
U S E R’ S G U I D E

TCAT C/C++

Version 9.2

Test Coverage Analysis
Tool For C and C++

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in
a retrieval system or transmitted, in any form or by any means, photocopying,
recording or otherwise without prior written consent of Software Research, Inc.
While every precaution has been taken in the preparation of this document,
Software Research, Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without notice.

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TCAT for JAVA/Windows, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight,
and Xvirtual are trademarks or registered trademarks of Software Research, Inc.
Other trademarks are owned by their respective companies. METRIC is a
trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC is a
trademark of Software Research, Inc. and Gimpel Software.

Copyright  1998 by Software Research, Inc
(Last Update December 18, 1998)

/home/l1/wu/unix-tcat/tcatwu98/tcat9.book

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

625 Third Street

San Francisco, CA 94107-1997

Tel: (415) 957-1441

Toll Free: (800) 942-SOFT

Fax: (415) 957-0730

E-mail: support@soft.com

http://www.soft.com

SOFTWARE RESEARCH, INC.

iii

Preface . xv

CHAPTER 1 Overview of TCAT C/C++ 1
1.1 Basics of Automated Software Test Methods1

1.2 Coverage Analysis Tools ..2
1.2.1 Technical Summary...2
1.2.2 Technology...3
1.2.3 Functionality ..4
1.2.4 Effectiveness Assessment ...7

1.3 TCAT C/C++ ...8
1.3.1 Feature Summary ..9

Instrumentor . 9
Runtime . 9
Coverage . 9

1.3.2 File Inventory ...10
1.3.3 Installation Process...11

CHAPTER 2 Quick Start 13
2.1 Overview ..13

2.2 STEP 1: Starting Up TCAT C/C++ ..14

2.3 STEP 2: Selecting Load Setting ...17

2.4 STEP 3: Instrumenting the Example Application18

2.5 STEP 4: Choosing and Linking a Runtime Version20

2.6 STEP 5: Running the Application ..22

2.7 STEP 6: Opening the Coverage Window ..24

2.8 STEP 6: Choosing a Trace File ..25

2.9 STEP 8: Generating and Viewing a Report26

Table of Contents

TABLE OF CONTENTS

iv

2.10 STEP 9: Viewing a Logical Branch's Source Code28

2.11 STEP 10: Sign Off and Cleanup ...29

2.12 Summary ..30

CHAPTER 3 TCAT C/C++
Graphical User Interface. 31

3.1 TCAT C/C++ ...31

3.2 Invoking TCAT C/C++ ..31

3.3 TCAT C/C++ Main Window ...32
3.3.1 File.. 33
3.3.2 Options .. 33
3.3.3 File Selection Section... 33
3.3.4 Utilities Section ... 33
3.3.5 Shell Section ... 33

3.4 File Pull-Down Menu ...34
3.4.1 Load Setting .. 35
3.4.2 Save Setting .. 35
3.4.3 Set Project DB ... 35
3.4.4 Exit ... 35

3.5 Options Pull-Down Menu ..36
3.5.1 Instrumentor/Compiler Options... 36

Instrumentor Options . 37
Compiler Options . 37

3.6 Link/Build/Run Options ..38
3.6.1 Link Options .. 39

Command . 39
Flags . 39
Library Flags . 39
Runtime Module . 39

3.6.2 Build Options .. 40
Command . 40
Flags . 40

3.6.3 Run Options .. 41
Target Name . 41
Command Line Args . 41

3.7 File Selection Section ...42
3.7.1 Directories ... 43
3.7.2 Files.. 43
3.7.3 Selection .. 43
3.7.4 Clear All ... 43
3.7.5 Select All.. 43

TABLE OF CONTENTS

v

3.8 Utilities Section ...44
3.8.1 Instrument ... 45
3.8.2 Link... 45
3.8.3 Build ... 45
3.8.4 Run... 45
3.8.5 Link & Run ... 45
3.8.6 Build & Run ... 45
3.8.7 Xcover .. 45
3.8.8 Compile.. 46
3.8.9 Xdigraph .. 46
3.8.10 Xcalltree ... 46
3.8.11 Vi... 46
3.8.12 Rm .. 46
3.8.13 Debug... 46
3.8.14 Lint ... 47
3.8.15 SCCS get.. 47
3.8.16 SCCS edit... 47
3.8.17 SCCS delta... 47

3.9 Shell Section ...48
3.9.1 Command .. 48
3.9.2 Message Area.. 48
3.9.3 Kill .. 48

CHAPTER 4 Runtime System 49
4.1 TCAT C/C++ “Runtime” Support Options49

4.2 Pre-Selected Link-Time Options ..50

4.3 Performance Gain With Buffering ..51

CHAPTER 5 Xcover — Coverage Analyzer 53
5.1 Xcover ..53

5.2 Xcover Functionality ...53

5.3 Command Line Invocation ...54

5.4 Xcover Sample Screens ...55

5.5 Operation of Xcover ..57
5.5.1 Xcover Options ... 58
5.5.2 Selecting a Trace File ... 58
5.5.3 Selecting an Archive File ... 58

TABLE OF CONTENTS

vi

CHAPTER 6 Xcalltree Utility 59
6.1 Purpose ..59

6.2 Xcalltree File Format ...59

6.3 Invoking Xcalltree ..60

6.4 Xcalltree Main Window ...61
6.4.1 File.. 62
6.4.2 Options .. 62
6.4.3 Zoom In & Zoom Out .. 62
6.4.4 View Source... 62
6.4.5 Statistics .. 62
6.4.6 Print.. 62
6.4.7 Annotation ... 63
6.4.8 Help .. 63

6.5 File Pull-Down Menu ...64
6.5.1 Load New Graph ... 65
6.5.2 Load New Multi Graph .. 65
6.5.3 Set Archive .. 65

6.6 Calltree File Selection Dialog Box ...66
6.6.1 Filter ... 67
6.6.2 Directories ... 67
6.6.3 Files.. 67
6.6.4 Selection .. 67
6.6.5 OK... 67
6.6.6 Filter Button... 67
6.6.7 Cancel .. 67

6.7 Option Window ..68
6.7.1 Zoom Scale.. 69
6.7.2 Horizontal Spacing ... 69
6.7.3 Depth.. 69
6.7.4 Root Name... 70
6.7.5 Edge Characteristics ... 72

Edge Color . 72
Unhighlighted Edge . 72
Display Mode . 72

6.7.6 Node Characteristics .. 73
Size . 73
Aspect Ratio . 73
Default Color . 73
Low-level Color . 73
Normal Color . 73
High-level Color . 73
Apply . 73

6.8 Zoom In & Zoom Out Options ..74

TABLE OF CONTENTS

vii

6.9 View Source Window ..75
6.9.1 Description of Source Code Viewing .. 76

6.10 Statistics Window ...77
6.10.1 Links... 78
6.10.2 Call pairs.. 78
6.10.3 Modules/Depth .. 78
6.10.4 Recursive... 78

6.11 Print Window ...79
6.11.1 Paper Size Information ... 80
6.11.2 Enlargement Factors .. 81
6.11.3 Font Information ... 82
6.11.4 Print Locator.. 82

6.12 Annotation Window ..83
6.12.1 Threshold 1 & Threshold 2... 84
6.12.2 None ... 84
6.12.3 S0.. 84
6.12.4 Ninvokes .. 84
6.12.5 S1.. 84
6.12.6 C1 ... 84
6.12.7 Cyclo .. 84
6.12.8 Nsegs ... 84
6.12.9 Npairs... 85
6.12.10 Nlines ... 85
6.12.11 Npaths.. 85
6.12.12 User .. 85
6.12.13 Connections .. 85
6.12.14 Apply .. 85
6.12.15 Reset .. 85
6.12.16 Close .. 86
6.12.17 Help .. 86

6.13 Quick Reference Guide to Xcalltree Annotations87

CHAPTER 7 Xdigraph Utility 89
7.1 Purpose ..89

7.2 Xdigraph File Format ..89

7.3 Invoking Xdigraph ...90

7.4 Xdigraph Main Window ...92
7.4.1 File.. 93
7.4.2 Options .. 93
7.4.3 Zoom In .. 93
7.4.4 Zoom Out ... 93
7.4.5 View Source... 93
7.4.6 Statistics .. 93

TABLE OF CONTENTS

viii

7.4.7 Print.. 93
7.4.8 Annotation ... 94
7.4.9 Help .. 94

7.5 File Pull-Down Menu ...95
7.5.1 Load New Graph ... 96
7.5.2 Load New Module ... 96
7.5.3 Set Archive .. 96
7.5.4 Exit ... 96
7.5.5 Digraph File Message Box .. 97

Filter . 98
Directories . 98
Files . 98
Selection . 98
OK . 98
Filter Button . 98
Cancel . 98

7.6 Options Window ..99
7.6.1 Zoom Scale.. 100
7.6.2 Node Characteristics .. 101

Shape . 101
Size . 101
Vertical Spacing . 101
Aspect ratio . 101

7.6.3 Edge Characteristics .. 102
Unhighlighted Edge . 102
Eccentricity . 102
Default Color . 102
Low-level Color . 102
Normal Color . 102
High-level Color . 102
Apply . 103
Reset . 103
Close . 103
Help . 103

7.7 Zoom In/Zoom Out Window ...104

7.8 View Source Window ..105

7.9 Statistics Window ...106
7.9.1 File Name... 107
7.9.2 Node and Edge Count .. 107
7.9.3 Cyclomatic Number (Cyclomatic Complexity) 107
7.9.4 Average, Minimum and Maximum Path Lengths............................ 107
7.9.5 Path Count by Iteration Groups... 107

TABLE OF CONTENTS

ix

7.10 Print Window ...108
7.10.1 Paper Size Information ... 109
7.10.2 Enlargement Factors .. 110
7.10.3 Font Information ... 111
7.10.4 Print Locator.. 111

7.11 Annotation Window ..112
7.11.1 Threshold 1 & 2 ... 113
7.11.2 None ... 113
7.11.3 Nhits ... 113
7.11.4 N% .. 113
7.11.5 Nlines ... 113
7.11.6 User .. 113
7.11.7 Highlight .. 114
7.11.8 Path File ... 114
7.11.9 Apply .. 114
7.11.10 Reset .. 114
7.11.11 Close .. 114
7.11.12 Help .. 114
7.11.13 Colors... 115

7.12 Quick Reference Guide to Xdigraph Annotations116

 APPENDIX A C/C++ Instrumentor Engine 117

 APPENDIX B Resource File Variables 131

 APPENDIX C cover —TCAT C/C++’s Coverage Analyzer 147

TABLE OF CONTENTS

x

xi

List of Figures

FIGURE 1 TCAT C/C++ Graphical Displays .5

FIGURE 2 Setting Up the Display (Initial Condition) .14

FIGURE 3 The TCAT C/C++Main Window .16

FIGURE 4 Selecting the Load Setting .17

FIGURE 5 Instrumenting the Source File .19

FIGURE 6 Selecting the Runtime Object Module .21

FIGURE 7 Running Motifburger .23

FIGURE 8 The Coverage Window .24

FIGURE 9 Selecting a Trace File Name .25

FIGURE 10 Coverage Information for Each Function .26

FIGURE 11 Looking at Source Code .28

FIGURE 12 Completing a TCAT C/C++Session. .29

FIGURE 13 TCAT C/C++ main window. .32

FIGURE 14 File pull-down menu .34

FIGURE 15 Instrumentor/Compiler Options window .36

FIGURE 16 Link/Build/Run Options window. .38

FIGURE 17 File Selection section of TCAT C/C++ main window.42

FIGURE 18 Utilities section of TCAT C/C++ main window. .44

FIGURE 19 Shell section of the TCAT C/C++ window .48

FIGURE 20 Xcover Example Output 1 .55

FIGURE 21 Xcover Example Output 2 .56

FIGURE 22 Xcalltree main window .61

FIGURE 23 File Pull-Down Menu .64

FIGURE 24 Calltree File Selection Dialog Box .66

FIGURE 25 Option window .68

FIGURE 26 Root Name Selection window example 1 .70

LIST OF FIGURES

xii

FIGURE 27 Root Name Selection Window Example 2 . 71

FIGURE 28 Zoom In Option illustrated. 74

FIGURE 29 View Source Window . 75

FIGURE 30 Statistics Window. 77

FIGURE 31 Print Window . 79

FIGURE 32 Annotation Window . 83

FIGURE 33 Program edges as represented in a digraph . 91

FIGURE 34 Xdigraph main window . 92

FIGURE 35 Digraph File Pull-Down Menu . 95

FIGURE 36 Digraph File Message Box. 97

FIGURE 37 Xdigraph Options Window . 99

FIGURE 38 Zoom In feature illustrated . 104

FIGURE 39 View Source Option Window. 105

FIGURE 40 Statistics Option Window . 106

FIGURE 41 Print Dialog Window . 108

FIGURE 42 Annotation Thresholds Window . 112

FIGURE 43 Sample Annotation for User Threshold . 115

LIST OF FIGURES

xiii

LIST OF FIGURES

xiv

xv

Congratulations!

By choosing the TestWorks suite of testing tools, you have taken the first
step in bringing your application to the highest possible level of quality.

Software testing and quality assurance, while increasingly important in
today’s competitive marketplace, can dominate your resources and delay
your product release. By automating the testing process, you can assure
the quality of your product without needlessly depleting your resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TCAT C/C++ is a quick and easy way to detect weaknesses in your code.
Easily accessible click-and-point reports find the segments that need
further testing. Digraphs and calltrees visualize the location, allowing
you to make immediate improvements to the structure and performance
of your software.

TestWorks is the most complete solution available, and the peace of mind
it provides our customers is our most valued feature.

Thank you for choosing TestWorks.

Audience

This manual is intended to aid software testers who are using
TCAT C/C++ tools.

Preface

PREFACE

xvi

Contents of Chapters

This manual is organized to aid you after installation has been completed.
(See the Installation Instructions if you are trying to install.)

This manual is divided into the following sections:

Chapter 1 OVERVIEW OF TCAT C/C++ provides an intro-
duction to test coverage tools and TCAT Version 9
 including TCAT C/C++’s new features and enhance-
ments.

Chapter 2 QUICK START provides a quick start to TCAT C/C++
using a demonstration test case. This chapter applies
to all editions of TCAT C/C++.

Chapter 3 TCAT GRAPHICAL USER INTERFACE describes the
TCAT C/C++ graphical user interface(GUI).

Chapter 4 RUNTIME SYSTEM is a guide to TCAT C/C++’s
Runtime Options and applies to all editions of
TCAT C/C++.

Chapter 5 XCOVER—Coverage Analyzer is a guide to TCAT’s
complete coverage analyzer for branch (C1) or call
pair (S1) metrics with a highly flexible graphical
display. This chapter applies to all editions of
TCAT C/C++.

Chapter 6 X CALLTREE UTILITY explains this utility, which is a
graphical display of the relationship between two
called functions. This chapter applies to all editions of
TCAT C/C++.

Chapter 7 XDIGRAPH UTILITY explains TCAT’s graphical util-
ity for understanding a program’s structure and flow.
This chapter applies to all editions of TCAT C/C++.

TCAT C-C++ User’s Guide

xvii

Typefaces

The following typographical conventions are used in this manual.

boldface Introduces or emphasizes a term that refers to STW’s
window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for
manual, chapter, and book titles.

”Double Quotation Marks” Indicates chapter titles and sections. Words
with special meanings may also be set apart with
double quotation marks the first time they are used.

courier Indicates system output such as error messages,
system hints, file output, and CAPBAK/X’s keysave
file language.

Boldface Courier

Indicates any command or data input that you are
directed to type. For example, prompts and invoca-
tion commands are in this text. (stw, for instance,
invokes STW.)

PREFACE

xviii

1

CHAPTER 1

Overview of TCAT C/C++
This chapter is an introduction to test coverage tools and TCAT C/C++ Version 9,
including TCAT C/C++’s new features and enhancements. TCAT C/C++ combines the
functionality of previous versions of TCAT and S-TCAT. This chapter applies to all
editions of TCAT C/C++.

1.1 Basics of Automated Software Test Methods

Mechanical assistance in software testing has been used for many years,
but only recently has the essential requirement for automation become a
main enabling force. Here are the main capabilities of a typical software
test automation tool kit:

• Regression Testing. Automatic test execution — accomplished
with a variety of methods — permits rapid re-testing after
program changes, replays user sessions automatically, and
assesses the impact of change.

• Test Coverage. Test coverage ensures that sets of tests are as
complete as possible, measured against a range of high-quality
test metrics. The products provide feedback, in real time if
needed, on where current tests are inadequate.

• Static Analysis. Static analysis provides insight into the source
code to help allocate resources to areas of the code that are more
likely to be error prone, or should be rewritten because they will
be difficult to maintain. Typical features include standard metrics
such as control flow complexity, data complexity, and syntactical
and semantic analysis.

The above order tracks the way most organizations are introducing test
automation. Almost everyone understands running a test case, so auto-
mating that process using regression is a straightforward first step, and
one can quickly see the benefits in reduced time and resource require-
ments for testing. Coverage analysis follows next, because once a test
suite has been created, it is important to ask how complete the suite is,
whether it is really testing all of the code, and, if it is not, which parts still
need to be tested. The detailed source code information revealed through
static analysis can indicate the complexity of an application, which can be
used to allocate resources during development.

CHAPTER 1: Overview of TCAT C/C++

2

1.2 Coverage Analysis Tools

1.2.1 Technical Summary

A set of tests is only effective if it achieves some measurable completeness
criteria. Relying only on intuition, most testers will under-test software
products by 50 to 75 percent.

Coverage analyzers attack this problem by giving a numerical value to
the completeness of a set of tests. There are three levels of test complete-
ness metric:

• C1, or branch coverage. Used for detailed unit testing of
systems of up to several hundred functions/modules. This is
the most common kind of coverage analysis. (It is stronger than
the commonly used but misleading C0 metric, which counts
statements exercised.)

• S1, or call pair coverage. Used for system interface coverage
checking − to make sure every interface is fully exercised. This is
a “procedure-to-procedure” coverage metric.

• Ct, or equivalence class coverage. Used for true path coverage
of critical software modules (usually no more than 10 to 15
percent of all modules). Path classes are measured to the nearest
loop repetition count by TCAT-PATH.

TCAT C/C++ User’s Guide

3

1.2.2 Technology

To obtain coverage information, probes are placed into an application to
record which parts of the source code/application have been executed.
Inserting the probes into the code is known as instrumentation, and it can
be done in either the source code or the object code.

Normally, only statement coverage (C0, which lines of code have been
exercised) can be obtained with object code insertion. This is useful, but
there are many situations where 100% statement coverage will not tell
whether all of the code has been tested. Below is a simple example of this
situation in “C”:

 if (index > 0)

 index--;

In this example, if the variable index is > 0, then both lines will be marked
as executed. There is now no way to know if you ever tried this code with
index < 0 so that the second statement was not executed. On the other
hand, if you used branch coverage (C1), it would report coverage for both
the true and false condition of this if statement.

Source code instrumentation allows you to examine branch coverage
(C1), call pair coverage (S1) and path coverage (Ct). Instrumentation
makes a pass through the source code prior to compilation, inserting
function calls to a runtime library at each branch or call pair. The key
issue with instrumentation is how completely and efficiently you can
process the source code.

Most tools on the market use a LEX/YACC parser generator to create a
parser to understand the source code language. These parsers work well
as long as you are not trying to handle a wide variety of dialects, or some
of the very complex language features of newer languages such as “C++”.
In order to handle these, you need true compiler technology, such as the
recursive descent compiler technology Software Research uses in its
current release of STW/Coverage.

State-of-the-art compiler technology delivers a number of benefits in
source code instrumentation. The instrumentation process itself is much
faster, and can handle errors in the source code, providing the same level
of error message reporting as a compiler would. This technology is also
very flexible and powerful, so that a wide variety of language dialects can
be handled. With languages like “C” and “C++”, compiler vendors have
added many of their own special reserved words and constructs that are
not part of any standard but still must be supported by coverage tools.

CHAPTER 1: Overview of TCAT C/C++

4

1.2.3 Functionality

TCAT C/C++measures structural test completeness at the module level
using the “logical segment” or C1 metric; it also measures system inter-
face test coverage using the function call pair, or S1, metric with source
instrumentation. TCAT is available for most compilers of “C” and “C++.”

TCAT C/C++coverage reports can be tailored to show a variety of data,
including:

• segments hit
• segments not-hit
• segments newly hit
• segments newly missed
• past-test and cumulative coverage percentages

There is runtime support for analysis of cooperating processes and for
cross-compilation. In addition, reports for S1 coverage show call pairs hit,
call pairs not-hit, call pairs newly hit, call pairs newly missed, past-test
and cumulative coverage percentages, linear and logarithmic histograms,
and coverage on listings.

TCAT also has utilities that aid in analyzing the call pair structure — the
“call tree” of the system being analyzed. A utility called Xcalltree allows
the user to analyze the call tree.

TCAT C/C++ Ver. 9 combines the functionality of previous releases of
TCAT and S-TCAT. Two other SR products that are also bundled with
STW/Coverage, TCAT-PATH and T-SCOPE, are described below.

TCAT-PATH: Path Test Coverage Analysis Tool. TCAT-PATH measures
module level test coverage at the path level (execution equivalence class,
or Ct metric) using source instrumentation techniques. A proprietary
algorithm is used to generate a set of all possible execution paths for each
module. This method involves grouping “paths” — i.e., sequences of seg-
ments — into equivalence classes such that: (a) every possible program
execution is included in at least one equivalence class; and (b) the number
of classes is a good “compromise” size, neither trivial nor too expansive.
A 250-line program in “C,” when reasonably well-coded, might produce
approximately 50-100 path classes, each of which requires a separate test.

The algorithm produces classes that almost require “one test for each for-
mal verification condition” — as if the module were being proved correct.

The coverage reports show the usual kinds of data, referring to the set of
paths. The utilities that draw digraph pictures, highlight paths, and calcu-
late the cyclomatic complexity are very useful in understanding the
detailed structure of a module.

TCAT C/C++ User’s Guide

5

T-SCOPE: Test Data Observation and Analysis System. T-SCOPE works
with any SR coverage analysis system under X Windows graphics inter-
faces. This system facilitates visualization of branch coverage (C1) data,
call pair coverage (S1) data, and (path coverage (Ct) data. The user can
program this system to present displays that include strip charts, histo-
grams, dynamic call trees, and annotated directed graphs (flow charts).

The effects on tester productivity are impressive. Two results of the
instantaneous coverage being shown in real-time are: (a) the tester can
concentrate quickly on the less thoroughly-tested parts of the program,
which increases test efficiency; and (b) the tester can identify which pro-
gram parts relate to what is going on dynamically inside the application
— an entirely new capability that can minimize test redundancy.

FIGURE 1 TCAT C/C++ Graphical Displays
STW/Coverage dynamically generates a program’s call-tree (top left), a
module’s directed graph (center), and a static report of the unexercised logical
branches (bottom left) with source code displayed for an un-hit logical branch.

CHAPTER 1: Overview of TCAT C/C++

6

TCAT C/C++ User’s Guide

7

1.2.4 Effectiveness Assessment

Studies show that branch coverage of 85 percent or better tends to iden-
tify twice the number of defects that would have been found by “intui-
tive” testing. Call pair coverage of 90 percent or better will detect 25
percent more defects. Both of these techniques work because they auto-
mate and quantify a process that has relied too long on programmer and
tester intuition. Automated testing focuses attention on untested parts of
programs, where the latent defects lie.

The branch coverage metric is often best used when doing “unit testing,”
roughly defined as working on 1,500-7,500 lines of code (1.5 to 7.5K LOC).
Branch coverage tends to find single-segment faults, and the detection
method is straightforward: “wrong” output most of the time.

A good practice is to use call pair coverage on the entire system, e.g.
including those with over 1 million LOC to process at one time. The call
pair coverage tends to identify interface errors — which are almost
always self-evident when the caller-callee relationship is actually exer-
cised. In fact, call pair coverage reduces interface defects by a factor of
three to five. Call pair coverage is about 20% less difficult to obtain per
KLOC than branch coverage.

For critical modules — usually a selected ten to fifteen percent of the total
volume of an application — path coverage with TCAT-PATH can be used
to extend coverage close to the practical limit.

This can be a complicated process, so it is often limited to the smaller
applications, and to those with life-critical functions (such as medical
products), and real-time controllers.

Completing a set of path tests can take eight to ten times as much work as
branch coverage for the same volume of code, but the result is very effec-
tive. Defect detection efficiencies at 90 percent or better have been
observed, even with the Ct coverage limited to about 75 percent. It should
be noted that a 100 percent complete path-coverage test set constitutes a
set of tests that match one-for-one, with the set of formal verification
conditions one would use in a formal proof.

Closing the feedback loop — making it as easy as possible for program-
mers and/or testers to complete the test process — is a clear productivity
booster. Software Research has had very good results in using both static
and dynamic test visualization, in which flowcharts and call trees graphi-
cally display coverage data that is generated in real time or after the test
run. This kind of display shows very quickly what is — and what is not
— being exercised by a set of tests.

CHAPTER 1: Overview of TCAT C/C++

8

1.3 TCAT C/C++

TCAT C/C++ consists of the following:
• Tracefile formats with simpler messages for more flexibility.

Ultimately these tracefiles are expected to support multi-tasking,
as well as multi-threading.

• New options in selection of the runtime support module, with
many new options and capabilities.

• Revised and updated consolidated Xcover utility that adapts to
the new tracefile and archive file formats while preserving the
prior reporting capabilities.

• A new Xcover X-Window-based coverage analyzer that shows
coverage interactively on the screen at varying levels of detail.

TCAT C/C++ User’s Guide

9

1.3.1 Feature Summary

The following summarizes the main enhancements to TCAT C/C++,
over earlier versions.

1.3.1.1 Instrumentor

• C and C++ consolidated processing
• C1 + S1 consolidated coverage
• Enhanced error recovery during instrumentation
• High-speed, high-capacity system
• Instrumentor database available as a “C” structure
• “Invisible” instrumentor operation as a wrapper on cc or CC

• Inline instrumentation directives to control type and detail level
of instrumentation

1.3.1.2 Runtime

• Low runtime overhead
• Support for multi-tasking
• Support for multi-threading

1.3.1.3 Coverage

• Compatible cover command
• New Xcover interactive coverage analyzer

CHAPTER 1: Overview of TCAT C/C++

10

1.3.2 File Inventory

Following is an inventory of the files supplied with the program:

ic9/icpp9 These files represent the new combined “C” and
“C++” Instrumentor. They process ANSI C, K&R C,
and C++ at the level of AT&T's 3.0 release. ic9/icpp9
call the C or C++ compiler and pass through all com-
piler switches that are supplied by the user. Control
of the instrumentation process with command line
switches requires prefixing -TCAT to all switches
specific to the instrumentation process.

crunN.o Where N is 0-5. The supplied version of the runtime
support module crun5.o combines C and C++
support, and combines C1 (branch) and S1 (call pair)
coverage. In addition, it does all of its data collection
with in-place buffering. The attached documentation
gives the full description of the capabilities of the
runtime system.

cover This version of cover reads the new tracefile format.

Xcover This is the new interactive GUI-based coverage
analyzer.

Xtcat This is the new GUI that provides access to the
various utilities.

Xcalltree This program draws calltrees based on information
from the tracefiles and archive files produced by
instrumentation.

Xdigraph This program draws directed graphs based on infor-
mation from the tracefiles ad archive files produced
by instrumentation.

TCAT C/C++ User’s Guide

11

1.3.3 Installation Process

An installation manual is included in the “Open Me First” packet shipped
with TCAT C/C++.

CHAPTER 1: Overview of TCAT C/C++

12

13

CHAPTER 2

Quick Start

This chapter explains getting started with TCAT C/C++ using a demonstration test case.
This chapter applies to all editions of TCAT C/C++.

2.1 Overview

This application note will familiarize you with the main activities
involved in using TCAT C/C++, including instrumenting, compiling,
linking and running the target program, and finally, looking at resulting
coverage reports, calltree graphs and digraphs.

The program used to illustrate the operation of TCAT C/C++ is Motif-
burger, which allows you to order various hamburger combinations. By
selecting various meal combinations in an instrumented application of
Motifburger, you exercise various logical branches or segments, creating
trace files from which the coverage reports are generated.

If you are a first-time TCAT C/C++user, this chapter is best used if you
refer to the various chapters for in-depth operational instructions. If you
are an intermediate user, this chapter is best used if you refer only to
those menu definitions which need further explanation.

CHAPTER 2: Quick Start

14

2.2 STEP 1: Starting Up TCAT C/C++

Before you begin, make sure you are in the X Window System running a
window manager (e.g., mwm, olwm).

Initialize an xterm-type window to serve as the TCAT C/C++invocation
window.

During initiation of this session, the display should look like this:

FIGURE 2 Setting Up the Display (Initial Condition)

TCAT C/C++ User’s Guide

15

Now, invoke TCAT C/C++

1. Position the mouse pointer in the invocation window. Activate the
window by clicking the mouse pointer on it.

2. To invoke TCAT C/C++, type in
Xtcat9

3. When you type in this command, the TCAT C/C++ main window
pops up.

4. You can terminate TCAT C/C++ at any time from the
TCAT C/C++ main window by clicking on the Files menu
and selecting Exit.

CHAPTER 2: Quick Start

16

When TCAT C/C++is invoked, your display should contain this panel:

FIGURE 3 The TCAT C/C++Main Window

TCAT C/C++ User’s Guide

17

2.3 STEP 2: Selecting Load Setting

Selecting the load settings determines which application’s resource files
will be tested. The Select Load Settings menu has a filter that you can use
to list *.res files.

Select motifbur.res.

When you are selecting the load setting, your display should contain this
panel:

FIGURE 4 Selecting the Load Setting

CHAPTER 2: Quick Start

18

2.4 STEP 3: Instrumenting the Example Application

After the load setting is selected, the next step is to instrument the exam-
ple application. Instrumentation inserts special markers at every segment
in each program module. To instrument Motifburger, use the filter in the
main window to bring it up, and then select it by highlighting it in the
Files window.

Instrument Motifburger by clicking on the Instrument tool button.
Instrumentation can take a few seconds, during which time the tool
buttons are grayed out.

NOTE: Instrumenting your application also re-compiles it.

Instrumentation produces the following files:
• basename.cg — a Calltree Graph Listing.
• basename.dg — a Directed Graph Listing.
• TCAT.mdf — a database reference file.
• basename.o — an object file.

TCAT C/C++puts the first three of the files listed above into the tcat_db
directory.

Instrumenting your application will not change its functionality. When it
is linked and executed, the instrumented application will behave as it
normally does, except that it will also write coverage data to a trace file.

TCAT C/C++ User’s Guide

19

FIGURE 5 Instrumenting the Source File

After instrumenting the source file, enter the following command in the
command line:

uil -0 = minus sign or dash with a lower case

“o” (alphabet o as in on or off)

CHAPTER 2: Quick Start

20

2.5 STEP 4: Choosing and Linking a Runtime Version

In this step, you specify the example runtime object module you will use
to link with your instrumented application's object modules.

Software Research supplies six runtime object modules:
• crun0.o

• crun1.o

• crun2.o

• crun3.o

• crun4.o (version used most often)
• crun5.o

The following options are only available on certain platforms:
• crun 4_mt.o (only available on certain platforms)

• crun 5_mt.o (only available on certain platforms)

Each runtime object module can change the behavior and the perfor-
mance of your application. To choose one of these:
1. Select the Options pull-down menu, and click on Link/Build/Run

Options.
2. Under the Link Options heading, the Runtime Module pop-up menu

allows you to specify one of the runtime object modules.
3. Select crun4.o

4. Click on Okay, and the window disappears.

TCAT C/C++ User’s Guide

21

FIGURE 6 Selecting the Runtime Object Module

The next step is to link the selected runtime object module with the
instrumented application's object modules, named motifbur.o. Linking
will create an executable, because the instructions in the example pro-
gram are linked to the object modules that will record program behavior
during execution.
1. Use the filter to select for *.o files. The runtime objects modules

should be listed in the Files selection window.
2. Highlight motifbur.o.
3. To link, click on the Link button.

CHAPTER 2: Quick Start

22

2.6 STEP 5: Running the Application

During instrumentation, TCAT C/C++inserted function calls at each
logical branch it found. In order to later determine the C1 coverage, you
must run the application.

By running Motifburger and choosing the various possible combinations
of hamburger meals, you are exercising segments of the Motifburger pro-
gram. Because you have instrumented the program, the exercise will cre-
ate trace files and allow you to view coverage information on the exercise.

To run the instrumented application:
1. Use the filter to select for the *.out files.
2. Select the executable output file you just created when you linked.
3. Click on the Run tool button.

NOTE: An object module that is not a quiet run-time module will
prompt here for a name of the tracefile and will give it a descriptor.

4. The Motifburger program should appear in the invocation window.
Select the combination that appeals to you, specifying quantities,
condiments, how the burger should be cooked, etc.

5. When you have made a selection that appeals to your virtual
appetite, click the Apply button.

TCAT C/C++ User’s Guide

23

When the Motifburger is running, your display should look like this:

FIGURE 7 Running Motifburger

CHAPTER 2: Quick Start

24

2.7 STEP 6: Opening the Coverage Window

All the information from the run of the application is stored in a trace file.
From the trace file, coverage reports are produced. The XCover window
allows you look at a report, which tells you which segments have been
hit.

To open the Xcover window:
1. Click on the TCAT C/C++invocation window's Xcover button.
2. The Xcover window pops up.
3. Use the mouse to drag the window below the TCAT C/C++

invocation window.

FIGURE 8 The Coverage Window

TCAT C/C++ User’s Guide

25

2.8 STEP 6: Choosing a Trace File

Before looking at coverage reports, you must first select a trace file.
1. Click on the File pull-down menu.
2. Select Trace File.
3. A file selection dialog box pops up.
4. The Trace.trc file should be listed in the Files selection window.
5. Select it by clicking the mouse button on it and then clicking on OK.

You can also highlight or type in the file name, then click on OK or
press the <ENTER> key.

When you are selecting a trace file name, your display should look like
this:

FIGURE 9 Selecting a Trace File Name

CHAPTER 2: Quick Start

26

2.9 STEP 8: Generating and Viewing a Report

The report must be generated and formatted before its results can be seen.
1. Select the Action pull-down menu.
2. Select Generate Report.
3. Click on the <motifbur> line to expand the display to include

information on each function.

There are several fields in the report, with the following meanings:

Hits The number of times the element was executed
during the test.

Count The total number of segments within the function.

C1 The percentage of branch coverage for each function.

S1 The percentage of call pair coverage for the function.

FIGURE 10 Coverage Information for Each Function

TCAT C/C++ User’s Guide

27

You can look at the same information for each segment within a function.
4. Click on the <main> line to expand the display.

Each segment within the function is displayed, along with its coverage
information.

CHAPTER 2: Quick Start

28

2.10 STEP 9: Viewing a Logical Branch's Source Code

With the display expanded to show segments, you can view the source
code.
5. Click on the View Source pull-down menu.
6. A View Source window pops up.
7. Move the View Source window beside the Xcover window.
8. For this demonstration, take a look at the source code for Segment 4.

To do so, position the mouse pointer on Segment 4 and press the
mouse button.

9. TCAT C/C++automatically locates the source code for Segment 4 and
displays it in the View Source window.

10. Use the View Source scroll bars to move up/down or side/side.
11. When you are finished looking at the source code, click on View

Source's Action pull-down menu and select Exit. The window closes.

 When Xcover shows the source code, your display should look like this:

FIGURE 11 Looking at Source Code

TCAT C/C++ User’s Guide

29

2.11 STEP 10: Sign Off and Cleanup

After looking at the source code, follow these steps to complete the
session:
1. Close the Xcover window by clicking on the File pull-down menu

and selecting Exit. You will be asked whether the archive file should
be updated. Select Yes. Enter “Archive” at the end of the pathname
displayed in the Save Archive dialogue box.

2. Click File, and Exit. You are asked whether you really want to exit
Xcover. Select Okay.

3. Close the TCAT C/C++invocation window by clicking on the File
pull-down menu and selecting Exit.

At the end of your test session, your display should look like this:

FIGURE 12 Completing a TCAT C/C++Session

CHAPTER 2: Quick Start

30

2.12 Summary

If you successfully completed the preceding steps, you've seen and
practiced the basic skills you need to use TCAT C/C++ productively. You
should have learned how to invoke TCAT C/C++, how to instrument,
compile, link, and run a program, and how to look at a coverage report.

31

CHAPTER 3

TCAT C/C++
Graphical User Interface

This section describes the new TCAT C/C++ graphical user interface (GUI). This chapter
applies to the Standard and Professional editions of the product.

3.1 TCAT C/C++

The new TCAT C/C++ graphical user interface (GUI) combines the
functionality of earlier releases of TCAT and S-TCAT. This new GUI
allows you to instrument, compile, link, run, test, debug, build and edit
your application, as well as providing point-and-click access to reports,
directed graphs and calltrees.

3.2 Invoking TCAT C/C++

TCAT C/C++can be invoked in one of two ways. It can be invoked from
the command line with the command

Xtcat9

It can also be invoked from the STW suite’s main screen, by clicking the
TCAT C/C++ icon.

CHAPTER 3: TCAT C/C++ Graphical User Interface

32

3.3 TCAT C/C++ Main Window

FIGURE 13 TCAT C/C++ main window

TCAT C/C++ User’s Guide

33

3.3.1 File

This menu allows you to manipulate the project and setting information
for this session.

3.3.2 Options

This menu allows you to set various control settings to instrument, com-
pile, link, build and run your application.

3.3.3 File Selection Section

This section of the GUI allows you to select the desired files for use with
TCAT C/C++.

3.3.4 Utilities Section

This section of the GUI allows you to select various utilities to manipu-
late, view, and test your application

3.3.5 Shell Section

This section allows you to interact directly with the shell, both displaying
messages from applications started from the Utilities Section, and allow-
ing you to enter commands.

CHAPTER 3: TCAT C/C++ Graphical User Interface

34

3.4 File Pull-Down Menu

FIGURE 14 File pull-down menu

TCAT C/C++ User’s Guide

35

3.4.1 Load Setting

The option allows you to load previously saved settings for the various
TCAT C/C++ options.

3.4.2 Save Setting

The option allows you to save settings for the various TCAT C/C++
options, so that you may load them for later use.

3.4.3 Set Project DB

To select a database name for this project, select this option.

3.4.4 Exit

To exit TCAT C/C++, select this option.

CHAPTER 3: TCAT C/C++ Graphical User Interface

36

3.5 Options Pull-Down Menu

3.5.1 Instrumentor/Compiler Options

This window allows you to choose the instrumentor and compiler to use
with your application.

FIGURE 15 Instrumentor/Compiler Options window

TCAT C/C++ User’s Guide

37

3.5.1.1 Instrumentor Options

Command

Enter either ic9 or icpp9 to select the appropriate instrumentor.

Instrumentation Type

This option allows you to select C1 (branch coverage) instrumentation or
S1 (call pair coverage) instrumentation.

Language Type

This option allows you to select the language in which the target applica-
tion is written.

3.5.1.2 Compiler Options

Compiler

Enter the name of the desired compiler.

Flags

Entries in this field are sent to the chosen instrumentor or compiler when
it is invoked.

CHAPTER 3: TCAT C/C++ Graphical User Interface

38

3.6 Link/Build/Run Options

FIGURE 16 Link/Build/Run Options window

TCAT C/C++ User’s Guide

39

3.6.1 Link Options

3.6.1.1 Command

This field specifies the compiler used when the target application is
linked.

3.6.1.2 Flags

Entries in this field are sent to the compiler as flags when the target
application is linked.

3.6.1.3 Library Flags

Entries in this field are sent to the compiler as library flags when the
target application is linked.

3.6.1.4 Runtime Module

This pop-up menu allows you to select the runtime module to link to the
instrumented application’s module.

CHAPTER 3: TCAT C/C++ Graphical User Interface

40

3.6.2 Build Options

3.6.2.1 Command

This option specifies the command used when you select Build.

3.6.2.2 Flags

Entries in this field are sent to the compiler as flags when you select Build.

TCAT C/C++ User’s Guide

41

3.6.3 Run Options

3.6.3.1 Target Name

This is the name of the file created when the runtime module is linked to
the instrumented application’s module.

3.6.3.2 Command Line Args

Entries in this field are sent to the compiler as command line arguments
when you select Build.

CHAPTER 3: TCAT C/C++ Graphical User Interface

42

3.7 File Selection Section

The filter determines what files are displayed in the File box. For instance,
if you were to type *.out in the Filters box, all files with the extension
.out would appear in the Files box.

FIGURE 17 File Selection section of TCAT C/C++ main window

TCAT C/C++ User’s Guide

43

3.7.1 Directories

This selection list displays the directories within the current directory. A
scroll bar allows you to read the entire pathname.

3.7.2 Files

This selection list displays all the files (or a subset you have defined with
a filer) in the current directory. Scroll bars allow you to see entire file
names and all files in a directory.

3.7.3 Selection

This text field displays the current file selected, if there is exactly one. The
user can also type in this field to specify the selected file.

3.7.4 Clear All

This button clears all file selections.

3.7.5 Select All

This button selects all files in the Files Box.

CHAPTER 3: TCAT C/C++ Graphical User Interface

44

3.8 Utilities Section

FIGURE 18 Utilities section of TCAT C/C++ main window

TCAT C/C++ User’s Guide

45

3.8.1 Instrument

Select an application and click this button to instrument it.

3.8.2 Link

Having chosen a runtime module in the Link/Build/Run Option
window, select the instrumented application and click this button to link
it to the instrumented application’s module.

3.8.3 Build

This option allows you to build the target application. It uses make files
instead of object files.

3.8.4 Run

Select an executable created by linking, and click the Run button to
execute the instrumented application.

3.8.5 Link & Run

This button combines the Run and Link buttons. Select the instrumented
application’s module and click the Link & Run button.

3.8.6 Build & Run

This button combines the Build and Run buttons. Select the target
application, and click on Build & Run.

3.8.7 Xcover

This button calls up the Xcover utility to allow you to view coverage
information about your testing. See Chapter 5 for more details.

CHAPTER 3: TCAT C/C++ Graphical User Interface

46

3.8.8 Compile

Clicking this button compiles the selected source file with the compiler
command and flags set in the Instrumentor/Compiler options window.

3.8.9 Xdigraph

This button calls up the Xdigraph utility to allow you to graphically dis-
play the directed graph corresponding to the selected file. See Chapter 7
for more details.

3.8.10 Xcalltree

This button calls up the Xcalltree utility to allow you to graphically
display the calltree corresponding to the selected file. See Chapter 6 for
more details.

3.8.11 Vi

This button calls up the vi editing program.

3.8.12 Rm

This button executes the Unix rm command on selected files.

3.8.13 Debug

This button executes the dbx debugger on selected files.

TCAT C/C++ User’s Guide

47

3.8.14 Lint

This button executes Lint on selected files.

3.8.15 SCCS get

This button executes the SCCS get command.

3.8.16 SCCS edit

This button executes the SCCS edit command.

3.8.17 SCCS delta

This button executes the SCCS delta command.

The remaining buttons are defaults, but are changeable.

CHAPTER 3: TCAT C/C++ Graphical User Interface

48

3.9 Shell Section

FIGURE 19 Shell section of the TCAT C/C++ window

3.9.1 Command

Entries in this field will be passed onto the shell.

3.9.2 Message Area

Messages from the shell regarding TCAT C/C++ are displayed in this
area.

3.9.3 Kill

Clicking on this button will terminate any process started from the
command buttons or the command text field.

49

CHAPTER 4

Runtime System

This chapter is a guide to TCAT C/C++ ’s Runtime Options applies to all editions of the
product.

4.1 TCAT C/C++ “Runtime” Support Options

Once a program is instrumented with ic or icpp it must be linked or
bound with one of the various TCAT C/C++ runtime support versions.
This section describes the various versions of runtime and indicates how
they affect performance of the instrumented process.

Briefly, there are two different routes you can use in setting up the run-
time support for TCAT C/C++:

• Pre-select a set of runtime parameters and options by linking
from one of the supplied set of runtimes: crunN.o, with 0, 1, 2, 3,
4, 5, 4_mt, 5_mt.

• Link from crunN.o and then select options by assigning
parameters using an additional application-called flag -TRACE
appearing on the command line.

• Link from crunN.o, with 0, 2, and 4 allows one to select options
by assigning parameters using an alternative external environ-
ment variable:

TCAT_TRACE_BUFFER_SIZE w/default “10,000”

TCAT_TRACE_DIR w/default “.”

TCAT_TRACE_NAME w/default “Trace.trc”

CHAPTER 4: Runtime System

50

4.2 Pre-Selected Link-Time Options

 In addition to the standard crunN.o (see below), for convenience, there
are six pre-specified combinations of runtime support available as shown
on the following table.

In the above table, the default buffering value of N is dependent on the
system and may change from language to language. Typically, the default
for N is set to 10,000 but it can be changed with commands in the tcat.rc
file (see below).

The N-record buffering should not be used when there is a chance that
the instrumented process will not terminate cleanly (in which case any
buffered data will be lost). During a clean termination, N-record buffering
you will save all data, with the possible exception of the last N tracefile
records.

If you do not expect a lot of unusual terminations then the infinite buffer-
ing, N = -1, is the most efficient (see next section).

The safest procedure of all is to use N=1, in which case only the very last
tracefile record would be lost should the instrumented process not termi-
nate cleanly.

Level of
Buffering

Trace Data
Written to
Trace.trc: Asks User for

OK for
Multi-tasking

None (N=1) crun0.o crun1.o Yes

N-Record crun2.o crun3.o Yes

Infinite (N=-1) crun4.o crun5.o Yes (See Note)

TABLE 1 Runtime support with fixed options

TCAT C/C++ User’s Guide

51

4.3 Performance Gain With Buffering

There is a significant performance difference between the three levels of
buffering. Here is a summary of the impact of the three different levels of
runtime options on analysis of an instrumented copy of the commonly-
used xcalc application. All execution times are based on running the same
keysave file into the xcalc application.

Buffering
Level:

Execution
Time Ratio

Percent
Overhead

Uninstrumented 124.5 sec 1.0 0%

N=1 234.5 sec 2.0 100%

N=100 185,8 sec 1,9 90%

N=10000 132.6 sec 1.7 70%

Infinite (N=1) 129.5 sec 1.05 5%

TABLE 2 Comparison: Three Levels of Buffering

CHAPTER 4: Runtime System

52

53

CHAPTER 5

Xcover — Coverage Analyzer
This chapter is a guide to TCAT C/C++ ’s complete coverage analyzer for branch (C1) or
call pair (S1) metrics, with a highly flexible graphical display. This chapter applies to all
editions of TCAT C/C++.

5.1 Xcover

Xcover analyzes the trace files created when an instrumented program is
executed. You can then generate and view reports based on the tracefile
data using Xcover.

5.2 Xcover Functionality

Xcover makes the following assumptions:
1. A [possibly empty] archive file and a current [possibly empty] trace-

file exist in the TCAT C/C++ tracefile format.
2. There is a tcat_db corresponding to any tracefiles that will be exam-

ined in the directory from which Xcover was opened.
3. The actual update of trace + archive —> archive is optional at the

end of a session.
4. The usual rules for precedence of archive over trace prevail, and

warning messages are issued when size differences between archive
and tracefile are found (there should be no difference because only
new-format tracefiles are processed).

5. If Xcover is called with no arguments, it appears on the screen and
the user can select the tracefile and/or archive file to be processed.

(Assuming that there exist a tcat_db.)

If there are arguments, then the data on the screen assumes that the speci-
fied Archive file and all mentioned Tracefile(s) are processed into the data
on the screen.

Note that re-write of the archive file is not automatic with Xcover.

CHAPTER 5: Xcover — Coverage Analyzer

54

5.3 Command Line Invocation

Xcover is invoked from the command line with the following command.
Note that the switches shown here are the ones that have the correspond-
ing functionality with the cover command. Xcover and cover act the
same way with regard to processing multiple tracefiles and updating the
specified archive file.

Xcover tracefile [-a archive]

-a archive Archive File Specification. This is the archive file to
use. The archive file may be updated depending on
user actions inside Xcover.

The default archive file is Archive.

If no archive file is given, and Archive does not exist
in the current directory, then no archive data is used.

-q Quiet option, suppress all header messages

Once Xcover appears on your display, you must generate a report from
the tracefile.
1. Select the Action pull-down menu.
2. Select Generate Report.

Coverage information for the application appears.

TCAT C/C++ User’s Guide

55

5.4 Xcover Sample Screens

Following are some samples of the Xcover screen layout. They show anal-
yses of the restaurant example in various stages of expansion and con-
traction of the display.

FIGURE 20 Xcover Example Output 1

CHAPTER 5: Xcover — Coverage Analyzer

56

FIGURE 21 Xcover Example Output 2

TCAT C/C++ User’s Guide

57

5.5 Operation of Xcover

Each whole line in the display is sensitive to mouse clicks. One click
expands the entry; another click contracts it.

When the report is first displayed, only the current archive and tracefile
module names appear. (The syntax for naming them is identical to cover).
The expansion/contraction sequence for the display is as follows. The
default starting point of expansion is modulename in both cases.

C1 expansion tree is: filename > modulename > segment > text of
segment;

S1 expansion tree is: filename > modulename > call pair > text of call pair.

The entire display, including all expansions, is fitted into a two-
dimensional scroll window.

If the View Source window is open, and you click on a segment or call
pair, the appropriate source code is displayed.

CHAPTER 5: Xcover — Coverage Analyzer

58

5.5.1 Xcover Options

If the project file is absent you still get trace data but it can't be reflected
back into the source. The project file is a list of file names including ./'s,
?'s, and *'s (like UNIX filename expansion conventions) that defines the
set of files that are being discussed.

5.5.2 Selecting a Trace File

You select a trace file using the File pull-down menu.

5.5.3 Selecting an Archive File

 You select an archive file using the File pull-down menu.

59

CHAPTER 6

Xcalltree Utility
This chapter explains the Xcalltree Utility, which is a graphic display of the relationship
between two called functions. This chapter applies to all editions of TCAT C/C++ .

6.1 Purpose

The Xcalltree utility displays the caller-callee dependence structure in a
software program. The call tree is shown for the specified call pair file—
the one used when you invoke Xcalltree — and based on files created
using the TCAT C/C++ tools.

A call pair file’s relationships are annotated on the calltree, and there are
ten built-in annotation options and one user-defined annotation. This
information can be displayed and printed in a variety of ways.

6.2 Xcalltree File Format

The format for an Xcalltree chart file is very simple.
• # in Column 1 indicates a comment. There is no limit on the num-

ber of # comments in a file.
• The first blank link “ends the data.” This means that the informa-

tion describing a calltree chart must appear before the first blank
lines — and that you can have no blank lines anywhere in the
data region.

• After the first blank line, the rest of the file is treated as a
comment.

CHAPTER 6: Xcalltree Utility

60

6.3 Invoking Xcalltree

Xcalltree can be invoked from the command line by typing:
Xcalltree filename
[-D]
[-r]
[-m]
[-h]

If you do this, the filename typed will be represented in the Xcalltree
Main Window (see Figure 22 on page 61). The switches have the
following values:

-D Maximum depth of calltree.

-r Rootname for top-most file of calltree.

-m Multigraph mode.

-h This switch brings up the Xcalltree help
window.

You can also simply type:
Xcalltree

A blank Main Window will appear. You would then select a file name
from the File pull-down menu.

TCAT C/C++ User’s Guide

61

6.4 Xcalltree Main Window

FIGURE 22 Xcalltree main window

CHAPTER 6: Xcalltree Utility

62

6.4.1 File

This pull-down menu allows you to select the file that will be displayed
in the calltree.

6.4.2 Options

This window allows you to choose the characteristics of the nodes and
edges displayed in the calltree, including shape, size, and color, as well as
the scale for the Zoom In & Zoom Out options.

6.4.3 Zoom In & Zoom Out

These options allow you to expand or contract the focus of the calltree, so
that you can see it in more detail or wider perspective, depending on
your needs.

6.4.4 View Source

This window allows you to view the source code for the current calltree.

6.4.5 Statistics

This window allows you to display pertinent statistics about the calltree,
including links, number of call pairs, calltree depth, and number of
recursive modules.

6.4.6 Print

This window allows you to set the parameters for the calltree to be
printed in your environment.

TCAT C/C++ User’s Guide

63

6.4.7 Annotation

This window allows you to set the maximum and minimum thresholds
for the nodes and edges in the calltree, as well as its path file.

6.4.8 Help

If you have a problem using Xcalltree, click on Help. Click your mouse
on the Action pull-down menu and select Search. You will then get an
Enter String to search dialog box. Click on the blank area and type the
name of the option or function with which you need help.

NOTE: All these menus are explained in further detail on the following
pages.

CHAPTER 6: Xcalltree Utility

64

6.5 File Pull-Down Menu

FIGURE 23 File Pull-Down Menu

TCAT C/C++ User’s Guide

65

6.5.1 Load New Graph

To display a calltree, click the mouse on the File pull-down menu. Drag
the mouse to Load New Graph. The dialog box in Figure 24 will appear
onscreen.

6.5.2 Load New Multi Graph

If there is more than one call between two nodes, the calltree will show
each connection if Load New Multi Graph is selected. This may be
difficult to see on a large calltree, but the example included in our demos
directory is simple enough to see these connections.

6.5.3 Set Archive

Annotation of the display can be accomplished with the Annotations
button. In many cases, annotation of the display is accomplished by
showing the results of coverage testing, as reflected in the repository of
multi-test coverage stored in the Archive file.

The default Archive file is “Archive,” but you can change it to any file
you wish using the Set Archive button. After you push the button you
will be given a file-selection popup. Select the file you want to use as the
Archive file and click on Apply to confirm that choice. The current name
of the Archive file is shown in the filename section of the window.

CHAPTER 6: Xcalltree Utility

66

6.6 Calltree File Selection Dialog Box

FIGURE 24 Calltree File Selection Dialog Box

This window pops up after you select Load New Graph or Load New
Multi Graph, and allows you to select the file to be displayed as a call-
tree, using seven options.

TCAT C/C++ User’s Guide

67

6.6.1 Filter

Allows you to limit the number of files that will be searched for; only
those ending in .cg will be included.

6.6.2 Directories

The directory from which the file to display in the calltree is chosen. Click
on the chosen directory; it will be highlighted on the screen.

6.6.3 Files

The actual file name selected to display in the calltree. Double-click to
choose, and the choice will be displayed in the Selection box.

6.6.4 Selection

Displays the file name selected in the Files box, or you can type in
another name.

6.6.5 OK

Clicking on the OK button will cause whatever file is currently in the
Selection box to be displayed in the calltree.

6.6.6 Filter Button

This button activates whatever filtering has been specified in the Filter
box at the top of the window.

6.6.7 Cancel

To close the File dialog box without selecting a file for display, simply
click on the Cancel button.

CHAPTER 6: Xcalltree Utility

68

6.7 Option Window

FIGURE 25 Option window

TCAT C/C++ User’s Guide

69

6.7.1 Zoom Scale

The percentage for the Zoom In and Zoom Out functions. The default
setting is 0.2, which means there will be a 20% enlargement or reduction.
This value can be changed by sliding the ruler to the left (smaller) or right
(larger). Each 0.1 is equal to 10%, so that setting the ruler to 0.4 would
mean a 40% reduction or enlargement of the calltree each time you click
Zoom In or Zoom Out.

6.7.2 Horizontal Spacing

The space between the nodes in the calltree. The default setting is 1.0.

6.7.3 Depth

The Depth value specifies the number of layers of the tree that will be dis-
played. The default value, 2048, is very large and it is unlikely that any
real-world calltree will be that deep. You would set the value to a smaller
number, e.g. 10, if you wanted to limit the amount of detail on the screen.
Using a smaller value for depth tells Xcalltree to disregard all calls below
the specified value.

Also note that the Connections option can be adjusted to have a
maximum upward and downward extent.

CHAPTER 6: Xcalltree Utility

70

6.7.4 Root Name

FIGURE 26 Root Name Selection window example 1

The call tree on the display is normally the first one occurring in the
callpairs file that Xcalltree processes. Some call pairs files contain more
than one tree, i.e., more than one single “root” module name and the
associated calls. If you want to view a different calltree than the one on
the display, you do so by clicking on the Root Name button.

The resulting root-selection window is shown in Figure 27 on page 71.
Every possible function name is shown in the list in the floating window.

Modules that are possible “roots” for the call tree, i.e. which are not called
by another name in the file, are shown with a “*”. These are shown in
alphabetical order at the top of the list.

Modules that NEVER call another module are shown with a “~”in front
of the name (as in Figure 26). They are sorted to the bottom of the list.

All other modules, those which are called by some root name or are in the
downward chain from some root — any one of which could be chosen as
a new “root” name — are in the middle of the list. Simply click on the

TCAT C/C++ User’s Guide

71

name you wish to be the root. The new call-tree using that name is
shown.

NOTE: If the Depth Value is set to a low number only PART of a tree may
be visible.

FIGURE 27 Root Name Selection Window Example 2

CHAPTER 6: Xcalltree Utility

72

6.7.5 Edge Characteristics

6.7.5.1 Edge Color

The actual color of the edge. Default setting is steel blue.

6.7.5.2 Unhighlighted Edge

The kind of unhighlighted edge to use: Fulltone, Halftone (dashes), or
Blank (no lines). Default setting is Fulltone.

6.7.5.3 Display Mode

Determines whether the nodes are darkened (Filled) or outlined
(Outline). Default setting is Filled.

TCAT C/C++ User’s Guide

73

6.7.6 Node Characteristics

6.7.6.1 Size

The relative size of the box representing each nodule. Boxes are used for
“normal” functions. Circles are used for self-referencing modules. Trian-
gles are used for modules that are invoked recursively.

6.7.6.2 Aspect Ratio

The height-to-width ratio of the box.

6.7.6.3 Default Color

Selects the basic color of the calltree’s edges and nodes. The default
setting is blue.

6.7.6.4 Low-level Color

In all cases, if the value of the chosen annotation is below the values
indicated for Threshold 1, the display is done in the Low-level color. The
default setting is red.

6.7.6.5 Normal Color

If the value of the chosen annotation is between Threshold 1 and Thresh-
old 2, the Normal color is used (only when some edges are highlighted).
The default setting is yellow.

6.7.6.6 High-level Color

If the value of the chosen annotation is above the value stated in Thresh-
old 2, then the High-level color is used. The default setting is green.

NOTE: If you have a monochrome display, then the three colors are
expressed as a narrow, normal, and triple-wide line.

6.7.6.7 Apply

You must click on the Apply button in order for the new settings to be
applied.

CHAPTER 6: Xcalltree Utility

74

6.8 Zoom In & Zoom Out Options

FIGURE 28 Zoom In Option illustrated

The zoom buttons allow for a narrower or wider perspective of the call-
tree, depending on what you require. Click on the Zoom In button once
to narrow the focus of the calltree, and click on the Zoom Out button to
get a wider perspective of the calltree. Notice the difference between the
calltree in Figure 28 on page 74, after clicking on Zoom In once, and the
same calltree, depicted in Figure 22 on page 61.

The white arrow (triangle) symbols on black background on the right-
hand side and bottom of the window are scroll bars, which you can use to
move vertically or horizontally in viewing the calltree. You can single-
click the mouse as many times as necessary to get to the desired viewing
point, or for quicker response simply click and hold the mouse down.

Note: This feature is limited by your machine’s display capabilities.

TCAT C/C++ User’s Guide

75

6.9 View Source Window

FIGURE 29 View Source Window

CHAPTER 6: Xcalltree Utility

76

6.9.1 Description of Source Code Viewing

The source-code text you see corresponds to the directed graph. The text
is positioned to show you the location of the call pair you clicked on (or
the first call pair in the module, if you don’t have a multi-graph on the
screen). Also, if you click on the name of a function, Xcalltree will invoke
Xdigraph and show you the detailed structure of that function. From
Xdigraph you can view the source from that perspective, i.e., in terms of
edges and nodes rather than call pairs.

TCAT C/C++ User’s Guide

77

6.10 Statistics Window

FIGURE 30 Statistics Window

The statistics you are given by Xcalltree are in two sections, the first
pertaining to the calltree that you see on the screen, and the second
pertaining to the entire file of information you supplied to the call to
Xcalltree.

CHAPTER 6: Xcalltree Utility

78

6.10.1 Links

This is the number of module-to-module connections in the diagram.

6.10.2 Call pairs

The total number of distinct, individual caller-to-callee connections in the
diagram.

6.10.3 Modules/Depth

Modules is the total number of different names in the calltree, and depth
indicates the maximum depth (either for links or for calltree pairs).

6.10.4 Recursive

If the calltree is recursive, that is, if some module calls itself or calls some
other module for which there is a “self-referencing” chain, the number of
such functions will be shown here.

TCAT C/C++ User’s Guide

79

6.11 Print Window

FIGURE 31 Print Window

The image you see will be printed to a standard print device. This
window will allow you to configure the printing for your environment.

CHAPTER 6: Xcalltree Utility

80

6.11.1 Paper Size Information

Top Margin The distance from the top of the page to the first line.
Default setting is 0.25 inches.

Left Margin The distance from the left-hand side of the page to the
first character of type. Default setting is 0.25 inches.

Page Width The actual horizontal width of the paper you will be
printing on. Default setting is 8.5 inches.

Bottom Margin The distance from the bottom of the page to the last
printed line. Default setting is 0.25 inches.

Right Margin The distance from the right-hand side of the page to
the last character on the line. Default setting is 0.25
inches.

Page Height Actual vertical length of the paper to be printed.
Default setting is 11 inches.

TCAT C/C++ User’s Guide

81

6.11.2 Enlargement Factors

The enlargement factors specify the size expansion, vertically or horizon-
tally, to be applied to this particular print activity — in effect, the total
number of 8.5 inch by 11.0 inch sheets on which to draw the picture.

Selecting 1.0 means the picture will be kept on a single 8.5 inch x 11.0 inch
sheet. Hence, width = 1.0 and height = 1.0 will fit the image on a standard
page.

If you change the width to 2.0, however, the picture will be drawn on two
pages, in such a way that two 8.5 inch by 11.0 inch sheets can be pasted
together to make a 17.0 inch by 11.0 inch image. When more than one
sheet is involved, the software numbers each page (on the bottom center)
so that assembly into a larger diagram is simple and straightforward. To
assemble a diagram, start with sheet #1 in the lower left-hand corner.

The software automatically sizes the image to fit into the smallest whole
number of page equivalents. Also, the software sizes the diagram and the
typefaces to “best fit” the specified size.

Some experimentation may be required to determine the optimum size
for a diagram.

NOTE: The picture drawn on the printer always includes all of the infor-
mation in the diagram, even if the entire diagram is not visible because of
a zoom setting.

CHAPTER 6: Xcalltree Utility

82

6.11.3 Font Information

The default font size, 12 point, and the default font name, Times-Roman,
normally provide good quality pictures. Times-Roman at 12 point is
commonly available on most printers.

You can choose different typesizes and type fonts depending on the sizes
and fonts available on your computer.

6.11.4 Print Locator

To File Will create a PostScript (.ps) file, which you can use to
have the calltree printed on any PostScript-
compatible printer.

To Printer You must name the printer to which the printing of
the document will be sent.
When a print job has been sent to either a .ps file or to
a printer, a message window saying Print action
completed will pop up. Click OK to close this
window.

NOTE: The print option requires a PostScript-compatible printer. If your
machine is not attached to a PostScript compatible printer then the Print
window option will be inoperative.

TCAT C/C++ User’s Guide

83

6.12 Annotation Window

FIGURE 32 Annotation Window

There are a number of ways to annotate the calltree. Typically this
involves choosing a different color depending on where a particular
parameter falls into user-specified ranges (thresholds).

There are ten built-in annotation options and one user-defined
annotation.

CHAPTER 6: Xcalltree Utility

84

6.12.1 Threshold 1 & Threshold 2

Threshold 1 represents the lower limit, and Threshold 2 the upper limit
desired for each metric. You can change the values of any threshold used
in the annotation of the call tree by clicking in the window and typing in
the new value. The values WON’T be applied to the current calltree
unless you click the Apply button.

6.12.2 None

No annotation is shown.

6.12.3 S0

The current value of the S0 metric is used to color the display.

6.12.4 Ninvokes

The current number of invocations of the module is used to color the
display.

6.12.5 S1

Call pair coverage. The current value of the S1 (module coverage) metric
is used to color the display.

6.12.6 C1

Branch coverage. The current value of the C1 (module coverage) is used
to color the display.

6.12.7 Cyclo

Cyclomatic complexity. The value of the cyclomatic complexity is used to
color the display.

6.12.8 Nsegs

The number of segments in the module is used to color the display.

TCAT C/C++ User’s Guide

85

6.12.9 Npairs

The number of call pairs in the module is the metric used to color the
display.

6.12.10 Nlines

Number of source lines. The number of non-blank lines in the module is
the metric used to color the display.

6.12.11 Npaths

The number of paths in the selected module, as computed by apg, is the
value used to color the display.

6.12.12 User

User-defined function. The outcome of calling a user-defined function,
“Xcalltree.user”, if it exists, is the value used to color the display.

6.12.13 Connections

The Connections option can be adjusted to have a maximum upward and
downward extent.

6.12.14 Apply

After setting the desired thresholds, click Apply to display the current
calltree with them.

6.12.15 Reset

To restore the default settings to the window, click on Reset.

CHAPTER 6: Xcalltree Utility

86

6.12.16 Close

To exit the Annotation window, click on Close.

6.12.17 Help

If you have a problem using the Annotation window, click on Help. Click
your mouse on the Action pull-down menu and select Search. You will
then get an Enter String to search dialog box. Click on the blank area and
type the name of the option or function with which you are experiencing
difficulty.

NOTE: When annotating the calltree, you may attempt to annotate an
object file that is supplied through X or the machine language, to which
you will not typically have the source code. When you click on a module
of this type, a message box will pop up telling you that the module is not
defined in the reference file.

TCAT C/C++ User’s Guide

87

6.13 Quick Reference Guide to Xcalltree Annotations

Function
Display Coloring Reflects
What Information? Preset Low/High

S0 Whether or not module was invoked from
Archive file. Shows only two colors on dis-
play, low and high. TheArchive file must be
from TCAT C/C++.If not, silence.

50.00 / 50.00

Ninvokes Number of times module was invoked, from
Archive file. TheArchive file must be from
TCAT C/C++. If not, silence.

1 / 25

S1 S1 value for module, fromArchive file. Mod-
ule name must appear inArchive; else no
default color. TheArchive file must be from
TCAT C/C++. If not, silence.

50.00 / 90.00

C1 C1 value for module, fromArchive file.
Assumes module name appears inArchive;
else no color. TheArchive file must be from
TCAT C/C++. If not, silence.

60.00 / 85.00

Cyclo Cyclomatic complexity. 12 / 25

Nsegs The number of segments in the module.

Requires use of TCAT C/C++Ver 9.

10 / 50

Npairs Number of call pairs in module, fromtcat_db.
Thetcat_db must be fromTCAT C/C++. If
not, silence.

12 / 25

Nlines Number of source lines. The number of non-
blank lines in the module, fromtcat_db. The
tcat_db must be fromTCAT C/C++. Requires
use of TCAT C/C++Ver 9.

50 / 250

Npaths Number of paths in module retrieved. 50.00 / 300.00

User “(-1,0,1) = Xcalltree.userN Lo Hi” for all N =
pair-number. The default supplied sample of
Xcalltree.user chooses values at random.

10 / 100

Connections Up and Down callers/callees from clicked
function.

5 /5

CHAPTER 6: Xcalltree Utility

88

89

CHAPTER 7

Xdigraph Utility
This chapter explains the Xdigraph Utility, which is TCAT C/C++’s graphical utility for
understanding a program’s structure and flow. This chapter applies to all editions of
TCAT C/C++ .

7.1 Purpose

The Xdigraph utility draws digraphs based on archive files from
TCAT C/C++. Digraphs are composed of edges and nodes. Edges are
derived from segments (also known as logical branches) representing sets
of consecutive program statements, or a program’s “actions” (see Figure
33). Nodes are the places or “states” where the actions occur.

7.2 Xdigraph File Format

For information regarding the format of directed graph chart files, see
Technical Appendix A.

CHAPTER 7: Xdigraph Utility

90

7.3 Invoking Xdigraph

To invoke Xdigraph from the command line, type:
Xdigraph filename

This will result in a digraph being drawn onscreen based on the
filename given. The available switches have the following values:

-A archive file Archive file name. Default is ‘Archive’.

-B filename Spine file.This will change the text string
for the digraph’s nodes; the program
will use the text settings for the filename
typed after -B.

-H filename Highlight specified file. File called will
come up in “highlight” mode; program
searches for file with .pth extension.

-h This switch brings up Xdigraph’s help
window.

You can also invoke the utility without specifying a file by simply typing
its name:

Xdigraph

TCAT C/C++ User’s Guide

91

FIGURE 33 Program edges as represented in a digraph

A

B

A

B C

A

C
B

A B C

Succession Statement

Statement A:

Statement B:

Alteration Statement

statement A;

if condition then

statement B;

else

statement C;

Iteration Statement --
while

Statement A;

while condition loop

Statement B;

end loop:

statement C;

Case Statement -case
element is when value-1-
- Statement A;

when value-2---
Statement B;

when value-3---
statement C;

1

2

3

CHAPTER 7: Xdigraph Utility

92

7.4 Xdigraph Main Window

FIGURE 34 Xdigraph main window

Using Xdigraph, you can display a program’s digraph and annotate it in
a variety of ways. From Xdigraph’s Main Window menu bar, nine
options are available.

TCAT C/C++ User’s Guide

93

7.4.1 File

This window allows you to select the file that will be displayed in the
digraph.

7.4.2 Options

This window allows you to choose the characteristics of the nodes and
edges displayed in the digraph, including shape, size, and color, as well
as the scale for the Zoom In & Zoom Out options.

7.4.3 Zoom In

This option allows you to narrow the focus of the digraph, so that you can
see it in more detail. There are maximum amounts that you can reduce or
enlarge graphics, depending on what machine you are using.

7.4.4 Zoom Out

This option allows you to expand focus of the digraph, so that you can
see it in wider perspective. There are maximum amounts that you can
reduce or enlarge graphics, depending on what machine you are using.

7.4.5 View Source

This window allows you to view the source code for the current digraph.

7.4.6 Statistics

This window allows you to display pertinent statistics about the digraph,
including node and edge counts, cyclomatic number, and path informa-
tion.

7.4.7 Print

This window allows you to set the parameters and print the digraph.

CHAPTER 7: Xdigraph Utility

94

7.4.8 Annotation

This window allows you to set the maximum and minimum thresholds
for the nodes and edges in the digraph, as well as its path file.

7.4.9 Help

If you have a problem using Xdigraph, click on Help. Click your mouse
on the Action pull-down menu and select Search. You will then get an
Enter String to search dialog box. Click on the blank area and type the
name of the option or function with which you need help.

NOTE: These windows are explained in further detail on the following
pages.

TCAT C/C++ User’s Guide

95

7.5 File Pull-Down Menu

FIGURE 35 Digraph File Pull-Down Menu

CHAPTER 7: Xdigraph Utility

96

7.5.1 Load New Graph

Click your mouse on the File pull-down menu. Drag the mouse to Load
New Graph. The File Message Box Pop-Up (Figure 36 on page 97) will
appear onscreen.

7.5.2 Load New Module

You use the Load New Module option if you have a multiple-digraph file
and you want to choose a specific module in that file to be displayed.

When you click on this button the display shows you the set of available
module names, taken from the multi-module digraph file that you have
selected. You can then choose the module to be displayed. As soon as you
click on OK, Xdigraph replaces the picture you have (if any) with the one
corresponding to the named module.

If you don’t have a multiple-module digraph file then this window may
show no names. This is not an error but indicates that there are no
module names specified.

7.5.3 Set Archive

The default Archive file is “Archive” in the working directory, but you
can change this to any file you wish using the “Set Archive” button. After
you push the button you will be given a file-selection popup. Select the
file you want to use as the Archive file and click on Apply to confirm that
choice. The current name of the Archive file is shown in the filename
section of the window. Default is “Archive” in the working directory.

7.5.4 Exit

To close the current digraph window, select Exit from this pull-down
menu.

TCAT C/C++ User’s Guide

97

7.5.5 Digraph File Message Box

The message box in Figure 36 will pop up after you click the mouse on
Load New Graph or Load New Module. The available options will allow
you to choose the file to be represented in the digraph.

FIGURE 36 Digraph File Message Box

CHAPTER 7: Xdigraph Utility

98

7.5.5.1 Filter

Allows you to limit the number of files that will be searched for; only
those ending in .dg will be included.

7.5.5.2 Directories

The directory from which the file is chosen to display in the digraph.
Click on the chosen directory; it will show as darkened on the screen. Use
the scroll bar at the bottom of this box if you cannot read the entire path-
name of the directory.

7.5.5.3 Files

The actual file name selected to display in the digraph. Click on the file
name, and the choice will be displayed in the Selection box. Use the scroll
bar at the bottom of the box if you cannot read the entire filename.

7.5.5.4 Selection

Displays the file name selected in the Files box, or you can type in
another name.

7.5.5.5 OK

Click OK when the desired file name is in the Selection box. The file
named will then be represented as a digraph.

7.5.5.6 Filter Button

Clicking on this button will activate the filter limitations specified in the
Filter box at the top of the window.

7.5.5.7 Cancel

To exit the window, without saving any changes, click on the Cancel
button.

TCAT C/C++ User’s Guide

99

7.6 Options Window

FIGURE 37 Xdigraph Options Window

This window allows you to choose the scale for the Zoom In and Zoom
Out options, the size of the digraph’s nodes, and the colors of its edges.

CHAPTER 7: Xdigraph Utility

100

7.6.1 Zoom Scale

This setting affects the Zoom In and Zoom Out options. The default
setting is 0.5, meaning a 50% reduction or enlargement in scale each time
these buttons are used. To change the setting, move the slider left or right.
Each 0.1 represents 10%, so if you slide the rule to .3, for example, the
reduction and enlargements will be 30% each time. There are minimum
and maximum amounts that you can reduce or enlarge graphics depend-
ing on what machine you are using.

TCAT C/C++ User’s Guide

101

7.6.2 Node Characteristics

You can choose different sizes and shapes for the digraph’s nodes. You
can also change the space between nodes, and their height-to-width ratio,
using this window.

7.6.2.1 Shape

You have four choices for shapes: Circle, Box, Oval or Outlined (the
circle is drawn but not filled). The default setting is Oval.

7.6.2.2 Size

You can choose the size of the circle, box or oval. The default size is 1.0.

7.6.2.3 Vertical Spacing

This is the amount of space between nodes. The default setting is 1.0.

7.6.2.4 Aspect ratio

The height-to-width ratio (for ovals or box shapes only). The default
setting is 1.4.

CHAPTER 7: Xdigraph Utility

102

7.6.3 Edge Characteristics

7.6.3.1 Unhighlighted Edge

There are three choices: Fulltone, Halftone (dashes) or Blank (no visible
lines). The default setting is Fulltone.

7.6.3.2 Eccentricity

Determines the curvature of the generated display. The value1.0 means
the edge between the two nodes is drawn as a semi-circle: bigger values
make the picture wider, and smaller values narrower. The default setting
is 0.6.

7.6.3.3 Default Color

Selects the basic color of the digraph’s edges and nodes. The default
setting is blue.

7.6.3.4 Low-level Color

In all cases, if the value of the chosen annotation is below the values
indicated for Threshold 1, the display is done in the Low-level color. The
default setting is red.

7.6.3.5 Normal Color

If the value of the chosen annotation is between Threshold 1 and Thresh-
old 2, the Normal color is used. The default setting is yellow.

7.6.3.6 High-level Color

If the value of the chosen annotation is above the value stated in Thresh-
old 2, then the High-level color is used. The default setting is green.

NOTE: If you have a monochrome display, then the three colors are
expressed as a narrow, normal, and triple-wide line.

TCAT C/C++ User’s Guide

103

7.6.3.7 Apply

You must click on the Apply button for the current settings to take effect.

7.6.3.8 Reset

If you click on the Reset button, all the default settings will be restored to
the Options window.

7.6.3.9 Close

If you click on the Close button, you will exit the Options window.

7.6.3.10 Help

If you have a problem using the Options window, click on Help. Click
your mouse on the Action pull-down menu and select Search. You will
then get an Enter String to search dialog box. Click on the blank area and
type the name of the option or function with which you need help.

CHAPTER 7: Xdigraph Utility

104

7.7 Zoom In/Zoom Out Window

FIGURE 38 Zoom In feature illustrated

The zoom buttons allow for a narrower or wider perspective of the
digraph, depending on what you require. Click on the Zoom In button
once to narrow the focus of the digraph, and click on the Zoom Out
button to get a wider perspective of the digraph. Notice the difference
between the digraph in Figure 38, after clicking on Zoom In once, and the
same digraph, depicted in Figure 34.

The arrow (triangle) symbols on the right-hand side and bottom of the
window are scroll bars, which you can use to move vertically or horizon-
tally while viewing the digraph.

NOTE: These features are limited by the display capabilities of your
machine.

TCAT C/C++ User’s Guide

105

7.8 View Source Window

FIGURE 39 View Source Option Window

This option displays the source code for the program depicted in the
digraph. If you click on an edge segment number in the digraph’s main
window, the View Source display will move to and highlight that
particular edge’s source code. The source code for the edge selected will
appear in the middle of the window.

CHAPTER 7: Xdigraph Utility

106

7.9 Statistics Window

FIGURE 40 Statistics Option Window

This window displays the relevant statistical information for the digraph.

If the file you are processing has multiple digraphs on it, then only the
displayed digraph is reflected in the Statistics calculation.

WARNING: In some cases, particularly if the digraph is very complex,
the Statistics calculation will take a long time. Practical internal limits
have been set on the STW facility that computes these statistics (i.e. apg
from TCAT-PATH) but even so the calculation may show the “hour glass”
waiting symbol.

When the limits are exceed you will see the error message that results in
the display where the statistics would ordinarily reside.

The statistics generated in this window are always for the digraph that is
on the display.

TCAT C/C++ User’s Guide

107

7.9.1 File Name

The name of the program studied in this particular digraph.

7.9.2 Node and Edge Count

The total number of nodes and edges in the digraph.

7.9.3 Cyclomatic Number (Cyclomatic Complexity)

A number which assesses program complexity according to the
program’s flow of control. This flow is based on the number and arrange-
ment of decision statements in the code. The cyclomatic number can be
calculated using the formula:

cyclo = e - n + 2

where n is the number of nodes in the graph, and e is the number of
edges or lines connecting each node.

7.9.4 Average, Minimum and Maximum Path Lengths

The mathematical mean of all the paths in the program, as well as (user-
defined) minimum and maximum possible lengths.

7.9.5 Path Count by Iteration Groups

The path count by iteration groups is the total number of distinct equiva-
lence classes of program flow, figured using the one-trip loop assumption
(for details on how this computation is done, see the TCAT-PATH
manual).

The total path count has been shown to be very highly correlated with the
overall effort required to completely test a module.

CHAPTER 7: Xdigraph Utility

108

7.10 Print Window

FIGURE 41 Print Dialog Window

The image you see will be printed to a standard print device. This
window will allow you to configure for your environment.

TCAT C/C++ User’s Guide

109

7.10.1 Paper Size Information

Top Margin The distance from the top of the page to the first line.
Default setting is 0.25 inches.

Left Margin The distance from the left-hand side of the page to the
first character of type. Default setting is 0.25 inches.

Page Width The actual horizontal width of the paper you will be
printing on. Default setting is 8.5 inches.

Bottom Margin The distance from the bottom of the page to the last
printed line. Default setting is 0.25 inches.

Right Margin The distance from the right-hand side of the page to
last character on the line. Default setting is 0.25
inches.

Page Height Actual vertical length of the paper to be printed on.
Default setting is 11 inches.

CHAPTER 7: Xdigraph Utility

110

7.10.2 Enlargement Factors

The enlargement factors specify the size expansion, vertically or horizon-
tally, to be applied to this particular print activity; in effect, the total
number of 8.5 inch by 11.0 inch sheets onto which to draw the picture.

Selecting 1.0 means the picture will be printed on a single 8.5 inch x 11.0
inch sheet. Hence, width = 1.0 and height = 1.0 will fit the image on a
standard page.

If you change the width to 2.0, for example, this means the picture will be
drawn on two pages, i.e. in such a way that two 8.5 inch by 11.0 inch
sheets can be pasted together to make a 17.0 inch by 11.0 inch image.

When more than one sheet is involved, the software numbers each page
so that assembly into a larger diagram is simple and straightforward.

The software automatically sizes the image to fit into the smallest whole
number of page equivalents. Also, the software sizes the diagram and the
typefaces to “best fit'' the specified size.

Some experimentation may be required to determine the optimum size
for the diagram you are working with.

NOTE: The picture drawn by the printer always includes all of the infor-
mation in the diagram, even if the entire diagram is not visible because of
a zoom setting.

TCAT C/C++ User’s Guide

111

7.10.3 Font Information

The default font size, 12 point, and the default font name, Times-Roman,
normally provide good quality pictures. Times-Roman at 12 point is
commonly available on most printers.

You can choose different typesizes and type fonts depending on the sizes
and fonts available on your computer.

7.10.4 Print Locator

To File Will create a PostScript (.ps) file, which you can use to
have the digraph printed on any PostScript-
compatible printer.

To Printer You must name the target printer where the print job
will be sent.
When the print job has been sent to either a .ps file or
a printer, a message box, Print action completed, will
pop up. Click OK to close it.

NOTE: The print option requires use of a PostScript-compatible printer.
If your machine is not attached to a PostScript compatible printer, then
the Print window option will be inoperative.

CHAPTER 7: Xdigraph Utility

112

7.11 Annotation Window

FIGURE 42 Annotation Thresholds Window

In many cases, annotation of the display is accomplished by showing the
results of coverage testing, as reflected in the repository of multi-test
coverage stored in the Archive file.

There are a number of ways to annotate the digraph. Typically this
involves choosing a different color depending on where a particular
parameter falls into user-specified ranges (thresholds).

There are five built-in annotation options and one user-defined
annotation.

TCAT C/C++ User’s Guide

113

7.11.1 Threshold 1 & 2

Threshold 1 represents the lower limit, and Threshold 2 the upper limit
desired for each annotation. The user can change the values of any
threshold used by clicking in the window and typing in the new value.
The values won’t be applied to the current calltree unless you click the
Apply button.

7.11.2 None

 No annotation is shown.

7.11.3 Nhits

Number of times an edge is executed. The edge’s color is based on this
number. Default values: 1, 10

7.11.4 N%

The relative number of times an edge has been executed. The color
depends on this number’s relation to the highest number of times any
edge is exercised. Default values: 10.00, 90.00.

7.11.5 Nlines

 The number of code lines associated with the edge. Default values: 5, 25.

7.11.6 User

The outcome of calling a user-defined function, “Xdigraph.user”, if that
function exists, is the value used to color the display. Default values: 10,
100.

CHAPTER 7: Xdigraph Utility

114

7.11.7 Highlight

The path highlight options permits you to see how a path set--typically
one produced by apg (all paths generator)--applies to a particular
digraph. If a path name is not specified, then it is automatically generated
by apg.

Each path in the set is shown highlighted. The path number is always
shown “on screen”. You can move forward or backward in the path set
using the mouse buttons as follows:

• Left button: move down one path in the path set (N-1)
• Middle button: quit the highlighting activity.
• Right button: Move up one path in the path set (N+1)

7.11.8 Path File

This indicates the file you have selected to represent in the digraph
(optional — see note above).

7.11.9 Apply

If you click on the Apply button, all the settings changes made in the
Annotation Thresholds window will be displayed on the digraph. You
must click here to apply the changes.

7.11.10 Reset

If you click on the Reset button, all the default settings will be restored to
the Annotation Thresholds window.

7.11.11 Close

If you click on the Close button, you will exit the Annotation Thresholds
window.

7.11.12 Help

If you have a problem using the Annotation Thresholds window, click
on Help. Click your mouse on the Action pull-down menu and select
Search. You will then get an Enter String to search dialog box. Click on
the blank area and type the name of the option or function with which
you are experiencing difficulty.

TCAT C/C++ User’s Guide

115

7.11.13 Colors

The colors of the digraph display are based on the annotation thresholds.
They are selected in the Options window (see Section 7.6 for further
details), and are used to distinguish the annotation to “low”, “normal”,
and “high”. How these colors convey information is a function of which
annotation is chosen.

NOTE: Whatever annotation option is selected for the digraph will be
displayed in the upper left-hand corner of the main window, above an
up-pointing arrow. In the example in Figure 43, the annotation is for
User.

FIGURE 43 Sample Annotation for User Threshold

CHAPTER 7: Xdigraph Utility

116

7.12 Quick Reference Guide to Xdigraph Annotations

Function
Display Coloring Reflects
What Information? Preset Low/High

Nhits Absolute number of hits per
edge (segment), from local
Archive file. TheArchive
file is must befrom TCAT C/
C++. If not, silence.

1 / 10

N% Percent of total hits in mod-
ule for this edge (segment),
from localArchive file. The
Archive file must be from
TCAT C/C++. If not,
silence.

10.00/90.00

Nlines Number of source lines. The
number of non-blank lines
in the module is the metric
used to color the display.
Requires use ofTCAT C/
C++ Ver 9.

5/ 25

User “-1,0,1) =Xdigraph.user N
Lo Hi” for all N = edge-
number. The default sup-
plied sample script does
something naive.

10 / 100

Highlight HighlightsNth path, begin-
ning at N=1. (Path File) Left
button moves up one path;
right button moves down
one path. If no path file is
specified,apg will generate
one.

N/A

TABLE 3 Quick Reference Guide for Xdigraph Annotations

117

 APPENDIX A

C/C++ Instrumentor Engine
This appendix provides a guide to TCAT C/C++ Version 9’s new integrated C and C++
instrumentor. This appendix applies to all editions of TCAT C/C++.

A.1 Instrumentor Description

TCAT C/C++ instruments the source code of the system to be tested
by inserting function calls at each logical branch and call pair. The
instrumentation does not affect the functionality of the program. When
compiled, linked and executed, the instrumented program will behave
normally, but writes coverage data to a trace file. There is some perfor-
mance overhead related to the data collection process, but the overhead
varies with the choice of the runtime used. The trace files are processed
by several kinds of report generators.

There are two versions of the instrumentor engine, one for C programs
(ic) and one for C++ programs (icpp).

APPENDIX A: C/C++ Instrumentor Engine

118

A.1.1 Files Generated

In operation, TCAT C/C++ instrumentor parses candidate source code,
looking for logical branches and/or call pairs, and generates auxiliary
files that are used by other parts of the system. The following are files that
TCAT C/C++ uses and produces.

tcat.rc TCAT Control File. This file controls certain fea-
tures of the instrumentation process and also is
used to specify options to the runtime process.

filename.i Instrumented Source File. file.i is produced from
file.c

tcat_db* TCAT Database Directory. During operation,
TCAT creates the tcat_db directory if it does not
already exist. This database directory contains
files as follows:

Project File This file contains a list of fully expanded path
names that specify where the instrumentor is to
take its source.

Digraph File This file contains the complete digraph informa-
tion for all modules processed.

Calltree File This file contains the complete calltree informa-
tion for all modules processed.

Inheritance File This file contains the complete inheritance tree in-
formation for all methods processed (applies to
C++ only).

Module Definition File This file contains complete module definition in-
formation, in a format compatible with a trace-
file's or archive file's type -n record. This
information is used in all of the source represen-
tation processes supported by TCAT.

There is also a C version of this same information,
set up as a C structure format so that it can be
used in cross-testing and embedded applications.

TCAT C/C++ User’s Guide

119

A.1.2 Command Line Invocation Summary

 The syntax for command line invocation of either ic or icpp is as follows:
ic file.ext

[-TCAT-A]

[-TCAT-Cmd driver]

[-TCAT-C1]

[-TCAT-DI]

[-TCAT-E]

[-TCAT-FN]

[-TCAT-FULL]

[-TCAT-G]

[-TCAT-H]

[-TCAT-I]

[-TCAT-K]

[-TCAT-O file_name]

[-TCAT-OF .suffix]

[-TCAT-PD name]

[-TCAT-PN name]

[-TCAT-REL]

[-TCAT-S0]

[-TCAT-S1]

[-TCAT-SI]

[-TCAT-WC]

[-TCAT-WN]

[-Ddefs[=val]]

[-Ipath]

[-Uundefs]

These commands instrument submitted C language file(s).

The following instrumentor switches may be used to vary the processing
and reports generated by the instrumentor. The instrumentor switches
are listed in alphabetical order.

Note that the commands are prefixed with -TCAT. This is done because
all other switches are passed to the underlying C or C++ compiler. The
prefix indicates that these switches are for TCAT C/C++ processing.

file.ext Instrumented File Specification(s). File(s) to be in-
strumented. The extension can be c or i or cc (for
C++).

If there are multiple files, each one is processed in
the order presented, and they are treated as if
they have been concatenated together.

-TCAT-A ANSI Recognition Switch. If present, the instru-
mentor recognizes only the ANSI version of C or
C++. -TCAT-Cmd driver Compiler Driver
Command Switch. Default driver is cc.

APPENDIX A: C/C++ Instrumentor Engine

120

-TCAT-C1 C1 Instrumentation Switch. If this switch is
present, then the instrumentor inserts a function
call in each segment, or logical branch. This is the
preset default.

-TCAT-DI De-Instrumented File Switch. This switch turns
off instrumentation for objects specified in the file
tcat_db/projectname/projectname.di .
Note that specifying objects in this file without
using this switch will not turn off instrumenta-
tion.

-TCAT-E Print Error Messages Switch. Enables sending er-
ror messages to standard output. If not present,
then error messages are suppressed.

-TCAT-FN This switch turns off call-pair instrumentation for
call-pair lists specified in the file:
tcat_db/projectname/projectname.di.
Note that specifying call-pair lists in this file
without using this switch will not turn off instru-
mentation

-TCAT-FULL Store tcat data using full path information.

-TCAT-G Instrumented File Disposition Switch. Normally
the instrumentor does not keep the instrumented
file, it already having been used to produce the
instrumented output. When this switch is present
the instrumented files are retained.

-TCAT-H Help Message Switch. Prints out the set of valid
switches.

-TCAT-I Instrumentation only, Do not invoke the
compiler.

-TCAT-K K&R C Recognition Switch. If present, the instru-
mentor recognizes K&R C.

-TCAT-O file Output File Specification. The output of the
instrumentation process is directed to the named
file (default is file.i).

-TCAT-OF .suffix Output Suffix Specification. Output of instru-
mentation process is directed to file.suffix instead
of file.i.

-TCAT-PD name Specified tcat project directory.

-TCAT-PN name Specified tcat project name.

TCAT C/C++ User’s Guide

121

-TCAT-REL Store tcat data using relative path information.

-TCAT-S0 S0 Instrumentation Switch. If this switch is
present, then the instrumentor inserts a function
call in each module. This will tell you which func-
tions are actually called during the invocation of
the program, but it does not indicate the callee
functions. To do this, you need to use the -S1
switch.

-TCAT-S1 S1 Instrumentation Switch. If this switch is
present, then the instrumentor inserts a function
call in each call pair.

-TCAT-I Only instrument items listed in .si file.

-TCAT-WC Causes the instrumentor not to define macro
_WCHAR_T.

-TCAT-WN Causes the instrumentor to define macro
_WCHAR_T. This is the default.

-Ddefs[=val] Establish Definition Switch. Establishes a defini-
tion that is passed on to the compiler.

-Ipath Include File Search Path Specification. Specifies
the path on which to resolve the search for
#include files.

-Uunefs De-Establish (Undefine) Definition Switch.
Removes a definition that is passed on to the
compiler.

APPENDIX A: C/C++ Instrumentor Engine

122

A.1.3 Instrumentation Function Names

The instrumentation process involves inserting function names into the
source program. The function names for TCAT-instrumented programs
are:

SegHit(); For entry segment, switch
segments.

CprHit(); For S1 coverage of call pairs.

ExpHit(); For C1 coverage if 's, while' s
and for 's.

Strace(); Start trace operations (this is an
optional call).

Ftrace(); Finish trace operations, flush
buffer, and close tracefile.

TCAT C/C++ User’s Guide

123

A.1.4 Instrumentor Inline Directives

It is possible to control instrumentation from within the processed “C” or
“C++” file, using the following instrumentor directives to turn off/on all
instrumentation (but keep the segments and call pairs numbered cor-
rectly):

/* TCAT OFF */

/* TCAT ON */

A.1.5 Instrumentation Database Definitions

This section outlines the files that are used in the instrumentation data-
base stored in the tcat_db directory. This information is used throughout
the TCAT C/C++ system.

A.1.6 Environment Variables

There are two environment variables that govern how TCAT C/C++ oper-
ates.
1. $TCAT_PROJECT_DIR, with default “.”, is the name of the project

directory.
2. $TCAT_PROJECT_NAME, with default “TCAT”, is the name of the

project.

When ic or icpp executes, it stores results in these files and directories:
$TCAT_PROJECT_DIR/tcat_db/$TCAT_PROJECT_NAME/$TCAT-

PROJECT_NAME.mdf

$TCAT_PROJECT_DIR/tcat_db/$TCAT_PROJECT_NAME/d_graph/

$TCAT_PROJECT_DIR/tcat_db/$TCAT_PROJECT_NAME/c_graph/

APPENDIX A: C/C++ Instrumentor Engine

124

A.1.7 d_graph Files

The digraphs for each function are put into files which are named with
the same basename as the file from which they originated, with any file-
name suffix stripped off.

The format of each d_graph file is a set of blank delimited (white space
delimited) lines composed as follows:

tail head edge fun_id type filename
lbeg lend byte_beg byte_end string
result [byte1 byte2]

where the fields have the following meanings:

tail The tail node number (string).

head The head node number (string).

edge The TCAT C/C++ assigned edge number
(string).

fun_id The number of the function, whose name is found
in the mdf file.

fun_id The type of statement which gave rise to the edge.

filename The filename where the original text of the
program was found.

lbeg The beginning line number, in the named file,
where the tail node is found.

lend The ending line number, in the named file, where
the head node is found.

byte_beg The beginning byte number, in the named file,
where the tail node is found.

byte_end The ending byte number, in the named file,
where the head node is found.

string The text string associated with the logical expres-
sion that headed the segment.

result The result corresponding to this edge, e.g. T or F
or 36 (for switch outcome).

[byte1 byte2] Currently “0 0”; reserved for expansion.

A sample d_graph file is listed in Section A.1.10.1

TCAT C/C++ User’s Guide

125

A.1.8 c_graph Files

The call-trees for each processed file are put into files which are named
with the same basename as the file from which they originated, with any
filename suffix stripped off.

The format of each c_graph file is as a set of blank delimited (white space
delimited) lines composed as follows:

file.caller callee callpair_id module_id

source_file line 0 0 Segment_id

where the fields have the following meanings:

file.caller The file name (given as a prefix up to the right-
most “.” in the token, and the name of the calling
function (the “caller”).

file.caller The name of the called function.

callpair_id The assigned number of the call pair.

module_id The assigned number of the module. This
number points into the mdf file.

source_file The name of the source file that gave rise to the
call pair.

line The line number of the source file where the call
pair exists.

0 0 These two fields are pre-set to be “0 0”.

Segment_id (Reserved for future releases).

APPENDIX A: C/C++ Instrumentor Engine

126

A.1.9 Module Definition Files (mdf, mdf.c)

The mdf file contains basic information about the location of text
fragments for every segment and every call pair in all processed files.

The mdf file has the following format (fields in []'s are future):
project-name #segs #CPs [#rels]

file.name.function_id type #segs #CPs [#rels]

file.name.function_id type #segs #CPs [#rels]

file.name.function_id type #segs #CPs [#rels]

...

where the first line identifies:

project-name This is the name of the “project” from which the
data is taken.

#segs This is the total number of segments in the
project.

#CPs This is the total number of call-pairs in the
project.

The subsequent lines' fields have the following meanings:

file.name This token contains, first, the name of the file in
which the function name was found, and second,
after the right-most “.”, the name of the function.

function_id This is the unique numeric identifier for that
function, as found in the filename which prefixes
the function name.

type This is the type of function that was processed,
according to the key: 84 = static function; 111 =
member function. Note: These numbers are
implementation specific. Additional function
types and different codes will be added in the
future. At present this function type information
is not used.

#segs The number of segments in the function.

#CPs The number of call pairs in the function.

TCAT C/C++ User’s Guide

127

A.1.10 Example Instrumentation Database Files

Below, examples of the database files are provided.

A.1.10.1 d_graph File

This is the front part of a typical d_graph file:
0 1 0 232 0 cfvtable.cc 27 0 0 0 (1) 0 0 0

0 1 0 233 0 cfvtable.cc 41 0 0 0 (1) 0 0 0

1 2 1 233 1 cfvtable.cc 41 0 0 0 (vttype==0) 1 0 0

2 3 3 233 1 cfvtable.cc 43 0 0 0 (!(mptr!=0)) 1 0 0

2 3 4 233 1 cfvtable.cc 43 0 0 0 (!(mptr!=0)) 0 0 0

3 4 5 233 1 cfvtable.cc 49 0 0 0 (!(pure_err_func!=0)) 1 0 0

3 4 6 233 1 cfvtable.cc 49 0 0 0 (!(pure_err_func!=0)) 0 0 0

1 4 2 233 1 cfvtable.cc 51 0 0 0 (vttype==0) 0 0 0

0 1 0 234 0 cfvtable.cc 60 0 0 0 (1) 0 0 0

0 1 0 235 0 cfvtable.cc 72 0 0 0 (1) 0 0 0

1 2 1 235 1 cfvtable.cc 92 0 0 0 (ftype->typ!=type::fptr_t) 1 0 0

1 2 2 235 1 cfvtable.cc 97 0 0 0 (ftype->typ!=type::fptr_t) 0 0 0

0 1 0 236 0 cfvtable.cc 134 0 0 0 (1) 0 0 0

1 2 1 236 1 cfvtable.cc 171 0 0 0 (can_be_virt) 1 0 0

1 2 2 236 1 cfvtable.cc 202 0 0 0 (can_be_virt) 0 0 0

2 3 3 236 1 cfvtable.cc 211 0 0 0 (can_be_virt) 1 0 0

2 3 4 236 1 cfvtable.cc 222 0 0 0 (can_be_virt) 0 0 0

0 1 0 237 0 cfvtable.cc 235 0 0 0 (1) 0 0 0

0 1 0 238 0 cfvtable.cc 253 0 0 0 (1) 0 0 0

0 1 0 239 0 cfvtable.cc 282 0 0 0 (1) 0 0 0

0 1 0 240 0 cfvtable.cc 295 0 0 0 (1) 0 0 0

1 2 1 240 1 cfvtable.cc 296 0 0 0 (e->m.func==0) 1 0 0

1 2 2 240 1 cfvtable.cc 300 0 0 0 (e->m.func==0) 0 0 0

2 3 3 240 1 cfvtable.cc 303 0 0 0 (e->m.func->f.virtual_index==0) 1 0 0

2 3 4 240 1 cfvtable.cc 309 0 0 0 (e->m.func->f.virtual_index==0) 0 0 0

0 1 0 241 0 cfvtable.cc 327 0 0 0 (1) 0 0 0

1 2 1 241 5 cfvtable.cc 332 0 0 0 (kind) 2756 0 0

1 2 2 241 5 cfvtable.cc 335 0 0 0 (kind) 61824 0 0

1 2 3 241 5 cfvtable.cc 338 0 0 0 (kind) 61824 0 0

2 3 4 241 1 cfvtable.cc 346 0 0 0 (kind!=external) 1 0 0

2 3 5 241 1 cfvtable.cc 350 0 0 0 (kind!=external) 0 0 0

0 1 0 242 0 cfvtable.cc 359 0 0 0 (1) 0 0 0

0 1 0 243 0 cfvtable.cc 368 0 0 0 (1) 0 0 0

0 1 0 244 0 cfvtable.cc 389 0 0 0 (1) 0 0 0

0 1 0 245 0 cfvtable.cc 396 0 0 0 (1) 0 0 0

1 2 1 245 1 cfvtable.cc 396 0 0 0 (vtkind!=external) 1 0 0

1 2 2 245 1 cfvtable.cc 400 0 0 0 (vtkind!=external) 0 0 0

0 1 0 246 0 cfvtable.cc 411 0 0 0 (1) 0 0 0

0 1 0 247 0 cfvtable.cc 417 0 0 0 (1) 0 0 0

APPENDIX A: C/C++ Instrumentor Engine

128

A.1.10.2 c_graph File

This is the front part of a typical c_graph file:
example.main printf 1 0 example.c 46 0 0 2

example.main printf 2 0 example.c 48 0 0 4

example.main gets 3 0 example.c 50 0 0 5

example.main printf 4 0 example.c 51 0 0 5

example.main proc_input 5 0 example.c 52 0 0 5

example.main printf 6 0 example.c 55 0 0 8

example.main printf 7 0 example.c 58 0 0 9

example.main printf 8 0 example.c 61 0 0 10

example.main printf 9 0 example.c 64 0 0 11

example.main printf 10 0 example.c 67 0 0 12

example.main printf 11 0 example.c 70 0 0 13

example.main printf 12 0 example.c 73 0 0 14

example.main printf 13 0 example.c 76 0 0 15

example.main printf 14 0 example.c 80 0 0 17

example.main printf 15 0 example.c 85 0 0 19

example.main _filbuf 16 0 example.c 86 0 0 19

example.proc_input strlen 1 1 example.c 117 0 29 3

example.proc_input chk_char 2 1 example.c 135 0 0 16

example.proc_input strlen 3 1 example.c 141 0 0 20

example.proc_input chk_char 4 1 example.c 142 0 0 21

example.proc_input printf 5 1 example.c 149 0 0 22

--
Caller Callee Callpair_id Module_id source_file line 0 0
Segment_id:

TCAT C/C++ User’s Guide

129

A.1.10.3 mdf File

This is the front part of a typical mdf file:
TCAT 1904 1903

analc.declare_ident(sym*,tokentype,name_kinds,int&) 0 84 45 11

analc.transfer_defaults(void,type*) 1 84 11 2

analc.distinct(int,type*) 2 84 15 7

analc.all_but_return(int,type*) 3 84 1 1

analc.check_overload(sym*,type*,cpp_ext_linkage,sym*,int&) 4 84 21 11

analc.new_func_sym(void,type*,int,tokentype,cpp_ext_linkage) 5 111 13 5

analc.check_copy_constructor(void,type*) 6 84 13 7

analc.check_op_overload(void,type*) 7 111 100 21

analc.func_checks(void,sym*&,sym*,tokentype,cpp_ext_linkage,int&) 8 111 37 17

analc.check_throws(void,int,type_list*) 9 84 15 8

analc.func_declare(sym*,spelling,tokentype,int,cpp_ext_linkage,int,type_list*,int&) 10 111
15 8

analc.old_arg_types(void) 11 84 39 23

analc.set_qualifier(spelling,type*,spelling,int) 12 84 13 8

analc.find_qfunc(sym*,type*,spelling,int,type_list*) 13 111 19 12

analc.func_define(void,base_debug_position,type*,spelling,token-
type,int,int,int,type_list*) 14 111 35 39

analc.type_define(void,int,type*,spelling,Cbase_debug_position&) 15 111 43 19

analc.var_declare(sym*,spelling,tokentype,int,Cbase_debug_position&) 16 111
37 15

analc.stat_mem_def(sym*,type*,spelling,tokentype,int,Cbase_debug_position&) 17 84 15 10

analc.static_inits(void,type*,sym*) 18 111 13 16

analc.file_decl(void) 19 84 111 89

analc.parse_declarations(void) 20 111 27 35

analc.analys(void) 21 111 9 8

asmdecl.asm_decl(void) 22 111 3 6

asminitializer.asm_initializer::fill(void,long) 23 111 5 4

asminitializer.asm_initializer::bf_data(void,Ulong,int,int) 24 111 1 0

asminitializer.asm_initializer::inc_findex(Uint) 25 111 5 0

asminitializer.asm_initializer::start_var(void,sym*) 26 111 3 9

asminitializer.asm_initializer::start_array(void,type*) 27 111 1 2

asminitializer.asm_initializer::end_array(void,type*) 28 111 1 1

asminitializer.asm_initializer::start_struct(void,type*) 29 111 1 1

asminitializer.asm_initializer::end_struct(void,type*) 30 111 1 1

asminitializer.asm_initializer::advance_elt(void) 31 111 3 3

asminitializer.asm_initializer::start_field(void,sym*) 32 111 3 3

APPENDIX A: C/C++ Instrumentor Engine

130

131

 APPENDIX B

Resource File Variables
This appendix describes the resource files supplied with TCAT C/C++, and applies to all
editions of the product.

B.1 Overview

Within the TCAT C/C++ graphical user interface (GUI), command line
switches are used to affect the behavior of the application. The switches
determine such information as which compiler is used and what flags
must be specified for the instrumentor. These switches vary from plat-
form to platform, though their meaning is consistent.

The resource files provided (and documented in this appendix) assume
that the standard compilers supplied with each platform are used. If a
non-standard compiler is used, you will have to change this resource file.
Since machine and compiler configurations vary, you may have different
requirements and results, even if the standard compiler is used.

To load these resource files, use the Load Settings option in the TCAT C/
C++ GUI, and select the *.res file. If these settings are incorrect, deter-
mine the exact switch settings for your configuration. Save your settings
using the Save Setting option.

The next section discusses the meaning of each variable, and gives the
example resource file settings for each platform.

APPENDIX B: Resource File Variables

132

B.2 Variable Meaning

The variables within the resource file have the following meanings:

SR*config.option.instrumentS0:The state of the SO instrumentation button
within the GUI.

SR*config.option.runTarget:The name of the file output from linking.

SR*config.option.linkFlags:The flags used when the Link option is select-
ed.

SR*config.option.instrumentC++:The state of the C++ language button
within the GUI.

SR*config.option.buildCommand:The command used when the Build op-
tion is selected.

SR*config.option.linkCommand:The command used when the Link op-
tion is selected.

SR*config.option.instrumentAnsiC:The state of the ANSI C language but-
ton within the GUI.

SR*config.option.instrumentKRC:The state of the K&R C language button
within the GUI.

SR*config.option.runArgs:The command line arguments used when the
Run option is selected.

SR*config.option.linkRuntimeModule:The name of the runtime module
used when the Link option is
selected.

SR*config.option.linkLibraryFlags:The library flags used when the Link
option is selected.

SR*config.option.compilerCommandThe name of the compiler.

SR*config.option.buildFlags:The flags used when the Build option is se-
lected.

SR*config.option.instrumentC1:The state of the C1 instrumentation but-
ton within the GUI.

SR*config.option.instruCommand:The name of the instrumentor, ic9 for
“C” applications, icpp9 for
“C++” applications.

SR*config.option.instrumentS1:The state of the S1 instrumentation button
within the GUI.

SR*config.option.compilerFlags:The flags used when the compile option
is selected.

TCAT C/C++ User’s Guide

133

The most important of these resources is the SR*config.option.compiler-
Flags, as this setting tells the instrumentor what flags are “assumed” by
the compiler. Each compiler assumes that the -I and -D switches are set to
certain values, based on the machine it is installed on and other specific
information. In order for the preprocessing to be successful, the instru-
mentor must assume the same switches. This resource indicates the perti-
nent information.

The compiler flags resource uses the correct flags for the standard compil-
ers for each platform, but they might have to be changed for your particu-
lar configuration, compiler or machine.

Two platforms must have the -tcat-of flag set for this variable when
instrumenting “C++”. This switch indicates that the instrumentor use a
alternate file extension. The standard extension, *.i, cannot be used with
DEC Alpha or SGI platforms.

For the DEC Alpha, the switch must specify that the instrumentor use the
*.ixx extension.

For the SGI, the switch must indicate that the instrumentor uses one of
the following extensions: *.C, *.c, *.c++, *.cc or *.cxx.

APPENDIX B: Resource File Variables

134

B.3 Platform-Specific Examples

Below are the resource files for each supported platform. Each section
contains the resource file for “C” and “C++”.

B.3.1 DEC Alpha

This is the resource file for “C” on the DEC Alpha platform.

! Flags needed to instrument K&R C code on the DECalpha

! for compilation with cc

SR*config.option.instrumentS0:False

SR*config.option.runTarget:a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++:False

SR*config.option.buildCommand:make -f

SR*config.option.linkCommand:cc -o

SR*config.option.instrumentAnsiC:False

SR*config.option.instrumentKRC:True

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule:crun4.o

SR*config.option.linkLibraryFlags:

SR*config.option.compilerCommand:cc

SR*config.option.buildFlags:

SR*config.option.instrumentC1:True

SR*config.option.instruCommand:ic9

SR*config.option.instrumentS1:True

SR*config.option.compilerFlags:-c -D__alpha
-D__host_alpha -D__osf__

This is the resource file for “C++” on the DEC Alpha
platform.

! Flags needed to instrument C++ code on the DECalpha

! for compilation with cxx

SR*config.option.instrumentS0:False

SR*config.option.runTarget:a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++:True

SR*config.option.buildCommand:make -f

SR*config.option.linkCommand:cxx -o

SR*config.option.instrumentAnsiC:False

SR*config.option.instrumentKRC:False

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule:crun4.o

SR*config.option.linkLibraryFlags:

TCAT C/C++ User’s Guide

135

SR*config.option.compilerCommand:cxx

SR*config.option.buildFlags:

SR*config.option.instrumentC1:True

SR*config.option.instruCommand:icpp9

SR*config.option.instrumentS1:True

SR*config.option.compilerFlags:-c -tcat-of .ixx
-D__alpha -D__DECCXX -D__DECCXX_VER=50090003
-D__host_alpha -D__osf__ -D_ANSI_C_SOURCE -I/
usr/include/cxx

APPENDIX B: Resource File Variables

136

B.3.2 Silicon Graphics, Inc.

This is the resource file for “C” on the SGI platform.

! Flags needed to instrument ANSI C code on the SGI

! for compilation with cc

SR*config.option.instrumentS0: False

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: False

SR*config.option.buildCommand: make -f

SR*config.option.linkCommand: cc -o

SR*config.option.instrumentAnsiC: True

SR*config.option.instrumentKRC: False

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags:

SR*config.option.compilerCommand: cc

SR*config.option.buildFlags:

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: ic9

SR*config.option.instrumentS1: True

SR*config.option.compilerFlags: -c -
D__EXTENSIONS__ -D__INLINE_INTRINSICS -Dsgi -D__sgi -
Dhost_mips -D__unix -D__host_mips -D_SVR4_SOURCE -
D_MODERN_C -D_SGI_SOURCE -D__DSO__ -DSYSTYPE_SVR4 -
D_SYSTYPE_SVR4 -D_LONGLONG -D__mips -D_MIPSEB -D_CFE
-D_MIPS_FPSET=16 -D_MIPS_ISA=_MIPS_ISA_MIPS1
-D_MIPS_SIM=_MIPS_SIM_ABI32 -D_MIPS_SZINT=32
-D_MIPS_SZPTR=32 -D_MIPS_SZLONG=32

TCAT C/C++ User’s Guide

137

This is the resource file for “C++” on the SGI platform.

! Flags needed to instrument C++ code on the SGI
! for compilation with CC

SR*config.option.instrumentS0: False

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: True

SR*config.option.buildCommand: make -f

SR*config.option.linkCommand: CC -o

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags:

SR*config.option.compilerCommand: CC

SR*config.option.buildFlags:

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: icpp9

SR*config.option.instrumentS1: True

SR*config.option.compilerFlags: -c -
D__EXTENSIONS__ -D__INLINE_INTRINSICS -Dsgi -
D__sgi -Dhost_mips -D__unix -D__host_mips -
D_SVR4_SOURCE -D_MODERN_C -D_SGI_SOURCE -D__DSO__
-DSYSTYPE_SVR4 -D_SYSTYPE_SVR4 -D_LONGLONG -
D__mips -D_MIPSEB -D_CFE -D_MIPS_FPSET=16 -
D_MIPS_ISA=_MIPS_ISA_MIPS1
-D_MIPS_SIM=_MIPS_SIM_ABI32 -D_MIPS_SZINT=32
-D_MIPS_SZPTR=32 -D_MIPS_SZLONG=32 -I/usr/include/
CC

APPENDIX B: Resource File Variables

138

B.3.3 Solaris

This is the resource file for “C” on the Solaris platform.

! Flags needed to instrument K&R C code under Solaris

! for compilation with cc

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: False

SR*config.option.buildCommand: make -f

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.compilerCommand: cc

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags: -lm

SR*config.option.buildFlags:

SR*config.option.linkCommand: cc -o

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: ic9

SR*config.option.compilerFlags: -c

SR*config.option.instrumentS1: True

SR*config.option.instrumentS0: False

TCAT C/C++ User’s Guide

139

This is the resource file for “C++” on the Solaris platform.

! Flags needed to instrument C++ code under Solaris

! for compilation with CC

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: True

SR*config.option.buildCommand: make -f

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.compilerCommand: CC

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags: -lm

SR*config.option.buildFlags:

SR*config.option.linkCommand: CC -o

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: icpp9

SR*config.option.compilerFlags: -c -I/opt/
SUNWspro/SC2.0.1/include/cc

SR*config.option.instrumentS1: True

SR*config.option.instrumentS0: False

APPENDIX B: Resource File Variables

140

B.3.4 Sun

This is the resource file for “C” on the Sun platform.

! Flags needed to instrument K&R C code under SunOS

! for compilation with cc

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: False

SR*config.option.buildCommand: make -f

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.compilerCommand: cc

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags: -lm

SR*config.option.buildFlags:

SR*config.option.linkCommand: cc -o

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: ic9

SR*config.option.compilerFlags: -c

SR*config.option.instrumentS1: True

SR*config.option.instrumentS0: False

TCAT C/C++ User’s Guide

141

This is the resource file for “C++” on the Sun platform.

! Flags needed to instrument C++ code under SunOS

! for compilation with CC

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: True

SR*config.option.buildCommand: make -f

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.compilerCommand: CC

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags: -lm

SR*config.option.buildFlags:

SR*config.option.linkCommand: CC -o

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: icpp9

SR*config.option.compilerFlags: -c -I/usr/
lang/SC2.0.1/include/CC_413 -I/usr/lang/
SC2.0.1/include/cc_413

SR*config.option.instrumentS1: True

SR*config.option.instrumentS0: False

APPENDIX B: Resource File Variables

142

B.3.5 HP-UX

This is the resource file for “C” on the HP-UX platform.

! Flags needed to instrument ANSI C code on the HP

! for compilation with cc

SR*config.option.instrumentS0: False

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: False

SR*config.option.buildCommand: make -f

SR*config.option.linkCommand: cc -o

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: True

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags:

SR*config.option.compilerCommand: cc

SR*config.option.buildFlags:

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: ic9

SR*config.option.instrumentS1: True

SR*config.option.compilerFlags: -c

TCAT C/C++ User’s Guide

143

This is the resource file for “C++” on the HP-UX platform.

! Flags needed to instrument C++ code on the HP

! for compilation with CC

SR*config.option.instrumentS0: False

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: True

SR*config.option.buildCommand: make -f

SR*config.option.linkCommand: CC -o

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags:

SR*config.option.compilerCommand: CC

SR*config.option.buildFlags:

SR*config.option.instrumentC1: True

SR*config.option.instruCommand: icpp9

SR*config.option.instrumentS1: True

SR*config.option.compilerFlags: -c

APPENDIX B: Resource File Variables

144

B.3.6 RS-6000

This is the resource file for “C” on the RS-6000 platform.

SR*config.option.buildCommand:make -f
SR*config.option.instrumentAnsiC:False
SR*config.option.instrumentKRC:True
SR*config.option.compilerCommand:cc
SR*config.option.runArgs:
SR*config.option.linkRuntimeModule:crun4.o
SR*config.option.linkLibraryFlags:-lm
SR*config.option.buildFlags:
SR*config.option.instruCommand:ic9
SR*config.option.linkCommand:cc -o
SR*config.option.instrumentC1:True
SR*config.option.compilerFlags:-c -I/usr/include
SR*config.option.instrumentS1:True
SR*config.option.instrumentS0:False
SR*config.option.runTarget:a.out
SR*config.option.linkFlags:
SR*config.option.instrumentC++:False

TCAT C/C++ User’s Guide

145

This is the resource file for “C++” on the RS-6000 platform.

SR*config.option.buildCommand: make -f

SR*config.option.instrumentAnsiC: False

SR*config.option.instrumentKRC: False

SR*config.option.compilerCommand: xlC

SR*config.option.runArgs:

SR*config.option.linkRuntimeModule: crun4.o

SR*config.option.linkLibraryFlags: -lm

SR*config.option.buildFlags:

SR*config.option.instruCommand: icpp9

SR*config.option.linkCommand: xlC -o

SR*config.option.instrumentC1: True

SR*config.option.compilerFlags: -c

SR*config.option.instrumentS1: True

SR*config.option.instrumentS0: False

SR*config.option.runTarget: a.out

SR*config.option.linkFlags:

SR*config.option.instrumentC++: True

APPENDIX B: Resource File Variables

146

147

 APPENDIX C

cover —TCAT C/C++’s
Coverage Analyzer

This chapter explains options for invoking and customizing the “cover” coverage ana-
lyzer. This chapter applies to all editions of TCAT C/C++.

These are the options on how to invoke cover. This command, used inside the
TCAT C/C++ graphical user interface, is used to produce a coverage report which,
optionally, can report results in a Reference Listing. The Reference Listing report allows
you to look up a segment in order to identify the actual unexecuted code, and plan new
test cases.

C.1 Command Line Invocation

The complete syntax for calls to cover is listed below. Items enclosed in
[brackets] are to be included zero or more times.

cover [-switches] [tracefile]
[-a old-archive]
[-b file]
[-c]
[-C1]
[-d name [name[s]]
[-DI deinsty-file]
[-DL]
[-f new-archive]
[-help]
[-h | -h name[s]]
[-H]
[-N]
[-n]
[-nl file]
[-NH]
[-NM]
[-m]
[-l | -l name[s]]

APPENDIX C: cover —TCAT C/C++’s Coverage Analyzer

148

[-p]
[-q]
[-r file]
[-S0]
[-S1]
[-s]
[-SU]
[-T [threshold]]
[-w width]]
[-Z reference listing]

The options may be used to vary the processing and reports generated by
cover. The options are listed in alphabetical order.

[tracefile [tracefile]] These are the names of the trace files that you wish to
process. If there are no trace files then cover looks for
data in the default trace file name Trace.trc.

If there are no names given, and Trace.trc is not
present then an error message is issued.

If there are multiple trace files, each trace file is pro-
cessed in the order presented.

Caution: The list of trace files must be the first set of argu-
ments. The list is ended by the first symbol that appears
with a '-', i.e. by the first optional switch.

-a old-archive Old Archive File Name Switch.You can include data
from an old archive file in your reports. On the stan-
dard cumulative coverage report, this data will be in-
cluded in the “Cumulative Summary” test results,
but not under the column “Test”. To test iteratively,
progressing through a structured series of tests to-
wards higher C1 values, each run of cover should in-
clude the cumulative archive file from the previous
test.

If you do not include an archive file, the “Cumulative
Summary” figures will be the same as those for
“Test”. Alternatively, if no -a option is given, the file
Archive is used by default.

The -a option interacts with the other report options
discussed below.

-b file Banner File Name Switch. This allows you to include
specific text, taken from the first line of the file named

TCAT C/C++ User’s Guide

149

title as a title for your reports. A maximum of 80 char-
acters is allowed for titles.

 -c Cumulative Report Switch. This option prints the Cu-
mulative report only.

-C1 Branch Coverage Reporting Switch. Turns on reporting
of C1 or branch coverage.

Note: Unless at least one of -C1, -S1, or -S0 is turned on,
no coverage report will be generated.

-d name Module Name Delete Switch. If this switch is present
then the named modules, if found in the current exe-
cution, are deleted from the generated Archive file.
Subsequently, cover will never have heard about
these names. This switch is useful in updating an ex-
tensive test record that would otherwise be lost due
to the complexity of editing the Archive file.

-DI deinst-file De-instrument Switch. Allows the user to specify a list
of modules that are to be excluded from coverage re-
porting. Only the list of module names found in the
specified deinst-file is to be excluded from cov-
erage reporting. The module names can be specified
in any format. White space (such as tabs, spaces) is ig-
nored. deinst-file is also the file where new mod-
ules that pass the coverage threshold value (see the -
T switch) will be written.

-DL De-instrument Module List Switch. Allows the user to
see which modules are excluded from coverage re-
porting. This switch is used along with the -DI
switch. The list of excluded modules is printed at the
end of the coverage report

-f new-archive New Archive File Name Switch. Newly accumulated
test coverage data will be placed in this file. If you do
not include a different name with this switch, the ac-
cumulated test data will be placed in the default
name Archive.

Caution: Each time you run cover, you will write over the contents of the
Archive file unless you use the -f switch to direct the Archive file to
another place. You may wish to remove the filename before starting a
new test sequence.

-help Print valid syntax

APPENDIX C: cover —TCAT C/C++’s Coverage Analyzer

150

-h | -h [name] Linear Histogram Report Switch (-h).

-l | -l [name] Logarithmic Histogram Report Switch (-l).

These two options produce two “histogram” reports
that graph the frequency distribution of the segments
exercised in a single module. The histograms provide
a module-by-module analysis of testing coverage,
combining current trace file data with archive date in-
cluded through the -a option or using the default Ar-
chive file. If the optional name argument is present,
then the corresponding histogram for only the named
module is produced; otherwise, cover produces his-
tograms for all modules found. There can be multiple
names in the argument if you want histograms of sev-
eral modules. Also, the names can be mixed between
linear and logarithmic histograms.

 -H Hit Report Switch. Lists the segments that have been
hit one or more times in current or past tests. This re-
port analyzes the cumulative effect of the current
trace file and any archive data included through the
use of the -a option or using the default Archive file.

-m Minimal Output Switch. When present, cover sup-
presses banner information, list of current options
and trace file descriptions. The coverage report con-
tains only the reports requested.

-N, -n Not Hit Report Switch. This option produces the “Not
Hit” report which lists segments that have not been
exercised. This report analyzes the cumulative effect
of the current trace file and any archive data included
through the use of the -a option or using the default
Archive file.

-NH Newly Hit Report Switch. Shows the segments by mod-
ule that were hit in the current execution that were
not hit previously. Thus this gives the user an assess-
ment of the value of the most-recently added test(s).
This shows what the current test “gained”. Output is
the complement of the “Newly Missed” report.

-nl file Name List Switch. This switch specifies that only the
list of module names found in the specified namefile
file is to be reported on in the current coverage report.
Coverage on other module names that may appear in
the archive or supplied trace files are ignored; howev-
er, the data is accumulated in the archive file.

TCAT C/C++ User’s Guide

151

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

The following reports are affected by the existence of
a namefile:
•Cumulative Report
•Past Report
•Not Hit Report
•Hit Report
•Newly Hit Report
•Newly Missed Report.

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro-
duce individual histogram reports.

-NM Newly Missed Report Switch. This option produces the
Newly Missed report. Shows which segments, by
module, hit in any prior test that were not hit in the
current test. This shows what the current test “lost”.
This output is the complement of the Newly Hit re-
port.

 -p Past Report Switch. Print only the Past Test report; this
option should be used in conjunction with the -a op-
tion when you want to analyze the overall perfor-
mance of a set of past tests.

-q Quiet Output Switch. Suppress printout of current ver-
sion and release information (this can be used to facil-
itate running cover in batch mode).

 -r report Coverage Report File Name Switch. Normally the report
is written to the file Coverage (the default name), but
you can rename the file with this switch. CAUTION:
You will overwrite any file you name with this
switch.

-S1 Call-Pair Coverage Switch. If present, the report will
show call pair coverage.

-S0 Module Coverage Switch. If present, the report will
show module coverage.

NOTE: Unless at least one of -C1, -S1, or -S0 is turned on, no coverage
report will be generated. However, not both -S1 and -S0 can be present; if
they are then only -S1 is assumed.

APPENDIX C: cover —TCAT C/C++’s Coverage Analyzer

152

-s Sort Switch. This option produces output reports with
module names sorted alphabetically.

 -SU Suppress Update Switch. During processing, cover will
suppress updating of the archive file, either the de-
fault Archive or the file named by the -f switch. cover
will read the data in the archive file to form the basis
for the “past test” information.

-T threshold Coverage Threshold Switch. Threshold is a real number
that specifies threshold value. Any module with a
coverage percentage greater than or equal to this
threshold value will be written to the de-instrument-
ed file (see the -DI deinst-file switch). If no
threshold is specified, then the default value of 85
percent is assumed.

-w width Report Width Switch. Normally the reports generated
by cover are wide enough to accommodate module
names up to 21 characters in length. The internal limit
on name length is, however, 128 characters. You can
use this switch to force cover system to generate re-
ports that are wide enough to accommodate the full
128 character module names.

The width factor is the number of additional charac-
ters to be added to the report. The default value is ze-
ro. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con-
tain long lines and may not be suitable for printing di-
rectly.

-Z reference Annotated Reference Listing Switch. cover will analyze
the specified archive file, and any specified trace files,
and will produce a report that shows the coverage
level achieved for all modules that are named in the
specified reference listing. The reference listing must
be one that is produced by a current release of the
TCAT C/C++ instrumentor. Reference listings pro-
duced by earlier versions may not necessarily work
correctly with this switch.

If a module is tested but the name is not found in the
supplied reference listing, then that coverage is not
reported. Similarly, if a name appears in the reference
listing and is not one that exists in the archive file, no
coverage will be reported.

TCAT C/C++ User’s Guide

153

C.1.1 Error Processing

In case there is an error, cover gives a response line (usage line) indicating
the set of switches and options. This response is the same as the -help
response.

APPENDIX C: cover —TCAT C/C++’s Coverage Analyzer

154

155

A
annotating calltrees 83–87
archive files 53, 54, 58, 89

overwriting 53

B
branch coverage, C1 2, 3, 5, 37, 57, 84

C
C1 expansion tree 57
call pair coverage, S1 2, 3, 5, 7, 57, 84
caller-to-callee connections 78
calltree 4, 7
calltree display options 72–74
calltree graph

basename.cg 18
cover, coverage analyzer 147–153

command line syntax 147
invoking 147
reports

generating 26
viewing 26–27

cyclomatic complexity 4, 84, 107

D
database reference file 18
dbx debugger 46
directed graph 5, 18

E
equivalence class coverage, Ct 2, 3, 4, 5, 7

F
font

italics xvii
italix xvii

font, bold face xvii
font, courier xvii

I
instrumenting an application 18, 19

instrumentor engine 117–129
C (ic) and C++ (icpp) versions 10, 37, 49,

117
instrumentor switches 119–121

L
Link/Build/Run Options 20
load setting 17, 35, 131

M
make files 45
manual organization xvi
motifbur.uil 19
Motifburger 13–30

O
object files 18, 45

P
PostScript (.ps) file 82

R
regression testing 1
resource files 131–145

definitions of variables 131–133
platforms

DEC Alpha 134
HP-UX 142
RS-6000 144
SGI 136
Solaris 138
Sun 140

rm command 46
runtime object module 20, 45

levels of buffering 51
linking 21, 41
prompts 22
selecting 20, 39
setup options 49–51

Index

INDEX

156

S
S1 expansion tree 57
SCCS delta command 47
SCCS edit command 47
SCCS get command 47
static analysis 1
S-TCAT 4, 31

T
TCAT

building 45
database directory 118, 123–129
file filter 42–43
instrument/compile option 46
instrument/compile options 36–37
instrumenting 45
instrumenting an application 45
invoking 14–16, 31
kill button 48
link/build/run options 38–41
linking 45
main window 32–48
saving settings 35
selecting database name 35
selecting files 33
selecting utilities 33
shell 33, 47
tutorial 13–30

tcat_db directory 18
TCAT-PATH 2, 4, 7
test coverage 1
text

"double quotation marks" xvii
boldface xvii
italics xvii

text, boldface xvii
text, courier xvii
text, italix xvii
trace files 25, 53, 58
T-SCOPE 4, 5
tutorial 13–30

V
vi editing program 46

X
X Window System 14
Xcalltree

invoking 60
Xcalltree Annotations 87
Xcalltree utility 4, 10, 46, 59–87

annotation 63, 65
display options 62, 68, 72–74
displaying a calltree 65

displaying statistics 62, 77–78
file format 59
file selection 62, 64–67
help 63
main window 61–65

setting archive file 65
print options 62, 79–82
root selection 70–71
viewing source code 62, 75
zoom 62, 69, 74

Xcover utility 8, 10, 24, 28, 29, 45, 53–58
invoking 54
project files 58
viewing source code 28

Xdigraph utility 10, 46, 89–116
annotation 112–116
display options 99–103
displaying source code 105
displaying statistics 106–107
file selection 95–98
invoking 90
main window 92–94
print options 108–111
zoom 100, 104

Xtcat 15

