
U S E R ’ S G U I D E

TCAT-PATH
Version 8.2

Path Test Coverage Analyzer

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored
in a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

Documentation: Adam Heilbrun

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight, and Xvirtual are
trademarks or registered trademarks of Software Research, Inc. Other trademarks
are owned by their respective companies. METRIC is a trademark of SET
Laboratories, Inc. and Software Research, Inc. and STATIC is a trademark of
Software Research, Inc. and Gimpel Software.

Copyright  1997 by Software Research, Inc
(Last Update March 4, 1997)

user-manuals/coverage/97covbook/coverage.book/tcat-path/feb97/97t_pathunix.b

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

625 Third Street
San Francisco, CA 94107-1997
Tel: (415) 957-1441
Toll Free: (800) 942-SOFT
Fax: (415) 957-0730
E-mail: support@soft.com
http://www.soft.com

SOFTWARE RESEARCH, INC.

iii

Table of Contents

Table of Contents. iii

List of Figures . vii

Preface . ix

CHAPTER 1 System Operation . 1
1.1 System Features .1

1.2 System Information Flow . .2

1.3 Operating Modes .3

1.4 TCAT-PATH Functional Methodology 5

CHAPTER 2 Instrumentation. 7
2.1 Overview . .8

2.2 Instrumentation . .9
2.2.1 The Instrumentor .10
2.2.2 The “C'' Instrumentor .11

2.3 Instrumenting With ‘make' Files 14
2.3.1 Example ‘make' Files .17

2.4 File Summary . 21

2.5 Embedded Systems . 22

CHAPTER 3 Compiling, Linking and Executing 23
3.1 Runtime Descriptions . 24

3.1.1 <lang>trun0 - Raw Trace File .25
3.1.2 <lang>trun1 - Standard Trace File .25

TABLE OF CONTENTS

iv

3.1.3 MS-DOS Runtimes . 26
3.1.4 Executing the Instrumented Program . 27
3.1.5 Performance Considerations . 28

CHAPTER 4 Utilities . 29
4.1 apg (Automatic Path Generator) 30

4.1.1 apg . 31
Other notes: . 34

4.1.2 Processing Program Subgraphs with ‘apg' 36
4.1.3 Blocked Pairs Processing with ‘apg' . 37

4.2 cyclo (Cyclomatic Number Calculation) 38

4.3 digpic Digraph Display (Digraph Picture) 39
4.3.1 Sample Outputs: . 41

4.4 pathcon Utility .44
4.4.1 Invocation Syntax . 45
4.4.2 Example Invocation. 46
4.4.3 Output format . 47
4.4.4 Example Output . 49

4.5 pathcover Utility . .51
4.5.1 Invocation Syntax . 52
4.5.2 Example Invocation. 54

CHAPTER 5 Coverage Analyzer . 59
5.1 ‘ctcover' Syntax .59

CHAPTER 6 TCAT-PATH Menus . 63
6.1 TCAT-PATH ASCII Menus .63

6.1.1 Invoking TCAT-PATH . 64
6.1.2 TCAT-PATH Menu Tree . 65
6.1.3 Main Menu . 67
6.1.4 Actions Menu . 68
6.1.5 Files Menu . 69
6.1.6 Options Menu . 70
6.1.7 Saving Changed Option Settings . 71
6.1.8 Running System Commands . 72
6.1.9 Settings Command Output . 73

6.2 TCAT-PATH Configuration File 74
6.2.1 Configuration File Syntax . 75
6.2.2 Configuration File Processing. 77
6.2.3 Sample TCAT-PATH Configuration File . 78

TCAT for Java User’s Guide

v

CHAPTER 7 Source Viewing Utility . 79
7.1 Introduction . 79

7.2 Invocation Syntax . 80

7.3 Example Invocation . 81

CHAPTER 8 TCAT-PATH Command Summary for MS-DOS 85
8.1 Instrumentation, Compilation and Linking 85

8.1.1 Stand-Alone Files .86
8.1.2 Systems with ‘make' Files .87
8.1.3 ‘make' With ‘cl', ‘msc' .88
8.1.4 Systems without ‘make' Files .89
8.1.5 Program Execution .90

CHAPTER 9 TCAT-PATH Command Summary for UNIX 91
9.1 Instrumentation, Compilation and Linking 91

9.1.1 Stand-Alone Files .92
9.1.2 ‘make' files with cc called in directives .93
9.1.3 A System Which Does Not Use ‘make' Files94

9.2 Program Execution . 95

CHAPTER 10 Full TCAT-PATH Example . 97
10.1 Introduction . 97

10.2 Preprocess, Instrument, Compile and Link 101

10.3 Reference Listing . 106

10.4 Instrumentation Statistics 112

10.5 Path Generation . 114

10.6 TCAT-PATH Reports . 118
10.6.1 Report for ‘main’ Module .118
10.6.2 Report for ‘proc_input’ Module .120
10.6.3 Report for ‘chk_char’ Module .121

10.7 Summary . 122

CHAPTER 11 Understanding the Graphical User Interface (GUI) 123
11.1 Invocation . 123

11.2 Using TCAT-PATH . 125

TABLE OF CONTENTS

vi

11.2.1 Instrumentation. 126
11.2.2 Execute. 130
11.2.3 Generate Paths. 134

Help . 134
“Generate Paths” Help Frame . 135
“Edit Paths” Menu . 139
“Edit Paths” Help Frame . 140
“Set Path” File Pop-up Menu . 141

11.2.4 Analyze . 157

CHAPTER 12 System Restrictions and Dependencies 161

CHAPTER 13 On-Line Help Frames. 163

CHAPTER 14 Coverage Measure Explained. 171
14.1 Introduction . 171

14.2 Example Paths . 172

14.3 Noniterative Programs . 173

14.4 Iterative Programs, Various Values of K” 175

14.5 The Exact Meaning of K . 178

14.6 Complex Looping Structures 179

14.7 Practical Implications of Ct Coverage 179

14.8 Theoretical Considerations 179

vii

List of Figures

FIGURE 1 TCAT-PATH System Diagram .4

FIGURE 2 Source Viewing (Part 1 of 2) .82

FIGURE 3 Source Viewing (Part 2 of 2) .83

FIGURE 4 Digraph file for ‘main' module" .115

FIGURE 5 Main Menu .123

FIGURE 6 STW/Coverage Invocation .124

FIGURE 7 Main Menu Help .125

FIGURE 8 Instrument Menu .127

FIGURE 9 Instrument Help Menu. .128

FIGURE 10 File Pop-Up Menu .129

FIGURE 11 Execute Menu .130

FIGURE 12 Execute Help Menu .131

FIGURE 13 Runtime Object Module Pop-Up Menu .133

FIGURE 14 Generate Paths Menu .134

FIGURE 15 Generate Paths Help Frame .135

FIGURE 16 Generate Paths Pop-Up Menu .137

FIGURE 17 Generate Path Statistics Pop-Up Menu .138

FIGURE 18 Edit Paths Menu. .139

FIGURE 19 Edit Paths Help Frame .140

FIGURE 20 Set Path File Pop-Up Menu .141

FIGURE 21 Save New Path File Pop-Up Menu .142

FIGURE 22 Display Path Menu. .143

FIGURE 23 Display Path Help Frame. .144

FIGURE 24 Set Module File Pop-Up Menu .145

FIGURE 25 Source Viewing .146

FIGURE 26 Path Condition Menu. .147

LIST OF FIGURES

viii

FIGURE 27 Path Condition Help Frame. 148

FIGURE 28 Set Module File Pop-Up Menu. 149

FIGURE 29 Path Condition Menu . 150

FIGURE 30 Save New Pathcon File Pop-Up Menu . 151

FIGURE 31 Generate Path Statistics Pop-Up Menu . 152

FIGURE 32 Edit Paths Window. 153

FIGURE 33 Display Paths Menu . 154

FIGURE 34 Set Highlight File Pop-Up Menu . 155

FIGURE 35 Highlighted Path Display. 156

FIGURE 36 Analyze Menu . 157

FIGURE 37 Analyze Help Frame. 158

FIGURE 38 Set Trace File Pop-Up Menu . 159

FIGURE 39 View Report Window . 160

ix

Congratulations!

By choosing the TestWorks suite of testing tools, you have
taken the first step in bringing your application to the highest
possible level of quality.

Software testing and quality assurance, while increasingly
important in today’s competitive marketplace, can dominate
your resources and delay your product release. By automating
the testing process, you can assure the quality of your product
without needlessly depleting your resources.

Software Research, Inc. believes strongly in automated soft-
ware testing. It is our goal to bring your product as close to
flawlessness as possible. Our leading-edge testing techniques
and coverage assurance methods are designed to give you the
greatest insight into your source code.

TestWorks is the most complete solution available, and the
peace of mind it provides our customers is our most valued
feature.

Thank you for choosing TestWorks.

Preface
This preface describes how the User Manual is organized.

PREFACE

x

Audience

This User Manual is for both training and reference for software
quality assurance testers or development staff who will use
TCAT-PATH to test newly created or modified software.

TCAT-PATH is intended for any of the following Software
Engineering professionals:

1. The Software Quality Analyst who intends to develop a complete set
of tests for a system released by Research and Development.

2. The Software Metrics or Independent Evaluation Group that will
measure and evaluate the testing of either sub or entire sys-
tems.TCAT-PATH enables this group to ‘‘test the testers.'' The cover-
age data might be combined with bug reports, complexity metrics or
other data to guide software quality management.

Purpose

TCAT-PATH can be used for either:
1. Unit testing, where the focus of attention is one or more intercon-

nected modules that will later contribute to a larger system.
2. Measurement of the completeness of a test suite for an entire system

consisting of a large number of modules. This is informally known as
the ‘‘big bang'' testing approach.

TCAT-PATH User-s Guide

xi

Contents of Chapters

Chapter1 SYSTEM OPERATION gives a brief overview of
TCAT-PATH features and operating modes.

Chapters 2, 3, 4, 5, and 6
These chapters explain how to use TCAT-PATH.

Chapter 7 TCAT-PATH COMMAND SUMMARY - MS-DOS
explains source viewing.

Chapters 8 and 9 TCAT-PATH COMMAND SUMMARY-UNIX and
FULL TCAT-PATH EXAMPLE explain the appropri-
ate commands for each platform.

Chapter 10 GRAPHICAL USER INTERFACE (GUI) TUTORIAL
displays a step-by-step full TCAT-PATH for “C”
example.

Chapter 11 SYSTEM RESTRICTIONS AND DEPENDENCIES
displays a step-by-step graphical user interface
tutorial.

Chapter 12 ON-LINE HELP FRAMES lists restrictions and limita-
tions.

Chapter 13 COVERAGE MEASURE EXPLAINED presents all of
TCAT-PATH’s on-line help frames.

PREFACE

xii

Typefaces

The following typographical conventions are used in this manual.

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its submenus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for man-
ual, chapter, and book titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with
special meanings can also be set apart with double
quotation marks the first time they are used.

courier Indicates system output such as error messages, sys-
tem hints, file output, and CAPBAK/MSW’s keysave
file language.

Boldface Courier

Indicates any command or data input that you are di-
rected to type. For example, prompts and invocation
commands are in this text. (stw , for instance, invokes
TestWorks.)

1

CHAPTER 1

System Operation
This chapter describes how TCAT-PATH operates and explains the major operating
modes for the package.

1.1 System Features

TCAT-PATH performs detailed path analysis of programs using a series of
processing steps. Features of the TCAT-PATH system include:

• Automatic generation of structural digraphs from submitted pro-
grams.

• Automatic generation of complete path sets based on a unique
SR-proprietary path analysis and equivalence class generation
algorithm.

• Display of structure of structural digraphs using a special
digraph visualization utility.

• Calculation of the cyclomatic complexity of programs.
• Automatic analysis of full trace files for instrumented programs

(the instrumentation is generated automatically by the built-in
TCAT-PATH instrumentor).

TCAT-PATH includes both command-line invocable processes and a fully
interactive system.

CHAPTER 1: System Operation

2

1.2 System Information Flow

Figure 1 shows an overall data flow diagram of the TCAT-PATH system
for “C'' language.

The parts of the TCAT-PATH can all be command-line driven, and are
designed to be usable with the standard UNIX pipeline and redirection
facility.

In addition, a simple and friendly menu system (the user interface for the
interactive version of TCAT-PATH) assists novice users in creating special
“configuration'' files which record the selection of run-time parameters,
and executing the programs with on-line help.

TCAT-PATH User’s Guide

3

1.3 Operating Modes

As Figure 1 on the following page suggests, there are several main modes
for TCAT-PATH operation:

• Analyzing a file to extract digraph information about the
included function(s) or procedures.

• Viewing the digraph for a particular program, relative to a speci-
fied basis path.

• Generating the set of paths that correspond to each program's
structure.

• Running tests on the instrumented program to get aCt-compati-
ble trace file of test coverage data.

• Computing the Ct coverage of a module or set of modules and
producing reports.

CHAPTER 1: System Operation

4

FIGURE 1 TCAT-PATH System Diagram

*.c files

Instru-
mented C file

tp-ic Reference
Listing

cyclo

*.dig file
User
Test
Data

TCAT-PATH
runtime

Link, load &
execute

apg

*.pth
file

ctcoverTracefiles Ct coverage
files

Xdigraph

U
SER

 R
EPO

R
T

S

TCAT-PATH User’s Guide

5

1.4 TCAT-PATH Functional Methodology

The TCAT-PATH package consists of three main systems: the tp-i<lang>
instrumentor processor (see Note below), apg, and ctcover which can be
used individually as command-line invocable units, or with the TCAT-
PATH interactive menu system. In addition, there are several other sub-
functions and support scripts that can be used independently.

NOTE: The only language-dependent component of TCAT-PATH is the
instrumentor itself.

For simplicity, and because TCAT-PATH is available for a variety of lan-
guages, we refer to this element of the system in general terms as tp-
i<lang>. Typical forms for this command, which can be modified by the
user through the TCAT-PATH configuration file, are:

• tp-ic for “C” programs
• tp-ic++ for “C++'' programs
• tp-iada for Ada programs
• tp-if77 for FORTRAN (f77) programs

Chapter 8 describes special characteristics of the instrumentor with which
TCAT-PATH could be supplied.

Here is an informal description of how you can use the TCAT-PATH
components to measure path coverage.

The methodology for using TCAT-PATH is based on the following typical
scenario: you want to measure the Ct coverage values for a group of
functions that are coded a few at a time into several files.

• STEP 1: Create a Working Directory.Set up a directory in which to
keep all of your intermediate files. TCAT-PATH uses filename
extensions on basenames.
Your working directory should have copies of the source files,
plus any supporting files you need to run tests on these files after
they have been instrumented.

• STEP 2: Instrument and Generate Digraphs. You instrument and
generate digraphs by processing all of the files with the supplied
TCAT-PATH instrumentor (the specific digraph processor and
instrumentor depends on the language you are processing). If
some processed files contain more than one module (function),
then the tp-i<lang> command will split up the digraph data
and create separate digraph files each named after the corre-
sponding module.

CHAPTER 1: System Operation

6

• STEP 3: Generate Paths.You use the apg command to generate
the path sets for each module. Some modules may have “too
many'' paths. You have to make this determination; TCAT-PATH
does not impose internal size limits, but your situation and other
practicabilities may!
The script DoPTH can be used to generate all of the *.pthfiles for
all *.dig files in the working directory.

• STEP 4: Study Structure and Properties. Use cyclo and digpic to
study the properties and structure of each *.dig file.
These two commands can help identify “too complex'' modules,
and gain intuition about the internal structure of the software
you are analyzing. You may wish to avoid trying to analyze Ct
coverage for modules with more than 300 paths (for example).

NOTE: The scripts DoCYC and DoPIC help you run the cyclo and digpic
commands on all *.dig files in the working directory.

• STEP 5: Generate Trace Files. You have to re-compile the instru-
mented programs (generated automatically by TCAT-PATH 's
tp-i<lang> command), and link them with the supplied run-
time object module.

• Then you execute the program as you normally would on an
uninstrumented program. The result of this will be one trace file
per test. If you have multiple tests you can append each test to
the end of each trace file (note that the trace files cannot be
reduced, because such files do not have essential segment
sequence information).

• STEP 6: Evaluate Ct Coverage. For each module, and for the set
of all trace files you think are appropriate, you call ctcover to
produce the standard Ct coverage report.
This report contains an image of the *.pth file for reference
purposes. The script DoRPT can be used to handle generating the
*.rpt files for all basenames (for which there are *.pth files) in the
working directory.

7

CHAPTER 2

Instrumentation
This and the next four chapters tell how to use TCAT-PATH to increase test coverage and
detect more software errors. There are two ways to access TCAT-PATH: with command
line commands and with menus.

 The following command line invocations are the focus of these chapters.
1. Instrumentation (marking segments)
2. Compiling and Linking with Runtime (recording and counting mark-

ers) and Executing
3. Path generation (generating complete path sets)
4. Coverage analysis (reporting path hit)

A description of how to use the menus appears in Chapter 6.

CHAPTER 2: Instrumentation

8

2.1 Overview

In brief, TCAT-PATH instruments the source code of the system to be
tested, that is it inserts function calls at each logical branch. The instru-
mentation will not affect the functionality of the program. When it is com-
piled, linked and executed, the instrumented program will behave as it
normally does, except that it will write coverage data to a trace file. There
is some performance overhead due to the data collection process.

The trace file is processed by a report generator described later. The file
resulting from instrumentation is then used for path generation. These
generated paths are also processed by the report generator.

Finally, the user looks at the coverage reports to assess testing progress
and to plan new test cases. New test cases are added in subsequent passes
until a threshold percentage of Ct logical path coverage has been
reached.The coverage reports guide the addition, or possibly the deletion,
of tests.

TCAT-PATH User’s Guide

9

2.2 Instrumentation

As already mentioned, an instrumented program is one that has been
specially modified so that, when executed, it transmits information about
Ct coverage at every stage of testing, while in all other respects, the logic
functions just as in the original program.

In its operation, TCAT-PATH's instrumentor parses your candidate source
code, looking for logical branches. When one is discovered, the instru-
mentor inserts a function call in the instrumented version of the source
code. It is important to note that the resulting source code file is still a
legal program, as was the original program. The only difference is the
added function calls.

When executed, the inserted function calls write to a trace file. Remember,
the instrumented version will otherwise function as the uninstrumented
version.

CHAPTER 2: Instrumentation

10

2.2.1 The Instrumentor

This command reads a *.<lang> file and produces a *.dig file for each
module in the *.<lang> file. It also instruments the *.<lang> file and
produces an instrumented version of the file and other reference and
statistical files. For a complete listing on the files produced by the instru-
mentor, please refer to Section 2.4, File Summary.

The generic syntax for command line calls to the instrumentor follows.
tp-i<lang> [options] file.ext [file.ext]

where,

file.ext File(s) to be instrumented. ext is language specific
(e.g.”c” or “i” for a C file). If there are multiple files,
then each is processed in the order presented.

options Instrumentation options are also language specific.
Options for the “C'' language are presented in the
next section. Options for other languages are listed in
Chapter 8.

TCAT-PATH User’s Guide

11

2.2.2 The “C'' Instrumentor

The complete syntax for command line calls to ic is listed below.
tp-ic file.ext [file.ext]

[-ce]

[-cw]

[-DI deinst-file]

[-fl value]

[-fn value]

[-help]

[-I]

[-lj]

[-m]

[-m6]

[-n]

[-t]

[-u]

[-w]

[-x]

[-z]

This command instruments submitted “C'' language file(s). It takes *.i
source file(s) and produces the instrumented file(s): *.i.c (for UNIX) or *.ic
(for MS-DOS or OS/2). *.c is the “C'' source file, while *.i is the prepro-
cessed file.

It is required that the user preprocess the source file through a “C'' pre-
processor before passing it to tp-ic. Normally, the preprocessing
command is:

cc -P file.c (for UNIX)

or
cl -P file.c (for DOS running Microsoft C)

These commands read file.c and produce file.i. The following options
may be used to vary the processing and reports generated by the instru-
mentor.The options are listed in alphabetical order.

file.ext File(s) to be instrumented.ext can be “c” or “i”. If
there are multiple files, then each is processed in the
order presented.

-ce Preprocesses conditional expressions of the form ? a :
b.

-cw Suppresses the “Conditional Expressions Not Pro-
cessed'' warning message.

CHAPTER 2: Instrumentation

12

-DI deinst-file De-instrument Switch. Allows the user to specify a
list of modules that are to be excluded from instru-
mentation. Only the list of module names found in
the specified deinst-file is to be excluded from instru-
mentation. The module names can be specified in any
format. White space (such as tabs, spaces) is ignored.
This switch effects the instrumented (*.i.c) file and the
reference listing (*.i.A) file.

-fl value Allows the user to specify the maximum length of
filename characters that are allowable on the system.
If the length of a generated filename exceeds the
value, then the instrumentor output will be redirect-
ed to files named Temp.i.?. These files can be used in
subsequent processing.

-fn value The flexname switch.Allows the user to specify the
maximum characters of function names the instru-
mentor recognizes. If the function name exceeds the
value, then the instrumentor will recognize as distinct
only the first value characters of the function name.
For instance, a -fn 5 will recognize the first five char-
acters as distinct. Characters beyond that point, how-
ever, will not be recognized for function name
purposes.

-help Help Switch. Forces output to show a summary of
available switches.

NOTE: This is also the output produced by any illegal command to tp-ic.

-I Ignore Errors Switch. In certain rare cases, when the
underlying “C'' compiler supports non-standard op-
tions and constructs, it may be desirable to “force'' in-
strumentation to occur regardless of errors found.

This is done with the -I switch.

CAUTION: When instrumentation is forced using this switch, there is a
chance that the instrumented software will not compile.

For example, if you use the -I switch to “instrument''
a file of text material, you would not expect the out-
put to be compilable (and it probably won't be), even
though it may have been “instrumented''.

TCAT-PATH User’s Guide

13

-lj Processes setjmp and longjmp. This option only
works for UNIX.

-m Recognize Microsoft C 5.1 keywords during the
instrumentation process. Note: This switch applies
only to MS-DOS and OS/2 versions. This switch may
produce unusual results if used in UNIX systems.

-m6 Recognize Microsoft C 6.0 keywords during the
instrumentation process.

NOTE: applies only to MS-DOS and OS/2 versions.
This switch may produce unusual results if used in
UNIX systems.

-n Will not instrument empty edges (for example: if
without else or switch without default.)

-t Recognize Turbo C keywords during the instrumen-
tation process. Note: This switch applies only to
MS-DOS and OS/2 versions.

-u Forces the instrumentor to recognize _exit as
exit.Note: This switch applies only to MS-DOS and
OS/2 versions.

-w Recognize Whitesmith C keywords during the instru-
mentation process. Note: This switch applies only to
MS-DOS and OS/2 versions.

-x Will not recognize exit as keyword.

-z Recognize MANX/AZTEC “C'' keywords during the
instrumentation process. Note: This applies only to
MS-DOS. This switch may produce unusual results if
used on UNIX systems.

If there is an error, tp-ic gives a response line, or
usage line, indicating the set of possible switches and
options, which is the same as the -h output.

CHAPTER 2: Instrumentation

14

2.3 Instrumenting With ‘make' Files

Most often, TCAT-PATH will be used to develop test suites for systems
that are created with ‘make' files.Make files cut the time of constructing
systems, by automating the various steps necessary to build the system,
including compiling and linking.

Fortunately, it is possible to add a few statements to most ‘make' files to
enable them to make an instrumented version of the system. The modifi-
cations fall into two general categories, based on whether or not the make
file explicitly names the compiler.

The rest of this section will assume the use of the “C'' compiler. For any
other language, the user can substitute the corresponding command in
the language.

If the ‘make' file explicitly mentions the “C'' compiler with a cc command
(for example), it is possible to add the tp-ic command and an extra cc
command for preprocessing, instrumenting and compiling causing the
make script to instrument and compile the “C'' files in question.

TCAT-PATH User’s Guide

15

Make file lines such as:
UNIX:

sample.o:sample.c

 cc -c sample.c

MS-DOS and OS/2:

sample.obj:sample.c

 cl c sample.c

would be changed to:
UNIX:

sample.o: sample.c

 cc -P $(CFLAGS) sample.c

 tp-ic sample.i

 cc -c $(CFLAGS) sample.i.c

 mv sample.i.o sample.o

MS-DOS and OS/2:

sample.obj:sample.c

 cl /P $(CFLAGS) sample.c

 tp-ic -m6 sample.i

 rename sample.ic temp.c

 cl /c $(CFLAGS) temp.c

 rename temp.obj sample.obj

The other situation is where the compiler is not explicitly mentioned, but
given as a “built-in'' rule. The user can add the following “built-in'' rule:

UNIX:

.c.o:

 cc -P $(CFLAGS) $*.c

 tp-ic $*.i

 cc -c $(CFLAGS) $*.i.c

 mv $*.i.o $*.o

MS-DOS and OS/2:

.c.obj:

 cl /P $(CFLAGS) $*.c

 tp-ic -m6 $*.i

 rename $*.ic temp.c

CHAPTER 2: Instrumentation

16

 cl /c $(CFLAGS) temp.c

 rename temp.obj $*.obj

The other change necessary is to add SR runtime modules to the link
statement. (More on this in the next chapter.)

TCAT-PATH User’s Guide

17

2.3.1 Example ‘make' Files

This section gives on the following pages several examples of how to cre-
ate ‘make' files that work under MS-DOS and UNIX environments.

The first example ‘make' file is an illustrative MS-DOS type ‘make' file
that is unmodified.

###
##
S A M P L E M A K E F I L E
----W I T H O U T I N S T R U M E N T A T I O N----------
##
##
DOS version make script for SAMPLE
##
###
#
OBJS = sample.obj sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj help.obj log.obj ui.obj premain.obj license.obj \
pretree.obj preprocl.obj preprocy.obj

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000
sample.obj: sample.c
sampley.obj: sampley.c
samplel.obj: samplel.c
tree.obj: tree.c
license.obj: license.c
init.obj: init.c
error.obj: error.c
dotest.obj: dotest.c
help.obj: help.c
log.obj: log.c
ui.obj: ui.c
premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy.obj: preprocy.c
sample.exe: $(OBJS)
 sample.obj license.obj help.obj \

sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj log.obj ui.obj premain.obj \
pretree.obj preprocy.obj preprocl.obj\
link @sample.lnk;

CHAPTER 2: Instrumentation

18

The file below shows the modifications to the ‘make' file needed to pro-
vide for automatic instrumentation. The modifications are in bold face.

###
##
S A M P L E M A K E F I L E
##
-----------W I T H I N S T R U M E N T A T I O N------------
##
##
DOS version make script for SAMPLE file
##
###

OBJS = sample.obj sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj help.obj log.obj ui.obj premain.obj license.obj\
pretree.obj preprocl.obj preprocy.obj

CFLAGS = /c /FPi /AL /DMSDOS /DLIMITED
LFLAGS = /STACK:20000

.c.obj:
cl $(CFLAGS) /P $*.c
tp-ic -m6 $*.i
rename $*.ic temp.c
cl $(CFLAGS) /c temp.c
rename temp.obj $*.obj

sample.obj: sample.c
sampley.obj: sampley.c
samplel.obj: samplel.c
tree.obj: tree.c
license.obj: license.c
init.obj: init.c
error.obj: error.c
dotest.obj: dotest.c
help.obj: help.c
log.obj: log.c
ui.obj: ui.c
premain.obj: premain.c
pretree.obj: pretree.c
preprocl.obj: preprocl.c
preprocy.obj: preprocy.c
sample.exe: $(OBJS)

sample.obj license.obj help.obj \
sampley.obj samplel.obj tree.obj init.obj \
error.obj dotest.obj log.obj ui.obj premain.obj \
pretree.obj preprocy.obj preprocl.obj \fBctrun1l.obj\
link @sample.lnk;

TCAT-PATH User’s Guide

19

The ‘make' file below shows a typical UNIX/XENIX ‘make' file before
modification.

###
##
S A M P L E M A K E F I L E
##
Make file example, no instrumentation.
##
UNIX, XENIX
##
###
Uses make's knowledge of lex, yacc, cc.
###
CCextras =
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -ll
LFLAGS = -v
Lextras =
Objects = sample.o sampley.o samplel.o tree.o init.o error.o dotest.o
log.o \

ui.o premain.o preprocy.o preprocl.o pretree.o help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c error.c dotest.c
log.c \

ui.c premain.c preprocy.c preprocl.c pretree.c sample.h \
typedef.h error.h y.tab.h preproc.h help.c license.c license.h

UNIX version. Compiles and links.
sample: $(Objects)
 rm -f sample
 cc $(Objects) $(LDFLAGS) $(Lextras) -o sample
#
sampley.c: sampley.y
 yacc $(YFLAGS) sampley.y
 mv y.tab.c sampley.c
 cp y.tab.h ytab.h
#
samplel.c: samplel.l
 lex $(LFLAGS) samplel.l
 mv lex.yy.c samplel.c
#
preprocy.c: preprocy.y
 yacc $(YFLAGS) preprocy.y
 cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
 cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h
 rm y.tab.c
#
preprocl.c: preprocl.l
 lex $(LFLAGS) preprocl.l
 cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c
 rm lex.yy.c
lpr:
 pr $(Sources) | lpr

license.o: license.c license.h

CHAPTER 2: Instrumentation

20

The changes needed have been made in the modified ‘make' file shown
below. The modifications are shown in bold face.

###
##
S A M P L E M A K E F I L E
##
Make file sample, with TCAT-PATH instrumentation
##
UNIX, XENIX
###
Uses make's knowledge of lex, yacc, cc.
###
CCextras =
CFLAGS = -s ${CCextras} -DXENIX
YFLAGS = -d
LDFLAGS = -i -ly -ll
LFLAGS = -v
Lextras =
Objects = sample.o sampley.o samplel.o tree.o init.o error.o dotest.o
log.o \

ui.o premain.o preprocy.o preprocl.o pretree.o help.o license.o
Sources = sample.c sampley.c samplel.c tree.c init.c error.c dotest.c
log.c \

ui.c premain.c preprocy.c preprocl.c pretree.c sample.h typedef.h
error.h \

y.tab.h preproc.h help.c license.c license.h
UNIX version. Compiles and links.
\fB .c.o:

cc -P $ (CFLAGS) $*.c
tp-ic $*.i
cc -c $(CFLAGS) $*.i.c.
mv $*.i.o $*.o

#
sample: $(Objects) ctrun1.o

rm -f sample
cc $(Objects) \fBctrun1.o\fP $(LDFLAGS) $(Lextras) -o sample

#
sampley.c: sampley.y

yacc $(YFLAGS) sampley.y
mv y.tab.c sampley.c
cp y.tab.h ytab.h

#
samplel.c: samplel.l
 lex $(LFLAGS) samplel.l
 mv lex.yy.c samplel.c
#
preprocy.c: preprocy.y
 yacc $(YFLAGS) preprocy.y
 cat y.tab.c | sed -e 's/yy/xx/g' > preprocy.c
 cat y.tab.h | sed -e 's/yy/xx/g' > pretab.h
 rm y.tab.c
#
preprocl.c: preprocl.l
 lex $(LFLAGS) preprocl.l
 cat lex.yy.c | sed -e 's/yy/xx/g' > preprocl.c
 rm lex.yy.c
lpr:
 pr $(Sources) | lpr
license.o: license.c license.h

TCAT-PATH User’s Guide

21

2.4 File Summary

This section describes TCAT-PATH file naming conventions for the
instrumentor (tp-ic).

MS-DOS or OS/2:
tp-i<lang> [optional switches] filename.i

Input:

<filename>.i Preprocessed source file

Produces:

<filename>.i<lang> Instrumented source

<filename>.iA Segment and node reference listing

<filename>.iE Error listing

<filename>.iL Segment count for each module

<filename>.iS Instrumentation Statistics

<module name>.digFile(s) containing digraph of the named module(s)

NOTE: Digraph filenames of module names that are more than 8
characters long are truncated to 8 characters.

UNIX:
tp-i<lang> [optional switches] filename.i

Input:

<filename>.i Preprocessed source file

Produces:

<filename>.i<lang> Instrumented source

<filename>.i.A Preprocessed source file

<filename>.i.E Error listing

<filename>.i.L Segment count for each module

<filename>.i.S Instrumentation Statistics

<module name>.dig

File(s) containing digraph of the named module(s)

CHAPTER 2: Instrumentation

22

2.5 Embedded Systems

An added benefit resulting from TCAT-PATH's software instrumentation
strategy is that the tool may be used with embedded systems. Because
TCAT-PATH's output is a syntactically correct program, the tool can be
used on programs that are cross-compiled for target systems. The
sequence of steps are: the instrumented code is cross-compiled, linked,
then moved to the embedded system.

After execution, coverage data collection occurs on the embedded sys-
tem, and the trace files are uploaded to the host. The specifics of transfer-
ring trace files from the embedded system to the host is dependent on the
system in question.

23

CHAPTER 3

Compiling, Linking and
Executing

This chapter explains how to compile, link and execute the instrumented program.

Once instrumentation has been completed, the instrumented version of
your program must be compiled and linked with the runtime object mod-
ules, sometimes called runtime routines.

The runtime routines are supplied by SR and will write to the trace file.
These modules are called from the instrumented code; the added function
calls, or “probes'', call sub-functions inside the runtime modules.

There are several runtime objects for each computer as described in the
next section.

NOTE: Some unreachable code may occasionally be inserted by the
instrumentor.

This may cause warning messages when compiling, but they are not fatal
and the compiler should proceed in spite of them.

CHAPTER 3: Compiling, Linking and Executing

24

3.1 Runtime Descriptions

As mentioned above, the test engineer using TCAT-PATH has a choice of
many runtime routines to change the behavior and performance of the
instrumented system under test. Different runtimes may be selected by
linking in the appropriate module.

Finally, the user can write his own runtime package if he needs to modify
TCAT-PATH to a particular situation, since the program that is needed is
small. For an embedded system where the target system has particular
characteristics, rewriting the runtime is a practical way to adapt TCAT-
PATH.

TCAT-PATH runtime system is compatible with TCAT runtime system
but the TCAT runtime system is not compatible with TCAT-PATH. That is,
you can use the TCAT-PATH system with C1-instrumented programs, but
you cannot use TCAT's runtime system for TCAT-PATH. There are a vari-
ety of runtime modules for each language.

The function of each runtime package is specified by the format of its
name as defined following:

<language>trun<level>.o (for UNIX)

or
<language>trun<level><model>.obj (for DOS)

Examples:

ctrun0.o -- C, level 0, UNIX

ftrun1.o -- Fortran 77, level 1, UNIX

ctrun0m.o -- C, level 0, DOS, medium memory model.

Several versions of runtime are available depending on your needs.

TCAT-PATH User’s Guide

25

3.1.1 <lang>trun0 - Raw Trace File

There is no internal processing or buffering. The trace file is the full,
unedited trace of program execution. There is no prompting for trace file
name, so the user must indicate the trace file identification at the invoca-
tion of the program under test.

3.1.2 <lang>trun1 - Standard Trace File

This is the same as <lang>trun0, but with prompts that ask the user for
Test Descriptor and the name of trace file.There is no internal processing
or buffering. The trace file is the full, unedited trace of program execu-
tion. This is the basic version.

CHAPTER 3: Compiling, Linking and Executing

26

3.1.3 MS-DOS Runtimes

MS-DOS has several runtimes available. You must first determine the
memory model you are using for memory management on your system.
You will then be able to easily choose from the following list of runtimes
for “C'' language. The standard runtimes are ctrun1, while the “quiet''
runtimes are ctrun0.Microsoft C has five memory models: S for small; M
for medium; C for compact; L for large; and H for huge.

Turbo C has six memory models: T for tiny; S for small; M for medium; C
for compact; L for large; and H for huge.

The following is a partial list of runtimes for “C'' language on MS-DOS, as
they appear on the distribution diskette:

\RUNTIME\TURBO\STD\CTRUN1C.OBJ

\RUNTIME\TURBO\STD\CTRUN1H.OBJ

\RUNTIME\TURBO\STD\CTRUN1L.OBJ

\RUNTIME\TURBO\STD\CTRUN1M.OBJ

\RUNTIME\TURBO\STD\CTRUN1S.OBJ

\RUNTIME\TURBO\STD\CTRUN1T.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0C.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0H.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0L.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0M.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0S.OBJ

\RUNTIME\TURBO\QUIET\CTRUN0T.OBJ

\RUNTIME\MSC51\STD\CTRUN1C.OBJ

\RUNTIME\MSC51\STD\CTRUN1H.OBJ

\RUNTIME\\MSC51\STD\CTRUN1L.OBJ

\RUNTIME\MSC51\STD\CTRUN1M.OBJ

\RUNTIME\MSC51\STD\CTRUN1S.OBJ

\RUNTIME\MSC51\QUIET\CTRUN0C.OBJ

\RUNTIME\MSC51\QUIET\CTRUN0H.OBJ

\RUNTIME\MSC51\QUIET\CTRUN0L.OBJ

\RUNTIME\MSC51\QUIET\CTRUN0M.OBJ

\RUNTIME\MSC51\QUIET\CTRUN0S.OBJ

NOTE: Microsoft C 5.1 runtimes should be compatible with 6.0 updates.

TCAT-PATH User’s Guide

27

3.1.4 Executing the Instrumented Program

The next step is to run your instrumented program and track which logi-
cal paths have been exercised by the test data you supply. In essence, this
is a matter of noticing the not-hit paths mentioned in the coverage report
(refer to Chapter 6), and looking up the corresponding code in the Refer-
ence Listing.

TCAT-PATH senses when paths are hit by monitoring the markers
inserted during instrumentation and by accumulating the results in a
trace file and matching them with the paths in the path file.

To produce the trace file, first run your instrumented and compiled “C''
program and follow the prompts.

If you use the standard runtime routines, the system will respond with:
Trace Descriptor:

Type in a description of the test run. Be as descriptive as needed for your
own information in referring to this test run. You can enter up to 80 char-
acters of text in your message. This message will be recorded in the trace
file and used in coverage reports.

If you choose to enter no descriptive text, just press the return key. The
system next will prompt you for an output filename:

Name of tracefile [default is Trace.trc]:

Type in any name. The system will create a trace file with the name you
enter. To use the default name Trace.trc, just press the return key. The
trace file description and name are useful in keeping track of different test
runs. Consistent, clear naming conventions are useful in organizing dif-
ferent groups of results.

A common practice is to identify trace files with the filename exten-
sion.trc.

CHAPTER 3: Compiling, Linking and Executing

28

3.1.5 Performance Considerations

Sometimes, an instrumented program will produce very large trace files.
One solution to this is to compile a mixture of instrumented and un-
instrumented files so that the program is tested in pieces.

29

CHAPTER 4

Utilities
This chapter covers the automatic path generation, cyclomatic number calculation,
digraph picture generation utilities, “essential'' path extractor, and path logical condition
extractor.

The first utility generates a complete set of paths for a module, which is
used later for coverage reporting along with an execution trace file. The
last two utilities are intended for the user to study the structure and prop-
erties of the module in question. A cyclomatic complexity number can be
computed to identify “too complex'' modules. A digraph picture can also
be drawn to give the user intuition of the structure of the module.User
can also get the “essential'' paths, i.e. a minimal subset of paths that will
guarantee 100 percent branch level coverage (C1).

Additionally, user can display the logical conditions (or predicates) that
need to be satisfied for a given path to be traversed. All utilities use the
digraph file produced from the instrumentation as input.

CHAPTER 4: Utilities

30

4.1 apg (Automatic Path Generator)

Automatic Path Generator (apg) processes a digraph file (*.dig file) into a
path file (*.pth file). This path information is the input to the coverage
analyzer (ctcover) which will be discussed in the next chapter.

TCAT-PATH User’s Guide

31

4.1.1 apg

This program uses a SR-proprietary algorithm that generates sets of
equivalence classes of paths. The path classes are either non-iterative or
iterative. The output describes iteration in terms of “loop'' or “cycles'' that
can be entered, and then exited (see Chapter 14).

apg uses the notation <..> for 0 and [..] for 1 or more repetitions; apg also
uses the {..} notation for groups of edges.

apg issues error messages if it is asked to generate paths beyond a
maximum path count (the user can modify these values); see below.

apg name [-b] [-c] [-g] [-m loop] [-n] [p 2limit][-q]
[-S] [-w width]

where,

name This is the file basename that represents the module
to be processed. <name>.dig is assumed to exist and
to contain a digraph in proper format.

If the named file has a suffix .dig then this suffix is
stripped off and the resulting name is used as the
basename (see the-g switch).

[-b] Basis paths only switch. If this switch is present, then
apg computes all paths but outputs only those paths
which have no iteration.

NOTE: A program must have at least one basis path; otherwise, there is
something wrong with the digraph.

[-c] Count paths only switch. If present, apg computes the
total number of paths (regardless of the value set by
the -p switch) found. If the path count is large, apg
prints out intermediate messages so that you don't
think it is failing. (The intermediate messages happen
every 1000 paths). CAUTION: If the path counts is
over 100,000 you should be prepared for a long wait.

[-g] Output redirection switch. The output of apg normal-
ly goes to standard output; if the -g flag is present,
then the output is written to name.pth.

CHAPTER 4: Utilities

32

[-m loop] This is the maximum loop count for the internal path
generation process. The default value is loop = 1. This
switch overrides values assigned in the configuration
file.

Note: currently only loop = 1 is supported. This
means that all iterations are grouped at exactly one
level above the base-path level.

[-n] Each path is preceded by a path number. For exam-
ple, @2 : 1 3 4 <{4}> 5 6. The number between the @
and: is the path number.

[-p limit] This is the integer maximum number of paths to
generate. If the total number of paths to be emitted is
limit, then the total number of paths calculated is 16 *
limit. The default value is limit = 300.

[-q] The quiet switch will suppress version number and
other extraneous outputs.

[-S] If present, after the path computation, apg prints a
series of statistics that characterize the set of paths.
No paths are generated. Path statistics are output to
standard output. If the -g switch is on, statistics are
returned to the name.stt file, where name is the
module name. A sample is shown below:

TCAT-PATH User’s Guide

33

[-w width] The output of apg is “folded'' - with \\'s protecting
the new-line characters - so that it is never wider than
width characters. The default value for width (i.e.
without the -w switch) is 72.

apg, Release 3

Path Analysis Statistics.

File name: testfile.dig

Number of nodes: 16

Number of edges: 20

Cyclomatic number (E - N + 2):12

Number of paths: 236

Average path length (segments):22.45

Minimum length path (segments):12 (Path 23)

Maximum length path (segments):45 (Path 464)

Most iteration groups:4 (Path 14)

Path count by iteration groups:

0 iteration group(s):4

1 iteration group(s):66

2 iteration group(s):14

3 iteration group(s):0

4 iteration group(s):0

5 iteration group(s):16

CHAPTER 4: Utilities

34

4.1.1.1 Other notes:

There is a supplied script, DoPTH that reads the basename of the mod-
ule, calls apg, and writes the *.pth file for every *.dig file in the current
directory.

Sample Output:

Here is a sample input *.dig file and the corresponding output *.pth file:

Example 1:
.Digraph file...

0 1 1

1 4 2

1 2 3

2 2 4

2 3 5

3 4 6

3 4 7

Paths generated...

1 2

1 3 4 <{4}> 5 6

1 3 4 <{4}> 5 7

1 3 5 6

1 3 5 7

Example 2:
Digraph file...

1 2 1

2 3 2

3 7 3

3 4 4

4 7 5

4 7 6

2 5 7

5 6 8

6 7 9

6 7 10

5 7 11

Paths generated...

1 2 3

1 2 4 5

TCAT-PATH User’s Guide

35

1 2 4 6

1 7 8 9

1 7 8 10

1 7 11

CHAPTER 4: Utilities

36

4.1.2 Processing Program Subgraphs with ‘apg'

In complex cases the TCAT-PATH user may wish to declare a subgraph of
the original program as one which is to be treated as a “unit” in relation
to processing of the larger graph. Doing this will, in many cases, decrease
the number of paths generated to a more manageable number. (This is
often called “path factoring''.)

The following figure shows how apg handles one or more sub-digraphs
within the specified graph:

apg -s filename

or
apg -s ‘hereis.filename‘

or
apg -s filename -s filename -s filename

 (maximum of 16 such filenames)

where in each case the “filename'' is another digraph (in the TCAT-PATH
standard format) where the first appearing node is the assumed entry,
and which can have any number of exits.

When apg encounters that entry node then it treats ALL of the nodes in
the named subgraph files as a SINGLE SEGMENT, labeled by the name
of the filename.This means that the GROUP of edges named in the -s file
acts like just one edge in regard to path generation. When this option is
used, an apg output path might look like the following:

 . . .

 . . .

 2 5 14 <{ 16 "filename1" 29 30 33 }> \\

 44 49 50 51

 . . .

 . . .

More about apg processing of subgraphs is found in Chapter 14.

NOTE: apg processing of subgraphs may not be available in early ver-
sions of TCAT-PATH.

TCAT-PATH User’s Guide

37

4.1.3 Blocked Pairs Processing with ‘apg'

When the number of paths that apg generates grows very large, it may be
desirable to prevent generation of some paths. Note that the user always
has the option of editing the *.pth file to remove paths. There is, however,
one feature of apg which can simplify what would otherwise be compli-
cated editing sessions.

The special flag -b can be used as follows to inform apg to not include
pairs of segments in any path. Here is a typical invocation of apg in this
case:

apg -b filename

where filename is the name of the file in the working directory that con-
tains a list of pairs of segments that should not be included (i.e., blocked
pairs).

The format for the blocked pair file is as follows:
This is a sample ‘blocked pair' file

for use with TCAT-PATH...

segment-1 segment-2

segment-a segment-b

segment-x segment-y

...

which means that the indicated pairs are to be used to “block'' generation
of a path.

The user should be cautious with this capability, however. If critical pairs
are blocked, then apg may generate no paths. Generally, one must ascer-
tain from studying the program that two segments cannot co-exist in any
possible actual execution path before adding them to the file of blocked
names.

CHAPTER 4: Utilities

38

4.2 cyclo (Cyclomatic Number Calculation)

The cyclo command is a utility that computes the cyclomatic complexity,
sometimes referred to as the McCabe Metric, for the named digraph file.

The cyclomatic complexity is a characterization of the relative complexity
of a digraph based on a specific count of the edges and nodes. The for-
mula for the cyclomatic complexity is (this is how the output appears):

 Cyclomatic Complexity

= McCabe Metric

= E(n)

= edge - node + 2

= <value> \f1

This metric is commonly used to assess the complexity of a module. If
E(n) is over 10, then the module is normally considered ‘‘too complex''.
However, in some cases E(n) >> 10 for] ‘‘easy to test modules'', and E(n)
is very small for “hard to test modules''. User caution is advised.

Syntax:
cyclo name.dig [-q]

where,

name.dig is the name of the digraph file for which the cyclomat-
ic number is to be computed. The file is assumed to be
in standard digraph format.

[-q] This switch is used to quiet down the output pro-
duced to just the character string (without carriage re-
turn or newline) representing the computed
cyclomatic number.

This switch allows the output of cyclo to be combined in expressions. For
example, on UNIX systems one could use the com-
mand fragment:

expr ‘cyclo -q file1‘ + ‘cyclo -q file2‘

Note: There is a supplied script, DoCYC that calculates the cyclomatic
number for each *.dig file in the current directory.

TCAT-PATH User’s Guide

39

4.3 digpic Digraph Display (Digraph Picture)

This command displays a digraph in a visible format; it is useful for man-
ual checking and analysis of generated digraphs.

Syntax:
digpic name.dig [-B filename] [-C value] [-R value]
[-W value]

where,

name.dig The file name.dig that contains the digraph to be dis-
played. The format for a digraph file is described be-
low; this is the output of tp-i<lang> .

Note that in this case the filename must be used ex-
plicitly; no automatic extension to the basename is
performed.

[-B filename] Defines the basis path to be used to draw the picture.
The default is the “natural” basis path, computed by
using the set of supplied node names in their natural
order of first occurrence. This normally produces a
fairly well-organized and complete picture.

A source of possible basis paths is the output of apg;
one of these paths could be used as the basis for draw-
ing pictures of the digraph.

[-C value] The value to use as the centerline of the digraph pic-
ture. The default value is 0, which tells digpic to use
the left-adjusted version of the picture.

[-R value] The number of rows to leave between node names.
The default value is 1.

CHAPTER 4: Utilities

40

[-W value] The maximum width of the picture; digpic issues an
error message if the maximum value is exceeded. The
default value for the width is 80; the maximum as-
signable value is 128. A picture cannot be constructed
if the maximum width is less than the longest node
name.

Note: In some cases digpic will give a misleading
“picture'' of the corresponding program. One case is
when there are multiple switch blocks that do not
each contain a break. Also, because conditional ex-
pressions are not supported constructs, any pro-
grams that contain instances of them may also
produce misleading digpic results.

Other Notes: There is a supplied script, DoPIC that
generates a *.pic file for each *.dig in the current di-
rectory.

TCAT-PATH User’s Guide

41

4.3.1 Sample Outputs:

digpic generates a representation of the structure of the program. The for-
mat generated by digpic varies with the available output media. For char-
acter based systems the format appears as shown below.

The input digraph file (format “node1 node2 edge''; node and edge
names are strings of 16 bytes each or less):

0 1 Enter
1 2 A
2 Exit B
2 1 C
2 Exit D
The corresponding path set (as generated by apg):
Enter A B
 Enter A C <{ A C }> D
 Enter A C <{ A C }> B
 Enter A D

--
Total of 4 paths for this function.
Here is a sample output from digpic:

 [[0]] 0 - Enter

 [[]] |

> [[1]] < 0 - A

| [[]] |

0 [[2]] 0 < 0 - C B D

 [[]] | |

 [[Exit]] < <
Here is a more complex example digraph:

Node-9 Node-11 E1

Node-11 Node-12 E2

Node-11 Node-12 E3

Node-12 Node-10 E4

Node-12 Node-13 E5

Node-13 Node-14 E6

Node-14 Node-15 E7

Node-15 Node-16 E8

Node-16 Node-17 E9

Node-17 Node-15 E10

Node-17 Node-15 E11

Node-16 Node-15 E12

Node-15 Node-18 E13

Node-18 Node-19 E14

Node-19 Node-19 E15

Node-19 Node-10 E16

Node-18 Node-10 E17

Node-14 Node-10 E18

Node-13 Node-10 E19

CHAPTER 4: Utilities

42

The path set for this graph is as follows:
E1 E2 E4

E1 E2 E5 E6 E7 E8 E9 E10 <{E8 E9 E10 E11 E12 }> E13 E14
E15 <{E15 }> E16

E1 E2 E5 E6 E7 E8 E9 E10 <{E8 E9 E10 E11 E12 }> E13 E14
E16

E1 E2 E5 E6 E7 E8 E9 E10 <{E8 E9 E10 E11 E12 }> E13 E17

E1 E2 E5 E6 E7 E8 E9 E11 <{E8 E9 E10 E11 E12 }> E13 E14
E15 <{E15 }> E16

E1 E2 E5 E6 E7 E8 E9 E11 <{E8 E9 E10 E11 E12 }> E13 E14
E16

E1 E2 E5 E6 E7 E8 E9 E11 <{E8 E9 E10 E11 E12 }> E13 E17

E1 E2 E5 E6 E7 E8 E12 <{E8 E9 E10 E11 E12 }> E13 E14 E15
<{E15 }> E16

E1 E2 E5 E6 E7 E8 E12 <{E8 E9 E10 E11 E12 }> E13 E14 E16

 ...(some paths have been eliminated for clarity)...

E1 E3 E5 E6 E7 E8 E12 <{E8 E9 E10 E11 E12 }> E13 E17

E1 E3 E5 E6 E7 E13 E14 E15 <{E15 }> E16

E1 E3 E5 E6 E7 E13 E14 E16

E1 E3 E5 E6 E7 E13 E17

E1 E3 E5 E6 E18

E1 E3 E5 E19

--

Total of 30 paths for this function.

The digpic-produced picture is as follows. The S symbol is used for a
“self-loop''.

Digpic

 Node-9 0 E1

 |

 Node-11 < 0 0 E2 E3

 | |

 Node-12 0 < < 0 E4 E5

 | |

 > > > > Node-10 < |

 | | | | |

 0 | | | Node-13 0 < E19 E6

 | | | |

 0 | | Node-14 < 0 E18 E7

 | | |

> > > | | Node-15 0 < 0 E8 E13

| | | | | | |

0 | | | | Node-16 < 0 | E12 E9

 | | | | | |

 0 0 | | Node-17 < | E10 E11

 | | |

TCAT-PATH User’s Guide

43

 0 | Node-18 0 < E17 E14

 | |

 S 0 Node-19 < E15 E16

CHAPTER 4: Utilities

44

4.4 pathcon Utility

The purpose of the pathcon utility is to extract and display the logical
conditions (predicates) for a particular path given the sequence of seg-
ments in the path (which could be a complete path), the digraph file
(*.dig file), and the reference listing file (*.i.A or *.iA file).

TCAT-PATH User’s Guide

45

4.4.1 Invocation Syntax

Syntax:
pathcon -A ref-listing -D dig-file [-g]

[-P path-file] [-N number [number]]

where,

-A ref-listing ref-listing, produced by the tp-ic instrumentor, is
used for predicate referencing. This file has .i.A or .iA
extension.

-D dig-file dig-file is a digraph file for a module that specifies
the set of segments in “tail-node head-node segment-
name” format.

This file is produced by the tp-ic instrumentor and is
normally named module-name.dig, where module-
name is the module in question.

-g pathcon output normally goes to standard output. If
this option is specified, the output goes to a file
named module-name.con.

-N number number specifies the path number which logical con-
ditions are to be displayed. The path number is rela-
tive to the beginning of the path file. The user can
specify one or more path numbers by supplying the
numbers as part of arguments to pathcon. If this op-
tion is not specified, then pathcon will display all the
paths in the specified path file.

-P path-file path-file is a file that contains a set of paths from the
module-name module. If this option is not specified,
then pathcon will get the paths from the module-
name.pth file. This file is normally produced by the
apg utility of TCAT-PATH. The file can contain all or
a subset of the paths that apg generates.

CHAPTER 4: Utilities

46

4.4.2 Example Invocation

For example, using the example restaurant program in the full TCAT-
PATH example chapter, the command:

pathcon -D main.dig -A example.i.A

would instruct pathcon to generate the set of logical conditions for each
generated path in the main.pth file using the information in the main.dig
digraph file and example.i.A reference listing file. The output will go to
standard output.

The following command:
pathcon -D proc_input.dig -A example.i.A -g -N 3 169

would instruct pathcon to generate the set of logical conditions for paths
number 3 and 169 in the proc_input.pth file using the information in the
proc_input.dig file and the same reference listing as previously. The out-
put will go to the file named proc_input.con.

TCAT-PATH User’s Guide

47

4.4.3 Output format

pathcon gives a detailed output for each path requested. Each path is
printed, along with the path number relative to the beginning of the path
file. Segments in the path are listed in rows. Segments that are inside the
<{ ... }> iteration symbols are not included, however, segments that are
inside the [{ ... }] iteration symbols are included. The latter indicates 1 or
more iterations of the loop and thus need to be included in the output.

The output format is shown below. Entries in italics are the entries that
pathcon generates. Each segment occupies a row and has the following
information:

PATH #: path-string

Segment Cycle Sense Predicate

22 2 Entry TRUE while(isspace(in_str[char_index]))

“#” Indicates the number of lines in the report. Each line
corresponds to one segment, however, a segment
may be listed more than once if it is part of a 1 or more
iteration loop.

Segment Lists the segment name as in the digraph file.

Cycle Includes: Entry, Exit, Loop, AbExit, Ex/Ent.Indicates
which part of the loop this segment belongs to. If this
entry is left blank, it indicates that the current seg-
ment does not belong to a loop.

entry The current segment is hit before the loop is executed.

Exit The current segment is hit after the loop is exited.

Loop The current segment is inside the loop.

AbExit The current segment is hit when loop is exited “ab-
normally''. This is the case when the segment comes
after a loop with one (1) or more iterations (the [{ ...
}]symbols).

Ex/Ent This segment comes between two loops (e.g. segment
3 is such a loop in the following path: 1 2 <{ 2 }> 3 <{
4 5 }> 7)

CHAPTER 4: Utilities

48

Sense Includes: TRUE, FALSE, CASE. Indicates which sense
of evaluation of the predicate that will cause this seg-
ment to be hit.

TRUE The current segment is hit if the evaluation of
the predicate is TRUE.

FALSE The current segment is hit if the evaluation of
the predicate is FALSE.

CASE The current segment is hit if the evaluation of
the switch statement is as indicated in the predicate
(for “C'' language only).

Predicate Includes: NONE, ***, and predicate string. The logical
condition(s) that need to evaluated if the current seg-
ment is to be hit. Predicate for the first segment in a
module is indicated by the string NONE. If no predi-
cate is encountered, pathcon will output ***.

TCAT-PATH User’s Guide

49

4.4.4 Example Output

The output from the second example invocation from the previous sec-
tion is shown in the following figure.

PATH 3: 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11 12 13 14
 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20 21 22 }> 23

Segment Cycle Sense Predicate

1 1 TRUE NONE
2 2 Entry TRUE while(isspace(in_str[char_index]))
3 3 Exit FALSE while(isspace(in_str[char_index]))
4 4 TRUE for(; char_index <= strlen(in_str);
char_index++) {
5 5 CASE switch(in_str[char_index]) {
6 6 TRUE case '1':
7 7 TRUE case '2':
8 8 TRUE case '3':
9 9 TRUE case '4':
10 10 TRUE case '5':
11 11 TRUE case '6':
12 12 TRUE case '7':
13 13 TRUE case '8':
14 14 Entry TRUE case '9':
15 4 Loop TRUE for(; char_index <= strlen(in_str);
char_index++) {
16 5 Loop CASE switch(in_str[char_index]) {
17 6 Loop TRUE case '1':
18 7 Loop TRUE case '2':
19 8 Loop TRUE case '3':
20 9 Loop TRUE case '4':
21 10 Loop TRUE case '5':
22 11 Loop TRUE case '6':
23 12 Loop TRUE case '7':
24 13 Loop TRUE case '8':
25 14 Loop TRUE case '9':
26 6 Loop TRUE case '1':
27 7 Loop TRUE case '2':
28 8 Loop TRUE case '3':
29 9 Loop TRUE case '4':
30 10 Loop TRUE case '5':
31 11 Loop TRUE case '6':
32 12 Loop TRUE case '7':
33 13 Loop TRUE case '8':
34 14 Loop TRUE case '9':
35 15 AbExit CASE switch(in_str[char_index]) {
36 17 FALSE if(chk_char(in_str[char_index])) {
37 18 TRUE if(char_index > 0 && got_first)
38 20 TRUE while(char_index <= strlen(in_str)) {
39 21 Entry TRUE if(chk_char(in_str[char_index]))
40 23 Exit FALSE while(char_index <= strlen(in_str)) {
===

CHAPTER 4: Utilities

50

PATH 169: 1 3 4 15 16

Segment Cycle Sense Predicate

1 1 TRUE NONE
2 3 FALSE while(isspace(in_str[char_index]))
3 4 TRUE for(; char_index <= strlen(in_str);
char_index++) {
4 15 CASE switch(in_str[char_index]) {
5 16 TRUE if(chk_char(in_str[char_index])) {
===

TCAT-PATH User’s Guide

51

4.5 pathcover Utility

The purpose of the pathcover utility is to extract path and segment infor-
mation from a set of paths supplied in the input file. pathcover allows the
user to get “essential'' paths, i.e. a minimal subset of paths from the input
file that would guarantee 100% C1 (branch or segment) level coverage.

It is assumed that the input file supplied to pathcover is the path file pro-
duced by the apg (all path generator) utility of TCAT-PATH.

pathcover will gives several sets of “essential'' paths depending on user's
options. The user can get “essential'' paths based on the order of occur-
rence of the segments in the original path file (“first'' or “last'' instance
found algorithm), or the user can rearrange the path file in certain order
and then apply the search algorithm. Finally, the user can also get infor-
mation on which segments are encountered most often in the input file.

CHAPTER 4: Utilities

52

4.5.1 Invocation Syntax

Syntax:
pathcover path-file [-c] [-f] [-fi] [-fl] [-fs]

[-g] [-l] [-li] [-ll] [-ls] [-n] [-q] [-r]

where,

path-file A file that contains a set of paths for a particular mod-
ule. This file is normally produced by the apg utility
and named module-name.pth.

-c Prints out the population statistics on each segment
encountered in the path file. It reports on the number
of paths that contain a particular segment.

-f Prints out the “essential'' paths based on the ''first in-
stance found'' algorithm. The search is done on the
original input path set (input file). This is pathcover
output if no options are specified.

-fi Prints out the “essential'' paths based on the “first in-
stance found'' algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob-
tained by ordering the non-iterative paths first and
then the iterative paths.

Iteration is indicated by the <{ ... }> (0 or more itera-
tions) and the [{ ...}] (1 or more iterations) symbols.

-fl Prints out the “essential'' paths based on the “first in-
stance found'' algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths. The sorted paths are obtained by ordering the
paths in ascending order based on the segment
counts in the path. Segments that are inside the <{ ...}>
(0 or more) iteration symbol are excluded from the
segment counts.

-fs Prints out the “essential'' paths based on the “first in-
stance found'' algorithm.The search is done on the
paths sorted by the segment. The sorted paths are ob-
tained by ordering the paths in ascending lexico-
graphic order.

-g Prints pathcover output to a file called module-
name.cov, where module-name is the particular mod-
ule in question. pathcover output normally goes to
standard output.

TCAT-PATH User’s Guide

53

-l Prints out the “essential'' paths based on the “last in-
stance found'' algorithm. The search is done on the
original input path set (input file).

-li Prints out the “essential'' paths based on the “last in-
stance found'' algorithm. The search is done on the
paths sorted by iteration. The sorted paths are ob-
tained by ordering the non-iterative paths first and
then the iterative paths. Iteration is indicated by the
<{ ... }> (0 or more iterations) and the [{ ...}]

-ll Prints out the “essential'' paths based on the “last in-
stance found'' algorithm. The search is done on the
paths sorted by the length (segment counts) of the
paths.

The sorted paths are obtained by ordering the paths
in ascending order based on the segment counts in
the path. Segments that are inside the <{ ...}>\(0 or
more) iteration symbol are excluded from the seg-
ment counts.

-ls Prints out the “essential'' paths based on the “last in-
stance found'' algorithm. The search is done on the
paths sorted by the segment. The sorted paths are ob-
tained by ordering the paths in ascending lexico-
graphic order.

-n Each path is preceded by a path number. For exam-
ple,@2 : 1 3 4 <{ 4 }> 5 6. The number between the @
and : is the path number.

-q The quiet switch will suppress version number and
other extraneous outputs.

-r Prints out the “essential'' paths randomly. First and
last algorithms are ignored.

CHAPTER 4: Utilities

54

4.5.2 Example Invocation

For example, using the same example “restaurant'' program, the com-
mand sequence:

cc -P example.c

tp-ic example.i

apg main.dig -g

pathcover main.pth -c -f -l -g

would instruct pathcover to generate a report on the segment population
statistics and two sets of “essential'' paths for the main module in exam-
ple.c file: one with “first instance found” algorithm and another with
“last instance found'' algorithm.

The output is written to a file called main.cov, and it is shown in the next
figure.

pathcover -- Path Coverage Utility. [Release 1.1 -- 6/91]
(c) Copyright 1991 by Software Research, Inc.

Selected PATHCOVER Options:

[-c] Population Statistics -- YES
[-f] First Found -- YES
[-l] Last Found -- YES
[-fi] First Found (Iteration) -- NO
[-li] Last Found (Iteration) -- NO
[-fl] First Found (Length) -- NO
[-ll] Last Found (Length) -- NO
[-fs] First Found (Segment) -- NO
[-ls] Last Found (Segment) -- NO

pathcover: POPULATION STATISTICS BY SEGMENT
Module:: “main” Option:: “-c”

Segment # of paths

 1 155
 2 154
 3 77
 4 154
 5 140
 6 14
 7 14
 8 14
 9 14
 10 14
 11 14
 12 14
 13 14
 14 28
 15 14
 16 14

TCAT-PATH User’s Guide

55

 17 154
 18 132
 19 110
 20 22
 21 44
 22 22
 23 44
 24 22
 25 132
 26 154
 27 155
pathcover: FIRST INSTANCE FOUND BY SEGMENT
Module:: “main” Option:: “-f”

Path# Path

1 1 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
 25 19 20 21 21 22 23 23 24 18 26 }> 27
2 3 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
 25 19 20 21 21 22 23 23 24 18 26 }> 27
3 5 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21 21
 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25
 19 20 21 21 22 23 23 24 18 26 }> 27
4 8 1 2 3 <{ 3 }> 4 5 7 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
 25 19 20 21 21 22 23 23 24 18 26 }> 27
5 15 1 2 3 <{ 3 }> 4 5 8 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
 25 19 20 21 21 22 23 23 24 18 26 }> 27
6 22 1 2 3 <{ 3 }> 4 5 9 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 18
 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22 21
 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
 25 19 20 21 21 22 23 23 24 18 26 }> 27
7 29 1 2 3 <{ 3 }> 4 5 10 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17
 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
8 36 1 2 3 <{ 3 }> 4 5 11 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17
 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
9 43 1 2 3 <{ 3 }> 4 5 12 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17
 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22
 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
10 50 1 2 3 <{ 3 }> 4 5 13 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17
 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23 22

CHAPTER 4: Utilities

56

 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
11 57 1 2 3 <{ 3 }> 4 5 14 15 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }>
 17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6
 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
12 64 1 2 3 <{ 3 }> 4 5 14 16 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }>
 17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23 23
 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6
 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
pathcover: LAST INSTANCE FOUND BY SEGMENT
Module:: "main" Option:: "-l"

Path# Path

1 77 1 2 3 <{ 3 }> 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5
 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
2 84 1 2 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
3 91 1 2 4 5 7 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
4 98 1 2 4 5 8 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
5 105 1 2 4 5 9 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
6 112 1 2 4 5 10 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
7 119 1 2 4 5 11 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
8 126 1 2 4 5 12 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
9 133 1 2 4 5 13 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
10 140 1 2 4 5 14 15 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2
 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23
 24 18 26 }> 27
11 147 1 2 4 5 14 16 <{ 5 6 7 8 9 10 11 12 13 14 15 16 }> 17 26 <{ 2
 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23
 24 18 26 }> 27
12 148 1 2 4 17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9
 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
13 149 1 2 4 17 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7
 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
14 150 1 2 4 17 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24

TCAT-PATH User’s Guide

57

 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9
 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
15 151 1 2 4 17 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7
 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
16 152 1 2 4 17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7
 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27
17 153 1 2 4 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4
 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24
 18 26 }> 27
18 154 1 2 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19
 20 21 21 22 23 23 24 18 26 }> 27
19 155 1 27

CHAPTER 4: Utilities

58

59

CHAPTER 5

Coverage Analyzer
This chapter covers the ctcover utility that generates Ct coverage report for a module. It
analyzes a *.pth and a *.trc file to produce a *.rpt report file. This is the command a user
will employ most often to check Ct coverage.

5.1 ‘ctcover' Syntax

Syntax:
ctcover name tracefile [-f shortname]

where,

name is the name of the module to be analyzed.This name
can be of any length (but see below).

tracefile is the full trace file name to be analyzed.

-f shortname is used to permit the module name to be of any
length, but the output file is named shortname.rpt
anyway. You must make sure that shortname.pth ex-
ists and contains the correct path information.

This option is primarily used for DOS, where filena-
mes are limited to eight characters.

Produces:

name.seg File with the extractions from the trace file for the
named module.

name.rpt File containing the Ct coverage report for the name
module.

Examples:

The command:
ctcover verylongmodulename trace.trc -f long

specifies that verylongmodulename is the name of the module to be
analyzed. The output of the above should be the file long.rpt .

Notes: The script DoRPT will run the command:
ctcover <name> *.trc

CHAPTER 5: Coverage Analyzer

60

for all of the *.pth files that it finds. This will have the effect of producing
all of the *.rpt files possible within the current directory. However, this
script only works for modules that have the same name as the path file-
name (i.e. does not use the -f option).

Sample Output:

Here are sample outputs from ctcover:

Example 1:

Ct Test Coverage Analyzer Version 1.8

 (c) Copyright 1990 by Software Research, Inc.

Module “getfil”: 5 paths, 3 were hit in 227 invocations.

 60.00% Ct coverage

Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text

1 90 1 2

2 22 1 3 4 <{4 }> 5 6

3 115 1 3 4 <{4 }> 5 7

4 None 1 3 5 6

5 None 1 3 5 7

Example 2:

Ct Test Coverage Analyzer Version 1.8

 (c) Copyright 1990 by Software Research, Inc.

Module “putfld”: 6 paths, 6 were hit in 115 invocations.

100% Ct Coverage!

Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text

1 1 1 2 3

2 10 1 2 4 5

3 22 1 2 4 6

4 10 1 7 8 9

5 71 1 7 8 10

6 1 1 7 11

Example 3:
Ct Test Coverage Analyzer Version 1.8

TCAT-PATH User’s Guide

61

 (c) Copyright 1990 by Software Research, Inc.

Module “putbox”: 192 paths, 7 were hit in 22 invocations.

 3.65% Ct coverage

Test descriptor: Coverage report for module boxes.<lang>

HIT/NOT-HIT REPORT

P# Hits Path text

1 None 1 2 3 6 7 9 17 <{17 }> 18 19 20 21 22 23 <{22 23
24 }> 25 \

 <{21 24 23 22 25 }> 26

2 None 1 2 3 6 7 9 17 <{17 }> 18 19 20 21 22 24 <{22 23
24 }> 25 \

 <{21 24 23 22 25 }> 26

3 None 1 2 3 6 7 9 17 <{17 }> 18 19 20 21 25 \

 <{21 24 23 22 25 }> 26

 ...(intervening paths deleted for clarity)

159 None 1 11 13 17 <{17 }> 18 19 20 21 25 <{21 24 23 22
25 }> 26

160 None 1 11 13 17 <{17 }> 18 19 20 26

161 None 1 11 13 17 <{17 }> 18 19 27

162 15 1 11 13 17 <{17 }> 18 28

163 None 1 11 13 18 19 20 21 22 23 <{22 23 24 }> 25 \

 <{21 24 23 22 25 }> 26

164 None 1 11 13 18 19 20 21 22 24 <{22 23 24 }> 25 \

 <{21 24 23 22 25 }> 26

165 None 1 11 13 18 19 20 21 25 <{21 24 23 22 25 }> 26

166 None 1 11 13 18 19 20 26

167 None 1 11 13 18 19 27

168 None 1 11 13 18 28

169 None 1 14 15 17 <{17 }> 18 19 20 21 22 23 <{22 23 24
}> 25 \

 <{21 24 23 22 25 }> 26

170 None 1 14 15 17 <{17 }> 18 19 20 21 22 24 <{22 23 24
}> 25 \

 <{21 24 23 22 25 }> 26

171 None 1 14 15 17 <{17 }> 18 19 20 21 25 \

 <{21 24 23 22 25 }> 26

172 None 1 14 15 17 <{17 }> 18 19 20 26

173 1 1 14 15 17 <{17 }> 18 19 27

174 None 1 14 15 17 <{17 }> 18 28

 ...(intervening paths deleted for clarity)

192 None 1 14 16 18 28

CHAPTER 5: Coverage Analyzer

62

63

CHAPTER 6

TCAT-PATH Menus
The second way to access TCAT-PATH is with menus and this chapter will explain how to
do so. If you would rather use command line invocation, you may skip this chapter and
go on to Chapters 8 and 9 or the full TCAT-PATH example in Chapter 10.

6.1 TCAT-PATH ASCII Menus

Menus help users in two ways: by providing a fixed structure for collect-
ing test coverage information and by providing a convenient way to
customize a sequence of operations.

CHAPTER 6: TCAT-PATH Menus

64

6.1.1 Invoking TCAT-PATH

Start up TCAT-PATH in interactive mode with the command:
tcatpath [-r file]

where,

file is the optional configuration file (rc file) name. The
default name for the configuration file is tcatp.rc. If
you don't specify a configuration file, or if TCAT-
PATH doesn't find the file tcatp.rc in the current di-
rectory, then TCAT-PATH issues a warning message
and continues processing, using default values.

Remember that the content of the TCAT-PATH configuration file, tcatp.rc,
always overrides the internally supplied (default) values of all
parameters.

TCAT-PATH User’s Guide

65

6.1.2 TCAT-PATH Menu Tree

The organization and structure of the menus for the interactive TCAT-
PATH is shown in the diagram on the following page:

TCAT-PATH:
| Selects ACTIONS or FILES or OPTIONS menus
| Shows option settings
| Shows current execution statistics
| Saves option settings
| Exit from TCAT-PATH system
| On-line help frames
| !<system commands>
|
+----ACTIONS:
| Selects basic TCAT-PATH operations
| Shows option settings
| Return to prior menu
| On-line help frames
| !<system commands>
|
+----OPTIONS:
| Helps select all user-settable options
| Shows option settings
| Return to prior menu
| On-line help frames
| !<system commands>
|
+----FILES:
 Shows all current options settings
 Allows changing file settings
 Return to prior menu
 On-line help frames
 !<system commands>

After TCAT-PATH starts, you will see the title information, version control
indication,

and the prompt
 “TCAT-PATH:MAIN:” .

To see the available menu options, type from any prompt within TCAT-
PATH:

?

and then
 [RETURN].

CHAPTER 6: TCAT-PATH Menus

66

TCAT-PATH then displays the available options for that menu. This fea-
ture works for all menus throughout TCAT-PATH.The current menu is
redrawn whenever you give an unrecognized command.

6.1.2.1 Issuing Commands

You can issue commands by typing the first few letters of each com-
mand's name. The only requirement is that the letter sequence be unique
to that command. TCAT-PATH will inform you when a command you
issue matches two or more possible commands.

To set variables (see the options menu description, below) you must type
the entire variable name. This is done in order to be consistent with con-
figuration file processing.

Displaying Current Parameter Settings

You can display the current settings (options and filenames) known to
TCAT-PATH at any time using the settings command, get on-line help
with the help\f1 command, and exit the current menu using exit. The
configuration file reading in the settings is automatically used. However,
the settings can be changed if required.

TCAT-PATH Menu ‘Stack'

You can move from the MAIN menu to any other menu at will. TCAT-
PATH remembers the sequence of your choice of menus in an internal
“stack''. This means that when switching from one menu to another, you
can return to the immediately prior menu with the exit command. This
feature is provided to prevent you from entering conflicting or incorrect
data during a run.

If you wish, you can issue a series of exit commands that will eventually
return you to the MAIN menu to exit the system. That is, your moves
between the three subsidiary menus are “stacked'' and must be
“unstacked'' before returning to the MAIN menu.

If you press the DEL key, you return immediately to the MAIN menu.

TCAT-PATH User’s Guide

67

6.1.3 Main Menu

All commands may be abbreviated when no ambiguity exists, e.g.
“options'' can be shortened to “o” because no other command in the
TCAT-PATH menu starts with “o”.

When TCAT-PATH is activated the following menu options are displayed:
TCAT-PATH:MAIN:
Options:
 save -- Save the current settings

for TCAT-PATH.
 stats -- Show current usage values

for TCAT-PATH.

 actions -- Go to the ACTIONS menu.
 files -- Go to the FILES menu.
 options -- Go to the OPTIONS menu.

 settings -- List the current settings
for TCAT-PATH options.

 help [opt] -- Display HELP text for a
command.

 release -- Show release and version
numbers for this TCAT-
PATH copy.

 exit -- Exit from TCAT-PATH to system

CHAPTER 6: TCAT-PATH Menus

68

6.1.4 Actions Menu

The Actions menu is displayed below:

TCAT-PATH:ACTIONS:
Options:
 preprocess -- Runs the preprocessor

command on the program.
 instrument -- Instrument/generate digraph

of program.
 apg -- Run apg on *.dig file.
 cyclo -- Compute cyclomatic number

on *.dig file.
 digpic -- Run digpic on *.dig file.
 ctcover -- Compute Ct path cover.
 files -- Go to the FILES menu.
 options -- Go to the options menu.
 settings -- Display current runtime

settings.
 help [opt] -- Display HELP text for command
 exit -- Exit current level

TCAT-PATH User’s Guide

69

6.1.5 Files Menu

The Files menu is displayed below:

TCAT-PATH:FILES:
Options:
 prefix <name> -- Base name of module being

processed.
 digraph <name> -- Name of digraph file

(default ‘prefix'.dig).
 path <name> -- Name of path file (default

‘prefix'.pth).
 tracefile <name> -- Name of trace file (default

‘prefix'.trc).
 report <name> -- Name of report file (default

‘prefix'.rpt).
 basis <name> -- Name of basis path file

(default ‘prefix'.bas).

 actions -- Go to the ACTIONS menu.
 options -- Go to the OPTIONS menu.

 settings -- Display current runtime
settings.

 help [opt] -- Display HELP text for command
 exit -- Exit current level

CHAPTER 6: TCAT-PATH Menus

70

6.1.6 Options Menu

The Options menu is displayed below:
TCAT-PATH:OPTIONS:
Options:
 maxnodes <#> -- Maximum number of nodes

digraph will process.
 maxedges <#> -- Maximum number of edges

digraph will process.
 loopcount <#> -- Value of K to use in apg

executions; default K = 1.
 maxprint <#> -- Maximum number of paths

apg prints; default 300.
 maxpath <#> -- Maximum number of paths

apg calculates.
 basis <#> -- Basis path default number

if non-zero.
 centerline <#> -- Centerline offset for a

digraph picture.
 space <#> -- Spaces between nodes in

digraph picture, default
1

 width <#> -- Maximum width of the image
produced; default = 80.

 maxcalls <#> -- Maximum number of calls
ctseg produces.

 chnghelp <file> -- Specify a new on-line
documentation <file>.

 actions -- Go to the ACTIONS menu.
 files -- Go to the FILES menu.
 settings -- Display current runtime

settings.
 help [opt] -- Display HELP text for a

command
 exit -- Exit to the system

TCAT-PATH User’s Guide

71

6.1.7 Saving Changed Option Settings

Before leaving TCAT-PATH, or before running a digraph analysis, instru-
mentation, path generation, and/or coverage analysis session, the user
will be prompted to save the current option settings (unless this has
already been done in the current execution of TCAT-PATH and the
options have not been changed since they were saved).

This part of an interactive session appears as follows (assuming you wish
to save all current options in the file example.rc):

TCAT-PATH:

Do you want to save the current parameter settings
(y/n):

y

Do you want to use the default filename (“tcatp.rc”)
(y/n):

n

Specify filename:

example.rc

Parameter settings saved in “example.rc”.

Note that TCAT-PATH will normally prompt you about saving current
settings when you finally exit the system (via an exit command in the
TCAT-PATH MAIN Menu).

CHAPTER 6: TCAT-PATH Menus

72

6.1.8 Running System Commands

You may execute a command available to the underlying operating sys-
tem by using the “!” symbol, as follows:

TCAT-PATH:!<command>

Control is returned to TCAT-PATH after the command is executed.

This feature is useful for editing files and other activity within a TCAT-
PATH session.

TCAT-PATH User’s Guide

73

6.1.9 Settings Command Output

The current set of options values is available from ALL TCAT-PATH
menus, using the settings command.

An example of the output produced by the settings command is shown
below. The values shown are the actual default values assigned as if there
were NO configuration file present. This is also the set of values that will
be written during TCAT-PATH exit if you choose to save the values.

Current TCAT-PATH Options Settings Are:

 Parameters:

 maxnodes = 500

 maxedges = 1000

 loopcount = 1

 maxprint = 300

 maxpath = 4800

 basis = 300

 centerline = 0

 space = 1

 width = 80

 maxcalls = 10000

 documentation = /usr/tcatpath/tcatpath.hlp

 Files:

 prefix = example

 digraph = example.dig

 path = example.pth

 tracefile = example.trc

 report = example.rpt

 basis_file =

 config_file = tcatp.rc

CHAPTER 6: TCAT-PATH Menus

74

6.2 TCAT-PATH Configuration File

This section describes how to construct or edit TCAT-PATH configuration
files. A sample file is shown at the end of this chapter.

All the commands in the TCAT-PATH system can read a configuration file
(the default name is tcatp.rc) before starting processing.

This feature allows the user to set various run-time parameters automati-
cally. Command-line parameters, however, override the configuration file
settings when command-line parameters are present.

The TCAT-PATH configuration file is a simple ASCII text file that can be
created with an editor.

Alternatively, you can create this file, and give it any name you like, by
using the save option from within an interactive invocation of TCAT-
PATH.

TCAT-PATH User’s Guide

75

6.2.1 Configuration File Syntax

The following run-time parameters can be set from the configuration file.
These parameters are shown here in the same order as they are displayed
with a “settings” command within the interactive menus of TCAT-PATH.

<any comment> A line that begins with a # is treated as a comment.

maxnodes=<number>

The maximum number of nodes tp-i<lang> will pro-
cess.Default is 500. An impractical limit is probably
2500.

maxedges=<number>

The maximum number of edges tp-i<lang> will pro-
cess. Default is 1000. An impractical limit is probably
2500.

loopcount=<number>

The value of K to use in apg executions; default K = 1.
(At present, only K = 1 can be used.)

maxprint=<number>

The maximum number of paths for apg to print. De-
fault is 300. A practical limit is probably 1000.

maxpath=<number>

The maximum number of paths for apg to calculate.
apg gives a message at the end of execution to show
the total number of paths it would have printed; or it
issues an error message when the “maxpath'' param-
eter is exceeded.The default value is 4800. A practical
limit is probably around 10,000.

basepath=<filename>

The name of the filename that contains the alternative
definition of the basis path for drawing digraph pic-
tures with digpic. The default value is “ ", meaning
that the “naturally generated'' picture basis path
should be used.

centerline=<number>

The centerline offset for a digraph picture, in bytes
(default value 0). A typical value (for interactive
screens) is 40.

CHAPTER 6: TCAT-PATH Menus

76

space=<number> The number of spaces up/down between nodes. The
default is 1. The maximum value is 5 (larger values
are treated as errors).

width=<number> The maximum width of the image produced; The de-
fault is 80. The maximum possible value is 128. If the
graph is large than this value then it is “clipped'' at
that value.

maxcalls=<number>

The maximum number of calls to be processed by ct-
seg, which is called by ctcover. The default is 10000.
This is probably a practical limit.

help=<pathname>

The fully specified path name for the file containing
the TCAT-PATH help frame information (interactive
operation only). The default location is:

/bin/tcatpath/helpframes

This location is installation-dependent. If this filena-
me is not specified correctly then the TCAT-PATH on-
line help frames will not work correctly.

prefix=<name> The module or function name to be used as the base
name or filename prefix for all subsequent process-
ing. This is referred to in the following option de-
scriptions as “<*>”.

If no prefix is specified then TCAT-PATH will not be
able to process any files, generate any digraphs, or
analyze path coverage. Accordingly, the default as-
signed value for the prefix is example.

digraph=<name.dig>

The name of the digraph file. If not specified, TCAT-
PATH assumes you mean <*>.dig. The default value
is example.dig

path=<name.pth> The name of the file of paths. If not specified, TCAT-
PATH assumes you mean <*>.pth. The default value
is example.pth.

tracefile=<name.trc>The name of the trace file (generated during your
program execution). If not specified, TCAT-PATH as-
sumes you mean <*>.trc. The default value is exam-
ple.trc.

report=<name.rpt> The name into which to write the Ct coverage re-
port.The default name is example.rpt.

TCAT-PATH User’s Guide

77

6.2.2 Configuration File Processing

Lines in the configuration file can contain any of these commands in any
order. Comment lines must have a “#” as the first character.

All white space (i.e. tabs and blanks) in the configuration file is ignored.

All arguments (when appropriate) are treated as character string tokens
(i.e. no internal white space).

The latest-occurring command in case there are duplicate commands pre-
vails. (This feature may be useful when handling several configuration
files that differ only slightly.)

CHAPTER 6: TCAT-PATH Menus

78

6.2.3 Sample TCAT-PATH Configuration File

Below is an example of a typical TCAT-PATH configuration file.
Sample options setting commands (configuration file)

width=20

=example

basis_file = example.basis

Redefine the maxima for “apg” operation...

maxprint= 1000

maxedges=10000

Value to keep updated archive records (C1 analysis)...

report=my.archive

End of example configuration file

79

CHAPTER 7

Source Viewing Utility
This utility is only available on X Window System environments.

7.1 Introduction

Source viewing associates a segment or node with its corresponding
source code. By simply clicking the mouse, the user is able to see source
relating to a node or segment.

For the purpose of source viewing, nodes are indicated by circles. A seg-
ment (or edge) is a directed line connecting two nodes (or circles).

CHAPTER 7: Source Viewing Utility

80

7.2 Invocation Syntax

Source viewing is invoked with the following command:
Xdigraph dig-file-S2ref-listing[-SC number]

where,

dig-file The dig-file is the file that specifies the set of segments
in “tail-node head-node segment-name'' format. This
is what is normally produced by tp-ic and named
module-name.dig. This is the source file that the user
can view.

-S ref-listing The Reference Listing file (that is filename.i.A) is pro-
duced by the instrumentor.

[-SC number] This switch is optional. number specifies the number
of lines of source code above and below the clicked
segment or node that are to be displayed. The default
value is 10.

TCAT-PATH User’s Guide

81

7.3 Example Invocation

This section refers to the full TCAT-PATH example chapter. For TCAT-
PATH, the digraph files will be one of the following modules: main,
proc_input, or chk_chr.

The reference listing is always example.i.A, which is the “C'' program.

The following two pages show an example of source viewing, using main
module. Figure 8 shows the mouse pointer (indicated by an arrow in the
display) selecting a segment. For edges, the segment number must be
clicked on. For nodes, the pointer must click somewhere inside the circle.

Figure 9 shows the result. For this, hold down the mouse button, and the
source code will be displayed for as long as the button is held down.

NOTE: If the node/segment numbers are not visible, it is probably
because the window size is too small. In this case, increase its size.

The main module on the following pages is invoked with the following:
Xdig raph main.dig -S example.i.A

To source view with graphical user interfaces, see Chapter 11.

CHAPTER 7: Source Viewing Utility

82

Below is an example of the mouse pointer clicking on Segment 2.

FIGURE 2 Source Viewing (Part 1 of 2)

TCAT-PATH User’s Guide

83

Below is an example of the source code displayed as the mouse button is
held down.

FIGURE 3 Source Viewing (Part 2 of 2)

CHAPTER 7: Source Viewing Utility

84

85

CHAPTER 8

TCAT-PATH Command
Summary for MS-DOS

This chapter gives a short command summary for TCAT-PATH for “C'' running under
MS-DOS.

8.1 Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C'' preproces-
sor before putting it to tp-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime module. Depend-
ing on the size of your program and the development method used, the
following subsections describe how it is done.

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS

86

8.1.1 Stand-Alone Files

Here are the commands you would use with the Microsoft C 6.0 compiler
on MS-DOS:
Preprocess: cl /P <filename>.c /* to produce <filename>.i */

Instrument: tp-ic -m6 <filename>.i /* to produce <filename>.ic */

Compile: cl /c /Tc <filename>.ic/* to produce <filename>.obj */

Link: cl <filename>.obj ctrun1s.obj/* to produce <file-
name>.exe */

Execute:(Run your program as usual. Press RETURN

twice to accept the default values for

trace file message and name.)

Note that -m6 is the tp-ic switch for Microsoft C 6.0 compiler. /Tc is a
Microsoft C 6.0 option that allows for compilation of files with extensions
other than .c.

Also, note that ctrun1s.obj is the runtime object module that comes with
TCAT-PATH. There are various runtime object files, depending on com-
piler, runtime level, and memory model used. For more runtime descrip-
tions on MS-DOS runtimes, turn to “Runtime Descriptions” on page 24,
Section 3.1.

TCAT-PATH User’s Guide

87

8.1.2 Systems with ‘make' Files

1. In systems that have ‘make' files where .obj files are explicitly listed
as targets, add the following built-in rule before other targets:

Built in rule for TCAT instrumentation...

 .c.obj:

cl $(CFLAGS) /P $*.c cl. $(CFLAGS) /P $*.c

tp-ic -m6 $*.i or tp-ic -m6 $*.i

ren $*.i temp.c cl $(CFLAGS) /c /Tc
$*.ic

cl $(CFLAGS) /c temp.c

ren temp.o $*.obj

sample.obj: sample.c

...

2. Add .cM ctrun<level><model>.obj to the list of linked object
modules. You must choose the version of runtime to use, based on the
runtime level and the memory model (small, compact, medium, large
or huge).

3. Run the ‘make' file to produce the instrumented program.

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS

88

8.1.3 ‘make' With ‘cl', ‘msc'

This section deals with situations that involve 'make' files for commonly
available PC-based compilers, such as Microsoft C, where compile state-
ments are explicitly mentioned.
1. Replace ‘cl' (or ‘msc') with the following lines:

cl $(CFLAGS) /P <filename>.c

tp-ic -m6 <filename>.i

ren <filename>.i temp.c

cl $(CFLAGS) /c temp.c

ren temp.o <filename>.o

2. Add ctrun<level><model>.obj to the list of linked object mod-
ules.

3. Run the make file to produce the instrumented program.

TCAT-PATH User’s Guide

89

8.1.4 Systems without ‘make' Files

Go to the directories with the source code and follow the method for
stand alone files with each source code file (preprocess, instrument, com-
pile). Finally, link all the object files with the appropriate runtime object
file.

CHAPTER 8: TCAT-PATH Command Summary for MS-DOS

90

8.1.5 Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro-
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

91

CHAPTER 9

TCAT-PATH Command
Summary for UNIX

This chapter summarizes commands you use with TCAT-PATH for “C'' in UNIX and
UNIX-like environments.

9.1 Instrumentation, Compilation and Linking

The user is required to preprocess the source file through a “C'' preproces-
sor before putting it to tp-ic instrumentor. The instrumented program is
then compiled and linked with the appropriate runtime modules.

Depending on the size of your program and the development method
that you use, the following subsections describe how it is done.

 CHAPTER 9: TCAT-PATH Command Summary for UNIX

92

9.1.1 Stand-Alone Files

The commands used are:
Preprocess: cc -P <filename>.c /* to produce <filename>.i */

Instrument: tp-ic <filename>.i /* to produce <filename>.i.c */

Compile: cc -c <filename>.i.c /* to produce <filename>.i.o */

Link: cc <filename>.i.o ctrun1.o /* to produce a.out */

Execute: (Run your program as usual. Press RETURN

twice to accept the default values for

trace file message and name.)

1. If you have ‘make' files where *.o files are created with built-in rules,
add the following built-in rule before other targets:

Built in rule for TCAT-PATH instrumentation...

 .c.o:

cc $(CFLAGS) -P $*.c

tp-ic $*.i

cc $(CFLAGS) -c $*.i.c

mv $*.i.o $*.o

sample.o: sample.c

...

 # The above will depend on which one invokes built
in rules.

2. Add ctrun<level>.o to the list of linked object modules.
3. Then run the ‘make' file to produce the instrumented version of the

software.

TCAT-PATH User’s Guide

93

9.1.2 ‘make' files with cc called in directives

When cc is explicitly called in directives, then add tp-ic commands to the
cc commands within the ‘make' file.
1. Replace cc with the following lines:

cc $(CFLAGS) -P <filename>.c

tp-ic <filename>.i

cc $(CFLAGS) -c <filename>.i.c

mv <filename>.i.o <filename>.o

2. Add ctrun<level>.o to the list of linked object modules.
3. Finally, run the make file to produce the instrumented version of the

software.

 CHAPTER 9: TCAT-PATH Command Summary for UNIX

94

9.1.3 A System Which Does Not Use ‘make' Files

(Or which will not allow ‘make' file changes)

Go to the directories that contain the source code.

There, type the following commands:
cc -P *.c

tp-ic *.i

cc -c *.i.c

cc *.i.o ctrun<?>.o

to create the instrumented source, objects and executable.

TCAT-PATH User’s Guide

95

9.2 Program Execution

Run your program as usual.

NOTE: With the default runtimes (runtime level 1), the instrumented pro-
gram will add two prompts when the first instrumented code is executed.
You may fill in a value or press return each time. The prompts may be
suppressed by changing the provided runtime. Refer to Section 3.1 for a
more detailed description of runtimes available.

 CHAPTER 9: TCAT-PATH Command Summary for UNIX

96

97

CHAPTER 10

Full TCAT-PATH Example
This chapter describes a full TCAT-PATH example that includes a sample “C'' program,
instrumented program, referenced listing, digraph files for each module, cyclomatic
number calculations, digraph pictures, and coverage reports.

10.1 Introduction

It is assumed that TCAT-PATH will be used on syntactically correct pro-
grams, that is programs that will compile cleanly before instrumentation.
Of course, TCAT-PATH will be used to verify that each program segment
or logical branch executes correctly under typical operating conditions.

Figures 2 and 3 show a sample “C'' program with three function modules.

This example program will be used throughout the chapter to describe
each component of TCAT-PATH to better aid the user.
/* EXAMPLE.C --example file for use with TCAT, STCAT, TCAT-PATH.
*/

#include "stdio.h"

#include <ctype.h>

#define INPUTERROR -1

#define INPUTDONE 0

#define MENU_CHOICES 13

#define STD_LEN 79

#define TRUE 1

#define FALSE 0

#define BOOL int

#define OK TRUE

#define NOT_OK FALSE

char menu[MENU_CHOICES][STD_LEN] = {

 "SOFTWARE RESEARCH'S RESTAURANT GUIDE \n”),

 “ What type of food would you like”),

 “\n”,

 “ 1 American 50s \n”),

 “ 2 Chinese - Human Style \n”),

 “ 3 Chinese - Seafood Oriented \n”),

 " 4 Chinese - Conventional Style \n”),

 " 5 Danish \n”),

CHAPTER 10: Full TCAT-PATH Example

98

 " 6 French \n"),

 " 7 Italian \n"),

 " 8 Japanese \n"),

 "\n\n"

};

int char_index;

main(argc,argv) /* simple program to pick a restaurant */

int argc;

char *argv[];

{

 int i, choice, c,answer;

 char str[STD_LEN];

 BOOL ask, repeat;

 int proc_input();

 c = 3;

 repeat = TRUE;

 while(repeat) {

 printf("\n\n\n");

 for(i = 0; i < MENU_CHOICES; i++)

 printf("%s", menu[i]);

 gets(str);

 printf("\n");

 while(choice = proc_input(str)) {

 switch(choice) {

 case 1:

 printf("\\tFog City Diner 1300 Battery 982-2000 \n");

 break;

 case 2:

 printf("\tHunan Village Restaurant 839 Kearney 956-
7868 \\n");

 break;

 case 3:

 printf("\tOcean Restaurant 726 Clement 221-3351 \n");

 break;

 case 4:

 printf("\tYet Wah 1829 Clement 387-8056 \n");

 break;

 case 5:

 printf("\tEiners Danish Restaurant 1901 Clement 386-
9860 \n");

 break;

 case 6:

 printf("\tChateau Suzanne 1449 Lombard 771-9326 \n");

 break;

 case 7:

printf("\tGrifone Ristorante 1609 Powell 397-8458 \n");

 break;

 case 8:

TCAT-PATH User’s Guide

99

 printf("\tFlints Barbecue 4450 Shattuck, Oakland
\n");

 break;

 default:

 if(choice != INPUTERROR)

 printf("\t>>> %d: not a valid choice.\n", choice);

 break;

 } }

 for(ask = TRUE; ask;) {

 printf("\n\tDo you want to run it again? ");

 while((answer = getchar()) != '\\n') {

 switch(answer) {

 case 'Y':

 case 'y':

 ask = FALSE;

 char_index = 0;

 break;

 case 'N':

 case 'n':

 ask = FALSE;

 repeat = FALSE;

 break;

 default:

 break;

 } } } } }

int proc_input(in_str)

char *in_str;

{

 int tempresult = 0;

 char bad_str[80], *bad_input;

 BOOL got_first = FALSE;

 bad_input = bad_str;

 while(isspace(in_str[char_index]))

 char_index++;

 for(; char_index <= strlen(in_str); char_index++) {

 switch(in_str[char_index]) {

 case '0':

 case '1':

 case '2':

 case '3':

 case '4':

 case '5':

 case '6':

 case '7':

 case '8':

 case '9':

CHAPTER 10: Full TCAT-PATH Example

100

 /* process choice */

 tempresult = tempresult * 10 + (in_str[char_index] -
'0');

 got_first = TRUE;

 break;

 default:

 if(chk_char(in_str[char_index])) {

 return(tempresult);

 }

 else {

 if(char_index > 0 && got_first)

 char_index--;

 while(char_index <= strlen(in_str)) {

 if(chk_char(in_str[char_index]))

 break;

 else

 *bad_input++ = in_str[char_index];

 char_index++;

 }

 *bad_input = '\\0';

 printf("\t>>> bad input: %s\n", bad_str);

 char_index++;

 return(INPUTERROR);

 } } }

 return(INPUTDONE);

}

BOOL chk_char(ch)

char ch;

{

 if(isspace(ch) || ch == '\0')

 return(OK);

 else

 return(NOT_OK);

TCAT-PATH User’s Guide

101

10.2 Preprocess, Instrument, Compile and Link

The first step in TCAT-PATH is to prepare your ‘‘C'' program to provide
segment coverage data. You start by:
1. Pre-processing the program. Most ‘‘C'' compilers have this facility.
2. Instrumenting it to insert markers at every segment position.

The program on the next pages shows, in bold, the effects of TCAT-PATH
instrumentation on your ‘‘C'' program:

-- C1 instrumentation by TCAT-PATH/C instrumenter:

--

-- Program tp-ic, Release 8

-- Instrumented on Wed Jan 30 14:21:08 1991

-- SR Copy Identification No. 0.

--

-- (c) Copyright 1990 by Software Research, Inc. All Rights
Reserved.

--

-- This program was instrumented by SR proprietary software,

-- for use with the SR proprietary TCAT runtime package.

-- Use of this program is limited by associated software

-- license agreements.

*/

extern SegHit();

extern Strace();

extern Ftrace();

extern EntrMod();

extern ExtMod();

\

char menu[13][79] = {

 "SOFTWARE RESEARCH'S RESTAURANT GUIDE \\n",

 " What type of food would you like?\n",

 "\n",

 " 1 American 50s \n",

 " 2 Chinese - Hunan Style \n",

 " 3 Chinese - Seafood Oriented \n",

 " 4 Chinese - Conventional Style \n",

 " 5 Danish \n",

 " 6 French \n",

 " 7 Italian \n",

CHAPTER 10: Full TCAT-PATH Example

102

 " 8 Japanese \\n",

 "\n\n"

};

int char_index;

main(argc,argv)

int argc;

char *argv[];

{

 int i, choice, c,answer;

 char str[79];

 int ask, repeat;

 int proc_input();

 \Strace("IC",0x7504,0,0);

 \EntrMod(27,"main",-1);

 SegHit(1);

 c = 3;

 repeat = 1;

 { while(repeat) { SegHit(2);

 {

 printf("\n\n\n"); {

 for(i = 0; i < 13; i++) { SegHit(3);

 printf("%s", menu[i]); }

 SegHit(4); };

 gets(str);

 printf("\n");

 { while(choice = proc_input(str)) { SegHit(5);

 {

 { switch(choice)

{

 case 1:SegHit(6);

 printf("\tFog City Diner1300 Battery 982-
2000 \n");

 break;

 case 2: SegHit(7);

 printf("\tHunan Village Restaurant 839 Kear-
ney 956-7868 \n");

 break;

 case 3: SegHit(8);

 printf("\tOcean Restaurant 726 Clement 221-
3351 \n");

 break;

 case 4: \SegHit(9);\

 printf("\tYet Wah 1829 Clement 387-8056 \n");

 break;

TCAT-PATH User’s Guide

103

 case 5: \SegHit(10);

 printf("\tEiners Danish Restaurant 1901 Clem-
ent 386-9860 \n");

 break;

 case 6: SegHit(11);

 printf("\tChateau Suzanne 1449 Lombard 771-
9326\n");

 break;

 case 7: SegHit(12);

 printf("\tGrifone Ristorante1609 Powell397-
8458 \\n");

 break;

 case 8: SegHit(13);

 printf("\tFlints Barbecue 4450 Shattuck, Oak-
land \n");

 break;

 default: \SegHit(14);

 if(choice != -1) { SegHit(15);

 printf("\t>>> %d: not a valid choice.\n",
choice);

 } else SegHit(16);

 break;

 } } } } SegHit(17); };

 { for(ask = 1; ask;) { SegHit(18);

 {

 printf("\n\tDo you want to run it again? ");

 {while((answer = getchar()) != '\n') { SegHit(19);

 {

 {\ switch(answer)

 {

 case 'Y': SegHit(20);

 case 'y': SegHit(21);

 ask = 0;

 char_index = 0;

 break;

 case 'N': \SegHit(22);\

 case 'n': \SegHit(23);\

 ask = 0;

 repeat = 0;

 break;

 default: \SegHit(24);\

 break;

 } \}\

 } \} SegHit(25); };\

 } \} SegHit(26); };\

 } \} SegHit(27); };\

 \ExtMod("main"); \

CHAPTER 10: Full TCAT-PATH Example

104

 \Ftrace(0);\

}

int proc_input(in_str)

char *in_str;

{

 int tempresult = 0;

 char bad_str[80], *bad_input;

 int got_first = 0;

 \EntrMod(24,"proc_input",-1);\

 \SegHit(1);\

 bad_input = bad_str;

 \{\ while(isspace(in_str[char_index])) \{ SegHit(2);\

 char_index++; \} SegHit(3); };\

 \{\ for(; char_index <= strlen(in_str); char_index++) \{
SegHit(4);\

 {

 \{\ switch(in_str[char_index])

 {

 case '0': \SegHit(5);\

 case '1': \SegHit(6);\

 case '2': \SegHit(7);\

 case '3': \SegHit(8);\

 case '4': \SegHit(9);\

 case '5': \SegHit(10);\

 case '6': \SegHit(11);\

 case '7': \SegHit(12);\

 case '8': \SegHit(13);\

 case '9': \SegHit(14);\

 tempresult = tempresult * 10 +
(in_str[char_index] - '0');

 got_first = 1;

 break;

 default: \SegHit(15);\

 if(chk_char(in_str[char_index])) \{ SegHit(16);\

 { \{ExtMod("proc_input");\

 return(tempresult); \}\

 } \}\

 else \{ SegHit(17);\

 {

 if(char_index > 0 && got_first) \{ SegHit(18);\

 char_index--; \} else SegHit(19);\

 \{\ while(char_index <= strlen(in_str)) \{
SegHit(20);\

TCAT-PATH User’s Guide

105

 {

 if(chk_char(in_str[char_index])) \{ Seg-
Hit(21);\

 break; \}\

 else \{ SegHit(22);\

 *bad_input++ = in_str[char_index]; \}\

 char_index++;

 } \} SegHit(23); };\

 *bad_input = '\0';

 printf("\\t>>> bad input: %s\\n", bad_str);

 char_index++;

 \{ ExtMod("proc_input");\

 return(-1); \}\

 } \}\

 } \}\

 } \} SegHit(24); };\

 \{ ExtMod("proc_input");\

 return(0); \}\

 \ExtMod("proc_input");\

}

int chk_char(ch)

char ch;

{

 \EntrMod(3,"chk_char",-1);\

 \SegHit(1);\

 if(isspace(ch) || ch == '\0') \{ SegHit(2); { Ext-
Mod("chk_char");\

 return(1); \} }\

 else \{ SegHit(3); { ExtMod("chk_char");\

 return(0); \} }\

 \ExtMod("chk_char");\

}

CHAPTER 10: Full TCAT-PATH Example

106

10.3 Reference Listing

The Reference Listing file (that is filename.i.A or filename.ia for DOS) is
produced by the instrumentor and is used for manual cross-referencing
during a series of tests. The Reference Listing is a version of your ‘‘C'' pro-
gram with segments (or edges) and nodes marked.

You will use this report by gathering the "Not Hit" paths from report files,
and then looking up the related code in the Reference Listing. After
reviewing the exercised and not-exercised parts of the program, you can
design subsequent test cases to exercise more paths.

Extensive segment, node and module notation have also been embedded
and the segment and node sequence numbers are listed along the left-
most column.

The header identifies the file as a Reference Listing and includes the
Release number plus a copyright notice.
The code that tp-ic adds appears in bold in the following pro-
gram.

-- TCAT-PATH/C, Release 8

--

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

--

-- SEGMENT REFERENCE LISTING

--

-- Instrumentation date: Wed Jan 30 14:21:08 1991

--

-- Separate modules and segment definitions for each module are

-- indicated in this commented version of the supplied source
file.

\

char menu[13][79] = {

 "SOFTWARE RESEARCH'S RESTAURANT GUIDE \n",

 " What type of food would you like?\n",

 "\n",

 " 1 American 50s \n",

 " 2 Chinese - Hunan Style \n",

 " 3 Chinese - Seafood Oriented \n",

 " 4 Chinese - Conventional Style \n",

 " 5 Danish \n",

 " 6 French \n",

 " 7 Italian \n",

 " 8 Japanese \n",

TCAT-PATH User’s Guide

107

 "\n\n"

};

int char_index;

main(argc,argv)

int argc;

char*argv[];

{

 int i, choice, c,answer;

 char str[79];

 int ask, repeat;

\/** Module main **\

\/* DIGRAPH NODE 1 *\

 int proc_input();

\/** Segment 1 <> **\

 c = 3;

 repeat = 1;

\/* DIGRAPH NODE 2 *\ while(repeat) {

\/** Segment 2 <start while> **\

 printf("\n\n\n");

\/* DIGRAPH NODE 3 *\ for(i = 0; i < 13; i++)

\/** Segment 3 <start for> **\

 printf("%s", menu[i]);

\/** Segment 4 <end for> **\

 gets(str);

 printf("\n");

\/* DIGRAPH NODE 4 *\ while(choice = proc_input(str)) {

\/** Segment 5 <start while> **\

\/* DIGRAPH NODE 5 *\ switch(choice) {

 case 1:

\/** Segment 6 <case alt> **\

 printf("\tFog City Diner 1300 Battery
982-2000 \n");

 break;

 case 2:

\/** Segment 7 <case alt> **\

 printf("\tHunan Village Restaurant 839
Kearney 956-7868 \n");

 break;

 case 3:

** Segment 8 <case alt> **\

 printf("\tOcean Restaurant 726 Clement 221-
3351 \n");

 break;

 case 4:

** Segment 9 <case alt> **\

 printf("\tYet Wah 1829 Clement 387-8056
\n");

CHAPTER 10: Full TCAT-PATH Example

108

 break;

 case 5:

\/** Segment 10 <case alt> **\

 printf("\tEiners Danish Restaurant 1901
Clement 386-9860 \n");

 break;

 case 6:

\/** Segment 11 <case alt> **\

 printf("\tChateau Suzanne 1449
Lombard 771-9326 \n");

 break;

 case 7:

\/** Segment 12 <case alt> **\

 printf("\tGrifone Ristorante 1609
Powell 397-8458 \n");

 break;

 case 8:

\/** Segment 13 <case alt> **\

 printf("\tFlints Barbecue 4450
Shattuck, Oakland \n");

 break;

 default:

\/** Segment 14 <case alt> **\

\/* DIGRAPH NODE 6 *\ if(choice != -1)

\/** Segment 15 <if> **\

 printf("\t>>> %d: not a valid
choice.\n", choice);

** Segment 16 <implied else> **\

 break;

 }

 }

/** Segment 17 <end while> **\

/* DIGRAPH NODE 7 *\ for(ask = 1; ask;) {

/** Segment 18 <start for> **\

 printf("\n\tDo you want to run it again? ");

/* DIGRAPH NODE 8 */ while((answer = getchar()) != '\n') {

/** Segment 19 <start while> **\

/* DIGRAPH NODE 9 *\ switch(answer) {

 case 'Y':

/** Segment 20 <case alt> **\

/* DIGRAPH NODE 10 *\ case 'y':

/** Segment 21 <case alt> **\

 ask = 0;

 char_index = 0;

 break;

 case 'N':

/** Segment 22 <case alt> **\

/* DIGRAPH NODE 11 *\ case 'n':

/** Segment 23 <case alt> **\

 ask = 0;

TCAT-PATH User’s Guide

109

 repeat = 0;

 break;

 default:

/** Segment 24 <case alt> **\

 break;

 } } } } }

/** Segment 25 <end while> **\

/** Segment 26 <end for> **\

/** Segment 27 <end while> **\

/* DIGRAPH NODE 12 *\ int proc_input(in_str)

char *in_str;

{

 int tempresult = 0;

 char bad_str[80], *bad_input;

/** Module proc_input **\

/* DIGRAPH NODE 1 */ int got_first = 0;

/** Segment 1 <> **\/

 bad_input = bad_str;

/* DIGRAPH NODE 2 */ while(isspace(in_str[char_index]))

/** Segment 2 <start while> **/

 char_index++;

/** Segment 3 <end while> **/

/* DIGRAPH NODE 3 */ for(; char_index <= strlen(in_str);
char_index++) {

/** Segment 4 <start for> **/

/* DIGRAPH NODE 4 */ switch(in_str[char_index]) {

 case '0':

/** Segment 5 <case alt> **/

/* DIGRAPH NODE 5 */ case '1':

/** Segment 6 <case alt> **/

/* DIGRAPH NODE 6 */ case '2':

/** Segment 7 <case alt> **/

/* DIGRAPH NODE 7 */ case '3':

/** Segment 8 <case alt> **/

/* DIGRAPH NODE 8 */ case '4':

/** Segment 9 <case alt> **/

/* DIGRAPH NODE 9 */ case '5':

/** Segment 10 <case alt> **/

/* DIGRAPH NODE 10 */ case '6':

/** Segment 11 <case alt> **/

/* DIGRAPH NODE 11 */ case '7':

/** Segment 12 <case alt> ***/

/* DIGRAPH NODE 12 */ case '8':

/** Segment 13 <case alt> **/

/* DIGRAPH NODE 13 *\/ case '9':

/** Segment 14 <case alt> **/

CHAPTER 10: Full TCAT-PATH Example

110

 tempresult = tempresult * 10 +
(in_str[char_index] - '0');

 got_first = 1;

 break;

 default:

/** Segment 15 <case alt> **/

/* DIGRAPH NODE 14 */ if(chk_char(in_str[char_index])) {

/** Segment 16 <if> **/

 return(tempresult);

 }

 else {

/** Segment 17 <else> **/

/* DIGRAPH NODE 15 */ if(char_index > 0 && got_first)

/** Segment 18 <if> **/

 char_index--;

/** Segment 19 <implied else> **/

/* DIGRAPH NODE 16 */ while(char_index <= strlen(in_str)) {

/** Segment 20 <start while> **/

/* DIGRAPH NODE 17 */ if(chk_char(in_str[char_index]))

/** Segment 21 <if> **/\

 break;

 else

/** Segment 22 <else> **/

 *bad_input++ = in_str[char_index];

 char_index++;

 }

/** Segment 23 <end while> **/

 *bad_input = '\0';

 printf("\t>>> bad input: %s\n", bad_str);

 char_index++;

 return(-1);

 } } }

/** Segment 24 <end for> **/

 return(0);

/* DIGRAPH NODE 18 */ }

int chk_char(ch)

char ch;

/** Module chk_char **/

 {

/* DIGRAPH NODE 1 */

/** Segment 1 <> **/

/* DIGRAPH NODE 2 */

 if(isspace(ch) || ch == '\0')

/** Segment 2 <if> **/

 return(1);

TCAT-PATH User’s Guide

111

 else

/** Segment 3 <else> **/

 return(0);

/* DIGRAPH NODE 3 */

}

\--

TCAT-PATH/C, Release 8

END OF TCAT-PATH/C SEGMENT REFERENCE LISTING

CHAPTER 10: Full TCAT-PATH Example

112

10.4 Instrumentation Statistics

The instrumentor also produces program statistics. They are organized
module-by-module.

-- TCAT-PATH/C, Release 8.

--

-- (c) Copyright 1990 by Software Research, Inc. ALL RIGHTS
RESERVED.

--

-- INSTRUMENTATION STATISTICS

--

-- Instrumentation date: Wed Jan 2 15:23:28 1991

--

MODULE 'main':

statements = 42

compound statements = 7

branching nodes = 12

segments instrumented = 27

conditional statements (if, switch) = 3

if statement = 1

else statement added = 1

switch statements = 2

switch statement cases = 14

default statement added = 0

iterative statements (for, while, do) = 5

for statements = 2

while statements = 3

do statements = 0

exit statement = 0

return statement = 0

MODULE 'proc_input':

statements = 22

compound statements = 6

branching nodes = 18

segments instrumented = 24

conditional statements (if, switch) = 4

if statements = 3

else statement added = 1

TCAT-PATH User’s Guide

113

switch statement = 1

switch statement cases = 11

default statement added = 0

iterative statements (for, while, do) = 3

for statement = 1

while statements = 2

do statements = 0

exit statement = 0

return statements = 3

MODULE 'chk_char':

statements = 2

compound statement = 1

branching nodes = 3

segments instrumented = 3

conditional statement (if, switch) = 1

if statement = 1

else statement added = 0

switch statement = 0

switch statement case = 0

default statement added = 0

iterative statements (for, while, do) = 0

for statements = 0

while statements = 0

do statements = 0

exit statement = 0

return statements = 2

-- TCAT-PATH/C, Release 8.

-- END OF TCAT-PATH/C INSTRUMENTATION STATISTICS

CHAPTER 10: Full TCAT-PATH Example

114

10.5 Path Generation

The next step is to generate a complete set of paths for all modules of
interest. apg processes a digraph file (*.dig file) into a path file (*.pth file).
This path information is needed for generating a coverage report, which
will be discussed in the next section.

The example program has three modules, and thus has three digraph files
resulting from the instrumentation. The three digraph files are shown
below:

digraph for ‘main.dig'

1 2 1

2 3 2

3 3 3

3 4 4

4 5 5

5 4 6

5 4 7

5 4 8

5 4 9

5 4 10

5 4 11

5 4 12

5 4 13

5 6 14

6 4 15

6 4 16

4 7 17

7 8 18

8 9 19

9 10 20

10 8 21

9 8 21

9 11 22

11 8 23

9 8 23

9 8 24

8 7 25

7 2 26

2 12 27

TCAT-PATH User’s Guide

115

digraph for ‘proc_input.dig'

1 2 1

2 2 2

2 3 3

3 4 4

4 5 5

5 6 6

4 6 6

6 7 7

4 7 7

7 8 8

4 8 8

8 9 9

4 9 9

9 10 10

4 10 10

10 11 11

4 11 11

11 12 12

4 12 12

12 13 13

4 13 13

13 3 14

4 3 14

4 14 15

14 18 16

14 15 17

15 16 18

15 16 19

16 17 20

17 16 21

17 16 22

16 18 23

3 18 24

CHAPTER 10: Full TCAT-PATH Example

116

digraph for ‘chk_char.dig'

1 2 1

2 3 2

2 3 3

At this time you can also run cyclo and digpic on the digraph files and
study the structures and properties of the modules in question. If any of
the modules appears to be too ‘‘complex'', you can break up the module
into smaller and easier to test modules.

The cyclomatic numbesr for those three modules mentioned above are
shown below:

Module main

cyclo [Release 3]

Cyclomatic Number = Edges - Nodes + 2 = 29 - 12 + 2 = 19

cyclo [Release 3]

Module proc_input

Cyclomatic Number = Edges - Nodes + 2 = 33 - 18 + 2 = 17

cyclo [Release 3]

Module chk_char

Cyclomatic Number = Edges - Nodes + 2 = 3 - 3 + 2 = 2

TCAT-PATH User’s Guide

117

The cyclomatic number for module main and proc_input is quite large.
The digraph display of module proc_input below suggests that the
module is quite complex.

 [[1]] 0 - 1
 [[]] |
 S [[2]] < 0 - 2 3
 [[]] |
 > > [[3]] 0 < 0 - 4 24
 | | [[]] | |
 0 | [[4]] < 0 | 0 0 0 0 0 0 0 0 0 - 14 5 6 7 8 9 10
11 12 13 15
 | [[]] | | | | | | | | | | |
 | [[5]] 0 < | | | | | | | | | | - 6
 | [[]] | | | | | | | | | | |
 | [[6]] < 0 | < | | | | | | | | - 7
 | [[]] | | | | | | | | | |
 | [[7]] 0 < | < | | | | | | | - 8
 | [[]] | | | | | | | | |
 | [[8]] < 0 | < | | | | | | - 9
 | [[]] | | | | | | | |
 | [[9]] 0 < | < | | | | | - 10
 | [[]] | | | | | | |
 | [[10]] < 0 | < | | | | - 11
 | [[]] | | | | | |
 | [[11]] 0 < | < | | | - 12
 | [[]] | | | | |
 | [[12]] < 0 | < | | - 13
 | [[]] | | | |
 0 [[13]] < | < | - 14
 [[]] | |
 [[14]] 0 0 | < - 16 17
 [[]] | | |
 > [[18]] < | <
 | [[]] |
 | [[15]] 0 < 0 - 18 19
 | [[]] | |
> > 0 [[16]] < 0 < - 23 20
| | [[]] |

0 0 [[17]] < - 22 21

apg generates more than 100 paths for both of the modules mentioned
above. The paths are not reproduced here, but the user can refer to them
in the next section.

CHAPTER 10: Full TCAT-PATH Example

118

10.6 TCAT-PATH Reports

The last and most important step in test analysis is to obtain test coverage
analysis reports. This section details how to read reports generated by
ctcover.

The commands on the following page are to be executed to get the cover-
age reports for all three modules.

ctcover main Trace.trc

ctcover proc_input Trace.trc(for UNIX)

ctcover chk_char Trace.trc

or

ctcover main Trace.trc

ctcover proc_input Trace.trc -f proc_inp(for DOS)

ctcover chk_char Trace.trc

The following are the coverage reports for all three modules from the
example program. The reports for main and proc_input modules are
intentionally truncated due to the the size of the reports.

10.6.1 Report for ‘main’ Module
Ct Test Coverage Analyzer

(c) Copyright 1997 by Software Research, Inc.

Module "main": 155 paths, 1 were hit in 1 invocations.

 0.65% Ct coverage

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16
}> \

17 18 19 20 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
\\

23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11
\\

10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

2 None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16
}> \

17 18 19 21 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 \\

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8
7 \

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

TCAT-PATH User’s Guide

119

3 None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16
}> \\

17 18 19 22 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24
23 \

23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10
9 8 \

7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

4 None 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16
}> \

17 18 19 23 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 \

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8
7 \

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

5 1 1 2 3 <{ 3 }> 4 5 6 <{ 5 6 7 8 9 10 11 12 13 14 15 16
}> \\

17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{ 18 24 23
23 \

22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8
7 \

6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

...(intervening paths deleted for clarity)...

152 None 1 2 4 17 18 19 24 <{ 19 20 21 21 22 23 23 24 }> 25 <{
18 \

24 23 23 22 21 21 20 19 25 }> 26 <{ 2 3 4 16 15 14 13 12
11 \

10 9 8 7 6 5 17 25 19 20 21 21 22 23 23 24 18 26 }> 27

153 None 1 2 4 17 18 25 <{ 18 24 23 23 22 21 21 20 19 25 }> 26
<{ 2 \

3 4 16 15 14 13 12 11 10 9 8 7 6 5 17 25 19 20 21 21 22
23 23 \

24 18 26 }> 27

154 None 1 2 4 17 26 <{ 2 3 4 16 15 14 13 12 11 10 9 8 7 6 5 17
25 19 \

20 21 21 22 23 23 24 18 26 }> 27

155 None 1 27

CHAPTER 10: Full TCAT-PATH Example

120

10.6.2 Report for ‘proc_input’ Module
Ct Test Coverage Analyzer

(c) Copyright 1997 by Software Research, Inc.

Module "proc_input": 176 paths, 12 were hit in 12 invocations.

 6.82% Ct coverage

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 <{ 4 5 6 7 8
9 \

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }> 24

2 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8
9 \

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

3 None 1 2 <{ 2 }> 3 4 5 6 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8
9 \

10 11 12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 \

<{ 20 21 22 }> 23

...(intervening paths deleted for clarity)...

17 None 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 <{ 4 5 6 7 8 9 10
11 \

12 13 14 6 7 8 9 10 11 12 13 14 }> 24

18 1 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10
11 \

12 13 14 6 7 8 9 10 11 12 13 14 }] 15 16

19 None 1 2 <{ 2 }> 3 4 7 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10
11 \

12 13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20
21 22 }> 23

...(intervening paths deleted for clarity)...

25 None 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 <{ 4 5 6 7 8 9 10 11
12 \\

13 14 6 7 8 9 10 11 12 13 14 }> 24

26 1 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11
12 \\

13 14 6 7 8 9 10 11 12 13 14 }] 15 16

27 None 1 2 <{ 2 }> 3 4 8 9 10 11 12 13 14 [{ 4 5 6 7 8 9 10 11
12 \\

13 14 6 7 8 9 10 11 12 13 14 }] 15 17 18 20 21 <{ 20 21
22 }> 23

...(intervening paths deleted for clarity)...

TCAT-PATH User’s Guide

121

167 None 1 3 4 14 [{ 4 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12
13 \\

14 }] 15 17 19 20 22 <{ 20 21 22 }> 23

168 None 1 3 4 14 [{ 4 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12
13 \\

14 }] 15 17 19 23

169 1 1 3 4 15 16

170 None 1 3 4 15 17 18 20 21 <{ 20 21 22 }> 23

171 None 1 3 4 15 17 18 20 22 <{ 20 21 22 }> 23

172 None 1 3 4 15 17 18 23

173 None 1 3 4 15 17 19 20 21 <{ 20 21 22 }> 23

174 1 1 3 4 15 17 19 20 22 <{ 20 21 22 }> 23

175 None 1 3 4 15 17 19 23

176 1 1 3 24

10.6.3 Report for ‘chk_char’ Module

Ct Test Coverage Analyzer

(c) Copyright 1997 by Software Research, Inc.

Module "chk_char": 2 paths, 2 were hit in 20 invocations.

100% Ct Coverage!

Test descriptor: sample restaurant program run

HIT/NOT-HIT REPORT

P# HitsPath text

1 11 1 2

2 9 1 3

CHAPTER 10: Full TCAT-PATH Example

122

10.7 Summary

After reviewing the coverage reports you will typically rerun the tests
with different or additional test cases, designed to exercise previously
not-hit paths and achieve a higher Ct value. The higher the Ct value, the
more complete your testing. When you achieve a satisfactory value for Ct,
you can stop testing.

123

CHAPTER 11

Understanding the Graphical
User Interface (GUI)

This chapter demonstrates using TCAT-PATH in the OSF/Motif X Window System envi-
ronment.

11.1 Invocation

To invoke, type:
Xtcatpath

The result is the main menu (shown below). This window has a window
menu button (available for all windows) that allows the user to restore,
move, size, minimize, lower and close the window. This menu button
can be used at any time during the X Window System program. For clos-
ing main application windows, however, it is best to use the ‘‘System''
menu's ‘‘Exit'' option to prevent any system crashes. The two buttons in
the upper right hand corner of the window allow the user to maximize or
minimize the window size.

FIGURE 5 Main Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

124

To invoke with STW/Coverage, click first on Coverage and then on TCAT-
PATH. The TCAT-PATH main menu pops up.

FIGURE 6 STW/Coverage Invocation

TCAT-PATH User’s Guide

125

11.2 Using TCAT-PATH

For first time use, always read the help menus. Below is main menu's
help, explaining TCAT-PATH four stages of testing: Instrument, Execute,
Generate Path, and Analyze.

FIGURE 7 Main Menu Help

CHAPTER 11: Understanding the Graphical User Interface (GUI)

126

11.2.1 Instrumentation

TCAT-PATH instruments the source code of the program to be tested, that
is it inserts function calls at each logical branch. Click twice on Instru-
ment in order to begin testing.

There are a variety of options which can be selected with the menu in
Figure 8 on page 127:

• Preprocessing can be turned on or off. If it is turned off, then the
instrumentor will not preprocess.

• Preprocessor output suffix is set to .i, which is normally the
extension for preprocessed ‘‘C'' programs. This option is user
editable.

• Preprocessor Command is set to cc -P. Refer to Chapter 9 for
further information. This option is user editable.

• Preprocessor options are options in addition to the ‘‘Preproces-
sor command'' previously specified.

• Instrumentor Command is set to tp-ic. This option is user edit-
able.

• Instrumentor options

• Recognize _exit as keyword corresponds to the command
line -u switch. Refer to Section 2.2.2 on page 11.

• Do not recognize exit as keyword corresponds to the com-
mand line -x switch. Refer to Section 2.2.2 on page 11.

• Do not instrument functions in file corresponds to the -DI
deinst switch. Specify a filename that contains lists of mod-
ules that are to be instrumented. Refer to Section 2.2.2 on
page 11.

• Specify maximum file name length corresponds to the -f1
value switch. Specify a number that will correspond to the
maximum number of characters. Refer to Section 2.2.2 on
page 11.

• Specify maximum function name length corresponds to the
fn value switch. Specify a number that will correspond to the
maximum number of characters. Refer to Section 2.2.2 on
page 11.

TCAT-PATH User’s Guide

127

FIGURE 8 Instrument Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

128

FIGURE 9 Instrument Help Menu

After selecting instrumentor options, do the following:
1. Make sure the Preprocessing switch is ON.
2. Click on the File pull-down menu. Drag the mouse down and select

Set File Name. A file pop-up window appears. (Refer to the picture
below.) Select the file to be instrumented by either highlighting or
typing it into the Selection Box. Press OK.

3. After establishing the file to be instrumented, click on the Actionpull-
down menu. Drag the mouse down and select Preprocess and then
Instrument.

NOTE: Instrument cannot be selected until preprocessing has been com-
pleted. When both preprocessing and instrumenting are in progress, the
menu's optionsare grayed out and the cursor becomes a stop watch.
When the options are darkened, then you can progress to the next step.

TCAT-PATH User’s Guide

129

NOTE: Current status and errors are displayed in the invocation box
from time to time. Frequently refer to the box while testing to see where
system crashes, errors and passes occur.

When finished, click on Exit on the File pop-up menu.

FIGURE 10 File Pop-Up Menu

Exit

CHAPTER 11: Understanding the Graphical User Interface (GUI)

130

11.2.2 Execute

The Execute menu compiles, links and executes the program. Normally,
you compile the instrumented source file and then link all the source files
with the runtime object module (which is specified under the File pull-
down menu). The user can also use the Make file. Both methods are
explained in this section.

Click once on Execute to begin. The menu below appears.

FIGURE 11 Execute Menu

There are a variety of options which can be selected from the Execute
menu.
1. ‘‘Compiler command'' is used to invoke the compiler on the system.

It is set to cc-c but is user-editable.
2. ‘‘Compiler options'' are the options for the compiler. It is set to *.i.c

but is user-editable.
3. ‘‘Linker command'' is used to invoke link. It is set to cc-o but is user-

editable.
4. Linker options are the options used in order to link. It is set to *.i.o

but is user-editable.
5. Make command is used to invoke the make utility.
6. Make file name is where the make file is specified. It is fixed to

Makefile but is user-editable.
7. Application name is the command used to invoke the instrumented

program. It is fixed to a.out but is user-editable.

TCAT-PATH User’s Guide

131

8. Application argument is where command line arguments are speci-
fied. It is user-editable.

FIGURE 12 Execute Help Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

132

Execute one of two ways:
1. Without Make File

Click on the ‘‘File'' pull-down menu, drag the mouse to ‘‘Set Runtime
Object Module'' and click. A pop-up window appears (shown in
Figure 13 on page 133).
• Highlight or type in (the Selection box) the necessary file. Click

OK. Refer to the help frame and to Section 3.1 on page 24f or SR-
supplied runtime object modules.

• Set the compiler and linker commands (that is Compiler com-
mand, Compiler options, Linker command and Linker options)
as appropriate.

• Click on the Action pull-down menu and select Compile. When
completed, the invocation window will state so.

• Click on Link. Invocation window will indicate when linking
has occurred.

• Click on Run Application.

TCAT-PATH User’s Guide

133

2. With Make File: make organizes all compiler and linker commands
and files.
• Click on the File pull-down menu, drag the mouse to Set Runt-

ime Object Module (shown in Figure 13) and click.
• Highlight or type in (the Selection box) the necessary file. Click

OK. Refer to the help frame and to Section 3.1 on page 24 for SR-
supplied runtime object modules.

• Set the make commands (that is Make Command, Make file
name, Application name and Application arguments) as appro-
priate.

• Click on the Action pull-down menu and select Make. When
completed the invocation window will state so.

• Click on Run Application.

Whichever methods is chosen, the trace file is created.

FIGURE 13 Runtime Object Module Pop-Up Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

134

11.2.3 Generate Paths

After executing your program, you need to generate a set of paths for any
module. apg processes a digraph file (*.dig file) into a path file (*.pth
file). This path information is necessary for generating a coverage report.

To begin, click once on Generate Path and this menu appears:

FIGURE 14 Generate Paths Menu

11.2.3.1 Help

To access a help screen for Generating Paths, select the Help menu. The following
screen will appear:

Basis Paths

Essential Edges

Unconstrained Edges

Essential Paths

Path Set: Original Algorhythm: First

TCAT-PATH User’s Guide

135

11.2.3.2 “Generate Paths” Help Frame

FIGURE 15 Generate Paths Help Frame

There are a variety of options which are available from the Generate Path
menu:
1. Path Limit is the the (integer) maximum number of paths to generate.

It corresponds to the command line [-p limit] option. Refer to Section
4.1.1 for further information.

2. Report Width specifies that the report is never to be wider than
width characters. It corresponds to the command line [-w width]
option. Refer to Section 4.1.1 for further informations.

3. All Paths are all the structurally visual paths. It is equivalent to run-
ning apg on a *.dig file. Refer to Chapter 4 for further information.

4. Selected Paths selects paths from All Paths. Because All Paths can
be overwhelmingly large, you may want to select only particular
paths from the Selected Paths option. The following paths may be
selected:

• Basis Paths: The set of non-iterative paths. It corresponds to
the apg's -b command line switch. See Section 4.1.1 for
further information).

CHAPTER 11: Understanding the Graphical User Interface (GUI)

136

• Essential Edges: The set of paths that first includes each
edge which is on only one of the original set of paths. It has
not been implemented at this time.

• Unconstrained Paths: The set of edges that will imply execu-
tion of other edges in the program. It has not been imple-
mented at this time.

• Essential Paths: The set of paths that include one essential
edge, that is an edge that lies on no other path.

• Path Set and Algorithm: Paths can be arranged in the
following ways:
Original refers to the original path set that was gener-
ated by apg. (This is accomplished when you select All
Paths from the Generate Paths menu. It corresponds to
the-f (first found alogorithm) or the -l (last found
algorithm) in pathcover. Refer to Section 4.1.1 “apg” on
page 31 for further information.
Iteration arranges the path set in terms of increasing iter-
ation complexity.
It corresponds to the -fi (first found alogorithm) or the -li
(last found algorithm) in pathcover. Refer to Section 4.1.1
“apg” on page 31 for further information.
Length arranges the path set in ascending order. It corre-
sponds to the -fl (first found alogorithm) or the -ll (last
found algorithm) in pathcover. Refer to Section 4.1.1
“apg” on page 31 for further information.
Sorted arranges the path set in natural order according to
the names of the segments. It corresponds to the -fs (first
found alogorithm) or the -ls (last found algorithm) in
pathcover. Refer to Section 4.1.1 “apg” on page 31 for
further information.

Random arranges the path set in random order. It
corresponds to the -r switch. First found and last found
algorithms are ignored. Refer to Section 4.1.1 “apg” on
page 31 for further information.

TCAT-PATH User’s Guide

137

1. To generate All Paths:
• Click on the All Paths option.
• Specify the Path Limit and Report Length if desired.
• Click on the File pull-down menu and click on Set Module

Name. The menu below pops up. Highlight or type in the
module in the Selection Box and click on OK.

FIGURE 16 Generate Paths Pop-Up Menu

• Click on the ‘‘Action'' pull-down menu. Drag the mouse to
‘‘Generate Paths'' and click.

• Click on the ‘‘Action'' pull-down menu. Drag the mouse to
‘‘Generate Path Statistics'' and the menu below pops up.
View the reports by using the menu's scroll bars. After view-
ing, click on ‘‘Action'' and ‘‘Exit''.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

138

FIGURE 17 Generate Path Statistics Pop-Up Menu

At this time, you can use other available utilities with the Action pull-
down menu. These utilities are optional, not necessary.

Click on Edit Paths and the window below pops up.

Note: If you do not use the ‘‘Selected Paths'' option, then the ‘‘All Path
List'' and the ‘‘Selected Path List'' scrolled text windows will contain the
same paths.

TCAT-PATH User’s Guide

139

11.2.3.3 “Edit Paths” Menu

FIGURE 18 Edit Paths Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

140

11.2.3.4 “Edit Paths” Help Frame

FIGURE 19 Edit Paths Help Frame

TCAT-PATH User’s Guide

141

11.2.3.5 “Set Path” File Pop-up Menu

FIGURE 20 Set Path File Pop-Up Menu

1. Your module name should be carried over from the Generate Paths
menu. If not or to select a different module (assuming you have
already generated paths for it), then click on the ‘‘File'' pop-up menu
and select ‘‘Set Path File''. A window similar to the one in Figure 34
pops up. Select a file by highlighting or typing in the path (*.pth) file.

2. To add or delete a path in the ‘‘Edit Paths'' menu, simply type in or
highlight the number in the ‘‘Select Path Number'' Selection Box.

3. Click ‘‘Add'' or ‘‘Delete'' and the ‘‘Selected Path List'' will change
according. (See the note under1).

4. If you wish to save the path (*.pth) file, then select the ‘‘Saved to New
Path File'' under the ‘‘Action'' pop-up menu. A window like the one
below will appear. Select a file in the usual manner.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

142

FIGURE 21 Save New Path File Pop-Up Menu

Click on ‘‘Display Paths'' and the window below pops up. It allows you
to view source. For further information, see Chapter 7, SOURCE VIEW-
ING.

TCAT-PATH User’s Guide

143

FIGURE 22 Display Path Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

144

FIGURE 23 Display Path Help Frame

TCAT-PATH User’s Guide

145

FIGURE 24 Set Module File Pop-Up Menu
• Select the module to be viewed (if not already selected in the

Generate Path menu). Do so by clicking on the File pull-down
menu's Set Module Name. Choose the file in the usual manner.

• Set Basis Path File under the File pop-up menu, if necessary. The
basis path file establishes the set of nodes that appear on the ver-
tical axis.

• To choose where to geometrically view source, select the x and y
coordinates with the Display Geometry option. This is optional.
Click first on the button and then type in the desired coordinates'
positions. If not used, the display will pop up based on the
default established for T-SCOPE's (Test Data Observation and
Analysis Tool) Xdigraph syntax.

• The display's width and height can be selected from the ‘‘Display
Size'' option. Click first on the button and then type in the
desired width and height. If not used, the display will pop up
based on the default established for T-SCOPE (Test Data Oberva-
tion and Analysis Tool) .

CHAPTER 11: Understanding the Graphical User Interface (GUI)

146

• You can also choose the foreground and background colors with
this menu.

• After making selections, click on View Source. Based on your
selections or the defaults, the module's display pops up.

• If the display is not the size you want or placed not where you
want, you can resize or move as needed.

• Source view by clicking on a node or a segment and holding
down the mouse button.

• When finished, press any key, and the display is deleted.

NOTE: Highlight Paths is used only with Selected Paths.

• To exit from the Display Path menu, click on Exit under the File
pull-down menu.

FIGURE 25 Source Viewing

‘‘Generate Path Condition'' is the other option. Click on it, and the menu
below pops up. It extracts and displays the logical conditions for a partic-
ular path given the sequence of segments in the path (which could be a
complete path), the digraph file (*.dig), and the reference listing file (*.i.A
or *.iA). See Section 7.3 on page 81 for further information.

TCAT-PATH User’s Guide

147

FIGURE 26 Path Condition Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

148

FIGURE 27 Path Condition Help Frame

TCAT-PATH User’s Guide

149

FIGURE 28 Set Module File Pop-Up Menu
• Your module name should be carried over from the Generate

Paths menu. If not or to select a different module (assuming you
have already generated paths for it), then click on the File pop-up
menu and select Set Module. A window like the one in Figure 28
pops up. Select a file in the usual way.

• Select a path number by either clicking (and, thus, highlighting)
the number or typing in a number in the Selected Path Number
Box.

• Click Generate Conditions.
• TCAT-PATH then generates the corresponding path conditions

and shows the text of those conditions in the Path Conditions
scrolled text window.

• To view the text, use the scoll bars.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

150

FIGURE 29 Path Condition Menu
The path conditions will automatically be saved to
<module_name>.con.# , where # corresponds to the module
number. If you wish to save the file to a different pathcon file,
click on the Save to Path Conditions File. A window similar to
the one below pops up. Select a file in the usual manner.

TCAT-PATH User’s Guide

151

FIGURE 30 Save New Pathcon File Pop-Up Menu

To generate Selected Paths:

NOTE: Because Selected Paths is very similar to All Paths, this section
will be in summary form.

1. Click on the Selected Paths option.
2. Select any or all of the paths and arrange the Path Set to your specifi-

cations.

NOTE: Essential Edges and Unconstrained Edges have not been imple-
mented at this time.

3. Specify the Path Limit and Report Length, if desired.
4. If you haven't already set the module name, click on Set Module

Name, then do so now.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

152

FIGURE 31 Generate Path Statistics Pop-Up Menu
• Click on the Action pull-down menu. Drag the mouse to Gener-

ate Paths. Then select Generate Path Statistics. When generated,
Selected Paths will automatically generate path statistics for All
Paths, whether you generated All Paths or not.

• The available options are the same as All Paths.
• Edit Paths : All additions and deletions appear in the

Selected Path List scrolled text windows.

TCAT-PATH User’s Guide

153

FIGURE 32 Edit Paths Window
• Display Paths generates for All Paths, whether you selected All

Paths or Selected Paths. Source view the same way youwould
for All Paths.

• Selected Paths, however, allows you to highlight particular
edges. To activate, select Set Highlight File from the File
pull-down menu. Select the file (*.pth file) in the usual man-
ner. See the Figure on the following page.

Note: The module name and the highlight file name must be from the
same module.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

154

FIGURE 33 Display Paths Menu

TCAT-PATH User’s Guide

155

FIGURE 34 Set Highlight File Pop-Up Menu

• After selecting the highlight file, click on Highlight and the
appropriate path(s') edges are highlighted in the display.

• If you have more than one path in your file click on the mouse
button and the next highlighted path is displayed.

• When finished, press any key and the display will disappear.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

156

FIGURE 35 Highlighted Path Display

TCAT-PATH User’s Guide

157

11.2.4 Analyze

After generating paths, you can analyze the trace file using the ctcover
command. Click on Analyze and the menu below pops up.

FIGURE 36 Analyze Menu

CHAPTER 11: Understanding the Graphical User Interface (GUI)

158

FIGURE 37 Analyze Help Frame

To use:
1. Click on the File pull-down menu and select Set Trace File. A pop-up

window like the one below appears. Highlight or type in the file of
your choice.

TCAT-PATH User’s Guide

159

FIGURE 38 Set Trace File Pop-Up Menu

2. Select the module. This accomplished by clicking on the module
(and, thus, highlighting it) or manually typing in the module.

3. Click on Generate Report.
4. Click on View Report.
5. You can view the report by using the scoll bars.
6. When finished, select Exit under the Action menu.

At this point, you have successfully used TCAT-PATH.

CHAPTER 11: Understanding the Graphical User Interface (GUI)

160

FIGURE 39 View Report Window

161

CHAPTER 12

System Restrictions and
Dependencies

It is important to recognize that TCAT-PATH can only be used with “legal'' programs.
Non-legal constructions may pass through TCAT-PATH, but results cannot be
guaranteed.

The TCAT-PATH package can measure very complex programs. In some
cases, however, programs are so complex that analysis of them will be too
time consuming or will require too much execution space.

TCAT-PATH has certain pre-defined limits to prevent “overload'' of the
system components. An example of such limits is the following set,
defined for the language. Other limits may be in effect for other
languages.

• tp-i<lang> gives up processing beyond a threshold number of
program edges or nodes. This limit is defaulted at 5000 nodes per
invocation.

• apg has limits on the total number of paths emitted,
• and on the total number of paths computed without being

printed. This threshold is defaulted at 300 printed paths (or 4800
computed paths).

• ctcover has limits on the total number of records processed (after
which it ceases processing paths). This threshold is defaulted at
100,000 segments per call. Also, path processing is memory lim-
ited; an error message is issued in case the limits are exceeded.

• ctcover analysis system allocates memory dynamically and can
run out of memory. When it does it indicates when, and what
caused the overload. The stack sizes within the system are chosen
to represent

• a capacity that should not be exceeded in practice, except for
extremely complex (or intentionally complex) programs.

Certain restrictions exist in TCAT-PATH instrumentor (language
processor). They are summarized here.

CHAPTER 12: System Restrictions and Dependencies

162

“C” Language: tp-ic

• The function names EntrMo,ExtMod,SegHit, Strace , and Ftrace
are reserved for the runtime calls.

• The instumentor (tp-ic) can take identifiers (function or variable
names) that are up to 128 characters long.

• Conditional expressions in “C'' (of the form “expr ? expr : expr”)
are not supported; they must be expanded to the explicit
“if...[else]...” form.

• The tp-ic language analyzer in TCAT-PATH does not support
switch statement instrumentation in exactly the same way as
does TCAT. The difference is due to special handling of empty
“case:” statements. Generally, TCAT-PATH is a more complete
model of program flow.

• Conditional expressions are not processed by TCAT-PATH.
Conditional expressions should be converted at the source level
to simple “if ... else" statements, which will have the same effect
and which are processed by TCAT-PATH.

• For various reasons, "goto" statements are not processed by
TCAT-PATH; their presence in a program could cause misunder-
standings about Ct coverage.

Ada Language: tp-iada

No restrictions exist for processing of Ada programs.

FORTRAN Language: tp-if77

FORTRAN statements such as ASSIGN and GOTO-ASSIGN are not
supported.

163

CHAPTER 13

On-Line Help Frames
The interactive mode of TCAT-PATH provides the user with an on-line help frame facility.

From any interactive mode menu, you can obtain help by typing:
 help

or
 help?

or
 help <command-name>

TCAT-PATH responds by showing the user a screen of data describing
how to use the selected commands. The available help frames are shown
on the following pages.

Note: the actual help frames will vary slightly with the particular version
of the TCAT-PATH system that you have. This is done to ensure that the
on-line assistance exactly matches that needed for your system.

CHAPTER 13: On-Line Help Frames

164

##tcatpath.h00

 HELP
 Usage: help [opt]

 Help is available for the following commands and categories.
Substitute |
 any of the words below in place of [opt] to get its help screen.
 Abbreviations are acceptable, as long as they are not ambiguous.

 apg rcfile !
 ctruntime release !!
 cyclo save
 digpic settings
 digraph tcatpath
 exit terminology
 menu trace file

##tcatpath.h01

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> General Information

TCAT-PATH provides commands that measure the pat coverage
 of instrumented programs.

TCAT-PATH commands can generate a program digraph, can generate a
full set of equivalence classes of flow (the
 path set), can instrument a program, and can measure
 how many paths are executed in a test that involves one
 or more invocations of the test object.

TCAT-PATH User’s Guide

165

##tcatpath.h02

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> ACTIONS Menu
 >>>>> apg

 The apg command generates sets of paths from the digraph file
 derived from a source program.

 The syntax for the apg command is as follows:
 apg name
 where,
 name is the basename of the module/function being
 analyzed. The filename name.dig must exist
 in the local directory.

 Paths are expressed as a sequence of segments; the notation
 <{a, b, c}> is used to designate zero or more repetitions, in any
 order, of the named segments.
|

 See also: digraph, cover, ctcover.

##tcatpath.h03

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> ACTIONS Menu
 >>>>> cyclo

 This command computes the cyclomatic number (McCabe metric) for the
 underlying program.

 The cyclomatic number is given by the formula: |

 E(n) = e - n + 2

 where e is the number of edges in the program, and n is the
 number of nodes in the program. Generally, but with some
exceptions, |
 programs with a cyclomatic number greater than 10 present unusually
 difficult test situations.

 See also, apg.

CHAPTER 13: On-Line Help Frames

166

##tcatpath.h04

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> ACTION Menu
 >>>>> digpic
 This command reads a digraph file and generates a picture of the
 program structure you are analyzing. If you wish to vary the
 picture you must alter the "basis path." The command syntax is:

 digpic name [-B 'file'] [-C center]
 [-R rows] [-W width]
 where,
 name is the name of the file for which you want a picture
 center is the column number you wish to use
 rows is the number of rows (default = 1) between nodes
 width is the width of the picture (default = 80)

 The default basis path is simply the sorted list of names of nodes
 in the digraph file.

##tcatpath.h05

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> ACTIONS Menu
 >>>>> digraph

 This command generates a digraph file from the specified file
 and also instruments the program.

 The syntax for this command is as follows:

 digraph name.c

 where,

 name.c is the name of the program you wish processed

 In interactive mode, type "help <command name>" to get help
 screens (like this one) on most topics. For detailed information
 please consult the TCAT-PATH User's Manual.

TCAT-PATH User’s Guide

167

##tcatpath.h06

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> TCAT-PATH -- Menu Descriptions

 TCAT-PATH has four basic interactive menus:

 TCAT-PATH menu: used to select submenus

 ACTIONS menu: used to decide on operating modes

 OPTIONS menu: used to choose execution options

 FILES menu: used to define file names

##tcatpath.h07

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> All Menus
 >>>>> settings

 The TCAT-PATH system permits you to specify a number of options.
 Many of these options are specified via the TCAT-PATH configuration
 file.

 Options that you can include in this file, for later use or for
 editing, include:

 basename of files to be used (must be specified)
 maximum number of digraph nodes to process (default 500)
 maximum number of paths to generate (default 4800)
 maximum number of paths to display (default 300)
 basis path to be used in digraph display
 maximum number of module invocations (default 1000)

 For more information about user settable options please consult
 TCAT-PATH User's Manual.

CHAPTER 13: On-Line Help Frames

168

##tcatpath.h08

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> ACTIONS Menu
 >>>>> ctruntime

 Once your program is instrumented (see the "digraph" command) you
 need to recompile it and link it with the supplied runtime library.

 The particular version of runtime you use may change depending
 on the language of the programs you are processing.

 The runtime programs capture essential trace file data from the
 system you are testing. The ctruntime generates a standard
 trace file, ready for processing by "ctcover".

##tcatpath.h09

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
>>> Terminology

 TCAT-PATH measures the Ct coverage value of programs under test.
 Here are terms used during TCAT-PATH operation.

 digraph (directed graph) -- The flowchart for the function or
 procedure being studied.

 segment -- A part of the flowchart (digraph) that connects one node
 to another; a decision-to-decision path.

 path -- A sequence of segments within the program. A path may be
 structurally infeasible but logically unexecutable due to
 data flow within the program.

 tracefile -- The record or sequence of segments hit during a test.
 The trace file is generated with the instrumented program.

 Ct coverage -- The percentage of paths executed in one test or many
 tests from the Ct path set generated by "apg".

 cyclomatic number (McCabe metric) -- A measure of internal complexity
 of a module based on properties of its digraph.

TCAT-PATH User’s Guide

169

##tcatpath.h10

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> Trace File Description

 The trace file contains data about all of the functions that
 were executed during the current test. You need to process it
 with the "ctcover" command to learn what path coverage level you
 have obtained.

##tcatpath.h11

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> TCAT-PATH Menu
 >>>>> save

 The save command permits you to save the values of options
 that you may have chosen during a TCAT-PATH execution.

 When you type save the system prompts you for information
 about whether, and where, you wish parameter values to be
 saved.

##tcatpath.h12

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> TCAT-PATH Menu
 >>>>> release

 The release command causes TCAT-PATH to display release
 and version information. This information may be useful
 in identifying system problems.

##tcatpath.h13

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> All Menus
 >>>>> exit

 The exit command causes control to return to the TCAT-PATH
 menu, or, if you are in the TCAT-PATH mene, to return to
 the system.

CHAPTER 13: On-Line Help Frames

170

##tcatpath.h14

 > TCAT-PATH -- Path Test Coverage Analysis Tool HELP
 >>> rcfile

| The rcfile communicates option values to TCAT-PATH
 at startup time. It also is used by the main TCAT-PATH verbs:
 digraph, ic, apg, and ctcover.

 Values can be set and switches chosen permanently. Values
 set during execution can be saved for later use.

##tcatpath.h15

 > <CHANGE THE HEADER...............> HELP
 >>> !

 The "!" command allows you to invoke and execute programs at
 system level from within SMARTS's internal menus. This will,
| example, permit you to send text files to the printer or
 call up a system directory.

##tcatpath.h16

 > <CHANGE THE HEADER...............> HELP
 >>> !!

 The "!!" command permits execution of the previous system level
 from within SMARTS's internal menus. For example, if the
 previous system level command was to print out a text file, typing
 "!!" will print the text file out again.

171

CHAPTER 14

Coverage Measure Explained

14.1 Introduction

Coverage measures describe the effect of a test - or a set of tests - has on
exercising the structure of a software system. The goal of a test coverage
metric is to ensure tests are as diverse as possible. The objective is to
ensure that a test is more diverse than those which are chosen by refer-
ence to functional specifications alone, or are chosen based on a program-
mer's intuition.

For example, the popular C1 test metric describes the percentage of pro-
gram segments that a test exercises. A segment is a part of the program
with the property that if any part of it is executed, then all parts of it are
executed.

Similarly, the S1 test metric is a system test completeness measure that
calculates the percentage of possible call-pairs that a test - or a group of
tests - exercises.

Here is a formal definition of the Ct test metric:
Ct Test Coverage Metric: The Ct test coverage metric measures
the number of times each path or path class in a program is exer-
cised, expressed as a percentage of the total number of paths, cal-
culated up to a specified iteration count K, within the program.

Note that the Ct metric depends on the user specifying a minimum itera-
tion count value, K. Normally we keep K = 1, but Ct can be defined for
other values of K as well.

The key to understanding Ct is to understand how a “path is calculated''.
This will be explained by using some example program passages.

CHAPTER 14: Coverage Measure Explained

172

14.2 Example Paths

A path is a sequence of logical segments that can occur in a program. A
path exists for each invocation (i.e., execution) of a program. Paths can be
classified according to whether or not they have possible repetitions. Pro-
grams that do have potential repetition are called iterative programs; oth-
erwise the program is called noniterative.

Noniterative programs have a fixed finite numbers of paths; the number
may be large if the program is complex.

Iterative programs have a countably finite number, but without details of
program data flow we have to assume that iterations can be of any repeti-
tion count. The problem with iteration in terms of path calculations is to
know when to “stop'' the iteration.

TCAT-PATH User’s Guide

173

14.3 Noniterative Programs

Consider the program passage shown below. (The example is not
intended to be in the syntax of any particular programming language,
and should be understandable independent of language.) The lower-case
letters a, b, c... represent sequences of statements. The predicates x, y,...
are functions that return logical values of some kind.

PROGRAM ONE:
a

IF (x)

b

ELSE

c

END

d

IF (y)

e

ELSE

f

END

g

CHAPTER 14: Coverage Measure Explained

174

In the example below, a, b,... represent fixed sequences of statements,
called “segments''. Depending on what the values for the predicates x and
y are, the program can take any one of these paths, i.e. sequences of seg-
ments (the notation will be explained in more detail on the following
page):

PROGRAM ONE:

K = 0:

1: a b d e g

2: a c d e g

3: a b d f g

In this case there are only four possible paths, numbered above. There is
no chance for repetition, so the iteration count value, K = 0, tells us all
there is to know about this program's behavior. For K = 1, there are no
added paths because there is no iteration

possible in the program.

For a noniterative program, the number of possible paths is a combinato-
rial function that is computable in advance. There may be a large number
of paths but which ones are is known by analysis of the structure of the
program and can be computed in advance.

It is important to note that some structurally suggested paths may be log-
ically infeasible. In the example above this means that even though there
is a structurally possible sequence “a c d f g”, it is not know for certain
that the actual predicates “x” and “y” will permit edge c and edge f to be
“co-executed''. To determine this requires knowledge of the details of the
program.

TCAT-PATH User’s Guide

175

14.4 Iterative Programs, Various Values of K”

For iterative programs, one must keep track of the number of times each
loop is traversed. This is illustrated in the example below, in which paths
with varying values of K are calculated.

PROGRAM TWO:
a

WHILE (x)

b

END WHILE

c

WHILE (y)

d

ENDWHILE

e

In the previous program, the paths are a function of the minimum num-
ber of times the program traverses each loop. Hence, the paths have to be
shown in terms of the loop count, maximum, K.

The notation .. <{edge}> ... is used to indicate that the edge is exe-
cuted at least once and possibly more times. It is important to note that
the paths are not inclusive upward; that is, even when K = 2, for example,
the notation ... <{a}> ... still means exactly one or more repeti-
tions of edge a. To show that a path is supposed to have two repetitions of
a particular edge, write ...a <{a}>

Here are the paths in the example program, stated in terms of the various
possible values of K:

PROGRAM TWO:
K = 0:

1: a c e

.ne 8

K = 1:

1: a c e

2: a c <{d}> e

3: a <{b}> c e

4: a <{b}> c <{d}> e

K = 2:

1: a c e

2: a c d e

3: a c d <{d}> e

4: a b c e

5: a b c d e

6: a b c d <{d}> e

CHAPTER 14: Coverage Measure Explained

176

7: a b <{b}> c e

8: a b <{b}> c d e

9: a b <{b}> c d <{d}> e

K = 3:

1: a c e

2: a c d e

3: a c d d e

4: a c d d <{d}> e

5: a b c e

6: a b c d e

7: a b c d d e

8: a b c d d <{d}> e

9: a b b c e

10: a b b c d e

11: a b b c d d e

12: a b b c d d <{d}> e

13: a b b <{b}> c e

14: a b b <{b}> c d e

15: a b b <{b}> c d d e

16: a b b <{b}> c d d <{d}> e

As noted on the previous page, the notation... <{b}> ... means that
the edge b is executed one or more times. Note that the order of these
path classes is grouped to make it easy to see what the sequence actually
is. Automatic generation of the paths may result in a different order.

It is important to understand the set of paths varies significantly as the
value of K varies. For example, note that when K = 2 you have to include
three paths that involve various repetition counts of the edge b, as fol-
lows:

PROGRAM TWO:

K = 2:

1: a c e

and

2: a b c e

and

3: a b <{b}> c e

TCAT-PATH User’s Guide

177

Here Path 1 requires that edge b is used zero times; Path 2 requires that it
be used exactly one time; and, Path 3 requires that it be used two or more
times.

When you increase the value of K, the growth in path groups is evident:
PROGRAM TWO:

K = 3:

1: a c e

and

2: a b c e

and

3: a b b c e

and

4: a b b <{b}> c e

Note that Path 3 now loses its <{b}> term, only to have it installed again
in Path 4.

It should be easy to see that a large value for K will produce a very large
set of paths. However, the programs that generate the path class groups
will always generate a set of paths that is universal in the sense that every
actual program execution will fall into a single, unique class.

CHAPTER 14: Coverage Measure Explained

178

14.5 The Exact Meaning of K

From these examples we can begin to understand the intended meaning
of the value of K:

The minimum iteration count, K, is a requirement on a set of
actual test paths of a program. The value of K is intended to be
the threshold value above which iterations are grouped into
equivalence classes which include multiple instances of iteration.
K = 0
means that the test set will map paths that include any repetitions
of an edge or node as an equivalence class. (This is a degenerate
case that is included for consistency.)
K = 1
means that the test set must include some paths that involve NO
repetition of edges or nodes, and will map paths that involve one
or more repetitions of an edge or node as an equivalence class.
K = 2
means that the test set must include some paths that involve NO
repetition of edges or nodes, some that involve SINGLE repeti-
tions of edges or nodes, and will map paths that involve two or
more repetitions of an edge or node as an equivalence class. And
so forth...

While all of the paths for some value of K are larger than one may be very
interesting theoretically,in practice it is usually enough just to deal with
paths generated when K = 1.

TCAT-PATH User’s Guide

179

14.6 Complex Looping Structures

Sometimes programs have structures that make the processing and repre-
sentation of the paths very complicated. Consider the following:

PROGRAM BIG:
a

IF (x)

b

WHILE (x)

c

IF (x)

e

ELSE

d

IF (x)

e

ELSE

f

ENDIF

ENDIF

IF (y)

h

EXIT

ELSE

.bp

i

ENDIF

END WHILE

j

ELSE

k

ENDIF

EXIT

 END PROGRAM

In this program the loop has two possible exits: One is the normal exit, g,
and the other is the abnormal exit e, which is the last fragment executed
before the RETURN statement. It is best if programs did not have such
multiple entry and/or multiple exit statements; but, in practical reality
they do.

To do so involves using the notation ..<..>. ., which means that the
contents of the <..> 's can be any path composed of any sequence of the
segments named.Using this new notation here is the generated path set
for this program.

PROGRAM BIG:

CHAPTER 14: Coverage Measure Explained

180

Index

Symbols
*. file 10
*.dig file 6
*.dig files 10
*.i.c 130
*.pth 60
*.pthfile 6
*.rpt 60
*.rpt files 6

A
a.out 130
action pull-down menu 132
Ada Language

tp-iada 162
analyze help frame 158
analyze menu 157
apg (Automatic Path Generator)

5, 30-31, 51, 75, 114, 134, 136, 161
apg command 6
application argument 131
application name 130
automatic path generation 29

B
blocked pairs processing 37
branch coverage, C1 179

C
C1 test metric 171
cc-o 130
command line calls to the instrumentor 10–11
command line commands 7
command line instrumentor options 12–13

command line invocations 7
compile 132
conditional expressions 162
configuration file processing 77
configuration file syntax 75
coverage analysis 7
coverage measures 171
coverage reports 114, 118, 122
Ct coverage 3, 59, 162, 179
Ct coverage report 6
Ct coverage values 5
Ct logical path coverage 8
Ct value 122
ctcove 157
ctcover 5, 6, 30, 60, 118, 161
ctcover syntax 59
ctcover utility 59
cyclo 116
cyclo command 6, 38
cyclomatic complexity 1, 38
cyclomatic number calculation 29, 38, 116

D
default runtimes 90
de-instrument switch 12
digpic 116
digpic command 6
digpic Digraph Display (Digraph Picture) 39–43
digraph file (*.dig file) 30, 146
digraph picture generation utilities 29
digraphs 1, 3
display geometry 145
display path help frame 144
display path menu 143, 154
DoPTH script 6, 34, 59

INDEX

182

E
edit paths help frame 140
edit paths menu 139
embedded systems 22
equivalence class generation algorithm 1
equivalence classes of paths 31
essential path extractor 29
example program 97–101
execute help menu 131
execute menu 130

F
file pop-up menu 129
file.c 11
file.i 11
finite automata 179
finite sequential machines 179
fonts used in this manual xii
FORTRAN Language

tp-if77 162
function calls 8-9, 23, 126

G
generate path statistics pop-up menu 138, 152
generate paths help frame 135
generate paths menu 134, 149
generate paths pop-up menu 137
generate report 159
goto statements 162

H
helpf1 command 66

I
Instrument Help Menu 128
iinstrumentation 7
Instrumentation Menu 127
iinstrumentation statistics 112
iinstrumenting source code 126
iinstrumentor

language-dependent 5
iinstrumentor command 126
iinstrumentor options 126
iinvoking TCAT-PATH 64
iiterative programs 172, 175–177

K
K, minimum iteration count 178

L
llinker options 130
llogical branches 9

M
main.cov 54
make commands 133
make files 87, 130
make utility 130

manual cross-referencing 106
McCabe Metric 38
menu options 65
menus 7
module-name.dig 80

N
naming conventions 21, 27
noniterative programs 172, 173–174
not-hit paths 27, 122

O
on-line help frame facility 163
OSF/Motif X Window System environment 123

P
path analysis 1
path condition help frame 148
path condition menu 147, 150
path factoring 36
path file (*.pth file) 30
path file. 27
path generation 7
path hit 7
path information 114
path logical condition extractor 29
pathcon utility 44–??
pathcover utility 51–??
preprocessing 126, 128
program statistics 112

TCAT-PATH User’s Guide

183

R
Reference Listing file 106, 146
runtime modules 7, 16, 23, 24,85, 91
runtime object module 6

setting
with make file 133

runtime object module pop-up menu 133
runtime routines 23

S
S1 test metric 171
sample make files 17–??
sample TCAT-PATH configuration file 78
save new path file pop-up menu 142
save new pathcon file pop-up menu 151
saving changed option settings 71
segment coverage 101
set basis path file 145
set highlight file pop-up menu 155
set module file pop-up menu 145, 149, 151
set path file pop-up menu 141
set trace file pop-up menu 159
settings command output 73
shortname.pth 59
software quality management x
source code 8, 9

viewing utility 79–83
system commands 72

T
tcatp.rc 64
TCAT-PATH actions menu 68
TCAT-PATH ASCII Menus 63
TCAT-PATH configuration files 74
TCAT-PATH files menu 69
TCAT-PATH main menu 67, 123
TCAT-PATH options menu 70
TCAT-PATH reports 118
text conventions in this manual xii
tp-i 75, 161
tp-i command 5
tp-i instrumentor processor 5
tp-iada for Ada programs 5
tp-ic 80, 126, 162
tp-ic for “C'' programs 5
tp-ic instrumentor 85, 91
tp-if77 for FORTRAN (f77) programs 5
trace file 8, 25, 157
trace files 1, 6, 22
Trace.trc 27

V
view report 159-60
viewing source code 79–83, 146

X
Xdigpic 145

