocation Syntax ... 59

7.3 Example lnvocation .. 59

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, OS/2 .. 63
8.1

8.1 .1
8.1.2
8.1.3
8.1.4
8.1.5

Instrumentation, Compilation and Linking ... 63
Stand-Alone Fi les 63
Systems with 'make' Files 64
'make' With 'cl ', 'msc' 64
Systems without 'make' Files 64
Program Execution 64

CHAPTER 9: TCAT-PATH Command Summary-UNIX 67
9.1

9.2

9.1.1
9.1.2
9.1 .3

Instrumentation, Compilation and Linking 67
Stand-Alone Files 67
'make' files with cc called in directives 68
A System Which Does Not Use 'make' Files 68

Program Execution ... 68

CHAPTER 10: Full TCAT-PATH Example ... 69
10.1 Introduction 69

10.2 Preprocess, Instrument, Compile and Link .. 73

10.3 Reference Listing ... 78

10.4 Instrumentation Statistics .. 83

10.5 Path Generation .. 85

10.6 TCAT-PATH Reports .. 89

10.7 Summary ... 92

iii

Table of Contents

CHAPTER 11: Graphical User Interface (GUI) Tutorial 93
11.1 lnvocation .. 93

11.2 Using TCAT-PATH 95

11 .2.1 Instrument. 95
11 .2.2 Execute 99
11.2.3 Generate Paths 102
11 .2.4 Analyze 123

· CHAPTER 12: System Restrictions and Dependencies 129
"C" Language: tp-ic 130

Ada Language: tp-iada 130

FORTRAN Language: tp-if77 130

PASCAL Language: tp-ipascal 130

CHAPTER 13: On-Line Help Frames ... 131

CHAPTER 14: Coverage Measure Explained 139

14.1

14.2

14.3

14.4

14.5

lntroduction ... 139

Example Paths .. 140

Noniterative Programs ... 140

Iterative Programs, Various Values of K ... 141

The Exact Meaning of K 144

14.6 Complex Looping Structures .. 144

14.7 Practical Implications of Ct Coverage .. 146

14.8 Theoretical Considerations ... 146

PART II: T-SCOPE USER'S GUIDE

CHAPTER 15: T-SCOPE Overview .. 151
15.1 The QA Problem .. 151

15.2 The Solution .. 151

15.3 SR's Solution .. 152

15.4 Format ... 153

iv

II

II

II
II

II

II
II

II
II

II

II

II

II
II
II
II

II

II

II

II

II
II

II

II

II
II

II

II

II

II

Ill
II

II

II

STW/COVERAGEIC User's Guide

CHAPTER 16: Quick Start .. 155
16.1 Recommendations ... 155

16.1 .1 STEP 1: Instrumenting Your Source Code ... 155
16.1.2 STEP 2: Starting Up T-SCOPE 157
16.1.3 STEP 3: Creating an Executable 159
16.1 .4 STEP 4: Invoking T-SCOPE 161
16.1 .5 STEP 5: Selecting Directed Graphs ... 163
16.1.6 STEP 6: Selecting Coverage Charts 165
16.1.7 STEP 7: Running the Application 167
16.1.8 STEP 8: Cleanup 170
16.1.9 STEP 9: Setting Up for S1 Coverage 172
16.1.1 O STEP 1 O: Running the Application 174
16.1.11 STEP 10: Cleanup 176
16.1.12 Summary .. 178

CHAPTER 17: Understanding the lnterface 179
17.1 Basic OSF/Motif User Interface ... 179

17.1 .1
17.1.2
17.1.3

File Selection Windows .. 179
Help Windows 181
Message Boxes 182

17.2 Main Window Features ... 183
17.2 .1 Xcalltree Button 183

File Menu 184

Options Button 184

Zoom In Button 188

Zoom Out Butta 188

17.2.2 S1 Coverage Button 189
17.2.3 Xdigraph Button .. 190

File Menu 191

Options Button 191

Zoom In Butta 194

17.2.4 Zoom Out Butto 194
17.2.5 C1 Coverage Button 195

CHAPTER 18: GUI Operation ... 197
18.1

18.2

18.3

18.4

Instrumenting Your Source Code .. 197

Creating an Executable .. 198

Invoking T-SCOPE .. 198

Selecting Directed-eraph Ditr,lays 111111111111 199

V

Table of Contents

18.4.1

18.5

18.6
18.6.1

18.7

18.8

Adjusting a Directed-Graph's Geometry 201
Selecting C1 Coverage Charts .. 202

Selecting Call-Graph Displays .. 203
Adjusting a Call-Graph's Geometry 205
Selecting S1 Coverage Charts .. 206

Running Your Application .. 207

CHAPTER 19: Customizing T-Scope ... 209
19.1 Location of Setup files ... 209

CHAPTER 20: Index .. 211

PLEASE NOTE: The documentation for TCAT and S-TCAT, the
other components of STW/COVERAGE, is located in STW/COV
ERAGE/BOOK I.

' VI

II

II

II
II
II

-
II

II
II

II

II
II
II
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

List of Figures
FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 25

l=IGUME 26

TCAT-PATH System Diagram 3

Uninstrumented DOS Make File 13

Instrumented DOS Make File 14

Uninstrumented UNIX Make File 15

Instrumented UNIX Make File 16

Example pathcon Output . 34

pathcover Reports 40

Source Viewing (Part 1 of 2) 60

Source Viewing (Part 2 of 2) 61

Sample "C" Program 72

Instrumented Program Fragment•.............. n
Reference Listing 82

Instrumentation Statistics 84

Digraph file for 'main' module" 85

Digraph file for 'proc_input' module 86

Digraph file for 'chk_char' module 86

Digraph display for 'proc_input' module 87

Coverage Report for 'main' module 90

Coverage Report for 'proc_input' module 91

Coverage Report for 'chk_char' module• 91

Main Menu 93

STW/COV Invocation 94

Main Menu Help 95

Instrument Menu 96

Instrument Help Menu 97

Fil@ Pop-Up Menu , , , , , , . 98

vii

List of Figures

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

FIGURE 38

FIGURE 39

FIGURE 40

FIGURE 41

FIGURE 42

FIGURE 43

FIGURE 44

FIGURE 45

FIGURE 46

FIGURE 47

FIGURE 48

FIGURE 49

FIGURE 50

FIGURE 51

FIGURE 52

FIGURE 53

FIGURE 54

FIGURE 55

FIGURE 56

FIGURE 57

FIGURE 58

FIGURE 59

FIGURE 60

FIGURE 61

FIGURE 62

viii

Execute Menu 99

Execute Help Menu 100

Runtime Object Module Pop-Up Menu 101

Generate Paths Menu 102

Generate Paths Help Frame 103

Generate Paths Pop-Up Menu 105

Generate Path Statistics Pop-Up Menu 106

Edit Paths Menu 107

Edit Paths Help Frame 108

Set Path File Pop-Up Menu 109

Save New Path File Pop-Up Menu 110

Display Path Menu 111

Display Path Help Frame 111

Set Module File Pop-Up Menu 112

Source Viewing 113

Path Condition Menu 114

Path Condition Help Frame 115

Set Module File Pop-Up Menu 116

Path Condition Menu 117

Save New Pathcon File Pop-Up Menu 118

Generate Path Statistics Pop-Up Menu 119

Edit Paths Window 120

Display Paths Menu•.............. 121

Set Highlight File Pop-Up Menu 122

Highlighted Path Display 123

Analyze Menu 124

Analyze Help Frame 125

Set Trace File Pop-Up Menu 126

View Report Window 127

Setting Up the Display (Initial Condition) 158

Creating an Executable 160

Invoking T-SCOPE 162

Selecting Directed Graphs 164

Selecting C1 Coverage Charts 166

Running the Application 169

Completing a C1 Coverage Session 171

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II STW/Coverage/C User's Guide

FIGURE 63 Preparing for S1 Coverage 173

II FIGURE 64 Running the Application 175

FIGURE 65 Completing a S1 Coverage Session 177

II FIGURE 66

FIGURE 67

File Selection Window 179

Search Pop-up/Help Window 181

II
FIGURE 68

FIGURE 69

Message Box . 182

Main Window 183

FIGURE 70 Call-Graph Display 184

II FIGURE 71 Options Window 185

FIGURE 72 Help Window 186

II FIGURE 73

FIGURE 74

"Zoomed-In" Display 188

S1 Coverage Chart 189

FIGURE 75

II FIGURE 76

Directed Graph Display 190

Options Window 191

FIGURE n Help Window 192

II FIGURE 78

FIGURE 79

Zoomed In Display 194

C1 Coverage Chart 195

II
FIGURE 80

FIGURE 81

Invoking T-SCOPE 198

Selecting a Directed Graph Display 199

FIGURE 82 Directed Graph Display 200

II FIGURE 83

FIGURE 84

Using the Digraph Options Window 201

Selecting a C1 Coverage Display 202

II
FIGURE 85

FIGURE 86

C1 Coverage Chart . 203

Selecting a Call-Graph Display 204

FIGURE 87 Call-Graph Display 204

II FIGURE 88 Using the Call-Graph Options Window 205

FIGURE 89 Selecting a S1 Coverage Chart 206

II FIGURE 90 S1 Coverage Chart 207

II

II

II

II ix

List of Figures II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

X II

II

II

II
II

II

II

II

II

II
II
II

II
II

II

II

II

II

USER'S GUIDE

TCAT-PATH

Path Test Coverage Analyzer

Ver 8.1

SOFTWARE RESEARCH, INC.

This document property of:

Name: _______________ _

Company: ____________ _

Address: _____________ _

Phone ______________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel : (415) 957-1441
Toll Free: (BOO) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: July 14, 1995)

II

II

II
II

II
II

II

II

-
II
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II
II
II
II

II

II

CHAPTER 1

Systelll Operation
This chapter describes how TCAT-PATH operates and explains the major operating
modes for the package.

1.1

1.2

System Features

TCAT-PATH performs detailed path analysis of programs using a series of
processing steps. Features of the TCAT-PATH system include:

• Automatic generation of structural digraphs from submitted pro
grams.

• Automatic generation of complete path sets based on a unique
SR-proprietary path analysis and equivalence class generation
algorithm.

• Display of structure of structural digraphs using a special
digraph visualization utility.

• Calculation of the cyclomatic complexity of programs.

• Automatic analysis of full trace files for instrumented programs
(the instrumentation is generated automatically by the built-in
TCAT-PATH instrumentor) .

TCAT-PATH includes both command-line invocable processes and a fully
interactive system.

System Information Flow

Figure 1 shows an overall data flow diagram of the TCAT-PATH system
for "C" language.

The parts of the TCAT-PATH can all be command-line driven, and are
designed to be usable with the standard UNIX pipeline and redirection
facility.

In addition, a simple and friendly menu system (the user interface for the
interactive version of TCAT-PATH) assists novice users in creating special
"configuration" files which record the selection of run-time parameters,
and executing the programs with on-line help.

1

CHAPTER 1: System Operation

1.3 Operating Modes

As Figure 1 on the following page suggests, there are several main modes
for TCAT-PATH operation:

• Analyzing a file to extract digraph information about the
included function(s) or procedures.

• Viewing the digraph for a particular program, relative to a speci
fied basis path.

• Generating the set of paths that correspond to each program's
structure.

• Running tests on the instrumented program to get a Ct-compati
ble trace file of test coverage data.

• Computing the Ct coverage of a module or set of modules and
producing reports.

II
II

II
II

II

II
II

II
II

II

II
II
II
II
II
II

II

II TCAT-PATH User's Guide

II

II

II

II

II tp-ic

II

II t: ~ cyclo en
m
~

Xdigraph ~
II
II
II

r.ri
TCAT-PATH

apg
~ runtime

0
~ Link, load &

execute en

II /
Tracefiles cfcover

II

II FIGURE 1 TCAT-PATH System Diagram

II

II 3

CHAPTER 1: System Operation -
II

1.4

4

TCAT-PATH Functional Methodology

The TCAT-PATH package consists of three main systems: the tp-i<lang>
instrumentor processor (see NOTE below), apg, and ctcover which can be
used individually as command-line invocable units, or with the TCAT
PATH interactive menu system. In addition, there are several other sub
functions and support scripts that can be used independently.

NOTE: The only language-dependent component of TCAT-PATH is the
ins trumen tor itself.

For simplicity, and because TCAT-PATH is available for a variety of lan
guages, we refer to this element of the system in general terms as tp
i<lang>. Typical forms for this command, which can be modified by the
user through the TCAT-PATH configuration file, are:

• tp-icf or "C" programs

• tp-iada for Ada programs

• tp-if77 for FORTRAN (£77) programs

• tp-ipascal for Pascal programs

• tp-icobol for COBOL programs

Chapter 12 describes special characteristics of the instrumentor with
which TCAT-PATH could be supplied.

Here is an informal description of how you can use the TCAT-PATH com
ponents to measure path coverage.

The methodology for using TCAT-PATH is based on the following typical
scenario: you want to measure the Ct coverage values for a group of func
tions that are coded a few at a time into several files.

• STEP 1: Create a Working Directory. Set up a directory in which
to keep all of your intermediate files. TCAT-PATH uses filename
extensions on basenames.

Your working directory should have copies of the source files,
plus any supporting files you need to run tests on these files after
they have been instrumented.

II

II

II

II

II

II

II

II
II

II

II
• STEP 2: Instrument and Generate Digraphs. You instrument and II

generate digraphs by processing all of the files with the supplied
TCAT-PATH instrumentor (the specific digraph processor and
instrumentor depends on the language you are processing) . If ,II
some processed files contain more than one module (function),
then the tp-i<lang> command will split up the digraph data
and create separate digraph files each named after the corre- II
sponding module.

II

II

II

II

II

II

-
II

II
II

II

II
II

II
II

II

II

II

TCAT-PATH User's Guide

• STEP 3: Generate Paths.You use the apg command to generate
the path sets for each module. Some modules may have "too
many" paths. You have to make this determination; TCAT-PATH
does not impose internal size limits, but your situation and other
practicabilities may!

The script DoPTH can be used to generate all of the *.pthfiles for
all *.dig files in the working directory.

• STEP 4: Study Structure and Properties. Use cyclo and Xdigraph
to study the properties and structure of each *.dig file .

These two commands can help identify "too complex" modules,
and gain intuition about the internal structure of the software
you are analyzing. You may wish to avoid trying to analyze Ct
coverage for modules with more than 300 paths (for example).

NOTE: The script DoCYC helps you run the cyclo commands on all *.dig
files in the working directory.

• STEP 5: Generate Trace Files. You have to re-compile the instru
mented programs (generated automatically by TCAT-PATH 's
tp-i<lang> command), and link them with the supplied runt
ime object module.

• Then you execute the program as you normally would on an
uninstrumented program. The result of this will be one trace file
per test. If you have multiple tests you can append each test to
the end of each trace file (note that the trace files cannot be
reduced, because such files do not have essential segment
sequence information).

• STEP 6: Evaluate Ct Coverage. For each module, and for the set
of all trace files you think are appropriate, you call ctcover to pro
duce the standard Ct coverage report.

This report contains an image of the *.pth file for reference pur
poses. The script DoRPT can be used to handle generating the
*.rpt files for all basenames (for which there are *.pth files) in the
working directory.

5

CHAPTER 1: System Operation II

II

II
II
II

II

II

II

II
II
II

II

II
II
II
II

6 II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 2

Instru:mentation
This and the next four chapters tell how to use TCAT-PATH to increase test coverage and
detect more software errors. There are two ways to access TCAT-PATH: with command
line commands and with menus.

The following command line invocations are the focus of these chapters.

2.1

2.2

1. Instrumentation (marking segments)

2. Compiling and Linking with Runtime (recording and counting mark-
ers) and Executing

3. Path generation (generating complete path sets)

4. Coverage analysis (reporting path hit)

A description of how to use the menus appears in Chapter 6.

Overview

In brief, TCAT-PATH instruments the source code of the system to be
tested, that is it inserts function calls at each logical branch. The instru
mentation will not affect the functionality of the program. When it is com
piled, linked and executed, the instrumented program will behave as it
normally does, except that it will write coverage data to a trace file. There
is some performance overhead due to the data collection process.

The trace file is processed by a report generator described later. The file
resulting from instrumentation is then used for path generation. These
generated paths are also processed by the report generator.

Finally, the user looks at the coverage reports to assess testing progress
and to plan new test cases. New test cases are added in subsequent passes
until a threshold percentage of Ct logical path coverage has been
reached.The coverage reports guide the addition, or possibly the deletion,
of tests.

Instrumentation

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
Ct coverage at every stage of testing while behaving logically equivalent

to the original program,

7

CHAPTER 2: Instrumentation

2.2.1

2.2.2

8

In its operation, TCAT-PATH's instrumentor parses your candidate source
code, looking for logical branches. When one is discovered, the instru
mentor inserts a function call in the instrumented version of the source
code. It is important to note that the resulting source code file is still a
legal program, as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remember,
the instrumented version will otherwise function as the uninstrumented
version.

The lnstrumentor

This command reads a *.<lang> file and produces a *.dig file for each
module in the *.<lang> file. It also instruments the *.<lang> file and pro
duces an instrumented version of the file and other reference and statisti
cal files. For a complete listing on the files produced by the instrumentor,
please refer to Section 2.4, "File Summary."

The generic syntax for command line calls to the instrumentor follows.
tp-i<lang> [options] file.ext [file .ext]

where,

file.ext

options

File(s) to be instrumented. ext is language-specific
(e.g." c" or "i" for a C file). If there are multiple files,
then each is processed in the order presented.

Instrumentation options are also language specific.
Options for the "C" language are presented in the
next section. Options for other languages are listed in
Chapter 12.

The "C" lnstrumentor

The complete syntax for command line calls to ic is listed below.
tp-ic file.ext [file.ext]

[-eel

[-cw]

[-DI deinst-file]

[-fl value]
[-fn value]

[-help]
[-I]

[-lj]

[-ml

[-m6]

[-n]

II

II

II

II

II

-
II

II

II

II
II
.II

II
II
II

II

II

II

II

II

II

II

II
II

II

II

II

II
II

II

II

II

II

II

[-t]

[-u]

[-w]

[-x]

[-z]

TCA T-PATH User's Guide

This command instruments submitted "C" language file(s). It takes *.i
source file(s) and produces the instrumented file(s): *.i.c (for UNIX) or *.ic
(for MS-DOS or OS/2). *.c is the "C" source file, while *.i is the prepro
cessed file.

It is required that the user preprocess the source file through a "C" pre
processor before passing it to tp-ic. Normally, the preprocessing com
mand is:

cc -P file.c (for UNIX)

or
cl -P file.c (for DOS running Microsoft C)

These commands read file.c and produce file.i. The following options may
be used to vary the processing and reports generated by the instrumen
tor. The options are listed in alphabetical order.

file.ext

-ce

File(s) to be instrumented.ext can be "c" or "i". If
there are multiple files, then each is processed in the
order presented.

Preprocesses conditional expressions of the form ? a :
b.

-cw Suppresses the "Conditional Expressions Not Pro
cessed" warning message.

-DI deinst-file

De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from instru
mentation. Only the list of module names found in
the specified deinst-file is to be excluded from instru
mentation. The module names can be specified in any
format. White space (such as tabs, spaces) is ignored.
This switch effects the instrumented (*.i.c) file and the
reference listing (*.i.A) file.

-fl value Allows the user to specify the maximum length of
filename characters that are allowable on the system.
If the length of a generated filename exceeds the val
ue, then the instrumentor output will be redirected to
files named Temp.i.?. These files can be used in sub

sequent processin9.

9

CHAPTER 2: Instrumentation

10

-fn value

-help

The flexname switch.Allows the user to specify the
maximum characters of function names the instru
mentor recognizes. If the function name exceeds the
value, then the instrumentor will recognize as distinct
only the first value characters of the function name.
For instance, a -fn 5 will recognize the first five char
acters as distinct. Characters beyond that point, how
ever, will not be recognized for function name
purposes.

Help Switch. Forces output to show a summary of
available switches.

NOTE: This is also the output produced by any illegal command to tp-ic.

-I Ignore Errors Switch. In certain rare cases, when the
underlying "C" compiler supports non-standard op
tions and constructs, it may be desirable to "force" in
strumentation to occur regardless of errors found.

This is done with the -I switch.

CAUTION: When instrumentation is forced using this switch, there is a
chance that the instrumented software will not compile.

-lj

-m

-m6

-n

For example, if you use the - I switch to "instru
ment" a file of text material, you would not expect the
output to be compilable (and it probably won't be),
even though it may have been "instrumented".

Processes setjmp and longjmp. This option only
works for UNIX.

Recognize Microsoft C 5.1 keywords during the in
strumentation process. NOTE: This switch applies
only to MS-DOS and OS/2 versions. This switch may
produce unusual results if used in UNIX systems.

Recognize Microsoft C 6.0 keywords during the in
strumentation process.

NOTE: applies only to MS-DOS and OS/2 versions.
This switch may produce unusual results if used in
UNIX systems.

Will not instrument empty edges (for example: if
without else or switch without default.)

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II
II

II

II
II

2.3

-t

-u

-w

-x

-z

TCAT-PATH User's Guide

Recognize Turbo C keywords during the instrumen
tation process. Note: This switch applies only to MS
DOS and OS/2 versions.

Forces the instrumentor to recognize _exit as exit.
Note: This switch applies only to MS-DOS and OS/2
versions.

Recognize Whitesmith C keywords during the instru
mentation process. Note: This switch applies only to
MS-DOS and OS/2 versions.

Will not recognize exit as keyword. NOTE: This
switch applies only to MS-DOS and OS/2 versions.

Recognize MANX/ AZTEC "C" keywords during the
instrumentation process. NOTE: This applies only to
MS-DOS and OS/2 versions. This switch may pro
duce unusual results if used on UNIX systems.

If there is an error, tp-ic gives a response line, or us
age line, indicating the set of possible switches and
options, which is the same as the -h output.

Instrumenting With 'make' Files

Most often, TCAT-PATH will be used to develop test suites for systems
that are created with 'make' files.Make files cut the time of constructing
systems, by automating the various steps necessary to build the system,
including compilation and linking.

Fortunately, it is possible to add a few statements to most 'make' files to
enable them to make an instrumented version of the system. The modifi
cations fall into two general categories, based on whether or not the make
file explicitly names the compiler.

For the rest of this section will assume the use of the "C" compiler. For
any other language, the user can substitute the corresponding command
in the language.

If the 'make' file explicitly mentions the "C" compiler with a cc command
(for example), it is possible to add the tp-ic command and an extra cc
command for preprocessing, instrumenting and compiling causing the
make script to instrument and compile the "C" files in question.

Make file lines such as:
UNIX :

sample.o:sample . c

cc -c sample.c

11

CHAPTER 2: Instrumentation

12

MS-DOS and OS/2:

sample . obj:sample.c

cl c sample.c

would be changed to:
UNIX:

sample . o: sample . c

cc -P $(CFLAGS) sample . c

tp-ic sample.i

cc -c $(CFLAGS) sample. i .c

mv sample.i . o sample.o

MS-DOS and OS/2:

sample.obj : sample.c

cl /P $(CFLAGS) sample .c

tp-ic -m6 sample.i

rename sample.ic temp .c

cl /c $(CFLAGS) temp.c

rename temp.obj samp l e.ob j

The other situation is where the compiler is not explicitly mentioned, but
given as a "built-in" rule. The user can add the following "built-in" rule:

UNIX:

.c . o:
cc -P $(CFLAGS) $*. c
tp-ic $* . i
cc -c $(CFLAGS) $*.i.c
mv $* . i.o $*.o

MS-DOS and OS/2:

.c.obj:

cl /P $(CFLAGS) $*.c
tp-ic -m6 $*.i

rename $* .ic temp.c
cl Jc $(CFLAGS) temp.c
rename temp .obj $*.obj

The other change necessary is to add SR runtime modules to the link
statement. (More on this in the next chapter.)

II

II

II

II

II

II

II

II

II

II

II

II

II
II·

-
II

II

II
2.3.1

II

-
II

II

II
II

II
II

II

II

II

II

II FIGURE 2

II

II

II

TCAT-PATH User's Guide

Example 'make' Files

This section gives on the following pages several examples of how to cre
ate 'make' files that work under MS-DOS and UNIX environments.

The first example 'make' file is an illustrative MS-DOS type 'make' file
that is unmodified.

S A M P L E M A K E F I L E
----WITHOUT INSTRUMENTATION---------

DOS version make script for SAMPLE

OBJS = sample.obj sampley . obj samplel.obj tree.obj init . obj \
error . obj detest . obj help . obj log.obj ui . obj premain . obj license .obj \
pretree . obj preprocl . obj preprocy . obj

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK : 20000
sample . obj: sample . c
sampley.obj : sampley . c
samplel . obj : sample l .c
tree .obj: tree . c
license.obj : license . c
init.obj : init . c
error.obj : error.c
detest .obj : dotest.c
help . obj : help . c
log .obj: log . c
ui . obj : ui . c
premain . obj : premain.c
pretree.obj : pretree . c
preprocl.obj : preprocl . c
preprocy.obj: preprocy . c
sample.exe: $(0BJS)

sample . obj license.obj help.obj \
sampley . obj samplel . obj tree . obj init.obj \
error.obj detest . obj log .obj ui . obj premain . obj \
pretree . obj preprocy . obj preprocl .obj\
link @sample.lnk ;

Uninstrumented DOS Make File

13

CHAPTER 2: Instrumentation

FIGURE 3

14

The file below shows the modifications to the 'make' file needed to pro
vide for automatic instrumentation. The modifications are shown in bold
face.

##SAMPLE

M A K E F I L E

##---- - - - ----WITHINS TR UM ENT AT ION-----------

DOS version make script for SAMPLE file

OBJS = sample.obj sampley.obj samplel.obj tree.obj init.obj \
error . obj detest.obj help.obj log.obj ui.obj premain.obj license.obj\
pretree.obj preprocl.obj preprocy . obj

CFLAGS
LFLAGS

.c.obj :

/c /FPi /AL /DMSDOS /DLIMITED
/STACK : 20000

cl $(CFLAGS) /P $*.c
tp-ic -m6 $*.i
rename $*.ic temp.c
cl $(CFLAGS) / c temp.c
rename temp.obj $*.obj

sample.obj: sample . c
sampl ey.obj : sampley.c
samplel . obj: samplel.c
tree . obj: tree . c
license . obj: license.c
init . obj: init.c
error . obj : error . c
detest . obj : dotest.c
help.obj : help.c
log.obj : log . c
ui . obj: ui.c
premain . obj: premain.c
pretree . obj : pretree.c
preprocl.obj: preprocl . c
preprocy . obj: preprocy . c
sample . exe : $(0BJS)

s ample . obj license . obj help.obj \
sampley . obj samplel . obj tree . obj init.obj \
error.obj detest . obj log.obj ui.obj premain . obj \
pretree . obj preprocy.obj preprocl . obj \fBctrunll . obj\
link @sample.lnk ;

Instrumented DOS Make File

II

II

II
II

II

II
II

II

II
II
II

II

II

II

II

II

II

II

II

II
II

II

II

II
II
II
II
II

II

II

II

II

II
~IGUAE 4

II

TCAT-PATH User's Guide

The 'make' file below shows a typical UNIX/XENIX 'make' file before
modification.

S A M P L E M A K E F I L E

Make file example , no instrumentation.

UNIX, XENIX

Uses make "s knowledge of lex , yacc , cc .

CCextras
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -11
LFLAGS = -v
Lextras
Objects= sample.a sampley . o samplel . o tree .a init.o error.a dotest . o
log .a\

ui.o premain . o preprocy.o preprocl.o pretree . o help.a license . a
Sources= sample.c sampley.c samplel.c tree.c init.c error.c dotest.c
log .c \

ui.c premain . c preprocy.c preprocl . c pretree . c sample.h \
typedef . h error . h y.tab . h preproc.h help.c license .c license.h

UNIX version . Compiles and links.
sample: $(Objects)

rm -f sample
cc $(Objects) $(LDFLAGS) $(Lextras) -o sample

sampley.c: sampley.y

yacc $(YFLAGS) sampley.y
mv y.tab.c sampley.c
cp y.tab.h ytab . h

samplel.c: samplel.l
lex $(LFLAGS) samplel.l
mv lex . yy . c samplel.c

preprocy.c: preprocy.y

yacc S(YFLAGS) preprocy . y
cat y.tab.c I sed -e 's /yy/ xx /g ' > preprocy.c
cat y.tab.h I sed -e 's /yy/xx /g ' > pretab.h
rm y.tab.c

preprocl.c : preprocl.l
l ex $(LFLAGS) preprocl.l
cat lex.yy . c I sed -e 's /yy/xx /g' > preprocl.c
rm lex.yy . c

lpr :
pr $(Sources) I lpr

license .a: license .c license . h

Uninstrumentea UNIX M9,ke File

15

CHAPTER 2: Instrumentation

FIGURE 5

16

The changes needed have been made in the modified 'make' file shown
below. The modifications are shown in bold face.

SAMPLE MAKE FILE

Make file sample , with TCAT-PATH instrumentation

UNIX, XENIX

Uses make ' s knowledge of lex, yacc , cc.

ccextras
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -11
LFLAGS = -v
Lextras =
Objects= sample. a sampley . o samplel.o tree.o init.o error . a dotest.o log.o \

ui.o premain.o preprocy.o preprocl.o pretree . o help . o license.a
Sources= sample.c sampley . c samplel . c tree . c init . c error .c dotest.c log .c \

ui . c premain . c preprocy. c preprocl . c pre tree . c sample. h typedef . h error . h
\

y . tab.h preproc.h help.c license . c license.h
UNIX version. Compiles and l inks.
\fB .c.o :

cc -P $ (CFLAGS) $* . c
tp-ic $*.i
cc - c $(CFLAGS) $*.i.e.
mv $*. i . o $ * . o

sample : $(Objects) ctrunl . o
rm -f sample
cc $(Objects) \fBctrunl.o\fP $(LDFLAGS) $(Lextras) -o sample

sampley . c : sampley.y

yacc $(YFLAGS) sampley . y
mv y . tab.c sampley .c
cp y . tab.h ytab . h

samplel.c : samplel.l
lex $(LFLAGS) samplel . l
mv lex .yy.c samplel.c

preprocy . c : preprocy . y

yacc $(YFLAGS) preprocy.y
cat y . tab.c I sed -e ' s/yy/xx/g' > preprocy . c
cat y . tab.h I sed -e ' s/yy/xx/g ' > pretab.h
rm y.tab . c

preprocl.c : preprocl . l
lex $(LFLAGS) preprocl . l
cat lex.yy.c I sed -e ' s/yy/xx/g ' > preprocl . c
rm lex . yy . c

lpr:
pr $ (Sources) I lpr

license.a: license.c license . h

Instrumented UNIX Make File

II

II

II

II

II

II
II

II

II
II

II

II

II
II

II

II

II

II
II

II
II
II

II
II
II
II

II

II

II

II
II

II

II
II

2.4

2.5

TCAT-PATH User's Guide

File Summary

This section describes TCAT-PATH file naming conventions for the instru
mentor (tp-ic).

MS-DOS or OS/2:
tp-i<lang> [optional switches] filename.i

Input:

<filename>. i

Produces:

Preprocessed source file

<filename>. i<lang>lnstrurnented source

<filename>. iA Segment and node reference listing

<filename>. iE Error listing

<filename>. iL Segment count for each module

<filename>. is Instrumentation Statistics

<module name>. digFile(s) containing digraph of the named module(s)

NOTE: Digraph filenames of module names that are more than 8 charac
ters long are truncated to 8 characters.

UNIX:
tp-i<lang> [optional switches] filename.i

Input:

<filename>. i

Produces:

Preprocessed source file

<filename>. i<lang> Instrumented source

<filename>. i .A Preprocessed source file

<filename>. i. E Error listing

<filename>. i. L Segment count for each module

<filename>. i. s Instrumentation Statistics

<module name>.dig

File(s) containing digraph of the named module(s)

Embedded Systems

An added benefit resulting from TCAT-PATH's software instrumentation
strategy is that th.e lool m.ay be used with embedded systems. Because
TCAT-PATH's output is a syntactically correct program, the tool ~an be

17

CHAPTER 2: Instrumentation

used on programs that are cross-compiled for target systems. The
sequence of steps are: the instrumented code is cross-compiled, linked,
then moved to the embedded system.

After execution, coverage data collection occurs on the embedded system,
and the trace files are uploaded to the host. The specifics of transferring
trace files from the embedded system to the host is dependent on the sys
tem in question.

II
II
II
II
II

•
II
II

II
II

II

II

II
II

II
II

II

II

II
II

II

II

-
II

II
II

-
II

II

II

II
II

II
II

CHAPTER 3

Colllpiling, Linking and
Executing

Tbis chapter explains how to compile, link and execute the instrumented program.

3.1

Once instrumentation has been completed, the instrumented version of
your program must be compiled and linked with the runtime object mod
ules, sometimes called runtime routines.

The runtime routines are supplied by SR and will write to the trace file.
These modules are called from the instrumented code; the added function
calls, or "probes", call sub-functions inside the runtime modules.

There are several runtime objects for each computer as described in the
next section.

NOTE: Some unreachable code may occasionally be inserted by the
instrumentor.

Tbis may cause warning messages when compiling, but they are not fatal
and the compiler should proceed in spite of them.

Runtime Descriptions

As mentioned above, the test engineer using TCAT-PATH has a choice of
many runtime routines to change the behavior and performance of the
instrumented system under test. Different runtimes may be selected by
linking in the appropriate module.

Finally, the user can write his own runtime package if he needs to modify
TCAT-PATH to a particular situation, since the program that is needed is
small. For an embedded system where the target system has particular
characteristics, rewriting the runtime is a practical way to adapt TCAT
PATH.

The TCAT-PATH runtime system is compatible with the TCAT runtime
system but the TCAT runtime system is not compatible with TCAT-PATH.
That is, you can use the TCAT-PATH system with Cl-instrumented pro-

19

CHAPTER 3: Compiling, Linking and Executing

20

grams, but you cannot use TCAT's runtime system for TCAT-PATH. There
are a variety of runtime modules for each language.

The function of each runtime package is specified by the format of its
name as defined following:

<language>trun<level> . o (for UNIX)

or
<language>trun<leve l><model> . obj (for DOS)

Examples:

ctrunO.o C, level 0, UNIX

ftrunl.o Fortran 77, level 1, UNIX

ptrunl.o Pascal, level 1, UNIX

ctrunOm.o C, level 0, DOS, medium memory model.

Several versions of runtime are available depending on your needs.

3.1.1 <lang>trun0 - Raw Trace File

3.1.2

3.1.3

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca
tion of the program under test.

<lang>trun1 - Standard Trace File

This is the same as <l.ang>trunO, but with prompts that ask the user for
Test Descriptor and the name of trace file.There is no internal processing
or buffering. The trace file is the full, unedited trace of program execu
tion. This is the basic version.

MS-DOS Runtimes

MS-DOS has several runtimes available. You must first determine the
memory model you are using for memory management on your system.
You will then be able to easily choose from the following list of runtimes
for "C" language. The standard runtimes are ctrunl, while the "quiet"
runtimes are ctrunO. Microsoft Chas five memory models: S for small;
M for medium; C for compact; L for large; and H for huge.

Turbo C has six memory models: T for tiny; S for small; M for medium; C
for compact; L for large; and H for huge.

The following is a partial list of runtimes for "C" language on MS-DOS, as
they appear on the distribution diskette:

II

II
II

II

II
II

II

II
II
II

II

II·
II

II

II

II

II

II

II

II

II

II

II

II

II 3.1.4

II

II

II

II

II

II

II

TCAT-PATH User's Guide

\RUNTIME\TURBO\STD\CTRUNlC . OBJ

\RUNTIME\TURBO\STD\CTRUNlH . OBJ

\RUNTIME\TURBO\STD\CTRUNlL . OBJ

\RUNTIME\TURBO\STD\CTRUNlM . OBJ

\RUNTIME\TURBO\STD\CTRUNlS . OBJ

\RUNTIME\TURBO\STD\CTRUNlT . OBJ

\RUNTIME\TURBO\QUIET\ CTRUNOC . OBJ

\RUNTIME\TURBO\QUIET\CTRUNOH . OBJ

\RUNTIME\TURBO\QUIET\CTRUNOL . OBJ

\RUNTIME\TURBO\QUIET\CTRUNOM . OBJ

\RUNTIME\TURBO\QUIET\CTRUNOS . OBJ

\RUNTIME\TURBO\QUIET\CTRUNOT . OBJ

\RUNTIME\MSCSl\STD\CTRUNlC.OBJ

\RUNTIME\MSCSl\STD\CTRUNlH . OBJ

\RUNTIME\\MSCSl\STD\CTRUNlL.OBJ

\RUNTIME\MSCSl\STD\CTRUNlM . OBJ

\RUNTIME\MSC 51\STD\CTRUN1S . OBJ

\RUNTIME\MSC 51\QUIET\CTRUNOC . OBJ

\RUNTIME\MSCSl\QUIET\CTRUNOH . OBJ

\RUNTIME\MSCSl\QUIET\CTRUNOL . OBJ

\RUNTIME\MSCSl\QUIET\CTRUNOM . OBJ

\RUNTIME\MSCSl\QUIET\CTRUNOS.OBJ

NOTE: Microsoft C 5.1 runtimes should be compatible with 6.0 updates.

Executing the Instrumented Program

The next step is to run your instrumented program and track which logi
cal paths have been exercised by the test data you supply. In essence, this
is a matter of noticing the not-hit paths mentioned in the coverage report
(refer to Chapter 6), and looking up the corresponding code in the Refer
ence Listing.

TCAT-PATH senses when paths are hit by monitoring the markers
inserted during instrumentation and by accumulating the results in a
trace file and matching them with the paths in the path file .

To produce the trace file, first run your instrumented and compiled "C"
program and follow the prompts.

If you use the standard runtime routines, the system will respond with:
Trace Descriptor:

Type in a description of the test run. Be as descriptive as needed for your
own information in referring to this test run. You can enter up to 80 char
acters of text in your message. This message will be recorded in the trace

file and used in coverage repMtS.

21

CHAPTER 3: Compiling, Linking and Executing

3.1.5

If you choose to enter no descriptive text, just press the return key. The
system next will prompt you for an output filename:

Name of tracefile [default is Trace . trc]:

Type in any name. The system will create a trace file with the name you
enter. To use the default name Trace.trc, just press the return key. The trace
file description and name are useful in keeping track of different test runs.
Consistent, clear naming conventions are useful in organizing different
groups of results.

A common practice is to identify trace files with the filename extension
.trc.

Performance Considerations

Sometimes, an instrumented program will produce very large trace files.
One solution to this is to compile a mixture of instrumented and un
instrumented files so that the program is tested in pieces.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Ill

II

11·

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER4

Utilities
This chapter covers the automatic path generation, cyclomatic number calculation,"essen
tial" path extractor, and path logical condition extractor.

4.1

4.1.1

The first utility generates a complete set of paths for a module, which is
used later for coverage reporting along with an execution trace file. The
last two utilities are intended for the user to study the structure and prop
erties of the module in question. A cyclomatic complexity number can be
computed to identify "too complex" modules. A user can also get the
"essential" paths, i.e. a minimal subset of paths that will guarantee 100
percent branch level coverage (Cl).

Additionally, a user can display the logical conditions (or predicates) that
need to be satisfied for a given path to be traversed. All utilities use the
digraph file produced from the instrumentation as input.

apg (Automatic Path Generator)

Automatic Path Generator (apg) processes a digraph file (*.dig file) into a
path file (*.pth file). This path information is the input to the coverage
analyzer (ctcover) which will be discussed in the next chapter.

apg

This program uses a SR-proprietary algorithm that generates sets of
equivalence classes of paths. The path classes are either non-iterative or
iterative. The output describes iteration in terms of "loop" or "cycles" that
can be entered, and then exited (see Chapter 15).

apg uses the notation< .. > for O and[..] for 1 or more repetitions; apg also
uses the{ .. } notation for groups of edges.

apg issues error messages if it is asked to generate paths beyond a maxi
mum path count (the user can modify these values); see below.

apg file [module]
[-bl
[-cl
[-d maxdepthl

[-gigJ

23

CHAPTER 4: Utilities

[-df file]
[-fl]

[-g]

-I

[-n]
[-p limit]
[-pth]
[-pf file]
[-q]

[-SJ
[-X key file]
[-w width]

where the switches have the following values:

file [module] Filename and Module Name Switch. This is the file base
name that contains the digraph for the module to be
processed. The specific facts about the named module
are found after a special-format line in file.

The module name can be omitted if the -I switch is
used. If so, only the first-occurring digraph is actually
used.

-b Basis Paths Only Switch . If this switch is present, then
apg computes all paths but outputs only those paths
which have no iteration.

II

II

II

II

II

II

II

II

II
NOTE: A program must have at least one basis path;

11 otherwise, there is something wrong with the di-

-c

-d maxdepth

24

graph.

Count Paths Only Switch. If present, apg computes the
total number of paths (regardless of the value set by
the -p switch) found. If the path count is large, apg
prints out intermediate messages so that you don't
think it is failing. (The intermediate messages happen
every 1000 paths). CAUTION: If the path counts is
over 100,000 you should be prepared for a long wait.

Maximum Stack Depth Specification. This gives the
maximum stack depth to use during the equivalence
class computation. This number need to be about the
same size as the maximum length of the decision tree
that leads to a path. If O is specified, then the stack
depth has no internal limit (but it may be limited by
available memory).

II

II

II

-
II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

-dig

-df file

-fl

-g

-I

-n

-p limit

-pth

-pf file

-q

-s

TCAT-PATH User's Guide

Multi-Module Digraph File Indicator. If present, this in
dicates a multi-module digraph file, typically gener
ated with the -dig option of the corresponding
instrumentor. The default file name is TCAT.dig.

Multi-Module Digraph File Name. The name of the file
to be used if -dig is present and the default is not to be
used.

Fixed-Length Filename Switch. Forces use of the fixed
length option, corresponding to instrumentor's out
put.

Output Redirection Switch. The output of apg normally
goes to standard output; if the -g flag is present, then
the output is written to name.pth.

Ignore module name.

Path Numbering Switch. Causes each path to be pre
ceded by a path number. For example, @2: 134 <{ 4
}> 5 6. The number between the@ and: is the path
number (in this case, 2).

Maximum Paths Switch. This is the integer maximum
number of paths to generate.

If the total number of paths to be emitted is limit, then
the total number of paths calculated is 16* limit (this
number is generated internally only, however; it is
not generated for the output file). The default value is
limit= 300.

Output To Multi-Module Path File Switch. The output is
directed to the specified file, default TCAT.pth .

Output To Multi-Module Path File Name. The file name
given is used instead of TCAT.pth if -pth is present.

Quiet Output Switch. The quiet switch will suppress
version number and other extraneous outputs.

Path Statistics Switch. If present, after the path compu
tation, apg prints a series of statistics that characterize
the set of paths. No paths are generated. Path statis
tics are output to standard output. If the -g switch is
on1 statistics are returned to the name.s tt file, where

name is the module name.

25

CHAPTER 4: Utilities

-x key file Special Graphics Support Switch. When present the only
output indicated below, based on the value of the key,
is produced to standard output.

II

II
This output is intended for use in the graphical dis-

11 play functions of Xdigraph.

4.1.1.1

26

-w width

Other notes:

Output width specification. The output of apg is
"folded"--with \ 's protecting the new-line characters
-so that it is never wider than width characters. The
default value for width (i.e. without the -w switch) is
72.

apg , Release 3

Path Analysis Statistics .

File name: testfile.dig

Number of nodes: 16
Number of edges: 20
Cyclomatic number (E - N + 2) : 12

Number of paths: 236
Average path length (segments) :22. 45

Minimum length path (segments) : 12 (Path 23)
Maximum length path (segments) :45 (Path 464)

Most iteration groups : 4 (Path 14)

Path count by iteration groups:

0 iteration group(s) :4

1 iteration group (s) : 6 6
2 iteration group(s) :14

3 iteration group(s) :0

4 iteration group(s) :0

5 iteration group(s) : 16

There is a supplied script, DoPTH that reads the basename of the mod
ule, calls apg, and writes the *.pth file for every *.dig file in the current
directory.

II

II

II

II
II

II

II

II

II

II

II

II

II
4.1.2

II 4.1.2.1

II

II

II

II

II

II

II
II 4.1.3

II
4.1.3.1

II

II

II

II

II

II

TCAT-PATH User's Guide

Sample apg Output #1

Output of command: "apg -S example.main.dig" (ORIGINAL CONTENTS):

Path Analysis Statistics
File name : example.main.dig

Number of nodes :
Number of edges :

12
29

Cyclomatic number (E - N + 2) : 19

Number of paths: 155
Average path length (segments) : 55 . 70
Minimum length path (segments) : 2(Path 155)
Maximum length path (segments) : 73(Path 64)
Most iteration groups: 5 (Path 68)

Path count by iteration groups :

Stopped at

0 iteration group(s) : 1
1 iteration group(s) : 1
2 iteration group (s) : 12

3 iteration group (s) : 2 6

4 iteration group (s) : 6 5
5 iteration group (s) : 5 0

5 iteration groups

Sample apg Output #2

Output of command: "apg -S example.main.dig" (REVISED CONTENTS):

Detailed Path Analysis Statistics

Processed file name : example.main . dig

Number of nodes (N) :
Number of edges (E , segments):
Cyclomatic number (E - N + 2) :

TOTAL NUMBER OF 1-TRIP PATHS :

Average path length (segments):

12
29
19

155

55.70
Minimum length path (segments) : 2 (Path No . 155)
Maximum length path (segments): 73 (Path No . 64)

ijigh~Qt 18Vel iteration (loop) : 5 (Path No. 68)

27

CHAPTER 4: Utilities

4.1.4

28

Path count by iteration groups (including iteration
depth) :

BASIS PATHS (no iter ation) :
Level 1 loop(s) :

Level 2 loop(s) :

Level 3 loop(s) :

Level 4 loop(s) :

Level 5 loop(s) :

Stopped at 5 iter ation groups .

1

1

12
26

65

50

Processing Program Subgraphs with 'apg'

In complex cases the TCAT-PATH user may wish to declare a subgraph of
the original program as one which is to be treated as a "unit" in relation to
processing of the larger graph. Doing this will, in many cases, decrease
the number of paths generated to a more manageable number (this is
often called "path factoring") .

The following figure shows how apg handles one or more sub-digraphs
within the specified graph:

apg -s filename

or
apg -s ' hereis . filename '

or
apg - s filename -s filename -s filename

(maximum of 16 such filenames)

where in each case the "filename" is another digraph (in the TCAT-PATH
standard format) where the first appearing node is the assumed entry,
and which can have any number of exits.

When apg encounters that entry node then it treats ALL of the nodes in
the named subgraph files as a SINGLE SEGMENT, labeled by the name
of the filename.Tius means that the GROUP of edges named in the -s file
acts like just one edge in regard to path generation. When this option is
used, an apg output path might look like the following:

2 5 1 4 < { 1 6 " f i l e n ame l " 29 30 33 } > \\

44 49 50 51

II

II

II

II

II

II

II
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II
II

II

II

II

II

II

II

II

4.1.5

4.2

TCAT-PATH User's Guide

More about apg processing of subgraphs is found in Chapter 13

NOTE: apg processing of subgraphs may not be available in early ver
sions of TCAT-PATH.

Blocked Pairs Processing with 'apg'

When the number of paths that apg generates grows very large, it may be
desirable to prevent generation of some paths. Note that the user always
has the option of editing the *.pth file to remove paths. There is, however,
one feature of apg which can simplify what would otherwise be compli
cated editing sessions.

The special flag -b can be used as follows to inform apg to not include
pairs of segments in any path. Here is a typical invocation of apg in this
case:

apg -b filename

where f i 1 en ame is the name of the file in the working directory that con
tains a list of pairs of segments that should not be included (i.e., blocked
pairs).

The format for the blocked pair file is as follows:
This is a sample ' blocked pair " file
for use with TCAT-PATH .. .

segment-1 segment-2

segment-a segment-b
segment-x segment-y

which means that the indicated pairs are to be used to "block" generation
of a path.

The user should be cautious with this capability, however. If critical pairs
are blocked, then apg may generate no paths. Generally, one must ascer
tain from studying the program that two segments cannot co-exist in any
possible actual execution path before adding them to the file of blocked
names.

cyclo (Cyclomatic Number Calculation)

The cyclo command is a utility that computes the cyclomatic complexity,
sometimes referred to as the McCabe Metric, for the named digraph file.

The cyclomatic complexity is a characterization of the relative complexity

of a digraph based 61\ ~ gpflcific count of the ed.ge~ @d nodes. The for
mula for the cyclomatic complexity is (this is how the output appears):

29

CHAPTER 4: Utilities

4.3

4.3.1

30

Cyclomatic Complexity
McCabe Metric
E(n)

edge - node+ 2

<value> \fl

Tiris metric is commonly used to assess the complexity of a module. If
E(n) is over 10, then the module is normally considered "too complex".
However, in some cases E(n) >> 10 for] "easy to test modules", and E(n)
is very small for "hard to test modules". User caution is advised.

Syntax:
cyclo

where,

name.dig

name.dig [-q]

[-g]

is the name of the digraph file for which the cyclomat
ic number is to be computed. The file is assumed to be
in standard digraph format.

Tiris switch is used to quiet down the output pro
duced to just the character string (without carriage re
turn or newline) representing the computed
cyclomatic number.

Tiris switch allows the output of cyclo to be combined
in expressions. For example, on UNIX systems one
could use the command fragment:

expr 'cyclo -q filel' + 'cyclo -q file2'

Note: There is a supplied script, DoCYC that calculates the cyclomatic
number for each *.dig file in the current directory.

pathcon Utility

The purpose of the pathcon utility is to extract and display the logical
conditions (predicates) for a particular path given the sequence of seg
ments in the path (which could be a complete path), the digraph file
(*.dig file), and the reference listing file (*.i.A or *.iA file) .

Invocation Syntax

Syntax:
pathcon -A ref-listing -D dig-file [-g]
[-P path-file] [-N number [number]]

where,

II

II

II

II

II

II

II
II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II
II

II
II

II

II

II

II

II

I
II

4.3.2

TCAT-PATH User's Guide

-A ref-listing ref-listing, produced by the tp-ic instrumentor, is
used for predicate referencing. This file has .i.A or .iA
extension.

-D dig-file

-g

-N number

-P path-file

dig-file is a digraph file for a module that specifies
the set of segments in "tail-node head-node segment
name" format.

This file is produced by the tp-ic instrumentor and is
normally named module-name.dig, where module
name is the module in question.

pathcon output normally goes to standard output. If
this option is specified, the output goes to a file
named module-name.con.

number specifies the path number which logical con
ditions are to be displayed. The path number is rela
tive to the beginning of the path file . The user can
specify one or more path numbers by supplying the
numbers as part of arguments to pathcon. If this op
tion is not specified, then pathcon will display all the
paths in the specified path file.

path-file is a file that contains a set of paths from the
module-name module. If this option is not specified,
then pathcon will get the paths from the module
name.pth file . This file is normally produced by the
apg utility of TCAT-PATH. The file can contain all or
a subset of the paths that apg generates.

Example Invocation

For example, using the example restaurant program in the full TCAT
PATH example chapter, the command:

patbcon -D main.dig -A example.i.A

would instruct pathcon to generate the set of logical conditions for each
generated path in the main.pth file using the information in the main.dig
digraph file and example. i.A reference listing file. The output will go to
standard output.

The following command:
pathcon -D proc_ input . dig -A example . i . A -g -N 3 169

would instruct pathcon to generate the set of logical conditions for paths
number 3 and 169 in the proc_input.pth file using the information in the
proc_tnput.ftig file ill~ th~ ~~nw .~t~r~n~~ listin5 as previously- The output
will go to the file named proc_input.con.

31

CHAPTER 4: Utilities

4.3.3 Output format

pathcon gives a detailed output for each path requested. Each path is
printed, along with the path number relative to the beginning of the path
file. Segments in the path are listed in rows. Segments that are inside the
<{ ... }> iteration symbols are not included, however, segments that are
inside the [{ ... }] iteration symbols are included. The latter indicates 1 or
more iterations of the loop and thus need to be included in the output.

The output format is shown below. Entries in italics are the entries that
pathcon generates. Each segment occupies a row and has the following
information:

PATH#: path-string

22 2

"#"

Segment

Cycle

entry

Exit

Loop

AbExit

Ex/Ent

Sense

Segment Cycle Sense Predicate

Entry TRUE while(isspace(in_ str[char_ index]))

Indicates the number of lines in the report. Each line
corresponds to one segment, however, a segment
may be listed more than once if it is part of a 1 or more
iteration loop.

Lists the segment name as in the digraph file.

Includes: Entry, Exit, Loop, AbExit, Ex/Ent.Indicates
which part of the loop this segment belongs to. If this
entry is left blank, it indicates that the current seg
ment does not belong to a loop.

The current segment is hit before the loop is executed.

The current segment is hit after the loop is exited.

The current segment is inside the loop.

The current segment is hit when loop is exited "ab
normally". This is the case when the segment comes
after a loop with one (1) or more iterations (the [{ ...
}]symbols).

This segment comes between two loops (e.g. segment
3 is such a loop in the following path: 1 2 <{ 2)> 3 <{
4 5 }> 7)

Includes: TRUE, FALSE, CASE. Indicates which sense
of evaluation of the predicate that will cause this seg
ment to be hit.

II

II

II

II

II

II

II
II

II

II

II

II
II

II

II
TRUE The current segment is hit if the evaluation of II
the predicate is TRUE.

32 11

II

II

II

II
II
II

4.3.4

II

II

II
II

II

II

II

II

II

I
II

Predicate

Example Output

TCAT-PATH User's Guide

FALSE The current segment is hit if the evaluation of
the predicate is FALSE.

CASE The current segment is hit if the evaluation of
the switch statement is as indicated in the predicate
(for "C" language only).

Includes: NONE,***, and predicate string. The logical
condition(s) that need to evaluated if the current seg
ment is to be hit. Predicate for the first segment in a
module is indicated by the string NONE. If no predi
cate is encountered, pathcon will output***.

The output from the second example invocation from the previous sec
tion is shown in the following figure.

PATH 3: 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 }) 15 17 18 20 21 <{ 20 21 22 }> 23

Segment Cycle Sense Predicate

1 1 TRUE NONE
2 2 Entry TRUE while(isspace(in_str [char_index)))

3 3 Exit FALSE while(isspace(in_str[char_index)))
4 4 TRUE for (; char - index <= strlen (in_str) ;
char_index++)
5 5 CASE switch(in_str[char_ index))
6 6 TRUE case I l ' :
7 7 TRUE case ' 2' :
8 8 TRUE case I 3 I :

9 9 TRUE case ' 4 ' :
10 10 TRUE case '5 ' :
11 11 TRUE case ' 6' :
12 12 TRUE case ' 7' :
13 13 TRUE case ' 8 ' :
14 14 Entry TRUE case I 9 I :

15 4 Loop TRUE for(; char - index <= strlen (in_str) ;
char_index++)
16 5 Loop CASE switch(in_str[char_index))
17 6 Loop TRUE case ' 1 ' :
18 7 Loop TRUE case '2 ' :
19 8 Loop TRUE case I 3 I :

20 9 Loop TRUE case ' 4 ':

21 10 Loop TRUE case ' 5 ' :
22 11 Loop TRUE case ' 6 ' :
23 12 Loop TRUE case ' 7' :
24 13 Loop TRUE case '8' :
25 H Loop TfiU5 ctl5E I~ I :

26 6 Loop TRUE case I 1 ' :

27 7 Loop TRUE case I 2 I:

33

CHAPTER 4: Utilities

FIGURE 6

4.4

4.4.1

34

28 8
29 9
30 10
31 11

32 12
33 13
34 14
35 15
36 17
37 18
38 20
39 21
40 23

Loop TRUE
Loop
Loop

TRUE
TRUE

Loop TRUE
Loop TRUE
Loop TRUE
Loop TRUE
AbExit CASE

FALSE
TRUE
TRUE

Entry TRUE
Exit FALSE

case I 3 I :

case I 4 I :

case '5 ' :
case ' 6 ':

case ' 7':

case I 8 I:

case ' 9 ':
switch(in_ str[char_index]) {
if(chk_ char(in_str[char_ index]))
if(char_ index > 0 && got_ first)
while(char_ index <= strlen(in_str))
if(chk_char(in_ str[char_ index]))
while(char_ index <= strlen(in_str))

PATH 169 : 1 3 4 15 16

1

2

3

Segment

1

3

4

Cycle sense Predicate

TRUE NONE
FALSE while(isspace(in_str[char_index]))
TRUE for(; char_index <= strlen(in_str) ;

char_ index++)
4 15
5 16

CASE
TRUE

Example pathcon Output

pathcover Utility

switch(in_str [char_ index]) {
if(chk_char(in_str[char_index]))

The purpose of the pathcover utility is to extract path and segment infor
mation from a set of paths supplied in the input file. pathcover allows the
user to get "essential" paths, i.e. a minimal subset of paths from the input
file that would guarantee 100% Cl (branch or segment) level coverage.

It is assumed that the input file supplied to pathcover is the path file pro
duced by the apg (all path generator) utility of TCAT-PATH.

pathcover will gives several sets of "essential" paths depending on user's
options. The user can get "essential" paths based on the order of occur
rence of the segments in the original path file ("first" or "last" instance
found algorithm), or the user can rearrange the path file in certain order
and then apply the search algorithm. Finally, the user can also get infor
mation on which segments are encountered most often in the input file.

Invocation Syntax

Syntax:
pathcover path-file [-cl [-fl [-fi) [-fl) [-fa)

[-g] [-1) [-li) [-11) [-ls) [-n) [-q) [-r)

II
II

II

II
II

II
II
II

II
II
II

II
II
II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II
II

where,

path-file

-c

-f

-fi

-fl

-fs

-g

-1

-li

TCAT-PATH User's Guide

A file that contains a set of paths for a particular mod
ule. This file is normally produced by the apg utility
and named module-name.pth.

Prints out the population statistics on each segment
encountered in the path file. It reports on the number
of paths that contain a particular segment.

Prints out the "essential" paths based on the "first in
stance found" algorithm. The search is done on the
original input path set (input file). This is pathcover
output if no options are specified.

Prints out the "essential" paths based on the "first in
stance found" algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob
tained by ordering the non-iterative paths first and
then the iterative paths.

Iteration is indicated by the<{ ... }> (0 or more itera
tions) and the [{ ... }] (1 or more iterations) symbols.

Prints out the "essential" paths based on the "first in
stance found" algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths. The sorted paths are obtained by ordering the
paths in ascending order based on the segment
counts in the path. Segments that are inside the<{ .. . }>
(0 or more) iteration symbol are excluded from the
segment counts.

Prints out the "essential" paths based on the "first in
stance found" algorithm.The search is done on the
paths sorted by the segment. The sorted paths are ob
tained by ordering the paths in ascending lexico
graphic order.

Prints pathcover output to a file called module
name.cov, where module-name is the particular
module in question. pathcover output normally goes
to standard output.

Prints out the "essential" paths based on the "last in
stance found" algorithm. The search is done on the
original input path set (input file) .

Prints out the "essential" paths based on the "last in
sta!\CQ found" algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob-

35

CHAPTER 4: Utilities II

-11

-ls

-n

-q

-r

36

tained by ordering the non-iterative paths first and

11 then the iterative paths. Iteration is indicated by the
<{ ... }> (0 or more iterations) and the [{ ... }]

Prints out the "essential" paths based on the "last in
stance found" algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths.

The sorted paths are obtained by ordering the paths
in ascending order based on the segment counts in
the path. Segments that are inside the <{ ... }> \(0 or
more) iteration symbol are excluded from the seg
ment counts.

Prints out the "essential" paths based on the "last in
stance found" algorithm. The search is done on the
paths sorted by the segment. The sorted paths are ob
tained by ordering the paths in ascending lexico
graphic order.

Each path is preceded by a path number. For exam
ple,@2: 134 <{ 4 }> 5 6. The number between the@
and : is the path number.

The quiet switch will suppress version number and
other extraneous outputs.

Prints out the "essential" paths randomly. First and
last algorithms are ignored.

II
II

II
II
II

II

II

II

II

II
II
II

II

II

II

II
4.4.2

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

TCAT-PATH User's Guide

Example Invocation

For example, using the same example "restaurant" program, the com
mand sequence:

cc -P example.c
tp-ic example.i
apg main.dig -g
pathcover main.pth -c -f -1 -g

would instruct pathcover to generate a report on the segment population
statistics and two sets of "essential" paths for the main module in exarn
ple.c file: one with "first instance found" algorithm and another with "last
instance found" algorithm.

The output is written to a file called main.cov, and it is shown in the next
figure.

pathcover -- Path Coverage Utility. [Release 1 . 1 -- 6/91]
(c) Copyright 1991 by Software Research , Inc .

Selected PATH COVER Options:

[-c] Population Statistics YES
[-fl First Found YES
[-1] Last Found YES
[-fi] First Found (Iteration) NO
[-li] Last Found (Iteration) NO
[-fl] First Found (Length) NO
[-11] Last Found (Length) NO
[-fs] First Found (Segment) NO
[-ls] Last Found (Segment) NO

pathcover : POPULATION STATISTICS BY SEGMENT
Module: : "main • Option :: " -c "

Segment # of paths

1 155
2 154
3 77
4 154
5 140
6 14
7 14
8 14
9 14
10 14
11 14
12 14
13 14

14 28
15 14

37

CHAPTER 4: Utilities

38

16 14
17 154
18 132
19 llO
20 22
21 44
22 22
23 44
24 22
25 132
26 154
27 155

pathcove r : FIRST INSTANCE FOUND BY SEGMENT
Module : : • main" Option :: • -f "

Path#

1 1

2 3

3 5

4 8

5 15

6 22

7 29

8 36

9 43

10 50

Path

1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17

25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17

25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21 21
20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25

19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 7 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17

25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 8 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17

25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 9 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17

25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 10 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17

18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5

17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 11 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17

18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5

17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 12 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17

18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5

17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 13 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17

II

II

II

II

II
II

II
II

II

II

II
II

II
II

II
II

II

II

II

II

II

II

II

II
II

II

II

-
II

II

II

II

II

II

11 57

12 64

pathcover :

TCA T-PATH User's Guide

18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5

17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3)> 4 5 14 15 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }>

17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6

5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 3 <{ 3 }> 4 5 14 16 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }>

17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6

5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
LAST INSTANCE FOUND BY SEGMENT

Module :: "main " Option : : " -1 "

1

2

3

4

5

6

7

8

9

10

11

12

13

Path#

77

84

91

98

105

112

119

126

133

140

147

148

Path

1 2 3 <{ 3 }> 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
17 25 19 20 21 21 22 23 23 24 18 26 }> 27

1 2 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26 }> 27
1 2 4 5 7 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26)> 27
1 2 4 5 8 <{ 5 6 7 8 9 10 11 12 13 14 15 16)> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26)> 27
1 2 4 5 9 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26 }> 27
1 2 4 5 10 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4

16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
18 26 }> 27

1 2 4 5 11 <{ 5 6 7 8 9 10 11 12 13 14 15 16)> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26 }> 27
1 2 4 5 12 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26)> 27
1 2 4 5 13 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26 }> 27
1 2 4 5 14 15 <{ 5 6 7 8 9 10 11 12 13 14 15 16)> 17 26 <{ 2

3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23
24 18 26)> 27

1 2 4 5 14 16 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2
3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23

24 18 26 } > 27
1 2 4 17 18 19 20 21 <{ 19 20 21 21 22 23 23 24)> 25 <{ 18 24
23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9

8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 4 17 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23

23 22 21 21 20 19 25 }> 26 <(2 3 4 16 15 14 l J 12 11 10 9 8 7

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

39

CHAPTER 4: Utilities

14

15

16

17

18

19

150

151

152

153

154

155

1 2 4 17 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
23 23 22 21 21 20 1 9 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9

8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 4 17 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 4 17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
2 3 2 2 21 21 2 0 19 2 5 } > 2 6 < { 2 3 4 16 15 14 13 12 11 10 9 8 7

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
1 2 4 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4
16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24

18 26 }> 27
1 2 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19

20 21 21 22 23 23 24 18 26 }> 27
1 27

FIGURE 7 pathcover Reports

40

II
II

II

II

II
II

II

II

II
II

II
II
II
II

II
II

II

II

II
II

II

II
II

II
II

II

II

-
II
II

II

II

II

II

CHAPTER 5

Coverage Analyzer
This chapter covers the ctcover utility that generates Ct coverage report for a module. It
analyzes a *.pth and a *.trc file to produce a *.rpt report file. This is the command a user
will employ most often to check Ct coverage.

5.1 'ctcover' Syntax

Syntax:
ctcover name tracefile [-f shortname]

where,

name

tracefile

-f shortname

Produces:

name.seg

name.rpt

Examples:

The command:

is the name of the module to be analyzed.This name
can be of any length (but see below).

is the full trace file name to be analyzed.

is used to permit the module name to be of any
length, but the output file is named shortname.rpt any
way. You must make sure that shortname.pth exists
and contains the correct path information.

This option is primarily used for DOS, where filena
mes are limited to eight characters.

File with the extractions from the trace file for the
named module.

File containing the Ct coverage report for the name
module.

ctcover verylongmodulename trace.trc -f long

specifies that verylongmodulename is the name of the module to be
analyzed. The output of the above should be the file long.rpt.

Notes: The script DoRPT will run the command:
ctcove. <name> *.trc

41

CHAPTER 5: Coverage Analyzer

42

for all of the *.pth files that it finds. This will have the effect of producing
all of the *.rpt files possible within the current directory. However, this
script only works for modules that have the same name as the path file
name (i.e. does not use the -f option).

Sample Output:

Here are sample outputs from ctcover:

Example 1:

Ct Test Coverage Analyzer Version 1 . 8

(c) Copyright 1990 by Software Research , Inc.

Module "getfil " : 5 paths , 3 were hit in 227 invocations.

60.00% Ct coverage

Test descriptor : Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text

1 90 1 2

2 22 1 3 4 <{4 }> 5 6

3 115 1 3 4 <{4 }> 5 7

4 None 1 3 5 6

5 None 1 3 5 7

Example 2:

-Ct Test Coverage Analyzer Version 1 . 8
(c) Copyright 1990 by Software Research, Inc.

Module •putfld" : 6 paths , 6 were hit in 115 invocations.

100% Ct Coverage!

Test descriptor : Coverage report for module boxes . <lang>

HIT/NOT-HIT REPORT

P# Hits Path text

1 1 1 2 3

2 10 1 2 4 5

3 22 1 2 4 6

4 10 1 7 8 9

5 71 1 7 8 10

6 1 1 7 11

Example 3 :
Ct Test Coverage Analyzer Version 1.8

II

II
II

II

II

II

II
II

II

II

II

11
II
II
II

II

II

II TCAT-PATH User's Guide

(c) Copyright 1990 by Software Research, Inc.

II Module •putbox• : 192 paths , 7 were hit in 22 invocations.
3.65% Ct coverage

Test descriptor : Coverage report for module boxes . <lang>

II HIT/NOT-HIT REPORT

II
P# Hits Path text

1 None 1 2 3 6 7 9 17 <(17)> 18 19 20 21 22 23 <{22 23
24)> 25 \

II <{21 24 23 22 25)> 26
2 None 1 2 3 6 7 9 17 <(17)> 18 19 20 21 22 24 <{22 23
24)> 25 \

II
<{21 24 23 22 25)> 26

3 None 1 2 3 6 7917<{17)> 18 19 20 21 25 \
<(21 24 23 22 25)> 26

II ... (intervening paths del e ted for clarity)

159 None 1 11 13 17 <{17)> 18 19 20 21 25 <{21 24 23 22

II 25)> 26

160 None 1 11 13 17 <{17 }> 18 19 20 26

161 None 1 11 13 17 <(17)> 18 19 27

II
162 15 1 11 13 17 <{17)> 18 28

163 None 1 11 13 18 19 20 21 22 23 <{22 23 24 }> 25 \
<{21 24 23 22 25 }> 26

164 None 1 11 13 18 19 20 21 22 24 <{22 23 24 }> 25 \

II <{21 24 23 22 25 }> 26
165 None 1 11 13 18 19 20 21 25 <(21 24 23 22 25 }> 26
166 None 1 11 13 18 19 20 26

II 167 None 1 11 13 18 19 27

168 None 1 11 13 18 28
169 None 1 14 15 17 <(17 }> 18 19 20 21 22 23 <(22 23 24

II
}> 25 \

<(21 24 23 22 25 }> 26
170 None 1 14 15 17 <(17 }> 18 19 20 21 22 24 <{22 23 24
}> 25 \

II <(21 24 23 22 25 }> 26
171 None 1 14 15 17 <(17 }> 18 19 20 21 25 \

<(21 24 23 22 25 }> 26

II 172 None 1 14 15 17 <(17 }> 18 19 20 26
173 1 1 14 15 17 <{17 }> 18 19 27

174 None 1 14 15 17 <(17 }> 18 28

II ... (intervening paths deleted for clarity)

192 None 1 14 16 18 28

II

II 43

CHAPTER 5: Coverage Analyzer II

II

II

II

II

II

II
II

II

II
II
II
II
II

II
II

44 II

II
II

II

II

II
II

II

II

II

II
II

II

II
II
II

II

II

CHAPTER 6

TCAT-PATH Menus
You can access TCAT-PATH with menus; this chapter will explain how to do so. If you
would rather use command line invocation, you may skip this chapter and go on to Chap
ters 8 and 9 or the full TCAT-PATH example in Chapter 10.

6.1 TCAT-PATH ASCII MENUS

Menus help users in two ways: by providing a fixed structure for collect
ing test coverage information and by providing a convenient way to cus
tomize a sequence of operations.

45

CHAPTER 6: TCAT-PATH Menus

6.1.1 Invoking TCAT-PATH

Start up TCAT-PATH in interactive mode with the command:
tcatpath [-r file]

where,

file is the optional configuration file (re file) name. The
default name for the configuration file is tcatp.rc. If
you don't specify a configuration file, or if TCAT
PATH doesn't find the file tcatp.rc in the current direc
tory, then TCAT-P ATH issues a warning message and
continues processing, using default values.

Remember that the content of the TCAT-PATH configuration file, tcatp.rc,

II

II

II

II

II
always overrides the internally supplied (default) values of all parame- II
ters.

46

II

II

II

II
II

II

II
II

II
II

II

II

II

II

II

II

II

II
II

II

II
II

II

II
II

II

II

II

6.1.2

TCAT-PATH User's Guide

TCAT-PATH Menu Tree

The organization and structure of the menus for the interactive TCAT
PATH is shown in the diagram below:

TCAT - PATH :
I Selects ACTIONS or FILES or OPTIONS menus

Shows option settings
Shows curren~ execution statistics
Saves option settings
Exit from TCAT-PATH system
On-line help frames
!<system commands>

+----ACTIONS :
I
I
I

Selects basic TCAT-PATH operations
Shows option settings
Return to prior menu
On-line help frames
!<system commands>

+----OPTIONS:
I
I
I

Helps select all user-settable options
Shows option settings
Return to prior menu
On-line help frames
!<system commands>

+----FILES :
Shows all current options settings
Allows changing file settings
Return to prior menu
On-line help frames
!<system commands>

After TCAT-PATH starts, you will see the title information, version control
indica ti.on,

and the prompt
"TCAT-PATH:MAIN:"

To see the available menu options, type from any prompt within TCAT
PATH:

?

and then
[RETURN] .

47

CHAPTER 6: TCAT-PATH Menus

6.1.2.1

48

TCAT-PATH then displays the available options for that menu. This fea
ture works for all menus throughout TCAT-PATH.The current menu is
redrawn whenever you give an unrecognized command.

Issuing Commands

You can issue commands by typing the first few letters of each com
mand's name. The only requirement is that the letter sequence be unique
to that command. TCAT-PATH will inform you when a command you
issue matches two or more possible commands.

To set variables (see the options menu description, below) you must type
the entire variable name. This is done in order to be consistent with con
figuration file processing.

Displaying Current Parameter Settings

You can display the current settings (options and filenames) known to
TCAT-PATH at any time using the settings command, get on-line help
with the help command, and exit the current menu using exit. The config
uration file reading in the settings is automatically used. However, the
settings can be changed if required.

TCAT-PATH Menu 'Stack'

You can move from the MAIN menu to any other menu at will. TCAT
PATH remembers the sequence of your choice of menus in an internal
"stack". This means that when switching from one menu to another, you
can return to the immediately prior menu with the exit command. This
feature is provided to prevent you from entering conflicting or incorrect
data during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the MAIN menu to exit the system. That is, your moves
between the three subsidiary menus are "stacked" and must be
"unstacked" before returning to the MAIN menu.

If you press the DEL key, you return immediately to the MAIN menu.

II

II

II

II

II
II

II
II

II
II
II
II

II
.II
II
II

II

II
6.1.3

II
II

II

II
II

-
II

II
II

II

II

II
II

II

II

-

TCAT-PATH User's Guide

Main Menu

All commands may be abbreviated when no ambiguity exists, e.g.
"options" can be shortened to "o" because no other command in the
TCAT-PATH menu starts with "o".

When TCAT-PATH is activated the following menu options are displayed:
TCAT-PATH : MAIN :
Options :

save
stats

actions
files

options

settings
help [opt]

release

exit

Save the current settings for TCAT-PATH .
Show current usage values for TCAT-PATH .

Go to the ACTIONS menu .
Go to the FILES menu.
Go to the OPTIONS menu .

- - List the current settings for TCAT-PATH options.
-- Display HELP text for a command.

-- Show release and version numbers for this TCAT-
PATH copy.

- - Exit from TCAT-PATH to system

49

CHAPTER 6: TCAT-PATH Menus

6.1.4 Actions Menu

The Actions menu is displayed below:

50

TCAT-PATH : ACTIONS :
Options :

preprocess
instrument

apg
cycle

digpic
ctcover

files
options

settings
help [opt)

exit

-- Runs the prep rocessor command on the program .
Ins trume nt/generate digraph of program .
Run apg on * . dig file.
Compute cyclomatic number on * .dig file .
Run digpic on * . dig file.
Compute Ct path cover.
Go to the FILES menu .
Go to the options menu.
Di s play current runtime settings.
Di s play HELP text for command
Ex it current level

II

II

II

II

II

II

• -
II
II

II
II

II
II
II

II

II

II
6.1.5

II

II

II

-
II

II
II

II
II

II

II

II
II

II

II

II

TCAT-PATH User's Guide

Files Menu

The Files menu is displayed below:

TCAT-PATH:FILES :
Options:

prefix <name>
digraph <name>

path <name>
tracefile <name>

report <name>
basis <name >

actions
options

settings
h elp [opt]

exit

Base name of module being processed.
Name of digraph file (default ' prefix ' .dig).
Name of path file (default 'prefix '.pth) .
Name of trace file (default 'prefix' . trc) .
Name of report file (default 'prefix ' . rpt).

-- Name o f basis path file (default ' prefix ' . bas).

Go to the ACTIONS menu.
Go to the OPTIONS menu .

Display current runtime settings .
Display HELP text for command
Exit current level

51

CHAPTER 6: TCAT-PATH Menus

6.1.6 Options Menu

The Options menu is displayed below:

52

TCAT-PATH:OPTIONS :
Options:

maxnodes <#>
maxedges <#>

loopcount <#>

maxprint <#>
maxpath <#>

basis <#>
centerline <#>

space <#>
width <#>

maxcalls <#>
chnghelp <file>

actions
files

settings
help [opt]

exit

Maximum number of nodes digraph will process.
Maximum number of edges digraph will process.
Value of K to use in apg executions; default

K = 1 .
-- Maximum number of paths apg prints; default 300 .

Maximum number of paths apg calculates.
Basis path default number if non-zero .
Centerline offset for a digraph picture.

Spaces between nodes in digraph picture, default 1
Maximum width of the image produced; default= 80.

Maximum number of calls ctseg produces.
Specify a new on-line documentation <file>.
Go to the ACTIONS menu.
Go to the FILES menu .
Display current runtime settings.
Display HELP text for a command
Exit to the system

II

II

II

II

II

II
II

II

II
II
II

II

•
II
II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II
II

II

II

II

6.1.7

TCAT-PATH User's Guide

Saving Changed Option Settings

Before leaving TCAT-PATH, or before running a digraph analysis, instru
mentation, path generation, and/ or coverage analysis session, the user
will be prompted to save the current option settings (unless this has
already been done in the current execution of TCAT-PATH and the
options have not been changed since they were saved).

This part of an interactive session appears as follows (assuming you wish
to save all current options in the file example.re):

TCAT-PATH:

Do you want to save the current parameter settings
(y / n) :

y

Do you want to use the default filename (" tcatp . rc " }
(y / n}:

n
Specify filename :

example.re

Parameter settings saved in "example.re " .

Note that TCAT-PATH will normally prompt you about saving current
settings when you finally exit the system (via an exit command in the
TCAT-PATHMAIN Menu).

53

CHAPTER 6: TCAT-PATH Menus

6.1.8

54

Running System Commands

You may execute a command available to the underlying operating sys
tem by using the"!" symbol, as follows:

TCAT-PATH : !<COmmand>

Control is returned to TCAT-PATH after the command is executed.

This feature is useful for editing files and other activity within a TCAT
PATH session.

II

II

II

II

II

II

II

II

II
II

II

II

•
II

II

II

II

II
II
II

II

-
II
II
II
II

II
II
II
II
II
II

II
II

6.1.9

6.2

TCAT-PATH User's Guide

Settings Command Output

The current set of options values is available from ALL TCAT-PATH
menus, using the settings command.

An example of the output produced by the settings command is shown
below. The values shown are the actual default values assigned as if there
were NO configuration file present. This is also the set of values that will
be written during TCAT-PATH exit if you choose to save the values.

Current TCAT-PATH Options Settings Are:

Parameters:

maxnodes

maxedges

loopcount

maxprint

maxpath

basis

centerline
space

width

maxcalls

documentation

Files:

prefix

digraph
path
tracefile
report
basis_file

500

1000

= 1

300

4800

300

= 0

= 1
80

10000

/usr /t catpath/tcatpath.hlp

example

example . dig

example . pth
example . trc
example.rpt

config_file tcatp . rc

TCAT-PATH Configuration File

This section describes how to construct or edit TCAT-PATH configuration
files. A sample file is shown at the end of this chapter.

All the commands in the TCAT-PATH system can read a configuration file
(the default name is tcatp.rc) before starting processing.

This feature allows the user to set various run-time parameters automati
cally. Command-line parameters, however, override the configuration file
settings when command-line parameters are present.

The TCAT-PATH configuration file is a simple ASCII text file that can be
created with an editor.

Alternatively, you can create this file, and give it any name you like, by
using the save option from within an interactive invocation of TCAT
PATH.

55

CHAPTER 6: TCAT-PATH Menus

6.2.1 Configuration File Syntax

The following run-time parameters can be set from the configuration file.
These parameters are shown here in the same order as they are displayed
with a "settings" command within the interactive menus of TCAT-PATH.

<any comment>A line that begins with a# is treated as a comment.

maxnodes=<number>

The maximum number of nodes tp-i<lang> will pro
cess.Default is 500. An impractical limit is probably
2500.

maxedges=<number>

The maximum number of edges tp-i<lang> will
process. Default is 1000. An impractical limit is prob
ably 2500.

loopcount=<number>

The value of K to use in apg executions; default K = 1.
(At present, only K = 1 can be used.)

maxprint=<number>

The maximum number of paths for apg to print. De
fault is 300. A practical limit is probably 1000.

maxpath=<number>

The maximum number of paths for apg to calculate.
apg gives a message at the end of execution to show
the total number of paths it would have printed; or it
issues an error message when the "maxpath" param
eter is exceeded.The default value is 4800. A practical
limit is probably around 10,000.

maxcalls=<number>

hel p=<pathname>

The maximum number of calls to be processed by ct
seg, which is called by ctcover. The default is 10000.
This is probably a practical limit.

The fully specified path name for the file containing
the TCAT-PATH help frame information (interactive
operation only). The default location is:

/ bin / tcatpath / helpframes

This location is installation-dependent. If this filena-

II

II

II

II

II

II
II
II

II
II

II

II
II
II

II
me is not specified correctly then the TCAT-PATH on- II
line help frames will not work correctly.

s6 11

II
II
II
II
II
II

-
II
II
II
II
II
II
II
II

II
II

TCAT-PATH User's Guide

prefix=<name> The module or function name to be used as the base
name or filename prefix for all subsequent process
ing. 1his is referred to in the following option de
scriptions as "<*> ".

If no prefix is specified then TCAT-PATH will not be
able to process any files, generate any digraphs, or an
alyze path coverage. Accordingly, the default as
signed value for the prefix is example.

digraph=<name . d i g>

The name of the digraph file. If not specified, TCAT
p ATH assumes you mean <*>.dig. The default value
is example.dig

path=<name . pth>The name of the file of paths. If not specified, TCAT
PATH assumes you mean <*>.pth. The default value
is example.pth.

tracefile=<name . trc>

The name of the trace file (generated during your pro
gram execution). If not specified, TCAT-PATH as
sumes you mean <*>.trc. The default value is
example.trc.

report=<name.rpt>

The name into which to write the Ct coverage report.
The default name is example.rpt.

57

CHAPTER 6: TCAT-PATH Menus

6.2.2

6.2.3

58

Configuration File Processing

Lines in the configuration file can contain any of these commands in any
order. Comment lines must have a "#" as the first character.

All white space (i.e. tabs and blanks) in the configuration file is ignored.

All arguments (when appropriate) are treated as character string tokens
(i.e. no internal white space).

The latest-occurring command in case there are duplicate commands pre
vails.(this feature may be useful when handling several configuration
files that differ only slightly).

Example TCAT-PATH Configuration File

Below is an example of a typical TCAT-PATH configuration file.
Sample options setting commands (configuration file)

width=20

=example

basis_file = example.basis

Redefine the maxima for "apg" operation . ..

maxprint= 1000

maxedges=l0000

Value to keep updated archive records (Cl analysis) . ..

report=my . archive

End of example configuration file

-
II
II

II

•
II
II
II

II
II

II

I

•
II

II

II

II

II

II
II

II

II
II

' II

II
II
II
II

II

II
II

II

II

CHAPTER 7

Source Viewing Utility
This utility is only available on X Window System environments.There is a more complete
explanation of source viewing utilities Xdigraph and Xcalltree in STW/Coverage/Book I.

7.1

7.2

7.3

Introduction

Source viewing associates a segment or node with its corresponding
source code. By simply clicking the mouse, the user is able to see source
relating to a node or segment.

For the purpose of source viewing, nodes are indicated by circles. A seg
ment (or edge) is a directed line connecting two nodes (or circles).

Invocation Syntax

Source viewing is invoked with the following command:
Xdigraph dig-file - Sref-list ing [- SC number]

where,

dig-fi 1 e The dig-file is the file that specifies the set of segments
in "tail-node head-node segment-name" format. This
is what is normally produced by tp-ic and named
module-name.dig. This is the source file that the user
can view.

-S ref-listing The Reference Listing file (that isfilename.i.A) is pro
duced by the instrumentor.

[-SC number] This switch is optional. number specifies the number
of lines of source code above and below the clicked
segment or node that are to be displayed. The default
value is 10.

Example Invocation

This section refers to the full TCAT-PATH example chapter (Chapter 10).
For TCAT-PATH, the digraph files will be one of the following modules:
main, proc_input, or chk_chr.

The reference li5ting is always example.i.A, which is the "C" program.

59

CHAPTER 7: Source Viewing Utility

FIGURE 8

60

In the following two pages is an example of source viewing, using main
module. The first demonstrates the mouse's pointer (indicated by an
arrow in the display) selecting a segment. For edges, the segment number
must be clicked on. For nodes, the pointer must click somewhere inside
the circle.

The second picture demonstrates the result. For this, hold down the
mouse button, and the source code will be displayed for as long as the
button is held down.

NOTE: If the node/segment numbers are not visible, it is probably
because the window size is too small. In this case, increase its size.

The main module on the following pages is invoked with the following:
Xdigraph main.dig -s example.i . A

To source view with graphical user interfaces, see Chapter 11. Below is an
example of the mouse pointer clicking on Segment 2.

[ile Qption~ Zoo,i !.n ZOOIII ~t ~1@'1,,1 Source [htistics E_rint !!viot-ation f!elp

l

Source Viewing (Part 1 of 2)

II

II
II

II

II
II
II
II

II
II
II
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II FIGURE 9

II

II

II

TCAT-PATH User's Guide

Below is an example of the source code displayed as the mouse button is
held down.

exa111 le.main . 1q - exafll le.111cun l

[Ile Qpt1ons Zoo~ !_n ZoOfll Oy_t ~iew Source §_tat1st1cs E_rint. 8_nnotat1on

r

};

int char _index~
fllain(argc,argv)
int argc;
char *argv[] ;
{

int 1 , choice, c, answer:
char str[79):
int ask, repeat;

I** Module exa111p le.Min **I

I** DI GRAPH NODE 1 **I int proc_inpyt O;
I** Se9f')ent 1 <> **I

C ;; 3;
r~eat :::: 1;

CJi1JIM;i·lUIIJlllll#4 t-.ffMl42™
I** Segr,ient 2 <start_whi le) ••/

printH "\n\n\n*) ; I•• DIGRAPH NODE 3 ••I for{ 1 = O; i < 13; i++)
I** Ses,11en t 3 <start_for> ••I

printf< "%s", rienu[il);
I** Segment 4 <end_for) ••I

Source Viewing (Part 2 of 2)

t!_elp

l

NOTE: For further information on S1W's source-viewing graphics capa
bilities, please refer to the chapters on Xdigraph and Xcalltree in Cover
age Book I.

61

CHAPTER 7: Source Viewing Utility II

II

II

II

II

II

II

II

II

II

II
II

II

II

II
II

c, II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 8

TCAT-PATH Collltnand
Sutnlllary for MS-DOS, OS/2

1his chapter gives a short command summary for TCAT-PATH for "C" running under
MS-DOS or OS/2.

8.1

8.1.1

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a "C" preproces
sor before putting it to tp-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime module. Depend
ing on the size of your program and the development method used, the
following subsections describe how it is done.

Stand-Alone Files

Here are the commands you would use with the Microsoft C 6.0 compiler
on MS-DOS or OS/2:
Preprocess: cl /P <filename>.c / * to produce <filename>.i * /
Instrument : tp-ic -m6 <filename>.i / * to produce <filename> . ic * /
Compile: cl /c /Tc <filename> . ic/* to produce <filename> . obj * /

Link: cl <filename> . obj ctrunls . obj/* to produce <filename> . -
exe * /

Execute : (Run your program as usual . Press RETURN

twice to accept the default values for

trace file message and name.)

Note that -m6 is the tp-ic switch for Microsoft C 6.0 compiler. rrc is a
Microsoft C 6.0 option that allows for compilation of files with extensions
other than .c.

Also, note that ctrunls.obj is the runtime object module that comes with
TCAT-PATH. There are various runtime object files, depending on com
piler, runtime level, and memory model used. For more runtime descrip
tions on MS-DOS runtimes, tum to Section 3.1.

63

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, OS/2

8.1.2

8.1.3

8.1.4

8.1.5

64

Systems with 'make' Files

1. In systems that have 'make' files where .obj files are explicitly listed
as targets, add the following built-in rule before other targets:

Built in rule for TCAT instrumentation ...

.c.obj:
cl $(CFLAGS) /P $* . c cl . $(CFLAGS) /P $* . c

tp-ic -m6 $*.i

ren $*.i temp . c
$*.ic

cl $(CFLAGS) /c temp.c

ren temp.o $* . obj

sample.obj: sample.c

or tp-ic -m6 $*.i

cl $(CFLAGS) /c /Tc

2. Add .cM ctrun<level><model>. obj to the list of linked object
modules. You must choose the version of runtime to use, based on the
runtime level and the memory model (small, compact, medium, large
or huge).

3. Run the 'make' file to produce the instrumented program.

'make' With 'cl', 'msc'

This section deals with situations that involve 'make' files for commonly
available PC-based compilers, such as Microsoft C, where compile state
ments are explicitly mentioned.

1. Replace 'cl' (or 'msc') with the following lines:
cl $(CFLAGS) /P <filename> . c
tp-ic -m6 <filename> . i
ren <filename> .i temp . c
cl $(CFLAGS) / c temp.c
ren temp.o <filename> . o

2. Add ctrun<level><model>. obj to the list of linked object mod
ules.

3. Run the make file to produce the instrumented program.

Systems without 'make' Files

Go to the directories with the source code and follow the method for
stand alone files with each source code file (preprocess, instrument, com
pile). Finally, link all the object files with the appropriate runtime object
file.

Program Execution

Run your program as usual.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

TCAT-PATH User's Guide

NOTE: With the default runtimes (runtime level 1), the instrumented pro
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

65

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS, OS/2

66

II

II

II

II

II

II

II

II

II

II

II

II
-~

II

•
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 9

TCAT-PATH Com.m.and
Sum.m.ary-UNIX

This chapter summarizes commands you use with TCAT-PATH for "C" in UNIX and
UNIX-like environments.

9.1

9.1.1

Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a "C" preproces
sor before putting it to the tp-ic instrumentor. The instrumented program
is then compiled and linked with the appropriate runtime modules.

Depending on the size of your program and the development method
that you use, the following subsections describe how it is done.

Stand-Alone Files

The commands used are:
Preproce ss : cc -P <filename>.c / * to produce <filename> . i * /
Instrument:

Compile :

Link :

tp-ic <filename>.i / * to produce <filename> . i . c * /
cc -c <filename> . i . c / * to produce <filename> . i . o */
cc <filename> . i . o ctrunl . o / * to produce a . out * /

Execute : (Run your program as usual. Press RETURN twice to accept the

default values fortrace file message and name .)

1. If you have 'make' files where * .o files are created with built-in rules,
add the following built-in rule before other targets:

2.

Built in rule for TCAT-PATH instrumentation . . .
. c . o:

cc $(CFLAGS) -P $* . c

tp-ic $* .i
cc $(CFLAGS) -c $*. i.c

mv $* .i.o $* .o

sample . a : sample . c

The above will depend on which one invokes built
in rules .

Add ctrun<level>.o to the list of linked object modules.

67

CHAPTER 9: TCAT-PATH Command Summary-UNIX

9.1.2

9.1.3

9.2

8b

3. Then run the 'make' file to produce the instrumented version of the
software.

'make' files with cc called in directives

When cc is explicitly called in directives, then add tp- ic commands to
the cc commands within the 'make' file.

1. Replace cc with the following lines:
cc $(CFLAGS) -P <filename>.C

tp-ic <filename>.i

cc $(CFLAGS) -c <filename>.i.c

mv <filename>.i.o <filename>.o

2. Add ctrun<level>.o to the list of linked object modules.

3. Finally, run the make file to produce the instrumented version of the
software.

A System Which Does Not Use 'make' Files

(Or which will not allow 'make' file changes)

Go to the directories that contain the source code.

There, type the following commands:
cc -P *.c

tp-ic *.i

cc -c *.i.c

cc *.i.o ctrun<?>.o

to create the instrumented source, objects and executable.

Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

II

II

II

II

II

II

II

II

II

II

II

II

II

•
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 10

Full TCAT-PATH Exantple
This chapter describes a full TCAT-PATH example that includes a sample "C" program,
instrumented program, referenced listing, digraph files for each module, cyclomatic num
ber calculations, digraph pictures, and coverage reports.

10.1 Introduction

It is assumed that TCAT-PATH will be used on syntactically correct pro
grams, that is programs that will compile cleanly before instrumentation.
Of course, TCAT-PATH will be used to verify that each program segment
or logical branch executes correctly under typical operating conditions.

Figure 10 shows a sample "C" program with three function modules.

This example program will be used throughout the chapter to describe
each component of TCAT-PATH to better aid the user.
/ * EXAMPLE.C --example file for use with TCAT , STCAT, TCAT-PATH . */

#include • stdio . h "

#include <ctype . h>

#define INPUT ERROR -1

#define INPUTDONE 0

#define MENU_ CHOICES 13

#define STD_ LEN 79

#define TRUE 1

#define FALSE 0

#define BOOL int

#define OK TRUE

#define NOT_ OK FALSE

char menu[MENU_CHOICES) [STD_ LEN) = {
" SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n") ,

What type of food would you like ") ,

" \n "'
1 American sos \n ") '

2 Chinese - Human Style \n ") '

3 Chinese - Seafood Oriented \n ") '

4 Chinese - Conventional Style \n ") '

5 Danish \n")'
6 French \n") '

69

CHAPTER 10: Full TCAT-PATH Example

} ;

7

8

"\n\n"

int char_ index ;

main(argc , argv)

Italian

Japanese
\n") '

\n") '

/ * simple program to pick a restaurant * /

II

II

II
int argc ;

11
_

char *argv[J ;

70

int i, choice , c , answer;

char str[STD_ LEN) ;

BOOL ask , repeat ;

int proc_input();

C = 3 ;

repeat= TRUE ;

while (repeat) {

printf(" \n\n\n ") ;

for(i = O; i < MENU_ CHOICES ; i++)

printf("%s", menu[i));

gets(str) ;

printf("\n ") ;

while(choice = proc_ input(str))

switch(choice) {

case 1 :

printf(" \tFog City Diner 1300 Battery 982-2000 \n ") ;

break;
case 2 :

printf(" \tHunan Village Rest 839 Kearney 956-7868 \n ") ;

break;
case 3 :
printf("\tOcean Restaurant 726 Clement 221-3351 \n ") ;

break ;

case 4:
printf(" \tYet Wah 1829 Clement 387-8056 \n") ;

break;

case 5 :
printf(" \tEiners Danish Rest 1901 Clement 386-9860 \n ") ;

break;
case 6 :

printf(" \tChateau Suzanne 1449 Lombard 771-9326 \n ") ;

break ;
case 7:
printf(" \tGrifone Ristorante 1609 Powell 397 - 8458 \n ") ;

break ;
case 8 :

printf('\tFlints Barbecue 4450 Shattuck, Oakland \n ") ;

break ;

default :

II

II

II

II

II

II

II

II

Iii

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

TCAT-PATH User's Guide

if(choice ! = INPUTERROR)

printf("\t>>> %d : not a valid choice . \n ", choice);

break ;

for(ask = TRUE ; ask ;) {

printf("\n\tDo you want to run it again? ") ;

while((answer = getchar()) != ' \\n') {
switch(answer) {

case ' Y ':

case ' y 1
:

ask= FALSE ;

char_index O;
break;

case ' N':

case 'n':

ask= FALSE;

repeat= FALSE ;

break ;

default :

break ;
)))))

int proc_input(in_s tr)

char * in_str ;

int ternpresult = O;

char bad_s tr[80) , *bad_input ;

BOOL got_first = FALSE ;
bad_input = bad_str ;

while(isspace(in_ str[char_index)))
char_index++ ;

for(; char_ index <= strlen(in_str); char_index++) {
switch(in_str[char_ index])
case '0' :

case ' 1 ' :

case ' 2 ':

case I 3 I :

case ' 4' :

case ' 5 ':

case '6' :

case I 7 I:

case ' 8' :
case ' 9' :

/ * process choice * /

ternpresult = ternpresult * 10 + (in_s tr[char_index] - ' 0 ') ;

got_first = TRU£:
break ;

71

CHAPTER 10: Full TCAT-PATH Example

FIGURE 10

72

default:

if(chk_char(in_str(char_index]))

return(tempresult);

else {
if(char_ index > 0 && got_ first)

char_index-- ;

while(char_index <= strlen(in_str))

if(chk_char(in_str [char_index]))

break;

else
*bad_input++

char_index++;

*bad_input = '\\0 ';

in_str[char_index];

printf("\t>>> bad input: %s\n" , bad_ str);

char_index++;

return(INPUTERROR) ;

} }

return(INPUTDONE) ;

BOOL chk_char(ch)

char ch;

if(isspace(ch) 11 ch

return(OK);

else
return(NOT_OK);

Sample "C" Program

' \0 ')

II

II

II

II

II
II

II

II

II

•
II

II

•
II
II
II

II

II

II
10.2

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

TCAT-PATH User's Guide

Preprocess, Instrument, Compile and Link

The first step in TCAT-PATH is to prepare your "C" program to provide
segment coverage data. You start by:

1. Pre-processing the program. Most "C" compilers have this facility.

2. Instrumenting it to insert markers at every segment position.

The program on the next pages shows, in bold, the effects of TCAT-PATH
instrumentation on your "C" program:

Cl instrumentation by TCAT-PATH!C instrumenter:

Program tp-ic , Release 8

Instrumented on Wed Jan 30 14 : 21 : 08 1991

SR Copy Identification No. 0.

-- (c) Copyright 1990 by Software Research , Inc. All Rights
Reserved .

This program was instrumented by SR proprietary software ,

for use with the SR proprietary TCAT runtime package.

Use of this program is limited by associated software
license agreements.

*/

extern SegHit();

extern Strace();

extern Ftrace() ;
extern EntrMod();

extern Ex tMod() ;

\

char menu [13] [7 9] = {

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \\n ",

What type of food would you like?\n ",

" \n "'
1 American 50s \n " '
2 Chinese Hunan Style \n"'
3 Chinese Seafood Oriented \n " '
4 Chinese Conventional Style \n "'
5 Danish \n " '

b rre 11ch \n "'

7 Italian \n •'

73

CHAPTER 1 O: Full TCA T-PATH Example

74

8 Japanese \ \n " '

"\n\n "

} ;

int char_ index ;

main(argc , argv)

int argc;

char *argv [] ;

int i , choice, c , answer;

char str[79];

int ask , repeat ;
int proc_ input() ;

\Strace(" IC ", 0x7504,0 , 0);

\EntrMod(27 , "main ", -l) ;

SegHit(l) ;

C = 3;

repeat= l;
while(repeat) { SegHit(2) ;

printf("\n\n\n ") ; {
for(i = 0; i < 13 ; i++) SegHit(3) ;

printf(" %s " , menu[i]);}

SegHit(4) ; };

gets(str);

printf(" \n ") ;

while(choice = proc_input(str)) { SegHit(5);

switch(choice)

cas e l : SegHit(6) ;
printf(" \tFog City Din1300 Battery 982-2000 \n ") ;

break ;

7868 \n ") ;

case 2 : SegHit(7) ;
printf(" \tHunan Village Rest 839 Kearney 956-

break ;
case 3: SegHit(8);

printf(" \tOcean Rest 726 Clement 221-3351 \n ") ;

break ;
case 4: \SegHit(9) ; \

printf(" \tYet Wah 1829 Clement 387-8056 \n ") ;

break;
case 5 : \SegHit(l0) ;

II

II

II

II

II

II

II

II

II

ll
II
II
II
II
II
II

II

II
II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

TCAT-PATH User's Guide

printf("\tEiners Danish Restaurant 1901 Clement
386-9860 \n");

choice);

break;

case 6: SegHit(ll) ;

printf("\tChateau Suz 1449 Lombard 771-9326\n ");

break ;

case 7 : SegHit(12);

printf("\tGrifone Rist1609 Powell397-8458 \n ");

break;

case 8: SegHit(13);

printf("\tFlints Barbq 4450 Shattuck Oaklan \n ");

break ;

default: \ SegHit(14) ;

if(choice != -1) { SegHit(lS) ;

printf(" \t>>> Id: not a valid choice.\n " ,

else SegHit(16) ;

break;

} } } } SegHi t (1 7) ; } ;

for(ask = l ; ask;) { SegHit(18);
{

printf("\n\tDo you want to run it again?");

{while((answer = getchar()) != ' \n') { SegHit(19);

{\ switch(answer)

case 'Y': SegHit(20);

case ' y ': SegHit(21);

ask= 0 ;
char_index = 0 ;

break ;

case 'N': \SegHit(22) ; \

case ' n': \SegHit(23) ; \
ask= 0;
repeat= 0 ;
break ;

default : \SegHit(24) ; \
break ;

} \}\

} \} SegHit(25) ; } ; \

\} SegHit(26); } ; \

\} SegHit(27) ; } ; \

\ExtMod("main"); \

\Ftrace(0) ; \

75

CHAPTER 10: Full TCAT-PATH Example

76

int proc_input(in_str)

char * in_ str ;

int tempresult = 0 ;
char bad_ str[80] , *bad_ input ;

int got_firs t = 0 ;

\EntrMod(24 ," proc_ input ", -l) ; \

\SegHit(l) ; \

bad_input = bad_ str;

\{\ while(isspace(in_s tr[char_ index))) \{ SegHit(2) ; \

char_index++ ; \) SegHit(3); } ; \

\ { \ for (
Hit (4); \

{

char_index <= strlen(in_str) ; char_index++) \{ Seg-

\{\ switch(in_ str[char_index))

{

- ' 0') ;

Hit (20) ; \

Hit(21) ; \

case I O I : \ SegHit(S) ; \

case I 1 I : \SegHit(6) ; \

case ' 2 ' : \ SegHit(7); \

case I 3 I : \SegHit(8); \

case ' 4': \ SegHit(9) ; \

case ' 5': \SegHit(l0); \

case I 6 I: \ SegHit (11) ; \

case ' 7 ': \SegHit(l2) ; \

case ' 8 ' : \SegHit(13) ; \

case I 9 I: \ SegHit(14); \
tempresult = tempresult * 10 + (in_str[char_ index]

got_first = 1 ;

break ;

default : \SegHit(lS); \
if(chk_ char(in_str[char_index))) \{ SegHit(l6) ; \

{ \{Ex tMod('proc_input ");\
return(tempresult); \)\

\}\

else\{ SegHit(l7) ; \
{

if(char_index > 0 && got_ first) \{ SegHit(lB);\

char_ index-- ; \) else SegHit(l9) ; \

\{\ while(char_index <= strlen(in_str)) \{ Seg-

if(chk_ char(in_str[char_ index))) \{ Seg-

break ; \}\

II

II

II
II

II

II

II

II

II

-
II

II

II
II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II
FIGURE 11

II
II
II

II

II

TCAT-PATH User's Guide

else\{ SegHit(22);\

*bad_ input++ = in_str[char_index] ; \}\

c har_ index++ ;

\} SegHit(23) ; } ; \

*bad_input = ' \0 ';

printf(" \\t>>> bad input : %s\\n" , bad_str) ;

char_index++;

\ { Ex tMod ("proc_input") ; \

return(-1) ; \}\

\} \

\}\

} \} SegHit(24) ; } ; \

\{ ExtMod('proc_input") ; \

return(0); \}\

\ExtMod (' proc_input "); \

int chk_ char(ch)

char c h ;

\Ent rMod (3 ,"chk_ char ", -1) ; \

\ SegHi t (l) ; \

if (isspace (ch) I I ch
char ");\

return(l); \} }\

' \0 ') \{ SegHit(2) ; { ExtMod("chk_-

else\{ SegHit(3) ; { Ex tMod('chk_char ") ; \
return(0) ; \} }\

\ExtMod('chk_char') ; \

Instrumented Program Fragment

77

CHAPTER 10: Full TCAT-PATH Example

10.3

78

Reference Listing

The Reference Listing file (that is filename.i.A or filename.ia for DOS) is pro
duced by the instrumentor and is used for manual cross-referencing dur
ing a series of tests. The Reference Listing is a version of your "C"
program with segments (or edges) and nodes marked.

You will use this report by gathering the "Not Hit" paths from report files,
and then looking up the related code in the Reference Listing. After
reviewing the exercised and not-exercised parts of the program, you can
design subsequent test cases to exercise more paths.

Extensive segment, node and module notation have also been embedded
and the segment and node sequence numbers are listed along the leftmost
column.

The header identifies the file as a Reference Listing and includes the
Release number plus a copyright notice.
The code that tp-ic adds appears in bold in the following program .

-- TCAT-PATH/C, Release 8

(c) Copyright 1990 by Software Research , Inc . ALL RIGHTS
RESERVED .

\

SEGMENT REFERENCE LISTING

Instrumentation date: Wed Jan 30 14 : 21 : 08 1991

Separate modules and segment definitions for each module are
indicated in this commented version of the supplied source file.

char menu[13) [79) = {

) ;

"SOFTWARE RESEARCH ' S RESTAURANT GUIDE \n ",
What type of food would you like?\n " ,

" \n ",

1 American
2 Chinese

3 Chinese

4 Chinese
5 Danish
6 French
7 Italian

8 Japanese

" \n\n "

50s \n " ,
Hunan Style \n ",
Seafood Oriented \n " ,

- Conventional Style \n ",
\n ",

\n " '

\n " '

\n " '

II

II

II

II

II

II

II

II
II

II

II
II

II
II
II

I
II

II

II
II

II

II

II

II

II
II

II

II
II
II
II

-
II

II

TCAT-PATH User's Guide

int char_index;

main(argc,argv)

int argc;

char*argv[] ;

int i , choice, c , answer;
char str[79] ;

int ask , repeat;

\/ ** Module main ** \

\/ * DIGRAPH NODE 1 * \

int proc_ input() ;

\/ ** Segment 1 <> ** \

C = 3 ;

repeat= l ;

\/ * DIGRAPH NODE 2 * \ while(repeat)

\/ ** Segment 2 <start while> ** \

printf("\n\n\n ");

\/ * DIGRAPH NODE 3 * \ for(i = 0 ; i < 13 ; i++)

\/ ** Segment 3 <start for> ** \

printf("%s" , menu[i]) ;

\/ ** Segment 4 <end for> ** \

gets (str) ;

printf ("\n") ;
\/ * DIGRAPH NODE 4 * \ while(choice
\/ ** Segment 5 <Start while> ** \
\/ * DIGRAPH NODE 5 * \ switch(cho ice)

case l :

\/ ** Segment 6 <case alt> ** \

proc_ input (str))

printf(" \tFog City 1300 Battery 982-2000 \n ") ;

break ;

case 2:

\/ ** Segment 7 <case alt>* * \

printf(" \tHunan Rest 839 Kearney 956-7868 \n ");
break ;

case 3 :
\ ** Segment 8 <case alt> ** \

printf("\tOcean Rest 726 Clement 221-3351 \n ") ;
break;

case 4 :
\ ** Segment 9 <case alt> ** \

printf(" \tYet Wah 1829 Clement 387-8056 \n ") ;
break ;

case 5 :

\/ ** Segment 10 <case alt> ** \

printf(" \tEiners Dan Rest 1901 Clt 386-9860

\n ") ;

79

CHAPTER 10: Full TCAT-PATH Example

80

break ;

case 6 :

\/ ** Segment 11 <case alt> ** \

printf(• \tChateau Suz1449 Lomb 771-9326 \n ") ;

break ;

case 7:

\/ ** Segment 12 <case alt> ** \
printf(" \tGrif Rist 1609 Powell397-8458 \n ") ;

break ;

case 8 :

\/ ** Segment 13 <case alt> ** \

printf(" \tFlints Barbq 4450 Shattuck Oak \n ") ;

break ;

default :

\/ ** Segment 14 <case alt> ** \

\/ * DIGRAPH NODE 6 * \ if(choice != -1)

\/ ** Segment 15 <if> ** \
printf(" \t>>> Id : not a valid choice . \n ",

choice) ;
\ ** Segment 16 <implied els e> ** \

break ;

/ ** Segment 17 <end while> ** \

/ * DIGRAPH NODE 7 * \ for(ask = l ; ask ;) {

/ ** Segment 18 <start for> ** \

printf(" \n\tDo you want to run it again? ") ;

/ * DIGRAPH NODE 8 * / while((answer = getchar()) != ' \n ') {

/ ** Segment 19 <start while> ** \

/ * DIGRAPH NODE 9 * \ switch(answer)
case 1 Y 1

:

/ ** Segment 20 <case alt> ** \
/ * DIGRAPH NODE 10 * \ case ' y' :

/ ** Segment 21 <case alt> ** \

ask= 0 ;
char_ index

break ;
case ' N ':

/ ** Segment 22 <case alt> ** \
/ * DIGRAPH NODE 11 * \ case ' n ':

/ ** Segment 23 <case alt> ** \

ask= 0 ;
repeat

break ;
default:

/ ** Segment 24 <case alt> ** \
break;

} } } } }

/ ** Segment 25 <end while> ** \

O;

O;

II

II

II

II

II

II
II

II

II
II

II

II
II
II

II

•
II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

TCAT-PATH User's Guide

/ ** Segment 26 <end for> ** \

/ ** Segment 27 <end while>**\

/ * DIGRAPH NODE 12 * \ int proc_input(in_str)

char * in_s tr;

int tempresult = 0 ;

char bad_str[B0], *bad_input;

/ ** Module proc_input ** \

/ * DIGRAPH NODE 1 * / int got_first
/ ** Segment 1 <> ** \/

bad_input = bad_str;

O;

/ * DIGRAPH NODE 2 * / while(isspace(in_str[char_index]))

/ ** Segment 2 <start while>**/

char_index++;

/ ** Segment 3 <end while > ** /

/ * DIGRAPH NODE 3 * / for(; char_ index <= strlen(in_str); char_in
dex++) {

/ ** Segment 4 <Start for> ** /

/ * DIGRAPH NODE 4 * / switch(in_str[char_index])

case ' 0 1
:

/ ** Segment 5 <case alt>**/

/ * DIGRAPH NODE 5 * / case ' l ':

/ ** Segment 6 <case alt>**/
/ * DIGRAPH NODE 6 * / case ' 2 ':
/ ** Segment 7 <case alt>**/
/ * DIGRAPH NODE 7 * / case '3':

/ ** Segment 8 <case alt>**/

/ * DIGRAPH NODE 8 * / case ' 4 ':

/ ** Segment 9 <case alt>**/
/ * DIGRAPH NODE 9 * / case '5 ':

/ ** Segment 10 <case alt>**/
/ * DIGRAPH NODE 10 * / case ' 6':
/ ** Segment 11 <case alt>**/
/ * DIGRAPH NODE 11 * / case ' 7 ':

/** Segment 12 <case alt>***/
/ * DIGRAPH NODE 12 * / case '8':

/ ** Segment 13 <case alt>**/

/ * DIGRAPH NODE 13 * \/ case '9':

/ ** Segment 14 <case alt>**/

tempresult = tempresult * 10 + (in_str[char_in
dex] - ' 0 ') ;

got_first = 1 ;

break;

cle fault :

/ ** Segment 15 <case alt>**/

81

CHAPTER 10: Full TCAT-PATH Example

FIGURE 12

82

/ * DIGRAPH NODE 14 * / if(chk_char(in_str[char_index)))

/ ** Segment 16 <if> ** /
return(tempresult);

else {

/ ** Segment 17 <else> ** /
/ * DIGRAPH NODE 15 * / if(char_ index > 0 && got_first)

/ ** Segment 18 <if> ** /
char_index--;

/ ** Segment 19 <implied else>**/
/ * DIGRAPH NODE 16 * / while(char_index <= strlen(in_str))
/ ** Segment 20 <start while>**/
/ * DIGRAPH NODE 17 */ if(chk_char(in_s tr[char_ index)))
/ ** Segment 21 <if> ** /\

/ ** Segment 22 <else> ** /

break ;

else

*bad_ input++
char_index++;

/ ** Segment 23 <end while>**/
*bad_input = ' \0' ;

in_str[char_index);

print f (" \ t>>> bad input: %s\n", bad_str) ;
char_ index++;
return (-1) ;

} }

/ ** Segment 24 <end for> ** /
return(0) ;

/ * DIGRAPH NODE 18 * / }
int chk_char(ch)

char ch;
/ ** Module chk_char ** /

/* DIGRAPH NODE 1 * /
/ ** Segment 1 <> ** /
/ * DIGRAPH NODE 2 */

if(isspace(ch) 11 ch

/ ** Segment 2 <if> ** /
return(l) ;

else
/ ** Segment 3 <else> ** /

return(0) ;
/ * DIGRAPH NODE 3 * /

' \0 ')

\--
TCAT-PATH/C , Release 8
END OF TCAT-PATH/C SEGMENT REFERENCE LISTING

Reference Listing

II

II
II

II

-
II

II
II

II

II

II

II
II
II
II
II

II

II

II
10.4

II
II

II

II

II

II

II

II

II

-
II

II

II

II

11·

TCAT-PATH User's Guide

Instrumentation Statistics

The instrumentor also produces program statistics. They are organized
module-by-module.

-- TCAT-PATH/C , Release 8 .

(c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED .

INSTRUMENTATION STATISTICS

Instrumentation date : Wed Jan 2 15 : 23:28 1991

MODULE ' main' :

statements= 42

compound statemencs 7

branching nodes= 12

segments instrumented= 27

conditional statements (if , switc h)

if statement= 1

else statement added 1

switch statements= 2
switch statement cases= 14
default statement added= O

iterative statements (for, while , do)
for statements= 2
while statements 3

do statements= 0

exit statement= 0

return statement 0

MODULE ' proc_input ':

state ments= 22

compound statements 6

branching nodes= 18

segments instrumented= 24

3

conditional statements (if , switch) 4
if statements= 3

el ve statement added

switch statement= 1
1

5

83

CHAPTER 10: Full TCAT-PATH Example

FIGURE 13

84

switch statement cases= 11

default statement added= 0

iterative statements (for, while , do)

for statement= 1
while statements= 2

do statements= 0

exit statement= 0

return statements= 3

MODULE ' chk_ char ':
statements= 2
compound statement 1

branching nodes= 3
segments instrumented= 3

conditional statement (if, switch)

if statement= 1
else statement added 0

switch statement= 0
switch statement case 0

default statement added 0

iterative statements (for , while , do)

for statements= 0

while statements 0

do statements= 0

exit statement= 0
return statements= 2

TCAT-PATH/C, Release 8.

-- END OF TCAT-PATH/C INSTRUMENTATION STATISTICS

Instrumentation Statistics

11·
3 II

II
II

II
II

1 II
II

0 II
II
II

II
II
II

II

•
II

II TCAT-PATH User's Guide

II
10.5 Path Generation

The next step is to generate a complete set of paths for all modules of
interests. apg processes a digraph file (*.dig file) into a path file (*.pth file).

II This path information is needed for a generating coverage report, which
will be discussed in the next section.

11- The example program has three modules, and thus has three digraph files
resulting from the instrumentation. The three digraph files are shown in
the following figure:

II
digraph for ' main . dig'

1 2 1

2 3 2

II
3 3 3

3 4 4

4 5 5

5 4 6

II 5 4 7

5 4 8

5 4 9

II 5 4 10

5 4 11

5 4 12

II
5 4 13

5 6 14

6 4 15

II
6 4 16

4 7 17

7 8 18

8 9 19

II 9 10 20

10 8 21

9 8 21

II 9 11 22

11 8 23

9 8 23

II
9 8 24

8 7 25

7 2 26

2 12 27

II FIGURE 14 Digraph file for 'main' module"
digraph for ' proc_ input . dig '

II
1 2 1

2 2 2

2 3 3

3 4 4

II 4 5 s
5 6 6

II 85

CHAPTER 10: Full TCAT-PATH Example

FIGURE 15

FIGURE 16

86

4 6 6

6 7 7

4 7 7

7 8 8
4 8 8

8 9 9
4 9 9

9 10 10
4 10 10
10 11 11

4 11 11

11 12 12
4 12 12

12 13 13

4 13 13

13 3 14

4 3 14

4 14 15
14 18 16

14 15 17

15 16 18
15 16 19

16 17 20
17 16 21
17 16 22

16 18 23

3 18 24

Digraph file for 'proc_input' module
digraph for ' chk_char . dig '

1 2 1

2 3 2

2 3 3

Digraph file for 'chk_char' module

The user can also at this time run cyclo and digpic on the digraph files
and study the structure and properties of the modules in question. If any
of the modules appears to be too "complex", the user can break up the
module into smaller and easier to test modules.

The cyclomatic number for those three modules mentioned above are
shown below:

Module main
cyclo [Release 3]

Cyclomatic Number Edges - Nodes+ 2 29 - 12 + 2 19

cyclo [Release 3]

II

II

II

II
II

II

II

II

-
II
II

II
II
II

II

II

II

II

II
11·

II
II,

II

II

II

II

II

fl
II

II

II

II

II

FIGURE 17

Module proc_input

Cyclomatic Number

cyclo [Release 3]
Module chk_char

Cyclomatic Number

Edges - Nodes+ 2

Edges - Nodes+ 2

TCAT-PATH User's Guide

33 - 18 + 2 17

3 - 3 + 2 2

The cyclomatic number for module main and proc_input is quite large.
The digraph display of module proc_input below suggests that the mod
ule is quite complex.

[[1 l l 0
[[l l I

S [[2] l < 0

[[l l I
>>[[3]]0<0

I I [[l l I I

- 1

- 2 3

- 4 24

O I [[4 J l < O 0 0 0 0 0 0 0 0 0 - 14 5 6 7 8 9 10
11 12 13 15

[[l l I
[[S]] 0

[[l l I

I I I I

< I I I I I I I

I I I I I I I

I - 6
I

[[6 l l < O I < I I I I I I I I - 7

[[l l I I I I I I I I I I
[[7]]0<1 <1 1111 11-8
[[l] I I I I I I I I I
[[8)]<01 <1 1 1111-9

[[J J I I I I I I I I
[[9 l l O < I < I I I I I - 10

[[l l I I I I I I I
[[10])< O I <II I 1-11

[[l l I I I I I I
[[ll]J0 < I <II 1-12

[[l l I I I I I
[[12)]< 0 I < I 1-13

I [[l l I I I I
0[[13)] < I < 1-14

[[l l I
[[14]]00 <-1617

[[l l I I
> [[18 J l < I <

I [[J l I
1[[15]]0<0 -1819

I [[l l I I
>>0[[16])<0<

I I [[J l I

00 [[17]] <

- 23 20

- 22 21

Digraph display for 'proc_input' module"

87

CHAPTER 10: Full TCAT-PATH Example

88

apg generates more than 100 paths for both of the modules mentioned
above. The paths are not reproduced here, but the user can refer to them
in the next section.

II
II

II

-
II
,II

II

II

II

II
II

II

II

II

II

II

II

II

II
10.6

II

II

II

II

II

II

II

-
II
II

II

II

II

II

TCA T-PATH User's Guide

TCAT-PATH Reports

The last and most important step in test analysis is to obtain test coverage
analysis reports. This section details how to read reports generated by
ctcover.

The commands on the following page are to be executed to get the cover
age reports for all three modules.

ctcover main Trace . trc

ctcover proc_input Trace . trc(for UNIX)

ctcover chk_char Trace.trc

or

ctcover main Trace . trc

ctcover proc_input Trace . trc -f proc_inp(for DOS)

ctcover chk_char Trace . trc

The following are the coverage reports for all three modules from the
example program. The reports for main and proc_input modules are inten
tionally truncated due to the the size of the reports.
Ct Test Coverage Analyzer

(c) Copyright 1990 by Software Research , Inc.

Module "main": 155 paths , 1 were hit in 1 invocations.

0.65% Ct coverage
Test descriptor : sample restaurant program run

HIT/NOT-HIT REPORT

P#

1

2

3

4

5

HitsPath text

None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> \

17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 \\
23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 \\

10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> \

17 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \\

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \
6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 1 6 }> \\

17 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 \
23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 \
7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> \

17 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

1 1 2 3 <{ 3 }> 4 5 6 <(5 6 7 8 9 10 11 12 13 14 15 16 }> \\

89

CHAPTER 10: Full TCAT-PATH Example

FIGURE 18

90

17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 \

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 \

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

. . . (intervening paths deleted for clarity) ...

152 None 1 2 4 17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 \

24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 \

10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

153 None 1 2 4 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26 <{ 2\

3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23\

24 18 26 }> 27
154 None 1 2 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 19 \

20 21 21 22 23 23 24 18 26 }> 27

155 None 1 27

Coverage Report for 'main' module
Ct Test Coverage Analyzer

(c) Copyright 1990 by Software Research , Inc.

Module "proc_ input ": 176 paths , 12 were hit in 12 invocations.

6.82% Ct coverage

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 <{ 4 5 6 7

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }> 24

8

2 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

3 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8

9

9

9

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 \

<{ 20 21 22 }> 23

... (intervening paths deleted for clarity) ...

17 None 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 <{ 4 5 6 7 8 9 10 11

12 13 14 6 7 8 9 10 11 12 13 14 }> 24

18 1 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11

12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

19 None 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 ({ 4 5 6 7 8 9 10 11

\

\

\

\

\

\

12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20 21 22
}>

25
\\

23

... (intervening paths deleted for clarity) .. .

None 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 <{ 4 5 6 7 8 9 10 11 12

13 14 6 7 8 9 10 11 12 13 14 }> 24

II

II

II

II

II

II

II

II

II
II
II
II

II
··II
II

II

II

II

II

II

II

II

II
II

II

II FIGURE 19

II

II

II

II
FIGURE 20

II

II

II

II

TCA T-PATH User's Guide

26
\\

1 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11 12

13 14 6 7 8 9 10 11 12 13 14 }] 15 16

27
\\

None 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11 12

13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20 21 22 }>

23

. .. (intervening paths deleted for clarity) . . .

167 None 1 3 4 14 [{ 4 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13
\\

14 }) 15 17 19 20 22 <{ 20 21 22 }> 23

168 None 1 3 4 14 [{ 4 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13
\\

14 }] 15 17 19 23

169 1 1 3 4 15 16
170 None 1 3 4 15 17 18 20 21 <{ 20 21 22 }> 23

171 None 1 3 4 15 17 18 20 22 <{ 20 21 22 }> 23
172 None 1 3 4 15 17 18 23
173 None 1 3 4 15 17 19 20 21 < { 20 21 22 }> 23

174 1 1 3 4 15 17 19 20 22 <{ 20 21 22 }> 23
175 None 1 3 4 15 17 19 23

176 1 1 3 24

Coverage Report for 'proc_input' module

Ct Test Coverage Analyzer

(c) Copyright 1990 by Software Research , Inc.
Module "chk_ char ": 2 paths , 2 were hit in 20 invocations .
100% Ct Coverage !

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 11 1 2

2 9 1 3

Coverage Report for 'chk_char' module

91

·-----~
CHAPTER 10: Full TCAT-PATH Example

10.7

92

Summary

After reviewing the coverage reports you will typically rerun the tests
with different or additional test cases, designed to exercise previously
not-hit paths and achieve a higher Ct value. The higher the Ct value, the
more complete your testing. When you achieve a satisfactory value for Ct,
you can stop testing.

II

II

II

II

II

II

II

II

II
II

II
II

II
II

II

I
II

II

II

II

II

II

II

II

II

II
II

II

II

II
II

II

II

•

CHAPTER 11

Graphical User Interface (GUI)
Tutorial

This chapter demonstrates using TCAT-P ATH in the OSF /Motif X Window System envi
ronment.

11.1

FIGURE 21

Invocation

To invoke, type:
Xtcatpath

The result is the main menu (shown below). This window has a window
menu button (available for all windows) that allows the user to restore,
move, size, minimize, lower and close the window. This menu button can
be used at any time during the X Window System program. For closing
main application windows, however, it is best to use the System menu's
Exit option to prevent any system crashes. The two buttons in the upper
right hand corner of the window allow the user to maximize or minimize
the window size.

Main Menu

93

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 22

94

To invoke with STW/COV, click first on Coverage and then on TCAT
PATH. The TCAT-PATH main menu pops up.

...

STW/COV Invocation

II

II

II

II

II
II

II

II

II
II
II

II

II
II
II

II

•

II

II
11.2

II
II

II

II

II
II

II
II

FIGURE 23

11.2.1

II
II

II
II

II

II

II

TCAT-PATH User's Guide

Using TCAT-PATH

For first time use, always read the help menus. Below is main menu's
help, explaining TCAT-PATH four stages of testing: Instrument, Execute,
Generate Path, and Analyze.

B_ction

Help for Xtcatpath Main Window

TCAT-PATH, Ver 8.2

(c) Cop~right 1~0-1994 by Software Research,

ALL RIGHTS RESERVED

TCAT -PATH measures the cor11pleteness of a
test set using the 'path' completeness
coverage rrietric, Ct.

Nor111al ly, test sets are cons idered complete
1oJhen the Ct value 1s above 50%.

TCAT-PATH ins truments your source program ,
which you then re-comp1 le and link with the
TCAT-PATH "runtime" program. After each
test !::IOU can analyze each tracefi le using a

Main Menu Help

Instrument

TCAT-PATH instruments the source code of the program to be tested, that
is it inserts function calls at each logical branch. Click twice on Instru
ment in order to begin testing.

There are a variety of options which can be selected with the menu in Fig
ure 22:

• Preprocessing can be turned on or off. If it is turned off, then the
instrumentor will not preprocess.

• Preprocessor output suffix is set to .i, which is normally the
extension for preprocessed "C" programs. This option is user
editable.

• Preprocessor Command is set to cc -P. Refer to Chapter 8 for fur
ther information. This option is user editable.

• Preprocessor options are options in addition to the "Preproces

M1' command" previou:,ly ~pecified.

95

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 24

96

• lnstrumentor Command is set to tp-ic. This option is user edit
able.

• Instrumentor options

• Recognize _exit as keyword corresp onds to the command
line -u switch. Refer to Section 2.2.1.

• Do not recognize exit as keyword corresponds to the com
mand line -x switch. Refer to Section 2.2.1.

• Do not instrument functions in file corresponds to the -DI
deinst switch. Specify a filename that contains lists of mod
ules that are to be instrumented. Refer to Section 2.2.1.

• Specify maximum file name length corresponds to the -fl
value switch. Specify a number that will correspond to the
m aximum number of characters. Refer to Section 2.2.1.

• Specify maximum function name length corresponds to the
fn value switch. Specify a number that will correspond to the
maximum number of characters. Refer to Section 2.2.1.

Fi le Action t!_elp

Preprocessing ON c Preprocessor output suffi x: • i -~--Prep r o c es so r command: I cc -P

I ns trumentor comr,,and: I tp-i c

Instrumentor options :

D Recognize _exit as ke!:jword

Preprocessor options:

D Do not recognize exit as ke!:jword

D Do not instrument functions in file: I DEINSTRU.fns I
D Specif!:! maximum file name length: !
D Specif!:! maximum function name length: j

Instrument Menu

II

II
II

II

II

II

II

II

II
II

II
II

II
II

II

II

II

II

11
II

II

II

II

II

II
II

II FIGURE 25

II
II
II

II
II

II

II

\/er 8.2 (10/26/94) - Hel

You need to process the source programs so
that d~namic coverage can be measured.

Fi rst, ~ou ma~ need to pre-process the
progra~,.

Next, ~ou need to run the TCAT-PATH inst.ru
menter. Thi s produces a logical!~
equivalent but modified progra11 that
includes special software instrumentation
"probes."

Various parameters and files have to be
supplied to the instruroenter for
best effect. For example, ~ou can tell the
instrument.er to pa~ attention to "_exit",
or to not pa~ attention to "exit" (see
User t1anual). You can specif~ rqinirr,urq
sens it iv it~ 1 engths for the na11es recog-

Instrument Help Menu

TCAT-PATH User's Guide

After selecting instrumentor options, do the following:

1. Make sure the Preprocessing switch is ON.

2. Click on the File pull-down menu. Drag the mouse down and select
Set File Name. A file pop-up window appears (refer to the picture
below.) Select the file to be instrumented by either highlighting or
typing it into the Selection Box. Press OK.

3. After establishing the file to be instrumented, click on the Actionpu.11-
down menu. Drag the mouse down and select Preprocess and then
Instrument.

NOTE: Instrument cannot be selected until preprocessing has been com
pleted. When both preprocessing and instrumenting are in progress, the
menu's optionsare grayed out and the cursor becomes a stop watch.
When the options are darkened, then you can progress to the next step.

97

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 26

98

NOTE: Current status and errors are displayed in the invocation box
from time to time. Frequently refer to the box while testing to see where
system crashes, errors and passes occur.

When finished, click on Exit under the File pull-down menu.

Fi 1 ter

coverage/C/tcatpathC.demol*.c

Directories Files

--@m-• ": " ~' &WWW ; ~:
1C.demol •• example.i.c

Ii
._ __ ___. tt. ~1iiiiicii1 t , & D 11]11
Selection

ge/C/tcatpathC.demo/example.c

File Pop-Up Menu

II
II

II
II

II
II

II
II
II
II
II
II
II
II
II

II

II

II
II

II

II

II

II

II

II

II

II

II

II
II
II

II
II

11.2.2

FIGURE 27

TCAT-PATH User's Guide

Execute

The Execute menu compiles, links and executes the program. Normally,
you compile the instrumented source file and then link all the source files
with the runtime object module (which is specified under the File pull
down menu). The user can also use the Make file. Both methods are
explained in this section.

Click once on Execute to begin. The menu below appears.

Fil e Act ion t!_e lp

Compi ler command: };c - c Compil er opt i ons : *.i.c

Li nker command: cc - o Linker options : I *. i.o

Make command: I make I Make fi l e nar~e :

Appl icat ion name: I a. out ! Application arguments :

Execute Menu

There are a variety of options which can be selected from the Execute
menu.

1. Compiler command is used to invoke the compiler on the system. It
is set to cc-c but is user-editable.

2. Compiler options are the options for the compiler. It is set to *.i.c
but is user-editable.

3. Linker command is used to invoke link. It is set to cc-o but is user
editable.

4. Linker options are the options used in order to link. It is set to * .i.o
but is user-editable.

5. Make command is used to invoke the make utility.

6. Make file name is where the make file is specified. It is fixed to
Makefile but is user-editable.

7. Application name is the command used to invoke the instrumented
program, It is fixed to a.out but is user-editable.

99

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 28

100

8. Application argument is where command line arguments are speci
fied. It is user-editable.

After ins trumentation, ~ou need to link
~our compiled prograros with the "runtime"
module. There are different runtime
modules you can use, depending on the
particular features you want:

o Level O: Fixed trace file and no
buffering. ~

o Level 1: User-selected trace file and I
no buffering. This is the most commonly-us]
version.

NOTE: You cannot "buffer" the tracefile,
because doing so loses the sequence infor
mation that is used b~ TCAT-PATH to deter
mine which path class was executed.

Please consult ~our User Manual for

Execute Help Menu

Execute one of two ways:

1. Without Make File

I

I

Click on the File pull-down menu, drag the mouse to Set Runtime
Object Module and click. A pop-up window appears (shown in Fig
ure 29).

• Highlight or type in (the Selection box) the necessary file. Click
OK. Refer to the help frame and to Section 3.1 for SR-supplied
runtime object modules.

• Set the compiler and linker commands (that is Compiler com
mand, Compiler options, Linker command and Linker options)
as appropriate.

• Click on the Action pull-down menu and select Compile. When
completed, the invocation window will state so.

II
II

II

II

II

II

II

II
II

II

II

II
II
II

II

II

II

II
II

II

II
II
II

II

II

II

II

•
II

II
II

II

II

FIGURE 29

TCAT-PATH User's Guide

• Click on Link. Invocation window will indicate when linking
has occurred.

• Click on Run Application.

2. With Make File: make organizes all compiler and linker commands
and files.

• Click on the File pull-down menu, drag the mouse to Set Runt
ime Object Module (shown in Figure 29) and click.

• Highlight or type in (the Selection box) the necessary file. Click
OK. Refer to the help frame and to Section 3.1 for SR-supplied
runtime object modules.

• Set the make commands (that is Make Command, Make file
name, Application name and Application arguments) as appro
priate.

• Click on the Action pull-down menu and select Make. When
completed the invocation window will state so.

• Click on Run Application.

Whichever methods is chosen, the trace file is created.

Filter

I /stw.2.6/ pr oduct/ l ib/ctrun*. o I
Directories Files
r..ii;iii .. iiiiiial I r' : t!Nb:tr-- [!O , iMitiM , r
:t / 1 ib/.. ctrun1.o
:ti I i b/X11R5
:t / I i b/ shared

C r:-a
Se lection

I /stw.2.6/ product/ lib/ctrunO.od

Runtime Object Module Pop-Up Menu

101

CHAPTER 11: Graphical User Interface (GUI) Tutorial

11.2.3

FIGURE 30

Generate Paths

After executing your program, you need to generate a set of paths for any
module. apg processes a digraph file (*.dig file) into a path file (*.pth
file). This path information is necessary for generating a coverage report.

To begin, click once on Generate Path and the menu below appears.

File Action t!_elp

I• Path Lirni t: 111000 Cl Report Width:

-+ All Paths

{> Se 1 ected Paths

Generate Paths Menu

II

II
II

II

II

II

II

II

II

II

II

•
II

II
II

II

II

II

II

II

II

II

II

II

II

II

II FIGURE 31

II

II

II

II

II

II

II

TCAT-PATH User's Guide

~t1on

In this fl'lenu !:fOU use the TCAT-PATH built-in
"apg" pr09ra,i to f.lenerate a set of paths
that 1,,1i l l be used to ,ieas:ure the test CQfll

pleteness of each Mdule !:fou ana lyze.
You have to generate a "path set" for-
each separate ,iodule.

If ~ · use the "Al I Paths" option then
the prografl'ls 1111 11 show ~ou all of the
equivalence c lasses that can be executed .
a:t.lTION: So111eti,ies the nuJllber of paths
generated Cal be qu ite large and ~ ~
~t to edit the path set for a p~t1cular
JIIIOdule. There 1s a separate MerWJ for doing
thi s .

Norllllal I~, the nuJ1er1c I 111111 t for paths generate
1s 31)). You can set thi s t o a
higher 11rr11 t. Also, the "pat h fl le" has
.. .. s .. inserted to Plake the f1 le easier to
read; the defau l t wi dth 1s 80 characters.
You can set a di fferent default as 1nd1 -
coted. ,

Anotrer wa'=:I to generate sets of paths i s to
use one of the bu ilt-in a lgorithms for
f1nchn9 a set of paths that "covers" all
of the edges . TCAT-PATH provides a ruriber
of alternatives for this:

o Basi s Paths: The set of non-iterat ive
paths is used first~ then •••

o Essential Edges; The set of paths that
first includes each edge which 1s on on l~
one of the original set of paths.

o Lhcons:tra1ned Edges: The set of edges

Generate Paths Help Frame

There are a variety of options which are available from the Generate Path
menu:

1. Path Limit is the the (integer) maximum number of paths to generate.
It corresponds to the command line [-p limit] option. Refer to Section
4.1.1 for further information.

2. Report Width specifies that the report is never to be wider than
width characters. It corresponds to the command line [-w width]
option. Refer to Section 4.1.1 for further information.

3. All Paths are all the structurally visual paths. It is equivalent to run
ning apg on a *.dig file. Refer to Chapter 4 for further information.

4. Selected Paths selects paths from All Paths. Because All Paths can
be overwhelmingly large, you may want to select only particular
paths from the Selected Paths option. The following paths may be
selected:

• Basis Paths: The set of non-iterative paths. It corresponds to

the apg's -b command line switch. See Section 4.1.1 for fur
ther information).

103

CHAPTER 11: Graphical User Interface (GUI) Tutorial

104

• Essential Edges: The set of paths that first includes each
edge which is on only one of the original set of paths. It has
not been implemented at this time.

• Unconstrained Paths: The set of edges that will imply execu
tion of other edges in the program. It has not been imple
mented at this time.

• Essential Paths: The set of paths that include one essential
edge, that is an edge that lies on no other path.

• Path Set and Algorithm: Paths can be arranged in the
following ways:

Original refers to the original path set that was gener
ated by apg. (This is accomplished when you select All
Paths from the Generate Paths menu. It corresponds to
the-£ (first found alogorithm) or the -1 (last found algo
rithm) in pathcover. Refer to Section 4.5.1 for further
information.

Iteration arranges the path set in terms of increasing iter
ation complexity.

It corresponds to the -fi (first found alogorithm) or the -Ii
(last found algorithm) in pathcover. Refer to Section
4.5.1 for further information.

Length arranges the path set in ascending order. It corre
sponds to the -fl (first found alogorithm) or the -11 (last
found algorithm) in pathcover. Refer to Section 4.5.1 for
further information.

Sorted arranges the path set in natural order according to
the names of the segments. It corresponds to the -fs (first
found alogorithm) or the -ls (last found algorithm) in
pathcover. Refer to Section 4.5.1 for further information.

Random arranges the path set in random order. It corre
sponds to the -r switch. First found and last found algo
rithms are ignored. Refer to Section 4.5.1 for further
information.

1. To generate All Paths:

• Click on the All Paths option.

• Specify the Path Limit and Report Length if desired.

• Click on the File pull-down menu and click on Set Module
Name. The box in Figure 32 pops up. Highlight or type in
the module in the Selection box and click on OK.

II

II
II

II
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
FIGURE 32

II

II

II

II
-

II

II

II

II

TCAT-PATH User's Guide

ule Selection

Modules:

example.main

Selection

Generate Paths Pop-Up Menu

• Click on the Action pull-down menu. Drag the mouse to
Generate Paths and click.

• Click on the Action pull-down menu. Drag the mouse to
Generate Path Statistics and the menu below pops up. View
the reports by using the menu's scroll bars. After viewing,
click on Action and Exit.

105

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 33

106

I
Detailed Path Analysis Stati stics

Processed file narne:

Nurnber of nodes (N):
Nurnber of edges (E, segroents) :
Cyc lornatic nurnber (E - N + 2):

TOTAL NUMBER OF 1-TRIP PATHS:

Generate Path Statistics Pop-Up Menu

3
3
2

2

/ horne/16/stw

At this time, you can use other available utilities with the Action pull
down menu. These utilities are optional, not necessary.

Click on Edit Paths and the window below pops up.

Note: If you do not use the "Selected Paths" option, then the "All Path
List" and the "Selected Path List" scrolled text windows will contain the
same paths.

II

II

II

II

II

II

II

II

II

II

II

II

II

•
II

II

II

II

II

II

II
II

II

II

II

II

II FIGURE 34

Ii
II

II

II

II

II

II

TCAT-PATH User's Guide

Edit· Path -- Uh0ffleh61Stw.2 .6/ rodUCt; deinos/ coveraqe/Citcat· a-thC.deFl'tO/ - ·

[ile

Path Nuober:

Selected Path Nul'llber:

Edit Paths Menu

@1: 1 2
~2: 1 3

@1: 1 2
G2: 1 3

tfelp

Al I Path list:

Selected Path li st:

107

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 35

108

tcotpath Ver B. 2 <

a_ction

If the "automatic 111ethods" of generating
paths are not successful or sat1sf!:lins~ !:IOU
can choose to edit the path se t P1ariuall!:,i.

In the Edit Path menu !:.iOU see the set of
al 1 possible paths and a set of path
nu111bers.

You can select a particu lar path nufllber and
choose to add or delete it fr0111 the
selected path set.

At al 1 times the selected paths !:,iOU have
included are shown in a w1nd01tJ.

Note that after ed1 ting ~u can use this
path set as the one against which Ct cover
age assessments are criade •

.. PATHCONDIT !Ctl

Associated with each path in the prosral'l is
a set of "path cond itions" that ~u can
use to create add 1 ti ona l tests for !:,iOUr
software.

The path conditions can be generated for
ANY path in ~r path set. To see the
cond1 t1ons for each path !:.iOU can select a path
nu.tier. TCAT-PATH then generates the
corresponding path conditions and shows the
text of those conditions in a window •

.. GENERATEPATH

In this lllenu !::IOU use the TCAT-PATH built-in
"apg~ program to J:lenerate a set of paths
that w i I I be used to Pleasure the test co!'fl-

Edit Paths Help Frame

II

II

II

II
II

II

II

II

II
II

I
II

II

II

II
II

II

II

II

II

II
II

II

II

II

II

II FIGURE 36

•
II

II

•
II

II

II

TCAT--PATH User's Guide

Filter

I ,/coverage/ C/tcatpathC.demo/ *.pth I
Directc Fi les

-e-xa_m_p-le-.-ch-k-_c-h-ar-.-pt_h_ C
examp le.main.pth
examp le .proc_input.pth

D ~-·

Selection

·demos/ cover age/C/ tcatpathC. demo/

Set Path File Pop-Up Menu

1. Your module name should be carried over from the Generate Paths
menu. If not or to select a different module (assuming you have
already generated paths for it), then click on the File pull-down menu
and select Set Path File. The window similar to the one in Figure 36
pops up. Select a file by highlighting or typing in the path (*.pth) file.

2. To add or delete a path in the Edit Paths menu, simply type in or
highlight the number in the Select Path Number Selection Box.

3. Click Add or Delete and the Selected Path List will change accord
ing .

4. If you wish to save the path (*.pth) file, then select the Saved to New
Path File under the Action pull-down menu. A window similar to
the one below will appear. Select a file in the usual manner.

109

CHAPTER 11: Graphical User Interface (GUI) Tutorial

Directories Fi les

tliMi®@W ~
J/date.gen/ ..

Ii
Se lection

FIGURE 37 Save New Path File Pop-Up Menu

110

II

II

II

II
Ii
II

II
Ii
II

II

II

II
II

II

-
II
~

II

II

II

II

II

II

II

II

II
FIGURE 38

II

II

II

II

II

Iii
II

II FIGURE 39

II

TCAT-PATH User's Guide

Click on Display Paths and the window below pops up. It allows you to
view source.

Fi le

Cl Di spla!J Size

Cl Foreground Co lor:

Cl Background Co lor:

Display Path Menu

~.no5t h ',/er a.: (10/26/34> - He Joii

~
YCM.J can us, this --.u to de, ·s«.rce v1ev
>"S"

c,r "path tn9l 1ght1ng. • Sotrce V1ew1r19
<!l!l°""s ~ to as.soc1<!lte an ed9e (segi,.ent)
or node with i ts correspono1ng scu-ce code-.
To get source v1ew1ng d1spl~:

o Seioect the lllOOJJe to be v iewed { 1f not
already seltcteo m ·c.enerat.e Peth" _,_

o Set the basis path f I Je- <~t1onal) .

o Set the geo111etr1es and colors
{optt~I>.

o CJ 1ck. the "¥1ew So.rce" button .

H1ghl 1ght Paths al lows !PJ to see the ?.et
of eQ9ts that const1 tuted a path fra- !I»"
se lect~ set of paths . These edges are
htghl 1ghted Oil the d1splao.ci m order of the
path execution . Ch:::e all edges fro- a p.,th
are h1gh l 1ghted. ~ C<YI proceed t.o t.t,,.
r'le).l path , To 9tt path h1ghilght1 09
d1splaye,d :

o Select the IWJO.l le to be v1~ (if Mt

already se lected m "Generat e Path" _,_
o Set the h 191ight path Fi le.

o Set the basis path f I le (opt10Ml >.

o Set the ~tries and colors
(opt\Of'\4,1) .

Display Path Help Frame

!!_elp

,.,

111

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 40

112

Director ies Files r..---.i ~' t.(i!M&Mit& ~ ·
J/date.gen/ ••

·~ '
~'

r: iii
Se lect ion

Set Module File Pop-Up Menu
• Select the module to be viewed (if not already selected in the

Generate Path menu). Do so by clicking on the File pull-down
menu's Set Module Name. Choose the file in the usual manner.

• Set Basis Path File under the File pull-down menu, if necessary.
The basis path file establishes the set of nodes that appear on the
vertical axis.

• To choose where to geometrically view source, select the x and y
coordinates with the Display Geometry option. This is optional.
Click first on the button and then type in the desired coordinates'
positions. If not used, the display will pop up based on the
default established for T-SCOPE's (Test Data Observation and
Analysis Tool) Xdigraph syntax.

• The display's width and height can be selected from the Display
Size option. Click first on the button and then type in the desired
width and height. If not used, the display will pop up based on
the default established for T-SCOPE (Test Data Obervation and
Analysis Tool) .

II

II

II

II

II

II

II

II
II
Ii
II

II
II
II
II

II

II

II

II

II

II
II

II
II

II

II

I
II
II
II

II FIGURE 41

II

II

II

TCAT-PATH User's Guide

• You can also choose the foreground and background colors with
this menu.

• After making selections, click on View Source. Based on your
selections or the defaults, the module's display pops up.

• If the display is not the size you want or placed not where you
want, you can resize or move as needed.

• Source view by clicking on a node or a segment and holding
down the mouse button.

• When finished, press any key, and the display is deleted.

NOTE: Highlight Paths is used only with Selected Paths.

To exit from the Display Path menu, click on Exit under the File pull
down menu.

Source Viewing

Generate Path Condition is the other option. Click on it, and the menu
below pops up. It extracts and displays the logical conditions for a partic
ular path given the sequence of segments in the path (which could be a
complete path), the digraph file (*.dig), and the reference listing file (*.i.A
or ~.iA). SQQ SQCtion 18,4 for further information.

113

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 42

114

Path Number

1
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19

Se 1 ected Path Number

Is

!_ Generate Conditions Ii

Path Condition Menu

Path Conditions:
................

i 1' path conditions For 'exarnp le.main?
ATH 8: 1 2 4 5 12 [{ 5 6 7 8 9 10 11 12 13

24 18 26 4 3 2 } l 27
--

Segrnent Cycle Sense Predicate
--
1 1 TRUE NONE
2 2 TRUE wh1 le(repeat
3 4 FALSE for(i = O; i
4 5 TRUE wh ile(choice
5 12 Entry CASE swi tch (cho1c
6 5 Loop TRUE wh ile (choice
7 6 Loop CASE switch(choic
8 7 Loop CASE swi tch (cho1c
9 8 Loop CASE sw1tch(cho1c
10 9 Loop CASE switch(choi c
11 10 Loop CASE s1,,1itch {choic
12 11 Loop CASE switch(cho1c
13 12 Loop CASE swi tch(choic
14 13 Loop CASE sw i tch(choic
15 14 Loop CASE swi tch(choic
16 15 Loop TRUE i f (cho1ce !=
17 16 Loop FALSE i Hchoice ! =
18 17 Loop FALSE whi le (choice
19 25 Loop FALSE while{ (answe
20 19 Loop TRUE wh ile ((answe
21 20 Loop CASE swi tch (answe
22 21 Loop TRUE case y' :
23 21 Loop TRUE case ' !:! ' :
24 22 Loop CASE switch (ans we

II

II
II

II
II

II
II

•
II
II

II
II
II

II

II

II

II

II

II

II

-
II

II

II

II

II

• FIGURE 43

II
II

II

II
II

II

II

TCAT-PATH User's Guide

teat ath Ver 8,2 (10/26/94) -

Action

Associated with each path in the program is
a set of "path conditions " that !,OU can
use to create additional tests for !,Our
software,

The path conditions can be generated for
ANY path in !,Our path set. To see the
conditions for each path !,OU can select a path
number, TCAT-PATH then generates the
corresponding path conditions and shows the
text of those conditions in a window, ~

t1t1GENERATEPATH

In thi s r~enu !,OU use the TCAT-PATH built-in
"apg" progra~, to generate a set of paths
that w i 11 be used to measure the test co~1-
P 1 eteness of each ~1odu 1 e !,OU ana 1 !,Ze.
You have to generate a "path set" for

Path Condition Help Frame

115

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 44

116

Filter

:/ cover age/ C/ t catpathC. de~10/*. dig

Di r ect.c Files ..-----------,
exarn le,chk char.die

xarn le,rnarn.di
exarnple,proc_input,dig

--Selection

:/t catpathC. derno/ exarnp 1 e. rna in.di aJ

Set Module File Pop-Up Menu
• Your module rnune should be carried over from the Generate

Paths menu. If not or to select a different module (assuming you
have already generated paths for it), then click on the File pull
down menu and select Set Module. A window similar to the one
in Figure 44 pops up. Select a file in the usual way.

• Select a path number by either clicking (and, thus, highlighting)
the number or typing in a number in the Selected Path Number
Box.

• Click Generate Conditions.

• TCAT-PATH then generates the corresponding path conditions
and shows the text of those conditions in the Path Conditions
scrolled text window.

• To view the text, use the scoll bars.

II

II
II

II
II
II
II
II
II
II
II
II
II
II

II

II

II

II

II

II
II

II

II

II

II
II

• FIGURE 45

II

II

II
II

II

II

II

9
10
11
12
13
14
15
16
17
18
19

TCAT-PATH User's Guide

fj_elp

Path Conditions :

* path condit ions for ' example.rr.ain'
PATH 8: 1 2 4 5 12 [{ 5 6 7 8 9 10 11 12 13

24 18 26 4 3 2 } J 27
----------- ----------------------

Se9"'ent C!JCle Sense Predicate

1 1 TRUE . NOOE
2 2 TRUE wh1 le(repeat
3 4 FALSE for (1 = O; i
4 5 TRUE 1tihi le{choice
5 12 Entr~ CASE sw itch(choi c
6 5 Loop TRUE whi le(cho1ce
7 6 Loop CASE s111 1 tch(choic
8 7 Loop CASE sw itch(choic
9 8 Loop CASE sw 1 t ch(choic
10 9 Loop CASE sw itch{choi c
11 10 Loop CASE sw1tch(cho1c
12 11 Loop CASE sw itch(choic
13 12 Loop CASE :swi tch{cho1c
14 13 Loop CASE sw itch{choic
15 14 Loop CASE sw i tch{choic
16 15 Loop TRUE i f<choice ! =
17 16 Loop FALSE i f (cho1ce 1 =

Selected Path Number 18 17 Loop FALSE wh1 le(cho1ce
19 25 Loop FALSE whi le ((answe
20 19 Loop TRUE whi le«answe
21 20 Loop CASE sw1 tch (answe
22 21 Loop TRUE case ' !::! -' :
23 21 Loop TRUE case '!::!' !

I Generate Conditions 1~
24 22 Loop CASE sw1 t ch(answe

Path Condition Menu

The path conditions will automatically be saved to <module_ n
ame>. con.#, where# corresponds to the module number. If
you wish to save the file to a different pathcon file, click on the
Save to Path Conditions File. A window similar to the one
below pops up. Select a file in the usual manner.

117

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 46

Filter

I ,/coverage/ C/ tcatpathC.dernol *. con.* I
Directc Files

.-e-x-arn_p_l_e_.rn_a_i_n_. c_o_n_.-8---, t
exarnple.proc_input.con.1
exanlple .proc_ input .con. 2

"' --------' ~' a
Selection

:t/ deroos/ coverage/Cl tcatpathC. deroo/

Save New Pathcon File Pop-Up Menu

To generate Selected Paths:

NOTE: Because Selected Paths is very similar to All Paths, this section
will be in summary form. Please refer to (1) for detailed information.

1. Click on the Selected Paths option.

II

II

II

II

II

II

II

II
II

-
II

II
2. Select any or all of the paths and arrange the Path Set to your specifi- II

cations.

118

NOTE: Essential Edges and Unconstrained Edges have not been imple
mented at this time.

3. Specify the Path Limit and Report Length, if desired.

4. If you haven't already set the module name, click on Set Module
Name, then do so now.

II

II

II

II

II

II

II
11-

II

II

II

II

II

II FIGURE 47

II

II

II
II

II

II

II

TCAT-PATH User's Guide

D Report l•hdth:

+ All Paths

¢, Selected Paths

Generate Path Statistics Pop-Up Menu

• Click on the Action pull-down menu. Drag the mouse to Gener
ate Paths. Then select Generate Path Statistics . When generated,
Selected Paths will automatically generate path statistics for All
Paths, whether you generated All Paths or not.

• The available options are the same as All Paths.

• Edit Paths : All additions and deletions appear in the
Selected Path List scrolled text windows.

119

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 48

120

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

All Path List:

@1: 1 2 3 [{ 3 4 16 15 14 13 12 11 10 9 8
@2: 1 2 4 5 6 [{ 5 6 7 8 9 10 11 12 13 14 .
@3: 1 2 4 5 7 [{ 5 6 7 8 9 10 11 12 13 14 :
@4: 1 2 4 5 8 [{ 5 6 7 8 9 10 11 12 13 14
@5: 1 2 4 5 9 [{ 5 6 7 8 9 10 11 12 13 14
@6: 1 2 4 5 10 [{ 5 6 7 8 9 10 11 12 13 14
@7: 1 2 4 5 11 [{ 5 6 7 8 9 10 11 12 13 14
@8: 1 2 4 5 12 [{ 5 6 7 8 9 10 11 12 13 14
@9: 1 2 4 5 13 [{ 5 6 7 8 9 10 11 12 13 14
@10: 1 2 4 5 14 15 [{ 5 6 7 8 9 10 11 12 1
@11: 1 2 4 5 14 16 [{ 5 6 7 8 9 10 11 12 1:

Selected Path List:

tj_elp

Selected Path Number:

@1: 1 2 3 [{ 3 4 16 15 14 13 12 11 10 9 8
@2: 1 2 4 5 6 [{ 5 6 7 8 9 10 11 12 13 14 ·
@3: 1 2 4 5 7 [{ 5 6 7 8 9 10 11 12 13 14
@4: 1 2 4 5 8 [{ 5 6 7 8 9 10 11 12 13 14
@5: 1 2 4 5 9 [{ 5 6 7 8 9 10 11 12 13 14
@6: 1 2 4 5 10 [{ 5 6 7 8 9 10 11 12 13 14
@7: 1 2 4 5 11 [{ 5 6 7 8 9 10 11 12 13 14
@8: 1 2 4 5 12 l { 5 6 7 B 9 10 11 12 13 14
@9: 1 2 4 5 13 [{ 5 6 7 8 9 10 11 12 13 14
@10: 1 2 4 5 14 15 [{ 5 6 7 8 9 10 11 12 1
@11: 1 2 4 5 14 16 [{ 5 6 7 8 9 10 11 12 1

Edit Paths Window
• Display Paths generates for All Paths, whether you selected All

Paths or Selected Paths. Source view the same way youwould
for All Paths.

• Selected Paths, however, allows you to highlight particular
edges. To activate, select Set Highlight File from the File
pull-down menu. Select the file (*.pth file) in the usual man
ner. See the Figure on the following page.

Note: The module name and the highlight file name must be from the
same module.

II

II

II

-
II
II

-
II
II

-
II
II
II
II

II
II

II

II

II

II

II

II

II
II

II

II

II
II

II

II

II

II

II

II

FIGURE 49

la'-i Path -- [ex ,,,01

0 Di s pla~J Size W,,_\!,~

0 Foreground Color:

0 Background Co 1 or:

Display Paths Menu

D
D

TCAT-PATH User's Guide

121

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 50

122

Threshold 1 Threshold 2

1 l 10

0 N%: 10.00 I 90. 00

D {>:;:::;:- l :.=;vi ? .. :1 ~ 100 I 10

D n~,::/ :.=;r: ..).~ 50 I 10

0 Nl lr::.=; .. ~~ 25 I 5

0 User: 10 I 100

0 High! ight: I x xan1p I e. roa in. pth Path file:

Reset l r Help

Close I 11 Appl!:J

Set Highlight File Pop-Up Menu

• After selecting the highlight file, click on Highlight and the
appropriate path(s') edges are highlighted in the display.

• If you have more than one path in your file click on the mouse
button and the next highlighted path is displayed.

• When finished, press any key and the display will disappear.

II

II
II

II

II
II
II
II
II

II

II
II

II
II

II

I
II

II

II

II

II

II

II

II

a
II

-
II

II FIGURE 51

II 11.2.4

II

II

II

II

TCAT-PATH User's Guide

1qra h Ver 2.7 (11/ 18/ 94) (exa• le.•ain.d1q - ex"" le.•ain

E_Ile Qpt1ons Zoo• l_n Zoo• O\!_t 1/_iew Source [tot, stics E.rint er,notat,on tJ.elp

Annotation: User

i

13

27 (0

(c) Copyright 1990-94 Software Research, Inc.

Highlighted Path Display

Analyze

After generating paths, you can analyze the trace file using the ctcover
command. Click on Analyze and the menu below pops up.

123

CHAPTER 11: Graphical User Interface (GUI) Tutorial

FIGURE 52

124

Fi le

Li st of Modules

exarnple,chk char
exarnple,rriain
exarnple,proc_input

Selected Module

Analyze Menu

t!_elp

II

II

II

II

II

II

II

-
II
II

II

II

II
II

II

II

II

II

-
II

II
II

II

II

II
II

- FIGURE 53

II

II

II
II
II

II

II

cat ath Ver 8.2 (10/26/ 94) - Hel

After !:JOU have executed !:JOUr prograr,, !:JOU
need to anal!:Jze the Ct coverage obtained.
You can do this using the "ctcover" subs!:Js
teoi which !:jOU contra 1 through the "ana 1 !:JZe"
menu. l!;Jpicall!;J, !:JOU anal!:Jze one trace
file at a time. TCAT-PATH does not have
the "archive"-ing feature TCAT and S-TCAT
have. After !:JOU select a trace file,
select a ~,odule !:JOU want to get the cover
age report on from the List of Modules.
Then click on "Generate Report." You can
then examine the report for that particular
modu le b!;J clicking on "View Report".

##End

For further information please contact:

Software Research, Inc. (SR)

Analyze Help Frame

To use:

TCAT-PATH User's Guide

1. Click on the File pull-down menu and select Set Trace File . A pop-up
window similar to the one below appears. Highlight or type in the
file of your choice.

125

CHAPTER 11: Graphical User Interface (GUI) Tutorial

verage/C/tcatpathC.demol *.trc

Directories Files , ~ . ~ ,.,um,., I
ithC. demo/ ••

& : 1:,
Se lection

ge/C/tcatpathC.demo/Trace.trc

FIGURE 54 Set Trace File Pop-Up Menu
2. Select the module. This accomplished by clicking on the module

(and, thus, highlighting it) or manually typing in the module.

3. Click on Generate Report.

4. Click on View Report.

5. You can view the report by using the scoll bars.

6. When finished, select Exit under the Action menu.

At this point, you have successfully used TCAT-PATH.

126

II

II
II

II
II

II

II

II
II

-
II
II

II
II
II

II

II

II

II

II

-
II

II

II

II'
II
II
II

II
II
II
II

II

II

TCAT-PATH User's Guide

I
Ct Test Coverage Anal!:Jser Version 2.1 (9/91)

(c) Cop!:Jright 1991 b!:J Software Research, Inc.
Module "example.main": 19 paths , 1 were hit in 1 invocations.

5.26Z Ct coverage
Test descriptor: ctseg \ler 1.7 (10/31/94)
(cl Cop!:Jright 1990-94 b!:J Software Research, Inc. ALL RIGHTS RESERVED.
Runtir1e vers 4.7 CpCtCr, las t updated 7/21/ 88

HIT/ NOT-HIT REPORT

Pit

1
2
3
4
5
6

FIGURE 55

Hits

1
None
None
None
None
None
None
None
None
None
None

Path text

1 2 3 [{ 3 4 16 15 14 13 12 1110 9 8 7 6 5 17 25 19 20 21 21 2
1 2 4 5 6 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21 21 2
1 2 4 5 7 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21 21 2
1 2 4 5 8 [{ 5 6 7 8 9 10 11 12 13 14 15 16 17 25 19 20 21 21 2
1 2 4 5 9 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21 21 2
1 2 4510 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21 21
1 2 4511 [{ 5 6 7 8 9 10 111213 14 15 16 17 25 19 20 21 21
124512 [{ 5 6 7 8 9 10 111213 14 15 16 17 25 19 20 21 21
124513 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21 21
124514 15 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21
124514 16 [{ 5 6 7 8 9 10 1112 13 14 15 16 17 25 19 20 21

View Report Window

127

CHAPTER 11: Graphical User Interface (GUI) Tutorial

128

II

II
II

II
II

II
II

II
II
II

II
II

II
II

II

II

II

II
II

II

II

II
11-

11

-
II

-
II
II
II

II
II

II

II

CHAPTER 12

System. Restrictions and
Dependencies

It is important to recognize that TCAT-PATH can only be used with "legal" programs.
Non-legal constructions may pass through TCAT-PATH, but results cannot be guaran
teed.

The TCAT-PATH package can measure very complex programs. In some
cases, however, programs are so complex that analysis of them will be too
time consuming or will require too much execution space.

TCAT-PATH has certain pre-defined limits to prevent "overload" of the
system components. An example of such limits is the following set,
defined for the language. Other limits may be in effect for other lan
guages.

• tp-i<lang> gives up processing beyond a threshold number of
program edges or nodes. This limit is defaulted at 5000 nodes per
invocation.

• apg has limits on the total number of paths emitted, and on the
total number of paths computed without being printed. This
threshold is defaulted at 300 printed paths (or 4800 computed
paths).

• ctcover has limits on the total number of records processed (after
which it ceases processing paths). This threshold is defaulted at
100,000 segments per call. Also, path processing is memory lim
ited; an error message is issued in case the limits are exceeded.

• ctcover analysis system allocates memory dynamically and it can
run out of memory. When it does it indicates when, and what
caused the overload. The stack sizes within the system are chosen
to represent a capacity that should not be exceeded in practice,
except for extremely complex (or intentionally complex) pro
grams.

Certain restrictions exist in TCAT-PATH instrumentor (language proces
sor). They are summarized here.

129

CHAPTER 12: System Restrictions and Dependencies II
II

1~0

"C" Language: tp-ic

• The function names EntrMo,ExtMod,SegHit, Strace, and Ftrace
are reserved for the runtime calls.

• The instumentor (tp-ic) can take identifiers (function or variable
names) that are up to 128 characters long. II

• Conditional expressions in "C" (of the form "expr? expr: expr")

11 are not supported; they must be expanded to the explicit "if ... [e-
lse]. .. " form.

• The tp-ic language analyzer in TCAT-PATH does not support

11 switch statement instrumentation in exactly the same way as
does TCAT. The difference is due to special handling of empty
"case:" statements. Generally, TCAT-PATH is a more complete II
model of program flow.

• Conditional expressions are not processed by TCAT-PATH. Con-
ditional expressions should be converted at the source level to II
simple "if ... else" statements, which will have the same effect and
which are processed by TCAT-PATH.

• For various reasons, "goto" statements are not processed by a
TCAT-PATH; their presence in a program could cause misunder-
standings about Ct coverage.

Ada Language: tp-iada

No restrictions exist for processing of Ada programs.

FORTRAN Language: tp-ifn

FORTRAN statements such as AS SIGN and GOTO-ASSIGN are not sup
ported.

PASCAL Language: tp-ipascal

No restrictions exist for processing of Pascal programs.

II

II
II
II

II

II
II
II

II

II

II

II

-
II

II

II

II

II

II

II
II
II

II

II

II
II

CHAPTER 13

On-Line Help Fraines
The interactive mode of TCAT-PATH provides the user with an on-line help frame facility.

From any interactive mode menu, you can obtain help by typing:
help

or
help?

or
help <command-name>

TCAT-PATH responds by showing the user a screen of data describing
how to use the selected commands. The available help frames are shown
on the following pages.

Note: the actual help frames will vary slightly with the particular version
of the TCAT-PATH system that you have. This is done to ensure that the
on-line assistance exactly matches that needed for your system.

131

CHAPTER 13: On-Line Help Frames

132

##tcatpath . hOO
------------------- --- ---------------------------- --------------- ------------------ --------~ : '
' ' ' ' Usage : help [opt]

Help is available for the following commands and categories.
Substitute I

any of the words below in place of [opt] to get its help screen .
Abbreviations are acceptable , as long as they are not ambiguous.

apg refile
ct runtime release
cyclo save

digpic settings
digraph tcatpath
exit terminology
menu trace file

##tcatpath . hOl

> TCAT-PATH - - Path Test Coverage Analysis Tool
>>> General Information

! !

TCAT-PATH provides commands that measure the pat coverage
of instrumented programs.

HELP

HELP

TCAT-PATH commands can generate a program digraph , can generate a
full s e t of equivalence classes of flow (the

path set), can instrument a program , and can measure
how many paths are executed in a test that involves one
or more invocations of the test object .

------------------ --------------------------- -------- --------- -------- -------- -- -----------'

II

II

II

II
II

II
II

II

II
II
II
II
II

II
II

II

II,

II

II

II
II

II

II

II
II

-
II

II

II
11·
II

II

II

TCAT-PATH User's Guide

##tcatpath.h02

'

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> ACTIONS Menu
>>>>> apg

The apg command generates sets of paths from the digraph file
derived from a source program.

The syntax for the apg command is as follows:
apg name

where ,
name is the basename of the module/function being

analyzed. The filename name.dig must exist
in the local directory .

Paths are expressed as a sequence of segments; the notation

HELP :

<{a , b , c}> is used to designate zero or more repetitions , in any
order, of the named segments.

:1

See also : digraph , cover , ctcover.

' -------------------------- ---
##tcatpath . h03
·----------------------- ------- ------------------- ---------- ------------------ -----------~

'

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> ACTIONS Menu

HELP :

>>>>> cyclo

This command computes the cyclomatic number (McCabe metric) for the
underlying program .

The cyclomatic number is given by the formula:

E(n) e - n + 2

where e is the number of edges in the program , and n is the
number of nodes in the program. Generally , but with some

:exceptions ,
programs with a cyclomatic number greater than 10 present unusually

difficult test situations .

See also , apg.
' ' ~------------------------------ --- ------------------------ - ------------------- - ----------1

133

CHAPTER 13: On-Line Help Frames

134

##tcatpath.h04

; > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
:>>> ACTION Menu
: >>>>> digpic
: This command reads a digraph file and generates a picture of the
: program structure you are analyzing. If you wish to vary the
: picture you must alter the "basis path." The command syntax is :

digpic name [-B ' file '] [-C center]
[-R rows] [-W width]

where,
name is the name of the file for which you want a picture
center is the column number you wish to use

rows is the number of rows (default = 1) between nodes
width is the width of the picture (default= 80)

The default basis path is simply the sorted list of names of nodes
in the digraph file.

##tcatpath . h0S

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> ACTIONS Menu
>>>>> digraph

This command generates a digraph file from the specified file
and also instruments the program.

The syntax for this command is as follows :

digraph name . c

where,

name.c is the name of the program you wish processed

HELP

In interactive mode, type "help <command name>" to get help
screens (like this one) on most topics. For detailed information
please consult the TCAT-PATH User "s Manual .

' ---------------- ------ ------------------------------- ---------------------------------- --

II

II

II

-
II

II

II

II
II

-
II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

-
II

II

II
II

II

II

II

TCAT-PATH User's Guide

##tcatpath.h06

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP:
>>> TCAT-PATH -- Menu Descriptions

TCAT-PATH has four basic interactive menus:

TCAT-PATH menu : used to select submenus

ACTIONS menu: used to decide on operating modes

OPTIONS menu : used to choose execution options

FILES menu : used to define file names

##tcatpath . h07

; > TCAT-PATH -- Path Test Coverage Analysis Tool HELP :
>>> All Menus
>>>>> settings

The TCAT-PATH system permits you to specify a number of options.
Many of these options are specified via the TCAT-PATH configuration

file.

Options that you can include in this file, for later use or for
editing , include :

basename of files to be used (must be specified)
maximum number of digraph nodes to process (default 500)
maximum number of paths to generate (default 4800)
maximum number of paths to display (default 300)
basis path to be used in digraph display
maximum number of module invocations (default 1000)

For more information about user settable options please consult
TCAT-PATH User ' s Manual .

135

CHAPTER 13: On-Line Help Frames

136

##tcatpath.h08

-; -TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> ACTIONS Menu
>>>>> ctruntime

Once your program is instrumented (see the "digraph " c ommand) you
need to recompile it and link it with the supplied runtime library .

The particular version of runtime you use may change depending
on the language of the programs you are processing .

The runtime programs capture essential trace file data from the
system you a re testing . The c truntime generates a standard
trace file , ready for pro c e ssing by "ctcover " .

--- - -------- - - - -------- - ------------ - --1
##tcatpath . h09

: > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
;>>> Te rminology

TCAT-PATH measures the Ct coverage value of programs under test.
Here are terms used during TCAT-PATH operation .

digraph (directed graph) -- The flowchart for the function or
procedure being studied.

segment -- A part of the flowchart (digraph) that connects one node
to another ; a decision-to-decision path.

path A sequence of segments within the program . A path may be
structurally infeasible but logically unexecutable due to

data flow within the program .

tracefile -- The record or sequence of s e gments hit during a test .
The trac e file is generated with the instrumented program .

Ct coverage -- The percentage of paths e x ecuted in one test or many
tests from the Ct path set generated by "apg ".

cyclomatic number (McCabe metric) -- A mea s ure of internal complexity
of a module based on properties of its digraph .

II

II

II

II

II

II

II

II

II

II

II

II
II
II

II

II

-
II
II

II
II

-
II

II
II

II

II
II
II
II

II

II

TCAT-PATH User's Guide

##tcatpath . hlO

> TCAT-PATH -- Path Test Coverage Analysis Tool HELP :
Trace File Description

The trace file contains data about all of the functions that
were executed during the current test . You need to process it
with the "ctcover " command to learn what path coverage level you

have obtained .

##tcatpath. hll

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> TCAT-PATH Menu
>>>>> save

The save command permits you to save the values of options
that you may have chosen during a TCAT-PATH execution.

When you type save the system prompts you for information
about whether , and where , you wish parameter values to be
saved .

##tcatpath . hl2

HELP :

-- ---> TCAT-PATH -- Path Test Coverage Analysis Tool HELP ;
>>> TCAT-PATH Menu
>>>>> release

The release command causes TCAT-PATH to display release
and version information. This information may be useful

, in identifying system problems .
·---'

##tcatpath . h13

> TCAT-PATH -- Path Test Coverage Analysis Tool
>>> All Menus
>>>>> exit

The exit command causes control to return to the TCAT-PATH
menu, or, if you are in the TCAT-PATH mene, to return to
the system.

HELP :

137

CHAPTER 13: On-Line Help Frames

138

##tcatp ath . hl4

~--- ----- ------------------ ------------------------·
: > TCAT - PATH -- Path Test Coverage Analysis Tool HELP :
; >>> refile
' ' :I The refile communicates option values to TCAT-PATH

at startup time . It also is used by the main TCAT-PATH verbs :
digraph , ic , apg , and ctcover .

Values can be set and switches chosen permanently. Values
set during execution can be saved for later use.

##tcatpath.hl5
,-------- - -------- - ------ --- ---- - ------ ---------------- -- - - - -- - - ·1

' ' : > <CHANGE THE HEADER > HELP :
' >>> !

The "!" command allows you to invoke and execute programs at
system level from within SMARTS' s internal menus . This will,

example, permit you to send text files to the printer or
call up a system directory .

##tcatpath . hl6
~----------------------------- --- ------------------·

'
> <CHANGE THE HEADER > HELP '

>>> ! !

The " ! ! • command permits execution of the previous system level
from within SMARTS ' s internal menus . For example , if the

previous system level command was to print out a text file, typing
" ! ! " will print the text file out again .

'----- --- ------ ------------------- ---- -- ------------- ------ ------ ----------- ------------ -

.II
II
II

II
II
II
·II
.II

-
II
II
II
II
II
II
II

II

II

II

II

II

II

II

II

II
II

II

II

II
II
II
II

II

a

CHAPTER14

Coverage Measure Explained

14.1 Introduction

Coverage measures describe the effect of a test - or a set of tests - has on
exercising the structure of a software system. The goal of a test coverage
metric is to ensure tests are as diverse as possible. The objective is to
ensure a test is more diverse than those which are chosen by reference to
functional specifications alone, or are chosen based on a programmer's
intuition.

For example, the popular Cl test metric describes the percentage of pro
gram segments that a test exercises. A segment is a part of the program
with the property that if any part of it is executed, then all parts of it are
executed.

Similarly, the 51 test metric is a system test completeness measure that
calculates the percentage of possible call-pairs that a test - or a group of
tests - exercises.

Here is a formal definition of the Ct test metric:

Ct Test Coverage Metric: The Ct test coverage metric measures
the number of times each path or path class in a program is exer
cised, expressed as a percentage of the total number of paths, cal
culated up to a specified iteration count K, within the program.

Note that the Ct metric depends on the user specifying a minimum itera
tion count value, K. Normally we keep K = 1, but Ct can be defined for
other values of K as well.

The key to understanding Ct is to understand how a "path is calculated".
This will be explained by using some example program passages.

139

CHAPTER 14: Coverage Measure Explained

14.2 Example Paths

A path is a sequence of logical segments that can occur in a program. A
path exists for each invocation (i.e. execution) of a program. Paths can be
classified according to whether or not they have possible repetitions. Pro
grams that do have potential repetition are called iterative programs; oth
erwise the program is called noniterative.

II

II
II

Noniterative programs have a fixed finite numbers of paths; the number II

14.3

140

may be large if the program is complex.

Iterative programs have a countably finite number, but without details of
program data flow we have to assume that iterations can be of any repeti
tion count. The problem with iteration in terms of path calculations is to
know when to "stop" the iteration.

Noniterative Programs

Consider the program passage shown below(the example is not intended
to be in the syntax of any particular programming language, and should
be understandable independent of language). The lower-case letters a, b,
c ... represent sequences of statements. The predicates x, y, ... are functions
that return logical values of some kind.

PROGRAM ONE:
a

IF (x)

ELSE

END

d

IF (y)

ELSE

END
g

b

C

e

f

II
II
II

II
II

-
II
II
II
II
11.

a
II.

II
II

II
II

II
II
II

II
II

II
II
II

II
II
II

•
II

14.4

TCAT-PATH User's Guide

In the example below, a, b, ... represent fixed sequences of statements,
called "segments". Depending on what the values for the predicates x and
y are, the program can take any one of these paths, i.e. sequences of seg
ments (the notation will be explained in more detail on the following
page):

PROGRAM ONE :

K = 0 :

1 : a b d e g

2 : acdeg

3 : abdfg

In this case there are only four possible paths, numbered above. There is
no chance for repetition, so the iteration count value, K = 0, tells us all
there is to know about this program's behavior. For K = 1, there are no
added paths because there is no iteration

possible in the program.

For a noniterative program, the number of possible paths is a combinato
rial function that is computable in advance. There may be a large number
of paths but which ones are is known by analysis of the structure of the
program and can be computed in advance.

It is important to note that some structurally suggested paths may be log
ically infeasible. In the example above this means that even though there
is a structurally possible sequence "a c d f g", it is not know for certain
that the actual predicates "x" and "y" will permit edge c and edge f to be
"co-executed". To determine this requires knowledge of the details of the
program.

Iterative Programs, Various Values of K

For iterative programs, one must keep track of the number of times each
loop is traversed. This is illustrated in the example below, in which paths
with varying values of Kare calculated.

PROGRAM TWO :

a

WHILE (x)

b

END WHILE

C

WHILE (y)

d

ENDWHILE

e

141

CHAPTER 14: Coverage Measure Explained

142

In the previous program, the paths are a function of the minimum num
ber of times the program traverses each loop. Hence, the paths have to be
shown in terms of the loop count, maximum, K.

The notation . . < {edge}> ... is used to indicate that the edge is exe
cuted at least once and possibly more times. It is important to note that
the paths are not inclusive upward; that is, even when K = 2, for example,
the notation . • . <{a}> ... still means exactly one or more repeti
tions of edge a. To show that a path is supposed to have two repetitions of
a particular edge, write ... a < {a} > ••••

Here are the paths in the example program, stated in terms of the various
possible values of K:

PROGRAM TWO:

K = 0 :

1 : a C e

K 1:

1: a C e

2 : a C <{d}> e

3 : a <{b}> C e

4 : a <{b}> C <{d}> e

K = 2 :

1 : a C e

2 : a C d e

3 : a C d <{d}> e

4 : a b C e

5 : a b C d e

6 : ab C d <{d}> e

7 : a b <{b}> C e

8 : a b <{b}> C d e

9 : a b <{b}> C d <{d}> e

K = 3 :

1 : a C e

2 : a C d e

3: a C d d e

4: a C d d <{d}> e

5 : a b C e

6 : a b C d e

7: a b C d d e

8 : a b C d d <{d}> e

9 : a b b C e

II
II
II
II

II
II

II
II
II
II

II
II
II
II

II
I
II

II

II
II
II

II
II

II

--
II
II
II
II
II
II

II
II

TCAT-PATH User's Guide

10 : a b b C d e

11: a b b C d d e

12: a b b C d d <{d}> e

13: a b b <{b}> C e

14: a b b <{b}> C d e
15 : a b b <{b}> C d d e
16 : ab b <{b}> C d d <{d}> e

As noted on the previous page, the notation. . . < {b} > ••• means that
the edge bis executed one or more times. Note that the order of these
path classes is grouped to make it easy to see what the sequence actually
is. Automatic generation of the paths may result in a different order.

It is important to understand the set of paths varies significantly as the
value of K varies. For example, note that when K = 2 you have to include
three paths that involve various repetition counts of the edge b, as fol
lows:

PROGRAM TWO :

K = 2 :

1 : a C e

and

2 : a b C e
and

3: a b <{b}> C e

Here Path 1 requires that edge bis used zero times; Path 2 requires that it
be used exactly one time; and, Path 3 requires that it be used two or more
times.

When you increase the value of K, the growth in path groups is evident:
PROGRAM TWO :

K = 3 :

1; a C e
and

2 : a b C e
and

3 : a b b C e
and

4: a b b <{b}> C e

143

CHAPTER 14: Coverage Measure Explained

14.5

14.6

144

Note that Path 3 now loses its <{b}> term, only to have it installed again
in Path 4.

It should be easy to see that a large value for K will produce a very large
set of paths. However, the programs that generate the path class groups
will always generate a set of paths that is universal in the sense that every
actual program execution will fall into a single, unique class.

The Exact Meaning of K

From these examples we can begin to understand the intended meaning
of the value of K:

The minimum iteration count, K, is a requirement on a set of
actual test paths of a program. The value of K is intended to be
the threshold value above which iterations are grouped into
equivalence classes which include multiple instances of iteration.

K=O

means that the test set will map paths that include any repetitions
of an edge or node as an equivalence class. (This is a degenerate
case that is included for consistency.)

K=l

means that the test set must include some paths that involve NO
repetition of edges or nodes, and will map paths that involve one
or more repetitions of an edge or node as an equivalence class.

K=2

means that the test set must include some paths that involve NO
repetition of edges or nodes, some that involve SINGLE repeti
tions of edges or nodes, and will map paths that involve two or
more repetitions of an edge or node as an equivalence class. And
so forth .. .

While all of the paths for some value of Kare larger than one may be very
interesting theoretically,in practice it is usually enough just to deal with
paths generated when K = 1.

Complex Looping Structures

Sometimes programs have structures that make the processing and repre
sentation of the paths very complicated. Consider the following:

PROGRAM BIG:

a

IF (x)

b

WHILE (x)

C

II
II
II
II

I
II
II
II
II
II
II
II
II
II
II
II

II

II

-
II

II
II
II
II

II
II
II
II
II

•
II
II

I
II

IF (x)

ELSE

ENDIF

IF (y)

ELSE

ENDIF

END WHILE
j

ELSE

k

ENDIF

EXIT

END PROGRAM

TCAT-PATH User's Guide

e

d

IF (x)

e

ELSE

f

ENDIF

h

EXIT

i

In this program the loop has two possible exits: One is the normal exit, g,
and the other is the abnormal exit e, which is the last fragment executed
before the RETURN statement. It is best if programs did not have such
multiple entry and/ or multiple exit statements; but, in practical reality
they do.

To do so involves using the notation .. < •• > . . , which means that the
contents of the < •• >'s can be any path composed of any sequence of the
segments named.Using this new notation here is the generated path set
for this program.

PROGRAM BIG :

K=O:
1: a k

2: a b j

3 : a b C e h

4: a b C d f h

5: a b C d g h

K=l :
l : a k

2: a b j

3: a b C e h

4: a b C d f h

5 : a b C d g h

145

CHAPTER 14: Coverage Measure Explained II

-
II

14.7

14.8

146

6 :

7 :

8:

9:

10:

11:

ab c e i <{c d fig e}> h

ab c e i <{c d fig e}> j

ab c d f i <{c d fig e}> h

ab c d f i <{c d fig e}> j

ab c d g i <{c d fig e}> h
ab c d g i <{c d fig e}> j

The above program is keeping track of the way to enter the program's
one-entry, two-exit loop structure, but once the loop is begun don't worry
about the finish of the iteration except for how the exit was taken (i.e.
either on segment g or h).

Practical Implications of Ct Coverage

Cl, called "branch coverage", tests each segment independently. Ct,

II
II

-
called "path coverage", relative to a given value of K tests all of the paths II
up to the specified iteration count K.

Ct coverage probably will take as many as ten times the number of tests II
to achieve a high Ct percentage of coverage, as will the tests needed to
attain the same Cl coverage level for the same module. Exactly how
many is a function of the complexity of the module and the diversity of II
the tests.

Ct tests for a module which will be more robust than the corresponding
(potentially smaller) set for Cl. II
That is, Ct tests can be expected to be stronger tests that tend to reveal
more errors and more-fully demonstrated program behaviors.

To a first approximation, the set of Ct-type paths for a program represent
the set of "verification conditions" that would need to be applied to a pro
gram if formal proof of correctness methods were used to analyze the
program.

Theoretical Considerations

The explanations above are based on exploiting properties of finite
sequential machines, which are universally able to model computer pro
grams. Most of the ideas used in developing path sets can be found in
books on finite automata.

II

• •
II

A finitfe auto~ata wthith a unique sbt~ting an
1

dba duniq~be edn~thg state
1
traces 11.

a set o transitions at can unam 1guous y e escn e w1 regu ar
expressions (REs).

II

II

II

II
II

II

II
II
II
II
II

I
II
II
II
II
II

II

II

TCAT-PATH User's Guide

Each path from start to end, possibly including denumerably infinite
paths, is described with regular expressions. The path descriptions that
use the < { •• } > operations are such REs.

Every computer program can be represented with only three primitive
programming units: succession, iteration, and alteration. Consequently,
the path classes described above can always be generated for any finite
nonrecursive program, so long as one is willing to accept a program
structure implied by the paths that does not correspond to the original
program. This latter happens only when the program is not "pure struc
tured"; when a program is pure-structured it translates directly into the
constructions above.

The general question of selecting the "right" set of equivalence classes is
related to the issue of choosing verification conditions for proofs of cor
rectness of programs. The thinking in relation to Ct coverage is that (a) the
set of paths should be unambiguously able to describe the actual behav
ior of programs, and (b) should approximate what would be done in a
formal proof.

Some programs contain constructions that make generating the classes of
flow more difficult. For example, a multi-exit loop contains several differ
ent kinds of flow and is complicated to reduce automatically. However,
every program can be represented in "pure structured" form, with I F's,
WHILE's and succession statements; hence the equivalence classes are
always possible to express even though they may be difficult to discover.

147

CHAPTER 14: Coverage Measure Explained II

II
II

II
II
II
II
I
II

II
II

II
II

II
II

II
148 II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

USER'S GUIDE

T-SCOPE
Test Data Observation and Analysis System

Ver 3.1

SOFTWARE RESEARCH, INC.

This document property of:

Name: ______________ _

Company: _____________ _

Address: _____________ _

Phone ________________ _

SOFTWARE RESEARCH, INC.

625 Third Street
San Francisco, CA 94107-1997
Tel : (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: STW, CAPBAK, SMARTS, EXDIFF, TCAT, S-TCAT, TCAT
PATH, T-SCOPE, and TDGEN are trademarks of Software Research, Inc. METRIC
is a trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC
is a trademark of Software Research, Inc. and Gimpel Software.

Copyright © 1995 by Software Research, Inc
(Last Update: July 14, 1995)

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 15

T-SCOPE Overview
This chapter explains the basics of T-SCOPE, including its role in testing and how it fits in
with its companion STW/Coverage tools

15.1

15.2

The QA Problem

It is a sad fact of the software engineering world that, without coverage
analysis tools, only around 50 percent (on average) of the source is actu
ally tested before release. With little more than half of the logic actually
covered, many bugs go unnoticed until after release.Worse, the actual
percentage of logic covered is unknown to SQA management, making
any informed management decisions impossible.

Questions such as when to stop testing, or how much more testing is
required are not answered on the basis of data but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with
the quality of the released software and make plans based on inadequate
data.

A related problem is that test case development is done in an inefficient
manner, that is many test cases are redundant. Cases testing the same
logic clutter test suites and take the place of other cases which would test
previously unexplored logic. Often testers are unsure of the direction to
take and can waste SQA time devising the wrong tests.

The Solution

The primary purpose of testing is to ensure the reliability of a software
program before it is released to the end user. To ensure a reliable and solid
product, the software should be thoroughly tested with a variety of input
to provide statistically verifiable means of demonstrating its reliability. In
other words, a suite of test cases should cover, in some way, all the possi
ble situations in which the program will be used.

Although a worthy goal, imagining every possible use, as well as devel
oping test data and running them, is extremely complicated and time
consuming. A more realistic goal is to test every part of the program.
According to industry studies, achieving this goal yields significant

151

CHAPTER 15: T-SCOPE Overview II

II
improvement in overall software quality. Coverage analysis improves the
quality of your software beyond conventional levels.

15.3 SR's Solution

152

Software Research, Inc. offers a solution: the 5TW/Coverage tool suite. II
5TW/Coverage ensures tests are more diverse than those which are chosen
by reference to functional specification alone, or are chosen based on a

11 programmer's intuition. 5TW/Coverage ensures tests are as complete as
possible, by measuring against a range of high quality test metrics:

• Cl, or branch/ segment coverage, measures module testing at the
unit or module testing level; it accesses the completeness of indi
vidual modules or small groups of module testing.

• 51, or call-pair coverage, measures all the interface of a complex
system to be exercised.

• Ct, or equivalence class coverage, measures the number of times
each path or path class in a module is exercised.

With the three test metrics, 5TW/Coverage ensures tests are as complete as
possible. 5TW/Coverage includes the following products:

• TCAT does coverage at the logical branch (or segment) level and
the call-graph level. It employs the Cl metric. You can choose to
test a single module, multiple modules or the entire program
using the Cl metric.

• 5-TCAT does coverage at the call-pair level. It employs the 51
metric. After individual modules have been tested, you can test
all the interfaces of the system using the S1 metric.

• TCAT-PATH does coverage at the logical path level. It employs
the Ct measure. It can easily be programmed to include or
exclude the program's modules from analysis. This allows you to
emphasize certain critical modules. Once these are identified,
TCAT-PATH allows you to extract and display the logical condi
tions that will cause that particular path to be exercised. Based on
these conditions, you can design new test suites to exercise the
path.

• T-5COPE provides dynamic visualization of test attainment dur
ing unit testing and system integration. It is a companion tool for
TCAT and 5-TCAT. While these tools report the status of modules
after-the-fact, T-5COPE visually and dynamically demonstrates
such things as segments and call-pairs hit or not hit..

T-5COPE is the focus of this manual. For complete information on use of
the other 5TW/Coverage products, please consult the proper user guides.

II

II
II

II

II

II

II

II

II
II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

15.4

T-SCOPE User's Guide

Format

This section is divided into five chapters:

• T-SCOPE OVERVIEW discusses what T-SCOPE is and how it is
used.

• QUICK START demonstrates running a basic T-SCOPE session.

• UNDERSTANDING THE INTERFACE defines T-SCOPE's GUI
features.

• GUI OPERATION explains how to use the X Window System
graphical user interface menu.

• CUSTOMIZING T-SCOPE describes the Xdejaults file, where you
can change T-SCOPE GUI defaults.

153

CHAPTER 15: T-SCOPE Overview II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

1~4 II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER16

Quick Start
This chapter is a tutorial and shows step-by-step how to run a basic T-SCOPE test session,
from initial setup to viewing coverage reports.

16.1

16.1.1

Recommendations

It is recommended that you complete the instructions in this chapter
before continuing to other sections. This will give you a feel for how the
system is organized and permit you to perform coverage analysis testing.

STEP 1: Instrumenting Your Source Code

T-SCOPE, as mentioned, is a companion tool for TCAT and S-TCAT (see
STW/Coverage Book I). T-SCOPE allows you to visualize coverage as a
program is executed. In order for it to work, you must have already have
used TCAT or S-TCAT to instrument the source program, and compile the
instrumented program to create an object file.

T-SCOPE takes over from there. It links the object file to its supplied runt
ime module to create an executable. As the program executes, T-SCOPE
dynamically updates its charts to show you the exercised program parts
of a program and coverage percentages.

For the first part of this tutorial, you will need to use TCAT to create an
object code file.

1. Using the TCAT User 's Manual as reference, go to the SR/demos/cover
age/tcatC.demo directory. A program named example.c should be listed
there. This is our target program.

2. Instrument example.c to place special markers at each logical branch
and then compile the instrumented version.

3. If you followed (2), you should have created the following files:

An object file named example.i.o. This will file will be linked with T
SCOPE supplied runtime object module to create an executable.

Three directed-graph files: main.dig, proc_input.dig and chk_char.dig.
When used with T-SCOPE, these displays will dynamically display
brnnches as they are exercised during execution.

155

CHAPTER 16: Quick Start

156

4. Move these files over to your working SR/demos/coverage/tscope.demo
directory. Steps 3 through 8 of this tutorial show you how to display
Cl coverage.

In Steps 9 through 11, you will be trying to display 51 coverage. To
create an object file:

1. Using the 5-TCAT manual as reference, go to the SR/demos/coverage/
stcatC.demo directory. A program named example.c should be listed
there. This is our target program.

2. Instrument example.c to place special markers at each logical branch
and then compile the instrumented version.

3. If you followed (2), you should have created the following files:

• An object file named example.i.o. This file will be linked with
T-SCOPE supplied runtime object module to create an exe
cutable.

• A call-graph file named example.i.P which displays the caller
callee relationship of the example.c program.

4. Do not move these files over to the SR/demos/coverage/tscope.demo
directory until Step 9.

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

16.1.2

T-SCOPE User's Guide

STEP 2: Starting Up T-SCOPE

Before you begin, make sure you are in the X Window System running a
window manager (e.g. mwm, olwm, etc.)

You should start with the screen organized in a particular way, as shown
in Figure 56.

Initialize an xterm-type window by using the mouse to click on New
Windows or issuing the command

xterm &

from an existing window. The xterm window will serve as the T-SCOPE
invocation window.

Move the window to the upper left of the screen. Go to the SR/demos/cov
erage/tscope.demo directory. This directory is supplied with the product,
and it consists of an example C program named example.c.

This application allows you to select from several types of foods. By
selecting various foods, you are actually exercising various logical
branches (or segments) of the example program. The goal is to achieve
the highest amount of Cl (logical branch) coverage possible for this pro
gram through your input. The more selections you make, the higher the
coverage.

157

CHAPTER 16: Quick Start

FIGURE 56

158

When initiating this quick start session, your display should look like
this:

Setting Up the Display (Initial Condition)

II

II
II

II

II
II
II
II
II
II

II

II
II
II

II
II

II

II

II

II

II

II

II

II

II

-
II

II

II

II

II

II

II

II

16.1.3

T-SCOPE User's Guide

STEP 3: Creating an Executable

When you used TCAT, you should have compiled the example.c program
to create an object file named example.i.o. In this step you are going to link
it with T-SCOPE's supplied runtime object module tsruntime.o.

1. In the working T-SCOPE directory type:
cc -o a.out example.i .o tsruntime.o

2. This should create an executable named a.out.

159

CHAPTER 16: Quick Start

FIGURE 57

160

When creating an executable, your display should look like this:

l-rlU 4~, . ._/!f..·!t ... ~.f,/prOCM;t;-/-q'(,'U~.°"""'t CC -0 4 . N
•e,-le.1.ol1"Vit i""·" ,_,.,u t3J "'-ll6./m,.:.&1pr<d>;V'd!-t,Q:,:,,cver-'t/tm,peC,- ! I

Creating an Executable

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

-
II

II

II

16.1.4

T-SCOPE User's Guide

STEP 4: Invoking T-SCOPE

Now, invoke T-SCOPE.

1. Position the mouse pointer, so that it is located in the invocation win
dow.

2. Activate it by clicking the mouse pointer on it. This window becomes
the main control window. During your session, all status messages
and warnings are displayed in this window.

3. To invoke T-SCOPE, type:
Xtscope

4. When you type in this command, the T-SCOPE window pops up.

5. Move the T-SCOPE window to the upper right of the screen. You can
move a window by clicking on its title bar and dragging it.

6. If you want to start over, you can terminate T-SCOPE by clicking on
the Exit button.

161

CHAPTER 16: Quick Start

When invoking T-SCOPE, your display should look like this:

FIGURE 58

162

- ,
t_.,._ •~J "'-·'LVw •. :.ilpr°""t '*"'sic.,...~ (.iu.-..-, « -g •• ..,

t e,_le.,.~ l<nrltuoe.o
t __ ,w ,11 .,._,,lVttw.Z.ilwoo.oct doooo$1'~-.·c:,,i,.«IPO(• ...,: ·-
Xt~ ~ .. - ::.1 ,or- 'iJl (l11Q9.1'}1 Q" C.0,,.,,1</tt ~ ~i-• Rete•ch. !nc,

Invoking T-SCOPE

~ullv.,. I)'..d,g,.,t, I
~I (.,_.oqel {1 t_-8<1!')

1~

II

II

II

II

II

II

II

II

II

II
II

II

II

II

-
II

II

II

II

II

II

II

II

II

II

II

II
II

II

II
II

II

II

II

16.1.5

T-SCOPE User's Guide

STEP 5: Selecting Directed Graphs

Once an executable is created, you can select a module's directed-graph
and coverage chart. These displays will allow you to dynamically view
coverage.

In this step, you are going to select the directed graph displays for each of
example.e's modules: main.dig, proc_input.dig, and chk_char.dig:

1. Click on the Xdigraph button.

2. A Digraph Selection Box box pops up. The three directed graphs
should be listed in the Files list box.

3. First, select chk_char.dig's directed-graph display by:

• Double clicking on chk_char.dig in the Files list box.

• Or, highlighting chk_char.dig in the Files list box and selecting
OK.

• Or, typing chk_char.dig in the Selection entry box and select
ing OK.

4. chk_char's directed-graph pops up.

5. Select the directed-graph displays for main.dig and proc_input.dig just
as you did for (3).

6. Arrange the three directed-graphs so that the invocation and T
SCOPE windows are not covered. When you execute the example.c
program, these windows must be clear.

163

CHAPTER 16: Quick Start

FIGURE 59

164

-

When selecting directed-graphs, your display should look like the one
below:

E_.1') ~~)~, l6tst~ .2.i/~~t/~.1co,,r-.'(/tnope(.oe.:, l tt -.J '"·°"
t e>cW!e. 1.0 urv,u ... o
1.....-,c.!o HJ·Jt.:ae·JG;~t~.:.&tp,-oi;,ct,-,<c,,.,e,-••~,'t't!.:CIPf(.- I •tsc<JP<'
Al <CIIP! Vet 3.1 fc. !ii'! 1 1L'09/':.W,
\Cl COPTi9m 19'):..<J.4 Sot~ P..WYO!'I. !1>;.
a

Selecting Directed Graphs

II

II
II

II

II

II

II

II

II
II
II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

16.1.6

T-SCOPE User's Guide

STEP 6: Selecting Coverage Charts

In this step, you are going to select the Cl Coverage charts for each of the
program's modules. During a program's execution, these strip charts
show the actual percentage of coverage obtained.

1. Click on the Cl Coverage button.

2. A Cl Module Box box pops up. example's three modules should be
listed in the Modules list box.

3. First, select main by highlighting it.

4. Click on the OK button.

5. The Cl value chart for main pops up.

6. Follow the steps in 1-5 for proc_input and chk_char.

7. Arrange the three value charts so that the invocations window and
the T-SCOPE windows are not covered up.

165

CHAPTER 16: Quick Start

FIGURE 60

166

When selecting Cl coverage charts, your display should look like the one
below:

• :il
l--1~ ·~l/huJoeflf,,,1tw.=.f,,,l""OQl.l:t,doo,,;,1,~-*i;,t~ • .,.,,.,
~ .,..., le.1 .0 t,r111t.1•.o
[aooer"• A3J,"-e,·]ft/,1•.~.V.,..~t.de•cwc-q/(.,t~."""'°. ti 1<0N"
~t "cu 'ffr 3.1 for 5Ul {ll/v3.'9,11

0
d c-,,,;,t 1390-~ Sofwrt p~~- lr-.:.

,- .lit~c®e: [1(-0,,,,e,r-

~ll,
l-'~~-------1 ,__ ____ l-',~"·-------1

r: le:~"' ll: ,,,n., ~ 1- "'""·" '4
le: <H_d'w (1; ''•"':

Selecting C1 Coverage Charts

AM! 9
"" L

""''"

II

II
II

II

-
II

II
II

II
II

II

II

II
II

II

II

II

II
II
II

II

II
II

II
II

II
II
II

II
II
II

II

II
II

16.1.7

T-SCOPE User's Guide

STEP 7: Running the Application

At this point you should have an executable named a.out and all the dis
plays available for example.c should be displayed on your screen. In this
step you are going to run that executable. By running the program, you
will be exercising the program and watching the directed-graphs and Cl
coverage charts dynamically update.

This application is designed to ask you which type of food in the San
Francisco, CA area you would like to eat. By selecting particular types of
food, you are actually exercising creating test cases to exercise the pro
gram's logical branches. The more combinations you select, the more
branches you will exercise.

To run the application:

1. Make sure the Enter command to run specification region says a.out
for the name of your executable.

2. Click on the Go button in the T-SCOPE window.

3. The T-SCOPE window's options will gray out and the program will
start up in invocation window.

4. It prompts you:
What type of food would you like?

5. In order to get the most coverage from this test case run, type in
1 2 3 4 5 6 7 8

for the eight types of foods listed and press Enter.

6. Eight restaurants that reflect the eight types of food you selected will
be displayed, the directed-graphs dynamically display the exercised
logical branches, and the value charts update the percentage of cover
age.

In the directed-graph, please take note of the following:

• Thick lines signify logical branches that have been exercised.

• Thin lines signify logical branches that have not been hit. On
color monitors these lines are represented by the color yel
low.

For color monitors only:

• The color pink represents the most recently executed logical
branch.

• The color yellow represents a logical branch that has been hit
less than five times.

• The color green represents a logical branch that has been hit
between five and 15 times.

• The color rQd represents a logical branch that has been hit
more than fifteen times.

167

CHAPTER 16: Quick Start

168

The default colors and lower and upper thresholds amounts can be
set for each directed-graph in the Digraph Options window. Please
refer to Section 3.2.4.2 for further information.

7. After the restaurants are displayed, the program prompts you:
Do you want to run it again?

During an ordinary testing situation, you would normally run the
application a couple of times, selecting various combinations of food
types. For now, however, just type inn for no. You'll soon have plenty
of opportunities to run several test cases.

8. The final coverage percentages for each should be:

• chk_char = 66.66%

• main = 55.56%

• proc_input = 62.50%

An ideal testing situation warrants around 85 percent or higherC1
coverage. In the case of example.c you could rerun the program using
various test case selections.

II

II

II
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II FIGURE 61

II

II
II
II-

II

II

II

T-SCOPE User's Guide

When running the application, your display should look like this:

..... ;c.,..::,,,,
Chi=e - ~nan St';.< l~
(h,,...,~ - ~Md0- 1Mtl'd
Chineie • (O'll......,llon111 51~lt

""~ r,....,r
I Juli.-,

I
J~!~

. ""' -,
• fc,,, C,t ~ Du"' 13'•• S.uer~ ~-'..'!••

!
Ml¥> ~,ll~ ~l411¥•l ~ l-.elrf"'"'! 9!'1,-;'868
Ore i_.."_¥>1 i;;:{.Cleooe,,t ~1-m1
ret 1.,1 l~ (l-nt 38~-a,:7.,

· €1~,: hu~, Re:t411¥lt 1~1 c1_,1 3111>·'386'1
Ome.i,,. ;..:am,, 11149 L-d ni-93:-f.
(,,1111,., Pi,tor_,l~ 1€,v)P-Jl 3S7-$,if,e
Flmt.c&a,·~ u<juSlattucf,Oalla,,d

k (~1~tl'l',,•-'.loSoft ... eol!e•e,rch . lnc.. -·- ---

Running the Application

66.~ ,_

1, ..
I

169

CHAPTER 16: Quick Start

16.1.8

110

STEP 8: Cleanup

To complete the session for Cl coverage:

1. Close the directed-graphs and Cl Coverage charts by clicking on the
File menu and selecting Exit.

2. Close the T-SCOPE window by clicking on the Exit button.

II

II
II
II

II
II

II

II

II
II

II

II
·11
II

II

II

II

II

II

II

II

II

II

II

II

II

II FIGURE 62

II

II
II
II

II

II

II

T-SCOPE User's Guide

When completing the Cl session, your display should look like this:

*'trLctn'i"I
O>inese -"-..,51yle
Ch,~e ';,e,,l"MC10r1H>1td
(h1nr.e - (....,ot ,Of .. l Style
~.~

''"""' h41, ,_

f09 (aly ~,,.,.. 131•• S..tcft·~ 98:: -:"' •)'
~ ~·1l]q ~-df'II 839 WIN~ 95l-'781ie
Ote.w,Fe,1...-on• 7:-tCl....e,,r ~-TI~l
1,ti... lfl":l[l--.t 387-a,,i;.;
Elnersllan1st>P.est.atr¥1tl':IO!Cl_,t D;·!fb·,
t.MteaoSu:- u-,'lLoobard '.'71-'.E~
Gr1tonePntcr..-ite tf,(,l'lP,,,,,oll W-13,i'xl
n, .. ular-bt!ca,e uSo.•Shottw.OaJ1.,.,d

~\IO'J_,l ton.,i 11 -m?r,

~: .1,.,-,.,

t-1~ "'l-1hoioe/J6i~."-1;,'11<<>0.£t/dew:>u'co...-a,r,.e'C/tsc~.duo;:: I

Completing a C1 Coverage Session

171

CHAPTER 16: Quick Start

16.1.9

172

STEP 9: Setting Up for S1 Coverage

In this step you are going to set T-SCOPE up to work for 51 (call-pair)
coverage.

1. In Step 1 of this tutorial you should have instrumented for call-pair
markers and then compiled that instrumented program to create two
files named example.i.o and example.i.P. Copy these file to your current
working T-5COPE directory.

2. Create an executable named a.out by typing:
cc -o a . out example . i.o tsruntirne . o

3. Invoke T-SCOPE by typing:
Xtscope

and then move the window to the upper right hand comer of the
screen.

4. Click on the Xcallgraph button.

5. A Call Graph Selection Box pops up.

6. Select the example.i.P call-graph.

7. The example.i.P's call-graph pops up.

8. Click on the 51 Coverage button.

9. A Sl Selection Box pops up.

10. Select the example.i.P file.

11. The Sl Coverage chart pops up. During program execution this chart
will display the percentage of coverage achieved for each executed
test case.

12. Arrange the call tree and the value chart so that the invocation and
the T-SCOPE windows are not covered.

II

II

II

II

II

II

II

II

II

II
II

II
II
II

II
II

II

II

II

II

II

II

II

II
II

II

II
II

II

II
II

II

II

•

FIGURE 63

T-SCOPE User's Guide

When preparing for dynamic S1 coverage, your displays should look like
this:

t... . .l
c--1ca ~l<lhcw.!,IE.J,1~.:.E./p,-od.,cvo..o./C(>.>er.-1.,..t,.QJ.,(.dott;, ~ cc -o a.""
\ e,-1,. ,.ot1ru\t1...,.o
! _,..Le.a •7hl'hcw,oe,l!,,~t.;.~,6,/~t/~o;..,,er~'('u.c(fle(.aie..:.% M::«11'
lttOP; (~ ~, te.N,

(_.LC• 48J ,,.._,LE,,ot~ ••• blorod.,ctlONoJ1•""'"..e'C/t~(QF>f(.-:! ~t~
~,~ Ver >.l •co 51.N '1!'('9/$4'

0
o(op,.- 1ct,t 199i~'14So11-ePe,e,rcn 1,,. ,

Xt.-•c~: \C~! Jt.-- •«-h,,!.f'

i:_,i- \!=tion,- Zoo:- !f, :...., ilJ,

LI_
DD
[J D

Preparing for S1 Coverage

,(ullv~:J ~d,~..i- J
St(overql CILIM!rq j

E11,..-~10,...,:

l

II

l
I

173

CHAPTER 16: Quick Start

16.1.10

174

STEP 10: Running the Application

To run the application:

1. Make sure the Enter command to run specification region says a.out
for the name of your executable.

2. Click on Go button in the T-SCOPE window.

3. Run the program just as you did in Step 7, making sure to select all
eight types of food listed.

4. As the call-graph updates its exercised call-pairs, please take note of
the following:

• Thick lines signify call-pairs that have been exercised.

• Thin lines signify call-pairs that have not been hit. On color
monitors these lines are represented by yellow.

For color monitors only:

• The color pink represents the most recently executed call
pair.

• The color yellow represents a call-pair that has been hit at
least five times.

• The color green represents a call-pair that has been hit
between five and 15 times.

• The color red represents a call-pair that has been hit more
than fifteen times.

The default colors and lower and upper thresholds amounts can be
set for a call-graph with the Call Graph Options window. Please
refer to Section 3.2.1.2 for further information.

5. When the program prompts you if would like to run the application
again, type in n.

6. The S1 coverage value should be 28.57 percent. For a program to be
adequately exercised, S1 coverage should be 90 percent or higher. S1 's
goal is try to exercise all of the interfaces of a program, which means
strategically planning effective test cases beforehand.

II

II

II

II

II

II

II

II

II

II
II

II

II
II

II
II

II

II

II

II

II

II

II
II
II

II

II
FIGURE 64

II

II
II

II

II

II
II

T-SCOPE User's Guide

After running the application, your display should look like this:

~.,!~:' 5'•~ 11,._ St•1lt
lhm,-so - SMtooo et-, .. n1...i
Ch,~... - (a~tl(n!J ~t ~lt
~.~
frffl<h
lt.blla,
1 ,~

Fv,, Cit~ Dine,- l3';o• 8atte<J 'Jc'C ·~!
~ ,-,u- 1>.o,:u,.r¥1t rn kYney <llil'-7868
l); ,.-,p. , , ...,...11 7:'f.O- -t ::::1-3.,,J.
ltt 1U lK'::l ci_..,t ;;:r-&::'56
E,ner· b ush ~.,,,,t 19'•1 Cletotr• ~-'J:llj,,,
Chttn " Su=orr>t- 1u::1 u,,,w,~ ~n-93.."\i
V1• 00! ~ltt.erlr'te 11,((j P.-ll ~-· S.'ill
n,~t· t¥be<J,- «5'• St.otnrl o.ii d

D

Running the Application

I
I

175

CHAPTER 16: Quick Start

16.1.11

176

STEP 10: Cleanup

To complete the session for Cl coverage:

1. Close the call-graph and 51 Coverage chart by clicking on the File
menu and selecting Exit.

2. Close the T-SCOPE window by clicking on the Exit button.

II

II
II

II

II

II

II
II

II
II

II

II

II

II

II

•
II

II

II

II

IJ

II

II

II

II

II

II FIGURE 65

II

II

II

II

II

II
II

T-SCOPE User's Guide

When completing the 51 session, your display should look like this:

,;.•is),~ .. •- ·a,·•

""'ncan5'•1
u,,ne,: . --st.,1.
O, i,,e,:• •!iel,,ood0-1<!0\t.eol
tn,ne•• - C-n<'W\111 Style o....,..-.
l'r...,.,
luh11n
J_,.~.

>o,, (itJ P,= t,u11 anur~ ~-:.>i•o1
lu...-, •·111- p_.1t._...-.t 83'9 1-.trt"'Y '56·7863
~~esu.ran\ 7:1(.Cl_,t 221-5351
Yet 11,y, le:"} n_,, 38?-fr-s.;
[.,.,.,, 11.,,,,!.h P.e11...- • 1t lM (l-,t 381:,-$W
(h,,te,nSu;-...... J09lc,,r,tlanl 771-93.."6
l'.,rncr,o ~mo--anu IW9 P-11 39'.'-94'iB
Flirt, k~ ..i':,l•ShettUO CL911.-.cl

llc,!!O<J'"""!tor..,11 09-'1n'n

••• n, 1i- ,,:•••

c-..,c. •~1 _,.._,1t,t1~.2.,;;p,-O<Mt1-1-=--*1Crt,«f4C.dtt,o,t I

Completing a S1 Coverage Session

177

CHAPTER 16: Quick Start

16.1.12

178

Summary

If you successfully completed the preceding 11 steps, you've seen and
practiced the basic skills you need to use T-SCOPE productively.

In this chapter you should have learned how to:

• Link the created TCAT or 5-TCAT runtime object file with the T-
SCO PE supplied runtime module.

• Invoke T-SCOPE.

• Select various displays.

• Run an application and watch the displays dynamically update.

For best learning, you may want to:

• Repeat Steps 1- 11 without the manual and experiment by run
ning the application several times and looking at the amount of
coverage your test input receives.

• Repeat Steps 1 - 11 with a small application of your own.

• Tum to the chapters on the user interface and operation where
you had difficulties. The table of contents and the index can help
you locate the topic you want.

II

II
II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER 17

Understanding the Inter£ ace
This chapter covers the basic X Window System graphical user interface operations of T
SCOPE. It demonstrates using T-SCOPE from the OSF /Motif X Window System.

17.1

17.1.1

i;tGURE 00

Basic OSF/Motif User Interface

This section demonstrates using the file selection dialog boxes, help
menus, message dialog boxes, option menus, and pull-down menus.

If you are familiar with the OSF /Motif GUI style, you can go on to Sec
tion 17.2.

File Selection Windows

T-SCOPE's file selection windows allow you to select a directed-graph
display or a call-graph display.

Filter

I /hooe/12/kluepfel/tscope/•.dig

Directories Files
mlmll ~ r-ex-am-pl-e.-ch_k_-ch-ar-.d-ig --, '

tscope/ .. examPle . fl'lain.diq

rmwm·

13
Selection

I Ykluepfel/tscope/example.proc_input.dig I

File Selection Window

179

CHAPTER 17: Understanding the Interface II·

180

Filter entry box Specifies a directory mask. When you click the Fil-
terpush button,the directory mask is used to filter II
files or directories thatmatch this mask (or pattern).

Directories list box Lists directories in path defined in the Filter entry

11 box. Use it to locate the desired directory.

Files list box Lists files in the path defined in the Filter entry box.

scroll bars Move up/ down and side/ side in the Directories and
Files list boxes. You use them to search for the appro
priate directory or file.

Selection entry box Selects and enters a file name.

Use the three push buttons at the bottom of the dialog box to issue com
mands:

OK

Filter

Cancel

Specifies a directory mask. Accepts the file in the Se
lection entry box as the new file or the file to be
opened and then exits the dialog box.

Applies the pattern you specified in the Filter entry
box. It lists the directories and files that match that
pattern.

Cancels any selections made and then exits the dialog
box. No file is selected as a result.

To use a file selection dialog box:

1. You can restrict the file selection operation to a named region(direc
tory path) by typing in a directory path name in the Filter entry box
or by clicking on a path name in the Directories entry box. Then click
on the Filter push button.

2. To select a keysave file name, do one of these three things:

• Double click on the file in the Files entry box.

• Highlight the file in the Files entry box or type in the file
name in the Selection entry box and click on OK.

• Highlight or type in the file name and press the Enter key.

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II
17.1.2

II
II

II

II

II

II
II

II
II

II

II

II

II

II

II FIGURE 67

II

T-SCOPE User's Guide

Help Windows

T-SCOPE provides on-line help for each of window.This brings up the
text corresponding to where you invoke the help. In other words, if you
invoke it at the Main window, the Help window displays information
pertinent to Main window. Here's how to use the help.

1. Click on the Help button.

2. The Help window pops up with text corresponding to the point at
which it was invoked.

3. You can use the scroll bars to move up/ down and side/ side. If you
don't see what you need, you can search for specific text. To do this:

Click on the Action menu and select the Search option. A dialog box
(shown below) pops up.

• Type in the pattern you want to search for and then click on
OK or press the Enter key.

• If the pattern is found, then the window automatically scrolls
to the location of the specified pattern.

• If you select another Help button from another window
while the current one is displayed, the Help window scrolls
to the content of the new window.

• To close the window, click on Action and select Exit.

Search Pop-up/Help Window

T-SCCPE. ¥er 3.1

(c> ~19ht 1990-1994 ~ Soft~re Research ,

~l RIGHTS RESERVED.

T-SCCPE helps the tester v i sualize the
effect of' Cl <logica l branch) and/or- S1
<ca ll-pair) test ing by di splat'.lins a r an91'
of infomation dytldlllically -- as the tester
interacts with the progra111. I t does thi s
with the foll owing di splays:

Directed Gr-,ph Di sp lay : The directed graph
d1spl ~s are generated for each ll!Odule f ro,i
TC~T instru111entat1on on a progra!Yl (nared
IIIOdu lena111e .d19>. which shows a JOOdule' s

181

CHAPTER 17: Understanding the Interface

17.1.3

FIGURE 68

182

Message Boxes

Pop-up message dialog boxes have three purposes:

• They display warnings and error information.

• They ask you to verify that you want to perform a task.

• They ask you to enter a command.

To remove a message box after you have read it or to tell T-SCOPE to go
ahead with a command, click on the OK button. If you want to cancel a
command, click on the Cancel button.

~.

Message Box

~l l~: No files selected!

r-~-

; Cancel
I

II

II
II

II

II
II
11.

II

II
II

II

II

II
II

II

II

II

II

II
II

II

II
II

II

II
II

II
II

II
II

II
II

II

II

17.2

FIGURE 69

17.2.1

T-SCOPE User's Guide

Main Window Features

All the functionality necessary to operate T-SCOPE is accessible from the
Main window.

3.1 (11/09/9

Di spla!:J Options

jxcal ltree I !Xdigraph

js1 Coverage ! !cl Coverage !

Enter cownand to run:

..__G_o _ __.l ... 1 __ c_1_o_se _ ___.l _j __ H_e_l_P_....,
11

~

Main Window

It includes the following features:

• Xcalltree button: Selects a program's call tree display.

• S1 Coverage button: Selects a program's 51 value chart.

• Xdigraph button: Selects a program's directed-graph displays.

• Cl Coverage button: Selects a program's Cl value chart.

• Enter command to run: specification region: Specifies the name
of a program's executable.

• Go button: Executes the named executable in the Enter command
to run: specification region.

• Exit button: Closes the Main window.

• Help button: Provides on-line help for the Main window.

Xcalltree Button

The Xcalltree button brings up a Call Graph Selection Box from which
you select a program's call-graph file,filename.i.P, generated from 5-TCAT.

183

CHAPTER 17: Understanding the Interface

FIGURE 70

17.2.1.1

17.2.1.2

184

Shown below is a call-graph from our supplied example program named
example.i.P. It displays example's functions and its call-pair connections
during a test case's execution.

The features of the call-graph window are described next.

!:.i le Qpt1ons Zoom ln Zoom O!!_t

main

proc_i nput

r ?
- f !lbuf

strlen chk_char

(c) Cof'\jright 1990-94 Software Research , Inc .

Call-Graph Display

File Menu

Exit: Closes the call-graph.

Options Button

,~

The Options button invokes the Call Graph Options window, which
allows you to adjust the geometry of a call-graph.

II

II
II

II

II

II

-
II
II
II

-
II
II

II
II

II
II

II

II

II

II

II

II

II

II
FIGURE 71

II

II

II

II

II

II

II

II

II

T-SCOPE User's Guide

_,,. ··aTr~ra·ph ria;tiOO ,..

Z00!1 OPTIIJlS: ANIHATIOtl CHARACTERISTICS:

.5
Zoo"' Sca le: t Highlight Color:

pink I
Low-l evel Color :

red I
EDGE CHARACTER ISTICS:

1.0 Mid-level Color:

Size:
4e l low I

1.0 High-level Coler:
qreen I

Aspect Ratio: • !
Noober Of Hi t s Threshold

Lower Thresho 1 d: Upper Thresho 1 d:

I 5 I 115 I
!

G I Reset I I Close I I Help I

Options Window

At the bottom of the window, there are four buttons:

Apply

Reset

Close

Help

This button applies information you change from the
Call Graph Options window to the call-graph.

This button sets the Call Graph Options window to
the default settings.

This button exits the Call Graph Options window.

Displays on-line help for the Call Graph Options
window.

185

CHAPTER 17: Understanding the Interface

FIGURE 72

186

tsco e Ver 3 .1 (11/ 09/ 94) - He I

i!_ction

Help Window

Help for Opt ions window.

At the bot tore of the window, there are
four buttons :

o ApplH. Thi s button app l ies i nforma
tion HOU change from the Options win
dow to the call - graph .

o Reset. Thi s button sets the Options
window to the default settings.

o Close. Th i s button exits t he Options
window.

The following opt ions are avai lable in
the window:

The following options are available from this window:

• ZOOM OPTIONS change the percentage a call-graph zooms in
or zooms out.

• Zoom Scale corresponds to the magnitude a call-graph's
Zoom In and Zoom Out buttons redraw the call-graph. The
Zoom Scale default is set at .5 which magnifies the call-graph
by 50 percent if the Zoom In button is used or reduce it by 50
percent if the Zoom Out button is used.

Moving the slide ruler to the left decreases the zoom percent
age; moving it to the right increases the zoom percentage.

• EDGE CHARACTERISTICS allow you to set the following
options which apply specifically to the functions' appearance in
the call-graph:

• Size determines the size of the functions. The default is set to
1.0 which represents the real size of the functions .

Moving the slide ruler to the left decreases the size of the
functions .

• Aspect Ratio changes the length to width ratio of a function. The
default is set to 1.0. This default translates to a 1 to 1 ratio
between the length and width.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

T-SCOPE User's Guide

Moving the slide ruler to the right decreases the height of the
functions . Moving it to the left of 1.0 creates a 1 to <1 width to
length ratio. Moving it to the right of 1.0 creates a 1 to >1
width to length ratio.

• ANIMATION CHARACTERISTICS options allow you to
change the colors which reflect the dynamic coverage of a pro
gram.T-SCOPE dynamically shows the exercised call-pairs and
their functions through colors.

• Highlight Color reflects the color of the call-pairs and their
functions that are the most recently executed in an executed
test case. Default= pink.

• Low-level Color reflects the color of the functions before test
case execution and the color of the call-pairs and their func
tions during test case execution when call-pairs are exercised
equal to or less than the number of times specified in the
lower threshold. Default = yellow.

• Mid-level Color reflects the color of the call-pairs and their
functions during program execution when call-pairs are exer
cised between the lower and upper thresholds. Default =
green.

• High-level Color reflects the color of the call-pairs and their
functions during program execution when call-pairs are exer
cisedequal to or more than the number of times specified in
the upper threshold. Default = red.

• Lower Threshold specifies the lower coverage threshold
number.The default is 5. When a call-pair is hit five times or
less,it is colored yellow or the color specified for the Low
level Color.

• Upper Threshold specifies the upper coverage threshold
number.The default is 15. When a call-pair is hit 15 times or
more,it is colored red or the color specified for the High-level
Color.

187

CHAPTER 17: Understanding the Interface II
17.2.1.3

FIGURE 73

17.2.1.4

188

Zoom In Button

The Zoom In button reduces the display to the magnitude specified in the II
Call Graph Options window's Zoom Scale option.

Below is an example of call-graph zoomed in three times. II

lfXtScooe: Xc-3 11tree exarnole. i .t-'.
II ':_de Qpt1ons Zoo• _!_n Zoa, D,,_t

"Zoomed-In" Display

Zoom Out Button

fi lbuf

The Zoom Out button undoes the last Zoom In applied.

NOTE: You can not Zoom Out or minimize the initial call-graph display.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

17.2.2

FIGURE 74

T-SCOPE User's Guide

S1 Coverage Button

S1 Coverage button brings up a S1 Selection Box where you can select a
program's call-graph file generated from S-TCAT. When you select the
call-graph file, a chart like the one below pops up.

After each test case for a program is executed, it updates to reflect the per
centage of coverage achieved. It consists of a File menu that allows you to
close the window.

S 1 Coverage Chart

189

CHAPTER 17: Understanding the Interface II
17.2.3

FIGURE 75

190

Xdigraph Button

The Xdigraph button brings up a Digraph Selection Box from which you II
select a particular module's directed-graph that you want to see dynami-
cally show exercised logical branches during test case execution.

11 Directed-graph files are listed as modulename.dig.

Shown below is one of the directed-graphs from the supplied example
program named main.dig during a test case's execution. II
The Xdigraph window is described next.

E_ile Qptions Zoo,, !_n Zoo~ ~t

13

27

Directed Graph Display

II

II

II

II

II

II

II

II

II

II

II

II

II

II
17.2.3.1

II

II
17.2.3.2

II

II

II

II

II

II

II

II
FIGURE 76

II

II

II

II

II

II

T-SCOPE User's Guide

File Menu

Exit: Closes the directed-graph.

Options Button

The Options button invokes the Digraph Options window, which allows
you to adjust the geometry of a directed-graph's nodes and edges.

01tu 1--~ Oct 100

ZOOH OPTIONS:
ANIMATION CHARACTERI STI CS :

.5 H1ghl1ght Color : lo,nk I ZOCMII Scale: -I

Low- level Co lor : I red I NODE CHARACTERISTI CS:

Shape: I Ci r c le c ! Hid-level Color: li..tellow I
I
I

1.0
Size: • I High-level Color : I qreen I

1.0 ! Aspect Ratio: • I
Nurrtb~r Or Hits Threshold

-
E!l;E CHARACTERISTICS: l ower Threshold: Upper n..-est-old:

Eccentr 1 c 1 ty :
1.0 Is I 115 I .,

-~-

11
App ls I I Reset I I Cl 0$e I I Help I

Options Window

At the bottom of the window, there are four buttons:

Apply

Reset

Close

Help

This button applies information you change from the
Digraph Options window to the directed-graph.

This button sets the Digraph Options window to the
default settings.

This button exits the Digraph Options window.

Displays on-line help for the Digraph Options win
dow

191

CHAPTER 17: Understanding the Interface

FIGURE n

192

i !lction

Help Window

Help far Options window.

At the bottom of the window , there are
four buttons:

o Appl~. This button applies inforea
t 1 on ~au chan9e froo the Opt 1 ans win
dow to the directed sraph.

o Reset. This button sets the Opt i ons
window to the default settin9s.

o Close. This button exits the Options
window.

The follobJing options are available in
the window:

o ZOOM OPT IONS change the percentage a

The following options are available from this window:

• ZOOM OPTIONS change the percentage a directed-graph can
zoom in or zoom out.

• Zoom Scale corresponds to the magnitude a call-graph's
Zoom In and Zoom Out buttons

• redraw the directed-graph. The Zoom Scale default is set at
.5 which magnifies the call-graph by 50 percent if the Zoom
In button is used or reduce it by 50 percent if the Zoom Out
button is used. To change the default:

Moving the slide ruler to the left decreases the zoom percent
age; moving it to the right increases the zoom percentage.

• NODE CHARACTERISTICS allow you to set the following
options that apply specifically to the directed graph's nodes, or
decision points.

• Shape determines the shape of the node. Node shapes are
defaulted to circles. Other available shapes include boxes
ovals, or outlined circles. To change the default chape, click
on the option menu and drag the mouse to the desired
option.

• Size determines the size of nodes. The default is set to 1.0.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

T-SCOPE User's Guide

Moving the slide ruler to the left decreases the size of theno
des; moving it to the right increases the size.

• Aspect Ratio changes the length to width ratio of a node. The
default is set to 1.0. This default translates to a 1 to 1 ratio
between the length and width. A ratio different from 1 to 1
does not work for circles--only for oval or box-shaped nodes.

Moving the slide ruler to the right decreases the height of the
functions. Moving it to the left of 1.0 creates a 1 to <1 width to
length ratio. Moving it to the right of 1.0 creates a 1 to > 1
width to length ratio.

• EDGE CHARACTERISTICS allow you to change the edge
shape, or logical branch shape.

Eccentricity determines ellipse eccentricity of edges, chosen
from a base value of 1.0 (the default) with a slide ruler. Mov
ing the slide ruler to the left of 1.0 decreases the eccentricity;
moving it to the right increase eccentricity.

• ANIMATION CHARACTERISTICS allow you to change the
colors which reflect the dynamic coverage of a program. T
SCOPE dynamically shows the exercised edges.

• Highlight Color reflects the color of the edge that is the most
recently executed from an executed test case. Default = pink.

• Low-level Color reflects the color of the edges before test
case execution and the color of the edges during test case exe
cution when they are exercised less than the number of times
specified in the lower threshold. Default = yellow.

• Mid-level Color reflects the color of the edges during pro
gram execution when they are exercised between the lower
and upper thresholds. Default= green.

• High-level Color reflects the color of the edges during pro
gram execution when they are exercised equal to or more
than the number of times specified in the upper threshold.
Default = red.

• Lower Threshold specifies the lower coverage threshold
number.The default is 5. When a call-pair is hit five times or
less,it is colored yellow or the color specified for the Low
level Color.

• Upper Threshold specifies the upper coverage threshold
number.The default is 15. When a call-pair is hit 15 times or
more,it is colored red or the color specified for the High-level
Color.

193

CHAPTER 17: Understanding the Interface II
17.2.3.3

FIGURE 78

17.2.4

194

Zoom In Button

The Zoom In button reduces the display to the magnitude specified in the II
Digraph Options window's Zoom Scale option.

Below is an example of directed-graph zoomed in three times. II

!:.i I e Qpt ions Zoom !_n Zoom O!!_t

Zoomed In Display

Zoom Out Button

The Zoom Out button undoes the last Zoom In applied.

NOTE: You cannot Zoom Out or minimize the initial directed raph dis
play.

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

•
II

17.2.5

FIGURE 79

T--SCOPE User's Guide

C1 Coverage Button

Cl Coverage button brings up a Cl Module Box from which you can
select a module. When you select a module, a Cl Coverage chart like the
one below pops up.

After each test case for a program is executed, it updates to reflect the per
centage of coverage achieved.

It consists of a File menu that allows you to close the window.

File

+00

C1 Coverage Chart

195

CHAPTER 17: Understanding the Interface II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

II
196 II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER18

GUI Operation
This chapter covers the basic X Window system graphical user interface (GUI) usage of T
SCOPE.

18.1 Instrumenting Your Source Code

In order to dynamically view Cl (logical branch) or S1 (call-pair) cover
age, you must use TCAT (for Cl coverage) to instrument for logical
branches or S-TCAT (for S1 coverage) to instrument for call-pairs. Instru
mentations modifies a program so that special markers are positioned at
every logical branch or call-pair in each program module. Later, during
program execution, these markers allow T-SCOPE to dynamically display
when a branch or call-pair is exercised.

In order for T-SCOPE to understand the meaning of the markers, you
must also compile the instrumented version of the program to create and
object file which can then be linked with T-SCOPE's supplied runtime
object module. Th.is runtime object module interprets the object file's
instructions and creates and executable.

To instrument a program and compile it, follow the instructions in the
user manuals for TCAT or S-TCAT. This creates the following files:

• An object file named example.i.o. This file will be linked with the
T-SCOPE supplied runtime object module to create an execut
able.

• If you used TCAT: Directed-graph files for each program module
(modulename.dig). Directed-graphs, as you may remember,display
the control flow of a module.

• The directed-graphs displays are used with T-SCOPE to dynami
cally display branches as they are exercised during execution.

• If you used S-TCAT: A call-graph file for the instrumented pro
gram (filename.i.P). Call-graphs display the caller-callee function
relationship of a program.

Move these files over to your working T-SCOPE directory.

197

CHAPTER 18: GUI Operation

18.2

18.3

FIGURE 80

198

Creating an Executable

Now, to link the object file (basename.i.o) with T-SCOPE supplied runtime
object module tsruntime.o to create an executable, execute the command:

cc -o applicationname basename.i.o tsruntime.o

• cc -o is the standard command to compile.

• applicationname is the name of executable you are creating.

• basename. i . o is the name of instrumented program object file.

• tsruntime. o is T-SCOPE's supplied runtime objectmodule.

Invoking T-SCOPE

Once an executable is created, all that is left is to select the types of dis
plays you would like T-SCOPE to dynamically update before executing
the program. First, invoke T-SCOPE:

Xtscope

The Xtscope window pops up.

If you used TCAT to create an executable, please go to Sections 18.4 and
18.5; if you used 5-TCAT, please go to Sections 18.6 and 18.7.

e Ver 3.1 (11/ 09/ 94

Di spla!cf Options

jxcal !tree ! jXdigraph

js1 Coverage ! Ci Coverage

Enter command to run:

I a.out

...__Go _ __,I i...__c_1o_s_e _....,I l..__He_l_P _ __.

Invoking T-SCOPE

II

II

II

II

II

II

II
II

II
II

II

II

II

II

II
II

II

II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

18.4

FIGURE 81

T-SCOPE User's Guide

Selecting Directed-Graph Displays

These instructions apply only if you created an executable with TCAT's
object file (jilename.i.o). If you used S-TCAT, please refer to Section 18.6.

Once an executable is created, you can select a module's directed-graph
and coverage chart. These displays will allow you to dynamically view
Cl coverage.

To select a directed-graph display:

1. Click on the Xdigraph button.

2. The Digraph Selection Box box pops up. All of your application's
modules should have a corresponding directed-graph that was cre
ated during instrumentation listed in the Files list box.

3. Select a module's directed-graph display by:

• Clicking on the directed-graph name in the Files list box.

• Or, highlighting the directed-graph in the Files list box and
then selecting OK.

• Or, typing the directed-graph name in the Selection entry
box and then selecting OK.

Filter

I juctl de!l'os/c~rase/C/tscope(.de111ol• .d19 j

Sel~ct1on

I :~rage/'C/t~copeC.~/exarrip le.Min.d19 I

Selecting a Directed Graph Display

4. The directed-graph pops up. During test case execution, exercised
logical branches will be represented by thick lines; unexercised logi
cal branches will be represented by thin lines.

199

CHAPTER 18: GUI Operation II

FIGURE 82

200

5. Select as many of you application's directed-graphs as you want as II·
long as the Xtscope window's Go button and the invocation window
remain clear.These windows are needed to run your application.

Because mid-size and large applications will have many directed-

11
_

graphs, it is recommended that you display only those graphs that
are essential. If you know, for instance, from using TCAT that your
test cases exercised all of the logical branches for a particular module,

11 than don't display that module's directed graph. The purpose of T-
SCOPE is to not only determine which modules were not exercised,
but also to determine how your test cases can be better improved to

11 exercise all logical branches in a module.

tsc e: Xd1~r-a h exalll 1e~fflatn.dl

[ile Qpt1ons 200fll ln Zoo,1 ~t

\
27

Directed Graph Display

II

II

II

II

II
II

II

II
II

II

II

II

II
18.4.1

II

II

II

II

II

II

II
II

II

II

II FIGURE 83

II

II

II

II
II

T-SCOPE User's Guide

Adjusting a Directed-Graph's Geometry

When you have a module's directed-graph displayed, you may want to
change the threshold numbers and their colors, node or branch character
istics. You can do this by changing the defaults in the Digraph Options
window. Simply click on the directed-graph's Options button and the
window pops up. Please refer to Section 17.2.3.2 for further instructions.

If you want to make permanent changes to all of the directed-graph dis
plays, you can edit the SR file. Please see Chapter 19 for further informa
tion.

'''" ..
200!1 OPTIONS:

.5
200111 Scale: -

NODE CHARHCTERISTICS:

Shape: I Circle o !
1.0

Sm: aa:;;C[--·
1.0

Aspect Rdt10: M .. f

EDGE Cl<lRACTERISTICS:

1.0
Eccentr1c1t~: a: I

11 ~pl ~ Reset

ANIHATIOH CHAROCTERISTICS:

H19hl 19ht Co l or: I P l~

~-----'

L'"'-1-leve l Color: I red
~-----'

Hid-level Color: I 4el low

Hi gh-level Color: ~' Q_ree_n_~

Nurriber Of Hi t s Thresho 1 d

Lower Thresho ld: Upper- Tl-reshold!

!s l~1_s _ ____.

Close He lp

Using the Digraph Options Window

201

CHAPTER 18: GUI Operation

18.5

FIGURE 84

202

Selecting C1 Coverage Charts

Besides selecting a module's directed-graph, you can also select a mod
ule's Cl Coverage chart once an executable is created. Cl Coverage charts
update the percentage of coverage achieved after each test case is exe
cuted.

To select a chart for a program's module(s):

1. Click on the Cl Coverage button.

2. The Cl Module Box box pops up. All of your application's modules
are listed in the Modules list box.

3. Select a module by highlighting it and then select the OK button.

Modules
ain

proc_input
chk_char

1 Module Box

Selecting a C1 Coverage Display

4. The Cl Coverage value chart for the module you select pops up.

5. Select as many charts as you want as long as the Xtscope window's
Go button and the invocation remain window clear.

II

II

II

II

II

II

II

II

II
II

II

II
II
II

II

II

II

II

II

II

II

II

II

II

II
II

II
II

II
II

II
II

II

II

FIGURE 85

18.6

T-SCOPE User's Guide

C1 Coverage Chart

Selecting Call-Graph Displays

These instructions apply only if you created an executable with S-TCATs
object file (Jilename.i.o). If you used TCAT, please refer to Section 18.4.

This section explains how to select an applications call-graph file (filena
me.i.P). As you may recall from Section 18.1, this file is created from
instrumentation. It represents a program's flow, or its caller-callee func
tion relationship. During program execution, this display dynamically
shows you the exercised the call-pair, allowing you to easily find the
unhit call-pairs.

To select a call-graph display for S1:

1. Click on the Xcallgraph button.

2. The Callgraph Selection Box box pops up. Your application's call
graph file should be listed in the Files list box.

3. Select a module's call-graph display by:

• Clicking on the call-graph name in the Files list box.

• . Or, highlighting the call-graph in theFiles list box and then
selecting OK.

• Or, typing the call-graph name in the Selection entry box
and then selecting OK.

203

CHAPTER 18: GUI Operation

FIGURE 86

FIGURE 87

alltree Selection Bo

juct / demos/coverage/ C/tscopeC.demo/ *. i . P

Directories Files
1 ·· mwww ".· , ~:a-.ramr- ~

ge/C/tscopeC. demo/ • •

l E>
Se lection

,mos/coverage/C/tscopeC. demo/ ex amp 1 e. i • P

Selecting a Call-Graph Display
4. The call-graph pops up. During test case execution, executed call

pairs will be represented by thick lines.

E_i le Qptions ZOOfll !_n Zoom O~t

Plain

proc_input
0

fi lbuf

strlen chk.char

{c) Cop!jri9ht 1990-94 Software Research , Inc.

Call-Graph Display

II

II

II

II

II

II

II

II

II

II
II

II
II

II
II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

•
II

18.6.1

FIGURE 88

T-SCOPE User's Guide

Adjusting a Call-Graph's Geometry

When you have a program's call-graph displayed, you may want to
change the threshold numbers and their colors, and function characteris
tics. You can do this by changing the defaults in the Call Graph Options
window. Simply click on the call-graph's Options button and the window
below pops up. Please refer to Section 17.2.1.2 for further instructions.

If you want to make permanent changes to all of the call-graph displays,
you can edit the SR file. Please see Chapter 19 for further information.

i&:ilr _a1Tsr ,i; botioo1

ZOOH OPTICJIS: ANIHATION C~~TER ISTICS:

.5
Zoo. Sca le: -r - ' Hoshl i9ht Co lor: I pink I '

Low-level Co lor : I red I EDGE CHAR~TER ISTICS:

1.0 Hid- leve l Co lor: I 4el low I
Size: :0

1.0 Hi sh-level Co lor:
(qreen I Aspect Ratio: • t

Nusber Of Hits Threshold

Lower Thresho ld: Upper Threshold:

I 5 I 115 I
'

G I Reset I I Close I I Help I

Using the Call-Graph Options Window

205

CHAPTER 18: GUI Operation

18.7

FIGURE 89

206

Selecting S1 Coverage Charts

Besides selecting a module's directed-graph, you can also select a mod
ule's S1 Coverage chart once an executable is created.The S1 Coverage
chart updates the percentage of coverage achieved for the program after
each test case is executed.

1. Click on the S1 Coverage button.

2. The S1 Selection Box box pops up. Your application'scall-graph file
(jilename.i.P) should be listed in the Files list box.

3. Select the file by:

• Clicking on the call-graph name in the Files list box.

• Or, highlighting the call-graph in the Files list box and then
selecting OK.

1 Se lection Box

juct/ demos/ coverage/Cl tscopeC . deroo/*. i • P

Directories Files

M4t..tl4A4•iWfflAi ~ : &WWW
ge/ C/ t scopeC.demo/ ••

Selecting a S1 Coverage Chart

4. The 51 Coverage chart pops up. During your application's execution,
this chart will dynamically update the percentage of call-pair cover
age achieved after each test case is executed.

II

II

II·
II

II

II

II

II

II
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

FIGURE 90

18.8

T-SCOPE User's Guide

f.~;
:f'------~-----------------_.. Ji . ~~~r:::#

S 1 Coverage Chart

Running Your Application

Once you have your application's directed-graph or call-graph and cover
age charts displayed, you can run your application:

1. When you created an executable in Section 18.2 you should have cre
ated an executable named applicationname. Put applicationname in
the Xtscope window's Enter command to run specification region.

2. Click on the Xtscope window's Go button.

3. Run your application just as you would normally.

Unlike a regular run of your application, however, the instrumented
version of your application displays hit logical branches or call-pairs
as thick lines.

For color monitors:

• The color pink represents the most recently executed logical
branch or call-pair.

• The color yellow represents a logical branch or call-pair that
has been hit less than five times or the number of times speci
fied for the lower threshold.

• The color green represents a logical branch or call-pair that
has been hit t>etween five and 15 times or the number of
times specified for the mid-level threshold.

207

CHAPTER 18: GUI Operation II
• The color red represents a logical branch or call-pair that has

been hit more than 15 times or the number of times specified II
for the upper threshold.

~08

These threshold colors and numbers can be set in the Digraph
Options window or the Call Graph Options window. II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

CHAPTER19

Custolllizing T-Scope
This chapter explains where the setup information is stored and gives instructions on
changing it.

19.1 Location of Setup files

You can customize T-SCOPE by changing the X Window System
resources or setup files. These files are text files, which you can edit with
any standard UNIX text editor. Most of the graphical user interface
defaults are set in the SR file supplied with the product. It needs to be put
in the/usr/lib/Xll/app-defaults directory. If you install T-SCOPE using the
supplied installation script, the contents of the SR file are automatically
copied or concatenated to the SR file in that directory.

On the following page is a list of the common GUI defaults. You can
change the set defaults by manually changing the SR file to avoid reset
ting GUI parameters every time.

209

Customizing T-Scope II·

210

tscope*font: 6x13

t scope*hilightColor . value :
t scope*lolevelColor .value :
tscope*normlevelColor . value:
tscope*hilevelColor.value :

tscope*cgMinThreshold.value:
tscope*cgMaxThreshold . value:

tscope*dgMinThreshold.value:
tscope*dgMaxThreshold.value :

tscope*commandText . value:

options

tscope*zoomScale.value:
tscope*nodeSize .value :
tscope*nodeAspectRatio.value:
tscope*edgeEccentricity.value:

pink
yellow
green
red

5

15

5

15

a .out

5

10
10
10

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II
II

II

II

II

II

ll

II

II

Index
Symbols
*.dig file 85
.dig file 23, 102
.o files 67
.pth file 23, 85, 102, 109
.pth file, editing 29
.pth files 42
.rpt files 42

A
a.out command 99
Action menu 109
Actions menu, TCAT-PATH 50
Adjusting a Directed-Graph's Geometry 201
analysis reports 89
Analyze menu 123
Animation Characteristics options 187
apg 23,34,85,88,102
apg (Automatic Path Generator) 23
apg output path 28
apg, limitations 129
apg, processing of subgraphs 29
available runtimes 68

B
-b flag, apg 29
blocked names, apg 29

C
C compilers 73
C1 (logical branch) coverage 157
C1 coverage 168, 197

C1 Cov@rage button 1 s:;, ~Qi

C1 Coverage chart 202
C1 Coverage charts 165
C1 coverage, related to pathcover utility 34
C1 coverage 152
call-graph file 197, 203
cc commands 68
Compiler command option 99
Compiler options 99
compiling instrumented program 197
configuration file syntax, TCAT-PATH 56
configuration file, TCAT-PATH 46
count paths only switch 24
Ct coverage 146,152
Ct Test Coverage Metric, definition 139
Ct value 92
ctcover 23, 42, 89
ctcover command 123
ctcover utility 41
ctcover, limitations 129
ctcover, sample outputs 42
ctcover, syntax 41
cyclo command 29
cyclomatic complexity 29
cyclomatic number 87
cyclomatic number calculation 23

D
default colors, digraphs 168
default runtimes 68
-DI deinst switch 96
digraph 53
digraph file 102
digraph file (*.dig file) 23
digraph format, standard 30
Digraph Options window 191
directed-graph files 155
Do not instrument functions in file

211

Index

option 96
Do not recognize exit as keyword option 96
DoCYC script (cyclo) 30
DoPTH script 26
DoRPT script (ct cover) 41

E
EDGE CHARACTERISTICS, T-SCOPE 193
Enter command to run spec. region 207
essential path extractor 23
essential paths 34
example program, TCAT-PATH 69
example.c program 155
example.i.o. 155
example.i.P file 184
Execute menu 99

F
-f option 42
-f option (ctcover) 42
-f shortname (ct cover) 41
-f1 value switch 96
filename.i.A 78
filename.i.P 206
fn value switch 96
FORTRAN Language

tp-im limitations 130

G
Generate Path options 103
Generate Path Statistics 105
Generate Paths menu 109, 116
graphical user interface defaults 209

H
help command 48
help, TCAT-PATH 48

instrumenting program 73
lnstrumentor Command option 96
instumentor (tp-ic), limitations 130
integer max. number of paths switch 25

212

invocation, TCAT-PATH 93
iterative programs 140

L
linked object modules 68
Linker command option 99
Linker options 99
logical branch execution 200

M
Main Menu, TCAT-PATH 49
Make command option 99
Make file name option 99
maximum loop count 25
maximum path count 23
McCabe Metric 29
Menu Tree, TCAT-PATH 47

N
name switch (ctcover) 41
noniterative programs 140

0
object file 155
on-line help frames, TCAT-PATH 131
Options Menu, TCAT-PATH 52
OSF/Motif GUI style 179
OSF/Motif X Window System 93

p

path classes 147
path conditions 117
path file 102
path file (*.pth file) 23
path logical condition extractor 23
pathcon 31, 32
pathcover utility, definition 34
pathcover utility, switches 35, 36
preprocessing 97
Preprocessing option 95
pre-processing program 73
Preprocessor Command option 95
Preprocessor output suffix option 95

II

II
II
II
II

II
II
II
II
II

II

II

II

II

II
II

II

II
II

II

II

II
II
II

II

II
II

II

II

II

II

II

II

•

proc_input 87
pure-structured program 147

R
Recognize _exit as keyword option 96
Reference Listing file 78
runtime object module 155

s
S1 (call-pair) coverage 172
S1 coverage 152, 197
S1 Coverage chart 176, 206
S1 test metric, definition 139
Saved to New Path File 109
saving current settings, TCAT-PATH 53
segment and node sequence numbers 78
Set Runtime Object Module 100
setup files, T-SCOPE 209
Specify max. file name length option 96
Specify max. funct. name length option 96
SR file 209
SR file, editing 201
SR file, location 209
S-TCAT 199
STW/Coverage tool suite 152
sub-digraphs, apg use of 28
switch, cyclo 30

T
tcatp.rc 55
tcatp.rc file 46
TCAT-PATH configuration file 55
TCAT-PATH configuration file, sample 58
TCAT-PATH, ASCII menus 45
TCAT-PATH, available menu options 47
TCAT-PATH, interactive mode 46
TCAT-PATH, set variables 48
TCAT-PATH, system restrictions 129
threshold colors, setting 208
tp-ic instrumentor 67
tracefile switch (ctcover) 41

STW/Coverage/C User's Guide

u
UNIX text editor 209

X
X Window System 157
X Window system graphical user

interface 197
X Window System resources 209
Xdefaults file, T-SCOPE 153
Xdigraph button 199

213

Index II

•
11·
II
II
II
II
II

II
11:

II

II

II
II'
II

II

214 II
·"-

All Segments Hit.

4 5 6 10

2 5 7 9 10
17 18 20 21 22
30 31 34 37 38
48 49 50 51 52
57 58 60 62 64
74 76 78 80 8l
92 94 96 98 100

131 132 133 134 1;35
156

1

	STWC-06
	STWC-07
	STWC-08

