
U S E R ’ S G U I D E

SMARTS
Version 6.5

Software Maintenance and Regression Testing
System

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, photocopying, recording
or otherwise without prior written consent of Software Research, Inc. While every pre-
caution has been taken in the preparation of this document, Software Research, Inc.
assumes no responsibility for errors or omissions. This publication and features
described herein are subject to change without notice.

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TCAT for JAVA/Windows, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight,
and Xvirtual are trademarks or registered trademarks of Software Research, Inc.
Other trademarks are owned by their respective companies. METRIC is a
trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC is a
trademark of Software Research, Inc. and Gimpel Software.

Copyright 2004 by Software Research, Inc

1663 Mission Street, Suite 400

San Francisco, CA 94103

Tel: (415) 861-2800

Toll Free: (800) 942-SOFT

Fax: (415) 861-9801

E-mail: support@soft.com

http://www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface . XIII

CHAPTER 1 Introduction to SMARTS 1
1.1 Automated Testing — An Overview 1

1.1.1 Test Planning and Script Writing. . 1

1.2 The STW/Regression Solution .3

1.3 SMARTS’ Role . .5

1.4 How SMARTS Is Used . .7
1.4.1 Establishing Test Baselines . 7
1.4.2 Creating an Automated Test Script 7
1.4.3 Executing the ATS . 9

Test Case Activation . 10
Test Log File . 10

1.4.4 Evaluating Test Outputs . 11
1.4.5 Generating Test Reports . 13

1.5 Main Features . 14

CHAPTER 2 Quick Start 15
2.1 Instructions . 15

2.1.1 STEP 1: Setting Up SMARTS . 16
Analyzing the Test Setup . 18

2.1.2 STEP 2: Compiling the Perfect Test Program 19
2.1.3 STEP 3: Invoking SMARTS . 20

Re-Starting SMARTS . 21
2.1.4 STEP 4: Opening the Go Window 22
2.1.5 STEP 5: Opening the Report Window. 23
2.1.6 STEP 6: Testing the Perfect Version of the Demo Program 24
2.1.7 STEP 7: Editing the ATS. . 26
2.1.8 STEP 8: Analyzing Test Status . 28

Table of Contents

iv

2.1.9 STEP 9: Exiting the Testing Session 30
2.1.10 STEP 10: Compiling the Imperfect Version of the Sample Program . 32
2.1.11 STEP 11: Testing the Imperfect Version of the Demo Program 34
2.1.12 STEP 12: Analyzing the Imperfect Demo Program

Determining Test Regression . 36
Viewing Test Regression . 36

2.1.13 STEP 13: Purging the Log File . 38
2.1.14 STEP 14: Exiting the SMARTS Product 40

2.2 Summary .41

 CHAPTER 3 Understanding the GUI 43
3.1 Basic OSF/Motif User Interface43

3.1.1 File Selection Windows . 44
Using a File Selection Window 45

3.1.2 Help Windows . 46
3.1.3 Pull-Down Menus . 48
3.1.4 Option Menus . 49
3.1.5 Message Boxes . 50

3.2 The Main Window .51
3.2.1 Menu Bar . 52

File Menu . 52
Option Menu . 56
Help Option . 64

3.2.2 ATS Test Tree Display . 65
3.2.3 Current Group . 67
3.2.4 Window Selections . 69

Report Window . 70
Go Window . 77
Edit Window . 81

3.2.5 Node Information Display . 82

CHAPTER 4 Creating an ATS 87
4.1 Automated Test Script . .87

4.2 ATS Structure .87
4.2.1 ATS Structure Description. . 88
4.2.2 Test Case Clauses . 91

4.3 ATS Description Language .94
4.3.1 Character Set . 94
4.3.2 White Space Characters . 94
4.3.3 Token Types . 94

Keyword . 95
Identifiers . 95

SMARTS User’s Guide

v

Strings . 96
Delimiters . 96
Numbers . 97
Comments . 97

4.3.4 Conditional Expressions . 97
if () { } Clauses . 97
else {} Clauses . 98
while () { } Clauses . 99

4.3.5 #include Statements . .100
4.3.6 Syntax for Test Cases . .100

The Source Clause . .100
The Environment Clause . .101
The Activation Clause .101
The Evaluation Clause .102
The Termination Clause .104

4.4 BNF Description of ATS Language 105

4.5 The makeats Utility Overview 106
4.5.1 Invocation and Use of makeats .106

makeats Regular Input Description108
Regular Operation Example .110
Fast Operation Example .112
Keysave File Operation Example113

CHAPTER 5 Invoking SMARTS. 115
5.1 Invoking SMARTS’ GUI . 115

5.2 Invoking SMARTS’ ASCII Menu Interface 117

5.3 Command Line Invocation . 118
5.3.1 Xsmarts’ Runtime Options. .118
5.3.2 smarts’ Runtime Options .122

5.4 Resource Configuration File Processing 125
5.4.1 Sample Resource Configuration File 127

CHAPTER 6 Executing Tests129
6.1 Selecting the Current Position 129

6.2 Invoking the Go Window . 130

6.3 Selecting Execution Options 131

6.4 Executing the Test Cases . 132

6.5 Exiting the Go Window . 132

Table of Contents

vi

CHAPTER 7 Viewing Execution Tests 133
7.1 Selecting the Current Position 133

7.2 Invoking the Report Window 134

7.3 Selecting Report Options . 135

7.4 Selecting Reports . 136

7.5 Purging the Log File . 138

7.6 Exiting the Report Window . 138

CHAPTER 8 Using the ASCII Menu Interface. 139
8.1 Menu Structure . 139

8.2 Global Menu Commands . 140

8.3 MAIN Menu . 141

8.4 BROWSE Menu . 142

8.5 OPTIONS Menu . 147

8.6 REPORT Menu . 149

 APPENDIX A Customizing the GUI Environment 151
A.1 SMARTS Setup Information ..151

A.2 Default Settings ...152

A.3 Default Directory and Directory Mask Settings153

 APPENDIX B Recommended Usage . 155
B.1 Automated Regression Testing ...155

B.2 Organizing Tests ...156

B.3 ATS Creation ..157

B.4 Executing the Test Suite and Generating Reports158

B.5 SMARTS and STW/Regression ..159

Index . 161

vii

List of Figures

FIGURE 1 STW/Regression Dependency Chart .4

FIGURE 2 SMARTS System Chart .6

FIGURE 3 Hierarchical Test Tree Structure .8

FIGURE 4 Setting Up the Display. .17

FIGURE 5 Compiling the Perfect Program .19

FIGURE 6 Invoking SMARTS .21

FIGURE 7 Initializing the Go Window .22

FIGURE 8 Initializing the Report Window .23

FIGURE 9 Executing a Test. .25

FIGURE 10 Editing an ATS .27

FIGURE 11 Looking at a Status Report .29

FIGURE 12 Completing the Perfect Version’s Session .31

FIGURE 13 Compiling the Imperfect Program .33

FIGURE 14 Executing a Test. .35

FIGURE 15 Analyzing a Regression Report .37

FIGURE 16 Purging the Log File .39

FIGURE 17 Completing a SMARTS Session .40

FIGURE 18 File Selection Window .44

FIGURE 19 Help Window .46

FIGURE 20 Search Dialog Box .47

FIGURE 21 Help Message Box .47

FIGURE 22 Pull-Down Menu .48

FIGURE 23 Option Menu .49

FIGURE 24 Message Box .50

FIGURE 25 Main Window .51

FIGURE 26 File Menu .52

LIST OF FIGURES

viii

FIGURE 27 ATS File Submenu . 53

FIGURE 28 RC File Submenu . 54

FIGURE 29 Option Menu . 56

FIGURE 30 Toggles’ Cascading Menu . 57

FIGURE 31 Showing the Source Clause During Execution . 58

FIGURE 32 Setting the Difference Command . 59

FIGURE 33 Setting the Edit Command . 60

FIGURE 34 Setting the Report Width . 61

FIGURE 35 Displaying the Configuration File’s Settings . 62

FIGURE 36 Showing the Local Environment Variables . 63

FIGURE 37 Help Window for the Main Window. 64

FIGURE 38 ATS Test Tree Display . 65

FIGURE 39 Current group Section . 67

FIGURE 40 Hierarchical Test Tree Structure . 68

FIGURE 41 Report Window. 70

FIGURE 42 Status Report . 71

FIGURE 43 History Report . 72

FIGURE 44 Regression Report . 73

FIGURE 45 Certification Report . 74

FIGURE 46 Enter Info Window . 75

FIGURE 47 Help Window for the Report Window . 76

FIGURE 48 Go Window . 77

FIGURE 49 Go Option Menu . 78

FIGURE 50 Hierarchical Test Tree Structure . 78

FIGURE 51 Help Window for the Go Window . 80

FIGURE 52 Edit Window . 81

FIGURE 53 Node Stats Button Example . 82

FIGURE 54 Time Stats Button Example. 82

FIGURE 55 List ATS Button Example. 83

FIGURE 56 Tests Button Example . 83

FIGURE 57 Directories Button Example . 84

FIGURE 58 Search Option Menu . 84

FIGURE 59 Source Button Example. 85

FIGURE 60 Case Button Example . 85

FIGURE 61 Hierarchical Test Tree Structure . 88

FIGURE 62 Invoking the GUI’s Main Window . 115

FIGURE 63 Invoking SMARTS with STW . 116

SMARTS User’s Guide

ix

FIGURE 64 Invoking the ASCII Menu’s MAIN Menu .117

FIGURE 65 Ending Background Test Execution. .121

FIGURE 66 Invoking the Go Window .130

FIGURE 67 Invoking the Report Window. .134

FIGURE 68 Enter Info Window .137

FIGURE 69 Add Report Dialog Box .137

FIGURE 70 Purge Log File Message Box .138

FIGURE 71 Purge Log File Confirmation Message Box. .138

FIGURE 72 Hierarchical Test Tree Structure .143

LIST OF FIGURES

x

XI

Preface
This preface explains how this user’s guide is organized.

Congratulations!

By choosing the TestWorks integrated suite of testing tools, you have
taken the first step in bringing your application to the highest possible
level of quality.

Software testing and quality assurance, while increasingly important in
today’s competitive marketplace, can dominate your resources and delay
your product release. By automating the testing process, you can assure
the quality of your product without needlessly depleting your resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TestWorks is the most complete solution available, with full featured
regression testing, coverage analyzers, and metric tools.

Audience

This manual is intended for software testers who are using SMARTS to
automate the work of organizing and managing tests. This test manager
works seamlessly with its companion tools of the STW/Regression Suite:
Capbak/X, an automated capture and playback tool, and Exdiff, an
extended file and differencing system that compares corresponding bit-
mapped images, ASCII or keysave files.

You should be familiar with the X Window System and your workstation.

XII

Description of Contents

This manual is organized to aid you after installation has been completed.
(See the Installation Instructions if you are trying to install.) It is divided
into the following sections:

Chapter 1 Introduction to SMARTS discusses test planning and
how SMARTS is used.

Chapter 2 Quickstart explains how to set up SMARTS and use its
various functions.

Chapter 3 Understanding the GUI explains the user interface.

Chapter 4 Creating an ATS explains how to write and use an
automated test script.

Chapter 5 Invoking SMARTS describes starting SMARTS from
both the GUI and the command line interface.

Chapter 6 Executing Tests gives the step-by-step procedures for
executing tests.

Chapter 7 Viewing Execution Tests describes using SMARTS to
view tests.

Chapter 8 Using the ASCII Menu Interface describes the menu
structure and commands.

Appendix A Customizing the GUI Environment describes modifying
the default settings to your own requirements.

Appendix B Recommended Usage offers suggestions for using
SMARTS most effectively.

Typefaces

The following typographical conventions are used in this manual:

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics are also used for
chapter, manual and book titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with
special meanings may also be set apart with double
quotation marks the first time they are used.

STW/Regression/UNIX - Volume II

XIII

courier Indicates system output such as error messages,
system hints, file output, and CAPBAK/X’s keysave
file language.

Boldface Courier

Indicates any command or data input that you are
directed to type, such as prompts and invocation
commands. (For instance, stw invokes TestWorks.)

XIV

1

CHAPTER 1

Introduction to SMARTS
This chapter describes the basic functions of SMARTS, how it can help you, and its role in
Quality Assurance.

1.1 Automated Testing — An Overview

In the past, application and operating environments were relatively
simple. Manual testing or a few written test scripts stored in batch files
were usually sufficient to fully exercise the product. Today’s applications,
however, are much more complex, as are the environments in which they
run.

The stages of software production involve multiple versions. Over a
single production cycle, software may have to be tested several times.
Performing these tests manually usually involves a large investment of
time and money.

If an application is automated, each test can be performed automatically,
accurately, and often un-manned each time developers create a new ver-
sion of the software. Although it does take some time to develop the test
operation, this time is more than compensated during the middle-to-later
stages of testing. Considering the resources involved, automating test
operation can drastically reduce the overall time needed to test a software
product.

1.1.1 Test Planning and Script Writing

The effectiveness and reliability of any tool, manual or automated,
depends greatly on the manner in which it is employed. As applications
become more complex, planning assumes a more important role in auto-
mated testing.

In the past, ad hoc testing was an accepted and adequate method for
uncovering most program errors. A few testers manually tested the prod-
uct’s functionality and then reported any errors to the programmer(s).
When a number of bugs had been fixed, the software was shipped.

CHAPTER 1: Introduction to SMARTS

2

Today, this kind of ad hoc testing spells disaster. Many of today’s applica-
tions contain dozens of user-selectable functions, each of which can have
several major and minor options.

Just as a software application must be developed with an eye towards
both reliability and revisions, a testing procedure must mimic this capac-
ity in its ability to verify discrepancies and maintain relevancy through-
out the various incarnations of the application under test.

Therefore, the analytical process used to develop an application should
also be employed to develop a testing procedure. Before attempting to
write test scripts for any type of application, a test plan should be created
which addresses the following basic elements:

• Scope of the application to be tested.
• Extent of testing that will be performed.
• Tools that will be required during testing as well as the tasks that

each tool will execute.
• Automated methods that will be used.
• Verification methods that will be used.
• Criteria that will determine the program’s quality and fitness for

distribution.
• Time needed to complete testing.
• Description of the test suites.
• Test data that will be used.

Having created a comprehensive test plan, the parameters and specific
goals of the test scripts to be written can now be more concisely defined.

Although developing incisive test scripts can often be the most time-con-
suming phase of the testing process, the effort will be more than compen-
sated by a thorough and accountable testing procedure.

While no application yet exists which can automatically produce scripts
based on a testing plan (just as no application can automatically produce
code based on software specifications), certain tools can facilitate and
expedite the testing process by automating the procedure, providing an
effective means of determining discrepancies and monitoring the effects
of regression.

SMARTS User’s Guide

3

1.2 The STW/Regression Solution

Software Research, Inc. offers a solution, STW/Regression™, that can
automate testing following the test planning and script writing process.
STW/Regression is designed to overcome the tedious and error-prone
process of manual testing.

Test outcomes are recorded and compared automatically with baselines.
Any discrepancies are recorded and stored for further analysis. Extra-
neous or irrelevant discrepancies, however, can be discarded in the
comparison process. Test execution, reports and statistics are available
for viewing. STW/Regression improves the overall quality of testing by
providing technically sophisticated support for full automation of
regression testing, test capture/replay, and results comparison.

Although functionality varies slightly, STW/Regression products can be
invoked either via an X Window System graphical user interface (GUI) or
from ASCII menus. STW/Regression includes the following products:

• CAPBAK/X™ is an automated capture and playback tool for the
X Window System that creates automated tests. It incorporates
captured keystrokes and mouse movements into test scripts, and
can save screen or screen fragment bitmap information as files.

• EXDIFF™ compares screen fragments and disregards irrelevant
discrepancies with its masking capabilities.

• SMARTS automates the work of controlling, executing, re-
executing, and analyzing the results of complex sets of tests.

SMARTS is the focus of this manual. For complete information on use of
the other STW/Regression products, please consult the proper manuals.

An STW/Regression flow chart is indicated below. Boxes with darkened
backgrounds represent the main components of STW/Regression.

SMARTS is central to the STW/Regression process, controlling test execu-
tions and results. SMARTS can run a variety of tests, including playing
back hundreds of test scripts created from CAPBAK. SMARTS can also
determine if CAPBAK/X’s tests PASSED or FAILED by making a simple
call to EXDIFF to compare saved bitmap images from CAPBAK/X’s tests.

CHAPTER 1: Introduction to SMARTS

4

FIGURE 1 STW/Regression Dependency Chart

User

SMARTS

ATS
FileTest Plan

EXDIFF CAPBAK/X

SMARTS User’s Guide

5

1.3 SMARTS’ Role

SMARTS automates the testing process by reading a user-designed test
description file, referred to as an Automated Test Script (ATS). The ATS is
written in SMARTS code, which is similar in syntax to the C program-
ming language.

Test cases are organized within the ATS and can be supplemented with
activation commands, comparison arguments and evaluation methods.
From the ATS, SMARTS is able to create a “test tree hierarchy” of the
groups and tests, which is similar in structure to an outline. The test tree
provides a means of interactively controlling and monitoring the testing
process.

SMARTS programming capability allows the use of if, else and
while control structures within its test script. Test execution can there-
fore be tailored to the system environment, allowing the testing process to
be repeated with greater reliability than manual testing.

Although tests and test commands must be organized within the ATS
description file, SMARTS provides a utility, makeats, designed to expe-
dite the creation of the scripts.

When generated, SMARTS executes the ATS, compares the test output
against the expected results (test baseline), and accumulates a detailed
record of the test results into a log file. Based on the log file, SMARTS also
generates reports indicating the status and execution time of any test or
group of tests, the percentage of PASS/FAIL results and, as necessary,
regressive test output. It should also be noted that in addition to built-in
automatic differencing, SMARTS also provides the option of “manual” or
visual evaluation where the test outcome is determined by the user.

Further information on the ATS and the makeats utility is available in a
later chapter. (See CHAPTER 4 - "Creating an ATS” on page 87.).

By organizing all tests that apply to a given application, SMARTS can
improve the quality of that software throughout its life cycle. Through
developing and re-running a library of test suites, efforts can be focused
on constructing new tests and evaluating test results — and detecting
defects — rather than on the largely mechanical task of running tests and
checking outputs.

The following data flow diagram depicts SMARTS’s processing
components and procedures.

CHAPTER 1: Introduction to SMARTS

6

FIGURE 2 SMARTS System Chart

Resource
Configuration

File
ATS File

MAKEATS

MAKEATS

User
Commands

SMARTS

Comparison
Utility

Application
Under Test

Test Output
Test

Baseline

Difference Output

return
code

call

call
Log File

Reports

SMARTS User’s Guide

7

1.4 How SMARTS Is Used

To automate regression testing with SMARTS, perform the following five
steps:
1. Set up test baseline results.
2. Create an ATS.
3. Execute test actions specified in the ATS.
4. Evaluate test outputs (PASS/FAIL).
5. Generate test reports.

1.4.1 Establishing Test Baselines

The initial procedure to automating the testing process is to create a series
of baseline files containing correct, expected (baseline) program outputs.
Later, test outputs will be compared with these baseline results.

To establish a baseline, execute a test and save the correct output in a
reproducible form, e.g., a text file or an image file. SR’s CAPBAK/X also
allows the results of user sessions to be used as test baselines. These user
sessions can be recorded, with the results used as test baselines, and then
replayed, with the results used as test outputs.

1.4.2 Creating an Automated Test Script

Once the baselines are established, the ATS can be created using any
ASCII editor — for example, vi. The test control file must be written using
SMARTS’ C language code. SMARTS’ makeats expedites ATS creation.

Within the ATS thousands of tests can be organized by test group, test
sub-group and test case. A test group is the root or main group, under
which all the sub-groups and test cases reside. Often, but not always, sub-
groups contain specific kinds of test cases. If the X-client calculator were
being tested, a group may refer to tests in general, whereas sub-groups
may consist of specific kinds of tests, such as addition, subtraction, multi-
plication, and division.

SMARTS executes these test tree elements in sequence according to the
“tree-like” group structure.

CHAPTER 1: Introduction to SMARTS

8

FIGURE 3 Hierarchical Test Tree Structure

This “tree” resembles the directory structure of UNIX. Either part or all of
the test set can be executed according to the user’s needs.

For each test group or sub-group, the ATS identifies and names the group
or test-group by title and comments.

For each test case defined, the ATS includes the following three clauses:
• A source clause describes the nature of the test with comments.
• An activation clause consists of a command or series of com-

mands to be executed by the operating system. These commands
may contain executables (including CAPBAK/X) and shell scripts.

• An evaluation clause indicates how SMARTS will evaluate
the test’s output (i.e. PASS/FAIL). Four evaluation modes are
available: no evaluation , evaluation with user , evalu-
ation with baseline and evaluation with function .

NOTE: SMARTS also has include , environment and termination
clauses. Further details are located in a later chapter (See CHAPTER 4 -
"Creating an ATS” on page 87.)

A

B C

D F GE

Sub-Group:

Test Case:

Group:

SMARTS User’s Guide

9

1.4.3 Executing the ATS

Once the ATS has been constructed, testing can proceed under SMARTS
control, with little or no further manual administration in either
interactive or batch modes.

Test execution consists of two basic steps:
1. Test case selection.
2. Test case activation.

Test Case Selection

SMARTS executes only the group, sub-group or individual test case
selected. This is an important feature which can be exploited to minimize
overhead when re-testing a modified software product. The purpose of
selection is to execute only the test groups or cases of interest, without
invoking the remaining tests.

The key to test case selection is the current position in the test tree structure
(analogous to the current working directory of UNIX). Initially, when
invoking the SMARTS system, the root of the test hierarchy (the first test
group or test case in the ATS) is the current position. The selected tests are
all the test cases that fall under the current position.

You can change the current position by clicking the mouse on the desired
test group or case (for the GUI version) or using specific commands (for
both the GUI and ASCII menu versions) which allow the test hierarchy to
be traversed and a specific test node to be located. For example:
1. Change the current position to an immediate descendant node

(group or test case) whose name is specified.
2. Change the current position to the node just above it.
3. Change current position to a node whose name ends with a specified

pattern.
4. Move the nth node below the current position.

GUI and ASCII menu commands are also available to display informa-
tion regarding the content and hierarchy of an ATS’ test tree such as:
1. Display the hierarchical test structure starting from the current

position.
2. List all sub-tests in hierarchy relative to the current position.
3. List only test cases containing a specified string in their case name.
4. List test cases containing a specified string as part of their source

field.

CHAPTER 1: Introduction to SMARTS

10

1.4.3.1 Test Case Activation

Tests are activated from SMARTS based on commands specified in the
ATS by the activation keyword. SMARTS executes the commands as
synchronous sub-processes, waiting for overall completion before regain-
ing control.

Any number of SMARTS commands may be used to activate the test case,
up to the limit imposed by available memory, and the length of each
activation command is unlimited. Furthermore, any command that can
be executed via the standard operating system command line can also be
executed within the activation command clause.

Prior to the testing process, SMARTS provides various execution options.
The most commonly used are:
1. Execute selected tests until there are no more test cases.
2. Execute selected tests and stop execution on the first test that fails.
3. Execute a user specified group when a test case fails.
4. Repeat the selected test as many times as specified by you.

During test execution, SMARTS displays processing information on the
screen, including the current group, sub-group, test case names, activa-
tion command(s), and test outcomes. If a test fails, the GUI and ASCII
menu interfaces display the following message:

TEST FAILS (/group/subgroup/testcase)

1.4.3.2 Test Log File

After each test execution, SMARTS accumulates a detailed record of test
results into a log file. This information can be accessed at any time to
display statistics about test execution time, such as:

• Cumulated elapsed execution time for a test case or group.
• Total execution time for a given node.

SMARTS also generates reports based on log file information, as
described in another section of this book (See Section 7.2 - “Invoking the
Report Window” on page 134.).

SMARTS User’s Guide

11

1.4.4 Evaluating Test Outputs

Following each test execution, SMARTS evaluates the test output accord-
ing to evaluation instructions in the ATS.

There are three principal methods of evaluation:
1. No test result evaluation.
2. Manual test result evaluation.
3. Automatic test result evaluation.

No Evaluation

If a test is defined in the ATS by the entry noevaluation , the test will
automatically pass.

Manual Evaluation

User evaluation is necessary for tests which require the test output to be
manually inspected to determine outcome. Tests in this category are
defined within the ATS by the entry evaluation with user . After a
manual test is activated, the user indicates the appropriate test outcome
by:

• Clicking on PASS or FAIL (for the GUI version).

or
• Typing p to indicate that a test passes or f to indicate failure (for

the ASCII menu interface).

Automatic Evaluation

Tests in this category are defined in the ATS by two possible keyword
phrases:

• evaluation with baseline.
• evaluation with function.

Automatic evaluation of tests for which evaluation with baseline
is required results in comparison of the baseline and response files listed
in the ATS’ evaluation clause. Text files are compared using a file
comparison utility such as diff and bitmap image files are compared
using EXDIFF’s Xexdiff utility. All pairs of files must be identical if the
test is to pass. If any pairs are not identical, the test fails.

The default comparison utility for evaluation with baseline is
diff. However, a different comparison utility can be specified in the
resource configuration file (default smarts.rc) for the GUI and the ASCII
menu interface. The user can also set a different command using the Set
Difference Utility option under the Option menu in the Main window of

CHAPTER 1: Introduction to SMARTS

12

the GUI. All the difference utilities must return a zero if the pair is identi-
cal and non-zero otherwise.

In cases where baseline files are empty or do not exist, the ATS uses three
special keyword phrases that will allow these tests to pass. This is impor-
tant in situations where the user does not predict a response file will be
created, or if the file will be empty based on the baseline’s output. This
often occurs, i.e, when an application does not create an error file or the
file is empty. In such cases, the user may add in these evaluation
with baseline phrases.

• empty passes a test if a specified file does not exist or is empty.
• not_exist passes a test if a specified file does not exist.
• not_empty passes a test if a specified file exists and is not empty.

Of course, automatic evaluation with baseline will be performed
only if a set of such baseline files (containing correct, expected program
outputs) has been created prior to test case execution.

The evaluation with function feature allows any other form of
evaluation to be used if a special program exists which can be used in
place of the standard diff utility as the evaluation procedure. A wide
range of function calls, or sequences of function calls, can be used. The
test will pass only if all of the functions called return a 0 (successful
execution).

SMARTS User’s Guide

13

1.4.5 Generating Test Reports

After each test execution, SMARTS accumulates a detailed record of the
test results into a log file. Based on the log file, SMARTS produces a
variety of test reports providing a means of determining which tests to
examine for possible program errors.

The system produces four types of reports:
• Status report.
• History report.
• Regression report.
• Certification report.

The Status report contains the following information regarding the most
recently executed tests: test name(s), activation date, outcome (PASS/
FAIL), execution time (seconds), and an application’s return code.

The History report lists the test name(s), activation date and outcome
(PASS/FAIL) of all log file test entries (as opposed to the Status report,
which lists only the most current tests) for a given node.

The Regression report indicates only those tests whose outcome has
changed, thereby identifying bugs which have been fixed or introduced
since the last time the tests were activated.The report lists test name,
outcome, and activation date.

The Certification report provides a brief overview of testing status,
indicating the number and percentage of tests that have passed and tests
that have failed and the total number of tests executed.

CHAPTER 1: Introduction to SMARTS

14

1.5 Main Features

The following list indicates the more significant features of the SMARTS
application:

• Starts up with only slightly varying functionality, either through
the X Window System GUI or from the command line.

• Controls and monitors tests, organized either by the user or the
SMARTS makeats utility, in a (tree) structure. The hierarchy of an
ATS description file facilitates code traversing and reporting, and
is similar to a directory structure.

• Executes a user-supplied ATS description file which specifies the
tests, commands and evaluation methods.

• Runs any command executable from the command line, includ-
ing commands to play back a user session captured via
CAPBAK/X, from within the ATS description file.

• Supports conditional test execution.
• Generates reports indicating the status and execution time of any

test or group of tests, the percentage of PASS/FAIL results and, as
necessary, regressive test output.

• Compares captured windows and sub-windows with calls to
EXDIFF.

15

2.1 Instructions

We recommended that you complete the instructions in this chapter
before going on to other chapters.

The SMARTS application program provides a directory containing
demonstration files and pre-written programs. The tutorial test session
performed in this chapter is invoked from this directory.

On completion of this chapter, you should be familiar with the following
activities involved in executing a EXDIFF test session: invoking the
SMARTS application, compiling a program from the testing process,
setting up a SMARTS Automated Test Script (ATS), running a suite of
tests, analyzing the test outcome via SMARTS reports, examining any test
regression, purging any log files and exiting the SMARTS application.

For an overview of the SMARTS Graphical User Interface (GUI), please
refer to Chapter 3, “UNDERSTANDING THE GRAPHICAL USER
INTERFACE”.

CHAPTER 2

Quick Start
This chapter presents a step-by-step run-through of a basic SMARTS test session executed
using the graphical user interface (GUI).

CHAPTER 2: Quick Start

16

2.1.1 STEP 1: Setting Up SMARTS

1. Initialize an xterm-type window. How initialization is executed is
dependent on the window manager being used. The xterm window
will serve as the SMARTS invocation window. Please contact your
system administrator if you are unsure about your windowing
environment.

2. Move the window to the upper left corner of the screen. Windows are
moved by clicking on the window’s title bar and dragging the win-
dow to the desired location.

3. Change to the $SR/demos/regression/smarts.demo directory and display
its contents. The smarts.demo directory is provided with the SMARTS
product and consists of the following files:
• A resource configuration (RC) file named smarts.rc. The RC file

consists of pre-established runtime parameters, such as an ATS
specification parameter.

• Two versions of the search demonstration program (searchp.c and
searchi.c).

• A sample ATS named search.ats. When executed, this pre-written
script instructs SMARTS to run a set of test suites for the demo
program.

• Several sample baseline and test input files.

SMARTS User’s Guide

17

The screen display should now look like this:

FIGURE 4 Setting Up the Display

CHAPTER 2: Quick Start

18

2.1.1.1 Analyzing the Test Setup

SMARTS automates the testing process by reading a user-designed test
description file, referred to as an Automated Test Script (ATS). Tests are
organized within the ATS by group, sub-group, and cases, and can be
supplemented with activation commands, comparison arguments, and
evaluation methods. From the ATS, SMARTS creates a “test tree
hierarchy”. When the ATS is run, an outline of the test tree is displayed in
the ATS Test Tree display area of the Main window. This outline
provides a means of interactively controlling and monitoring the testing
process.

For the purposes of this demonstration, two source files have been
suppled: searchp.c and searchi.c. The searchp.c file is the perfect version of
the demonstration program. The searchp.c program has been tested and is
known to work correctly. The other file, searchi.c, modifies the original
program and is known to have an error; thus, the imperfect version of the
demonstration program.

Ten accompanying baseline files (indicated by the file extension .bsl) are
used for comparisons to the output of the current program run. Also
supplied are three sample test files for the search demonstration
programs: file1, file2 and file3. The previously described “test tree
hierarchy”, as well as relevant activation commands, comparison
arguments and evaluation methods, are listed within the supplied ATS
search.ats.

SMARTS User’s Guide

19

2.1.2 STEP 2: Compiling the Perfect Test Program

As indicated in the previous step, the smarts.demo directory contains two
versions of the search program: searchp.c and searchi.c. The supplied ATS
named search.ats controls and monitors the testing process for the current
program run of an executable file named search. Therefore, before the ATS
can be run by SMARTS, the demonstration source program to be tested
must be compiled and given the executable file name search.
1. Because searchp.c is known to work correctly, compile and run it first.

As the .c file name extension signifies that the searchp.c program is
written in the C language, enter the compilation command for C
programs:

cc searchp.c -o search

NOTE: When using SMARTS, programs and test scripts may be written
in any programming language. The executable file name, however, must
be the same as the executable file specified within the ATS.

After compiling the searchp.c perfect program, the screen display should
look like this:

FIGURE 5 Compiling the Perfect Program

CHAPTER 2: Quick Start

20

2.1.3 STEP 3: Invoking SMARTS

To invoke the GUI-version of SMARTS:

1. Position the mouse so that it is located in the invocation window.
2. Activate the invocation window by clicking the right mouse button

on it.
This window now becomes the main control window. During the test
session, all status messages and warnings are displayed in this
window.

3. Invoke SMARTS from the working directory by typing:
Xsmarts

The Main window pops up.
SMARTS automatically loads the search.ats ATS file (which is speci-
fied in the default resource configuration file smarts.rc) and builds an
outline of the file’s hierarchy. This outline is referred to as a test tree.
The search.ats test tree is displayed in the ATS Test Tree display,
providing an immediate overview of the test groups and test cases to
be executed by the searchp.c sample program. That is, each test group
or test case indicated in the search.ats test tree may represent a series
of commands, test files or baseline files to be invoked by the searchp.c
demonstration program. In the current example, the search.ats test
tree depicts three test groups and ten test cases for the searchp.c
program.

4. Move the Main window to the lower left corner of the screen by click-
ing on the window’s title bar and dragging the window to the desired
location.

SMARTS User’s Guide

21

2.1.3.1 Re-Starting SMARTS

Re-start a test session as follows:
1. Terminate the current test session from the Main window by clicking

on the File menu.
2. Select Exit.
3. Perform the previously described steps for invoking the SMARTS

application.

After invoking SMARTS and relocating the Main window, the screen
display should look like this:

FIGURE 6 Invoking SMARTS

CHAPTER 2: Quick Start

22

2.1.4 STEP 4: Opening the Go Window

In the GUI-version of SMARTS, tests are executed from the Go window.
To invoke the Go window, perform the following:
1. In the Main window, click on the Go Window button.

The Go window pops up.
2. Drag the Go window to the upper right corner of the screen display.

After initializing and relocating the Go window, the screen display
should resemble the following:

FIGURE 7 Initializing the Go Window

SMARTS User’s Guide

23

2.1.5 STEP 5: Opening the Report Window

In the GUI-version of SMARTS, the various reports generated following
test execution can be viewed from the Report window. To invoke the
Report window, perform the following:
1. In the Main window, click on the Report Window button.
2. The Report window pops up.
3. Drag the window to the lower right corner of the screen display.

Having initialized and relocated the Report window, the screen display
resembles the following:

FIGURE 8 Initializing the Report Window

CHAPTER 2: Quick Start

24

2.1.6 STEP 6: Testing the Perfect Version of the Demo Program

As indicated in STEP 1, the search.ats test tree displayed in the ATS Test
Tree display of the Main window provides an immediate overview of the
test groups and test cases to be executed by the searchp.c sample program.

A group’s test cases or an individual test case is selected for execution by
clicking the mouse on desired group or test case in the ATS Test Tree dis-
play. This is called the current position. The current position is identified
by a highlighted line in the Current group text field of the Main window.

When an ATS file is initially read into the ATS Test Tree display, the
default current position is the topmost group or test case, or the root of
the test tree hierarchy. In this tutorial demonstration, all the test groups
and test cases presented in the ATS will be executed.

To execute tests from the default current position of /ROOT (/search)
onwards, perform the following:
1. Click on the Go window’s Go button.

The Go button toggles to Stop and its background/foreground color
is reversed. As the ROOT (/search) is the top-most (or main) test
group, SMARTS will execute all test groups and test cases indicated
in the ATS, running all the tests one at a time as specified in the ATS.
As each test executes, the current test outcome is compared to the
baseline files specified within the test. The entire process, as well as
test outcomes, are scrolled in the display area of the Go window.
Since this is the perfect version of the demonstration program, all ten
test cases should pass, indicated in the display area of the Go
window by the statement: TEST PASSES

When the test tree is finished executing, this message box pops up:

2. Confirm the message by clicking on the OK button.
3. If you wish, use the scroll bars to maneuver throughout the Go

window’s execution messages.

SMARTS User’s Guide

25

Note: In addition to built-in automatic differencing, SMARTS also lets
you determine the outcome by using “manual” or visual evaluation. This
is further explained in other sections (See Section 4.2.2 - “Test Case
Clauses” on page 91.), (See Section 4.3.4 - “Conditional Expressions” on
page 97.).

Following test execution, the screen display should look like this:

FIGURE 9 Executing a Test

CHAPTER 2: Quick Start

26

2.1.7 STEP 7: Editing the ATS

After a test is executed for the first time, users may have ideas on improv-
ing the ATS file. This step shows you SMARTS’ editing utility that lets
you edit the actual ATS.

This step assumes that the current system contains xterm-like windows
and a vi text editing utility. The edit utility allows the ATS to be edited at
the location of its current position (in this case, the root directory).

Because modifications will effect the ATS, do not actually edit the sample
ATS.
1. In the Main window, click on Edit Window button.

The Edit Window pops up, displaying the search.ats.
2. Drag the Edit window so that it resides over the Go window and the

Report window.
Notice the cursor position in the ATS corresponds to the current
position specified in the ATS Test Tree display of the Main window.

3. Exit without editing or saving the file, by entering the following
command:

:q

The ATS is exited.

SMARTS User’s Guide

27

When using the Edit window, the screen display should look like this:

FIGURE 10 Editing an ATS

CHAPTER 2: Quick Start

28

2.1.8 STEP 8: Analyzing Test Status

When tests are executed, SMARTS runs a difference check on the test out-
put against the test baseline files, and accumulates a detailed record of the
test outcomes into a log file. Based on the log file, SMARTS also generates
reports.

The Status report depicts the current status of the selected test nodes
executed, listing the test name, activation date, execution time of any test
or group of tests, PASS/FAIL test outcome, and the application’s (used
for the evaluation method) return code.

Display the Status report by performing the following:
1. In the Report window, click on the Status button.

The Status report appears in the ATS Test Tree display of the Report
window. In the current example, all executed tests pass.

2. Use the scroll bars to maneuver through the report.

Other reports generated by SMARTS are:

History report Reflects the PASS/FAIL test outcome history for all
the tests from the log file. This report is useful when a
number of tests have been run and a history of modi-
fication effects is needed.

Regression report Shows only those test cases whose PASS/FAIL out-
comes have changed from a previous execution, iden-
tifying bugs that been introduced or fixed. Because
the log file only contains the perfect version’s test re-
sults, this report is currently empty but will be further
explored in STEP 12.

Certification report Lists the total number and percentage of tests that
passed or failed in the current execution. This report
is ideal when a summary form of PASS/FAIL results
is sufficient.

The general procedure for viewing SMARTS reports is similar to viewing
the Status report:
1. From the Report window, click on the appropriate button. The

selected report is shown in the display area.
2. Report text can be further viewed using the scroll bars.

SMARTS User’s Guide

29

When viewing the Status report, the screen display should look like this:

FIGURE 11 Looking at a Status Report

CHAPTER 2: Quick Start

30

2.1.9 STEP 9: Exiting the Testing Session

After running the perfect program and viewing the Status report, you can
terminate the testing session as follows:
1. Close the Report window by clicking on the window’s Close button.
2. Close the Go window by clicking on the window’s Close button.

Once you having closed any open SMARTS windows, exit the application
itself:
1. In the Main window, click on the File menu.
2. Select the Exit option.

NOTE: The SMARTS application need not be terminated following each
test session. The application is exited throughout this tutorial for you to
practice.

SMARTS User’s Guide

31

After you have closed all open SMARTS windows and exited the
SMARTS application, the screen display should look like this:

FIGURE 12 Completing the Perfect Version’s Session

CHAPTER 2: Quick Start

32

2.1.10 STEP 10: Compiling the Imperfect Version of the Sample Program

As previously described in this chapter, the SMARTS demonstration
directory contains two programs: searchp.c and searchi.c. At this point in
the tutorial, you should have already compiled and run the supplied
perfect version of the demonstration program using SMARTS.

In the following three STEPS, the imperfect version of the demonstration
program (searchi.c) is run and the program’s output is examined. As
previously indicated, the SMARTS product controls and monitors the
testing process and output via a user-defined ATS. The supplied demon-
stration ATS search.ats refers to an executable file named search. Therefore,
before the ATS can be run by SMARTS, the searchi.c source program is
compiled and given the executable file name search.

• As the .c file name extension signifies that the searchi.c program is
written in the C language, enter the compilation command for C
programs:

cc searchi.c -o search

SMARTS User’s Guide

33

After compiling the searchi.c imperfect program, the screen display should
look like this:

FIGURE 13 Compiling the Imperfect Program

CHAPTER 2: Quick Start

34

2.1.11 STEP 11: Testing the Imperfect Version of the Demo Program

Prior to executing the test cases from smarts.ats for the imperfect version of
the sample program:

• Invoke SMARTS.
• Initialize the Go and Report windows from the Main window.

To review these procedures, refer to STEP 3 through STEP 5.

Previously, all test cases indicated within the search.ats ATS were executed
when the compiled searchp.c perfect version of the sample program was
run. When SMARTS is invoked, the /search group should be selected.

To execute test cases, from the default position /search onward:
1. Click on the Go window’s Go button.

The Go button toggles to Stop and the background/foreground is
reversed. As the ROOT (/search) is the top most (or main) test
group, SMARTS will execute all test groups and test cases indicated
in the ATS. SMARTS will execute each test in the order specified in
the Main window’s ATS Test Tree display.
As each test executes, the current test outcome files are compared to
the baseline files specified within the test. The entire process, as well
as test outcomes, are scrolled in the display area of the Go window. In
this imperfect program, all but one of the ten test cases should pass as
indicated by the following statement:

TEST PASSES

One test case, named /search/match/smallstr.test, fails as indicated by
this statement:

TEST FAILS

When the test tree is finished executing, this message box pops up:

2. Confirm the message by clicking on the OK button.
3. If you wish, use the scroll bars to maneuver throughout the Go

window’s execution messages.

SMARTS User’s Guide

35

After executing a test, the screen display should look like this:

FIGURE 14 Executing a Test

CHAPTER 2: Quick Start

36

2.1.12 STEP 12: Analyzing the Imperfect Demo Program — Determining
Test Regression

Since all the test cases in the perfect program passed and one test case
failed in the imperfect program, the test regressed. SMARTS offers a
Regression report which lists only those tests whose outcome has
changed, thereby identifying bugs which have been fixed or introduced
since the last time the tests were activated.

2.1.12.1 Viewing Test Regression

The Regression report is viewed following the same procedure used to
display any of the reports:
1. In the Report window, click on the Regression button.
2. The Regression report appears in the display area of the Report

window.

This report displays only those test cases whose PASS/FAIL outcomes
have changed from a previous execution.
3. Analyze the other reports with the Status, History and Certification

buttons. Please refer to STEP 8 regarding information displayed for
each report type.

SMARTS User’s Guide

37

When viewing the Regression report, the screen display should look like
this:

FIGURE 15 Analyzing a Regression Report

CHAPTER 2: Quick Start

38

2.1.13 STEP 13: Purging the Log File

All testing data (such as test case names, start and end times, test case
status, and test return values) is contained in a log file, default name
LOGFILE. Over time, this test information accumulates, creating an
immense log file and, consequently, acquiring large amounts of disk
space. Therefore, it is advised to periodically purge the log file.

Purge the log file as follows:
1. In the Report window, click on the Purge Log File button. This

message box pops up:

2. Click on OK to confirm the request. To cancel the operation, click on
Cancel.
If you selected OK, another message box pops up:

3. Confirm the message by clicking on the OK button.
Only the testing data from the last run of the test cases will remain in
the log file. For example, if twenty two programs have been run,
following a Purge Log File execution, only the testing data for the
twenty-second program execution would remain in the log file.

SMARTS User’s Guide

39

After purging the log file, the screen display should look like this:

FIGURE 16 Purging the Log File

CHAPTER 2: Quick Start

40

2.1.14 STEP 14: Exiting the SMARTS Product

To exit the SMARTS application:
1. Exit any open windows by clicking on the window’s Close button.

Once all SMARTS windows are closed, you can now exit the applica-
tion itself.

2. From the Main window, select the File pull-down menu.
3. Select the Exit option to terminate the current test session.

After exiting the SMARTS application, the screen display should look like
this:

FIGURE 17 Completing a SMARTS Session

SMARTS User’s Guide

41

2.2 Summary

Once you have successfully completed the preceding fourteen steps,
you’ve seen and practiced the basic skills you need to use SMARTS
productively. In this chapter, you have examined how to invoke SMARTS,
how to run a suite of tests, how to analyze test outcome, how to look for
test regressions, and how to purge a log file.

For further practice we suggest:
• Repeat STEPS 1 - 14 without the manual.
• Re-examine the product-supplied smarts.ats to review the ATS’

“test tree hierarchy”, supplemental commands, arguments and
evaluation methods.

• Refer to Chapters 4-7 for complete information on creating an
ATS file and using the SMARTS’ GUI to manage your tests.

CHAPTER 2: Quick Start

42

43

3.1 Basic OSF/Motif User Interface

This section demonstrates using file selection dialog boxes, help menus,
message dialog boxes, option menus, and pull-down menus. If you are
familiar with the basic OSF/Motif graphical user interface (GUI) style,
you can go on to another section (See Section 3.2 - “The Main Window”
on page 51.).

 CHAPTER 3

Understanding the GUI
This chapter summarizes SMARTS’ windows, menus and commands. Individual
application of commands is described in detail in the relevant chapters of this guide.

CHAPTER 3: Understanding the Graphical User Interface

44

3.1.1 File Selection Windows

SMARTS’ file selection windows (Figure 18) allow you to select an exist-
ing test file name or specify a new test file name.

FIGURE 18 File Selection Window

The components of the file selection window are as follows:

Filter entry box Specifies a directory mask. When you click the Filter
button, the directory mask filters files or directories
that match the indicated mask (or pattern).

Directories list box Lists directories in path defined in the Filter entry
box.

Files list box Lists files for the path defined in the Filter entry box.

Scroll bars Allows vertical and horizontal movement within the
Directories and Files list boxes.

Selection entry box Accepts a file name for selection.

Specifying the Directory

Naming the File

Selecting the OK button

and filtering pattern

SMARTS User’s Guide

45

Use the three buttons at the bottom of the window to issue commands:

OK Accepts the file in the Selection entry box as the new
file or the file to be opened and then exits the win-
dow.

Filter Applies the pattern specified in the Filter entry box
and lists the directories and files that match that
pattern.

Cancel Cancels any entered selections and exits the window.

Scroll bars Move up/down and side/side in the Directories and
Files list boxes.

3.1.1.1 Using a File Selection Window

The file selection operation can be restricted to a named region (directory
path) by either:

• Typing a directory path name in the Filter entry box, or
• By clicking on a path name in the Directories list box.

The Filter push button is then clicked on.

To select a file name, perform one of the following activities:
• Double click on the file in the Files list box.
• Highlight the file in the Files list box or type in the file name in

the Selection entry box and click on OK.
• Highlight or type in the file name and press the Enter key.

When a procedure requires a file to be created, create a new file by either:
• Double clicking on an existing file in the Files list box to be over-

written, or
• Entering a new file name in the Selection entry box and either

clicking on OK or pressing the Enter key.

CHAPTER 3: Understanding the Graphical User Interface

46

3.1.2 Help Windows

SMARTS provides on-line information for each of its windows. When a
window’s Help option is activated, an information window containing
pertinent text is displayed. In other words, if invoked from the Record/
Play window, the Help window will automatically display information
relevant to the Record/Play window.

To access on-line help:
1. Click on the window’s Help option.

The Help window pops up, listing informational text corresponding
to the window from which the Help option was activated.

FIGURE 19 Help Window

The displayed text can be traversed by either clicking on the text and
dragging the mouse, or using the vertical and horizontal scroll bars.

SMARTS User’s Guide

47

2. Click on the Action menu and select the Search option to search for
specific text. The following dialog box pops up:

FIGURE 20 Search Dialog Box

3. Click the cursor in the Enter string pattern to search region and type
in the search pattern string.

4. Either click on OK or press the Enter key.
If the pattern is found, then the window will automatically scroll to
the location of the specified pattern.
If the pattern is not found, the following message box is displayed:

FIGURE 21 Help Message Box

NOTE: If the Help window is currently displayed and a Help option
from another window is activated, the Help window automatically
scrolls to the relevant text for the new window.

5. To close the Help window, click on the Action menu and select the
Exit option.

CHAPTER 3: Understanding the Graphical User Interface

48

3.1.3 Pull-Down Menus

Pull-down menus are located within the menu bar of SMARTS’ windows.
They often contain several options.

FIGURE 22 Pull-Down Menu

To use pull-down menus and their options, perform the following steps:
1. In the title bar, place the mouse pointer over the menu name.
2. Display the menu’s options by holding the left mouse button down.
3. While holding down the left mouse button, slide the mouse pointer to

the desired menu option. The menu option is highlighted in reverse
shadow.

NOTE: Three dots to the right of a menu item indicates that selecting the
item will display a pop-up window, such as a file selection window. An
arrow to the right of the menu indicates that item has a submenu.

4. To activate a command, release the mouse button while the desired
item is highlighted. To exit without selecting an item, simply drag the
mouse pointer off the menu before releasing the mouse button.

5. To display the submenu, slide the mouse pointer over the arrow. You
can then select an item on the submenu.

6. Release the mouse button while the desired item is highlighted to
activate the command. To exit without selecting anything, simply
drag the mouse pointer off the menu before releasing the mouse but-
ton to not activate anything.

SMARTS User’s Guide

49

3.1.4 Option Menus

Activation buttons containing smaller, raised buttons display option
menus. The option indicated on the activation button for an option menu
is the current default. To use an option menu, perform the following:
1. Using the left mouse button, click on the activation button for the

option menu. A list of available options is displayed.

NOTE: To continue displaying the option menu, the left mouse button
must be held down.

2. Drag the mouse to the desired option menu item.
3. Release the mouse. The activation button for the option menu now

displays the selected item, indicating that the option is now activated.

FIGURE 23 Option Menu

CHAPTER 3: Understanding the Graphical User Interface

50

3.1.5 Message Boxes

Pop-up message boxes serve three purposes:
• Display warnings and error information.
• Prompt for a command.
• Request verification for command execution.

To either remove a message box or execute the current command, click on
the OK button.

To cancel a command, click on the Cancel button.

FIGURE 24 Message Box

SMARTS User’s Guide

51

3.2 The Main Window

When the SMARTS graphical user interface (GUI) is invoked from the
OSF/Motif X Window System, the Main window is first displayed.

FIGURE 25 Main Window

The Main window is divided into the following four sections:
1. Menu bar.
2. ATS Test Tree display.
3. Current group and window selections.
4. Node Information display.

Note: Potential discrepancies between the Main window invoked and the
Main window depicted above will be addressed throughout the chapter.

Current Group and
Window Selections

Menu Bar

Node Information display ATS Test Tree display

Title Bar

CHAPTER 3: Understanding the Graphical User Interface

52

3.2.1 Menu Bar

The Menu bar section spans the length of the top of the Main window
and is comprised of the following items:
1. File menu.
2. Options menu.
3. Help option.

3.2.1.1 File Menu

The File menu allows you to set files that can be used instead of the files
specified in the configuration file or with one of the options during
invocation.

FIGURE 26 File Menu

SMARTS User’s Guide

53

ATS File As indicated by the arrow to the right of the option,
the ATS File cascading menu accesses a submenu (or
cascading menu).

FIGURE 27 ATS File Submenu

The ATS File submenu consists of the following two options:

Open ATS File... Invokes a file selection window through which an
existing Automated Test Script (ATS) file can be
selected. Once selected, the ATS is automatically
loaded into the ATS Test Tree display.

The file selection window uses a *.ats file mask.

Reload Current ATS File

Reloads the current ATS file into the ATS Test Tree
display. This option is useful if the ATS file is
modified with the Edit window and you want the
modifications to be reflected in the ATS Test Tree
display. Furthermore, this option eliminates the need
to invoke the Open ATS File dialog box when select-
ing the same ATS file.

CHAPTER 3: Understanding the Graphical User Interface

54

RC File As indicated by the arrow to the right of the option,
the RC File option accesses a submenu (or cascading
menu). The RC File cascading menu refers to the
resource configuration file which consists of a series
of run-time parameters (file names to be accessed,
processing time limits, etc.). Run-time parameters can
be set or modified in the RC file using any of the
following methods:

FIGURE 28 RC File Submenu

Open RC File... Invokes a file selection window where an existing
resource configuration file can be opened.

The file selection window uses a *.rc file mask.

Save RC File... Saves the current resource configuration file under its
existing file name.

Save RC File As... Invokes a file selection window to save the current
resource configuration file under a different name.

The file selection window uses a *.rc file mask.

SMARTS User’s Guide

55

Set Log File... Invokes a file selection window to rename the current
name of the log file. The log file is where current and
past test information is stored. If you do not set a
specific log file name to store test information, all in-
formation is automatically stored to the file specified
in the current resource configuration file or SMARTS’
default file named LOGFILE.

The file selection window uses a * file mask.

Set Report File... Invokes a file selection window to specify a file where
report information will be stored. After viewing a
report from the Report window, its information can
then be stored to the previously specified file using
the Report window’s Add Report button. If the Add
Report button is not executed, the previously speci-
fied file will remain empty.

The file selection window uses a * directory mask.

Set Status File... Invokes a dialog box to specify a file to store all run-
time messages displayed in the Go window during
test activation.

The file selection window uses a * directory mask.

Exit Terminates the SMARTS application.

NOTE: The file selection window’s directory masks can be changed by
editing the SR file. Please see Appendix A, “CUSTOMIZING THE GUI
ENVIRONMENT”, for further information. Please refer to other sections
for resource configuration information (See Section 5.4 - “Resource Con-
figuration File Processing” on page 125.) and for command line informa-
tion (See Section 5.3 - “Command Line Invocation” on page 118.).

CHAPTER 3: Understanding the Graphical User Interface

56

3.2.1.2 Option Menu

FIGURE 29 Option Menu

SMARTS User’s Guide

57

Toggles As indicated by the arrow to the right of the option,
the Toggles option accesses a submenu.

FIGURE 30 Toggles’ Cascading Menu

The Toggles submenu check button items are as follows:

Suppress EOT Message

Suppresses the Go window’s pop-up dialog box
indicating test case execution completion with the
comment: Execution completed.

Create Baseline Files

For each response-to-baseline comparison indicated
in a failed test’s evaluation with baseline
clause, the response file is copied to the correspond-
ing baseline file.

Note: Within the syntax for the evaluation with baseline clause,
the response file is indicated first:

 evaluation with baseline
response_file vs. baseline_file

This option serves two purposes: (1) When non-existent, creates baseline
files. (2) Overwrites defective baseline files. This option is only relevant
for tests containing the evaluation with baseline clause.

CHAPTER 3: Understanding the Graphical User Interface

58

Save Response Files Saves the current response file. If this option is left
off, the current response files are removed after
test execution. It is recommended that this option
be turned off if response files accumulate too
much disk space.

Save Difference Files Saves the difference output for each test case that
fails to a file named basename.diff . This option is
particularly helpful in identifying and locating
bugs. This option works only with the following
evaluation modes: evaluation with base-
line and evaluation with function .

Show ATS Source During Execution

During test execution, displays the ATS source
clause(s) relevant to the current position in the Go
window.

FIGURE 31 Showing the Source Clause During Execution

Show Included Files

If files are included in the ATS, this option displays
the included files in the ATS Test Tree display’s hier-
archy.

Note: The Toggles’ options may permanently defaulted on or off by mod-
ifying the GUI’s SR file. Please see Appendix A, “CUSTOMIZING THE
GUI ENVIRONMENT”, for further information. The current resource
configuration file can also be modified. See another chapter for further
information (See CHAPTER 5 - "Invoking SMARTS” on page 115.).

ATS source clause

SMARTS User’s Guide

59

Set Difference Utility...

Invokes a message box where the command to differ-
ence baseline and response files can be set for the
evaluation with baseline evaluation mode.

SMARTS defaults to the command set in the current
resource configuration file upon start-up.

FIGURE 32 Setting the Difference Command

One of four utilities can be specified:

• diff to difference ASCII files. This is SMARTS’
default.

• exdiff to extended differences of ASCII and binary
files.

• Xexdiff for differences of saved X Window bitmap
files.

• Other differencing utilities.

exdiff and Xexdiff are EXDIFF’s utilities. Please refer to the EXDIFF User
Manual for further information on these utilities.

CHAPTER 3: Understanding the Graphical User Interface

60

Set Edit Command...

Invokes a message box where a command to initialize
an xterm-type window and to establish a text editor
(in this case, the vi editor) for the Edit window can be
specified.

FIGURE 33 Setting the Edit Command

The Edit window allows you to edit the ATS file. It
displays the ATS according to the current position
selected.

SMARTS defaults to the command set in the current
resource configuration file upon start-up.

SMARTS User’s Guide

61

Set Test Path Width on Report...

Invokes a message box where the width for the Status
and History reports can be set.

FIGURE 34 Setting the Report Width

Width is specified in terms of characters. The width is
defaulted to 30 characters. The width must be greater
than 3 characters but less than 513 characters.

SMARTS assumes the width set in the current
resource configuration file.

CHAPTER 3: Understanding the Graphical User Interface

62

Show Option Settings...

Invokes a message box that displays the current con-
figuration file’s settings. Unless a resource configura-
tion file is set during invocation or with the RC File
option (See Section 3.1.1.1 - “Using a File Selection
Window” on page 45.), SMARTS assumes the default
file, smarts.rc.

FIGURE 35 Displaying the Configuration File’s Settings

SMARTS User’s Guide

63

Show Local Environment Variables

Invokes a window that displays the aggregate envi-
ronment variables defined in the ATS’ environ-
ment clauses for the executed test cases in the most
recent invocation of SMARTS. Please refer to other
sections for further information on the environ-
ment clause (See Section 4.2.2 - “Test Case Clauses”
on page 91.), (See Section 4.3.6.2 - “The Environment
Clause” on page 101.).

FIGURE 36 Showing the Local Environment Variables

Help Initiates a Help window which contains information
for the Option menu.

bsl = smstring.b
extra = services
file = file3
out = smstring.o
word = p

CHAPTER 3: Understanding the Graphical User Interface

64

3.2.1.3 Help Option

The Help option invokes a Help window which describes the basic
features of the Main window.

FIGURE 37 Help Window for the Main Window

SMARTS User’s Guide

65

3.2.2 ATS Test Tree Display

The ATS Test Tree display is located at the right side of the Main win-
dow. When an Automated Test Script (ATS) is selected, SMARTS auto-
matically generates a directory type listing of the ATS in the ATS Test
Tree display.

FIGURE 38 ATS Test Tree Display

Tests are organized in a tree structure that represents the group, sub-
group and test cases of the ATS. The left-most number is the test tree
identification number (0-13 in the example above). The parenthesized
number is the level that the group or test case is at in the test tree. In the
example above there are three levels: (0) represents the root, or the main
group of the test tree, (1) represents the sub-groups (match , nomatch ,
and error), and (2) indicates test cases.

This “test tree hierarchy” provides a means of selectively executing only
those tests of interest. When SMARTS initially loads the chosen ATS file
into the ATS Test Tree display, the root of the test hierarchy (the first test
case or group in the ATS file) is the current position. Selected tests are all
test cases that fall under the current position.

The current position can be altered by either using the mouse to click on a
test or via the Current group text field of the Main window. For further
information on the Current group text field of the Main window, refer to

Test tree levels

Test tree root

CHAPTER 3: Understanding the Graphical User Interface

66

the section that details it (See Section 3.2.3 - “Current Group” on page
67.). Or the current position can be changed by directional commands cn ,
cd , cu , or ce , described in another section (See Section 3.2.3 - “Current
Group” on page 67.). The ATS Test Tree display can be traversed using
either a mouse or the vertical and horizontal scroll bars.

SMARTS User’s Guide

67

3.2.3 Current Group

The Current group section is located beneath the Title Bar in the upper
left corner of the Main window.

FIGURE 39 Current group Section

The test group or case to be used as the current position is determined via
the Current group section. The current position is either selected with the
mouse in the ATS Test Tree display, entered in the Current group text
field or established using the following options:

cn (current nth) text field

Changes the current position to the nth descendant
listed beneath the current position. In the cn text field
n is entered, where n indicates the nth descendant of
the current position.

cd (current descendent) text field

Changes the current position to the name specified in
the text field; the text entered must be an immediate
descendant of the current position. For example, in
the test tree hierarchy shown in the figure (See
Figure 40 "Hierarchical Test Tree Structure" on
page 68.), consider A as the current position. If A is
the current position, C becomes the current position
after typing C in the text field. G, however, is not
accessible directly from A. The inverse operation of
cd is entering cu in the text field.

CHAPTER 3: Understanding the Graphical User Interface

68

FIGURE 40 Hierarchical Test Tree Structure

cu (current up) Option

Changes the current position to the preceding test
group or case. Referring to the figure above, if test
case G were the current position, C would be the
current position after cu. The inverse operation of cu
is entering cd in the text field.

ce (current end) string text field

Changes the current position to a descendant with a
substring ending in some pattern. For example:

test.33
test.34
test.35
test.36
test.37

In the above listing, if 35 is entered in the ce text field,
the current position would change to test.35 .

A

B C

D F GE

Sub-Group:

Test Case:

Group:

SMARTS User’s Guide

69

3.2.4 Window Selections

Within the Current group section of the Main window, the following
three windows can be invoked:
1. The Report window.
2. The Go window.
3. The Edit window.

The functionality of these windows is examined next.

CHAPTER 3: Understanding the Graphical User Interface

70

3.2.4.1 Report Window

When invoked from the Main window, the Report window is displayed
as follows:

FIGURE 41 Report Window

Proceeding test execution with the Go window, four different types of
reports can be accessed using the following buttons:

• Status button.
• History button.
• Regression button.
• Certification button.

The Report window also contains the following features:
• Scroll display.
• Purge Log File button.
• Enter Info button.
• Add Report button.
• Help button.
• Close button.

Each of these features is described next.

Report selections

Scroll display

SMARTS User’s Guide

71

Status button Based on the log file, produces a report which reflects
the test outcomes of the most recent test execution, in
respect to the current position selected. Therefore,
more information will be generated if the test was
executed from a root or a group than if only a single
test case is executed.

The Status report contains the name of each test case
within the current position, the PASS/FAIL status of
each test case, the date of test activation,execution
time in seconds, and includes the error value
returned by each test case. Provided information can
help locate test cases that failed during execution.

FIGURE 42 Status Report

CHAPTER 3: Understanding the Graphical User Interface

72

History button Produces a summary report of all test outcomes
maintained in the log file, providing an overview of
test regression throughout the testing process. If log
file has not been purged in a while, then the History
report can be quite extensive, covering all old and
new test executions.

Test information is organized within the History
Report by test case name. For each test case, the
date(s) and PASS/FAIL status of all recorded test ex-
ecutions are listed. Below is a sample History report.

FIGURE 43 History Report

SMARTS User’s Guide

73

Regression button Based on the log file, produces a report which indi-
cates only the most recently executed test cases whose
outcomes have changed since the previous execution.

The Regression report helps to identify bugs that
have been either fixed or introduced since the last
time the tests were activated.

The Regression report contains the name of the test
group (if applicable) or the test case name whose out-
come has changed, the PASS/FAIL status and date of
the most recent test execution, and the PASS/FAIL
status and date of the previous test execution.Using
this information, the source code to locate a bug can
be quickly inspected. A sample Regression report is
shown below.

FIGURE 44 Regression Report

CHAPTER 3: Understanding the Graphical User Interface

74

Certification button

Based on the log file contents, summarizes the total
number and percentage of PASS/FAIL outcomes for
the current position’s selected test(s).

The Certification report contains the name of the
current position, the PASS/FAIL status for each test
case and the overall PASS/FAIL status for the current
position. Below is a sample Certification report.

FIGURE 45 Certification Report

SMARTS User’s Guide

75

Purge Log File button

All testing information, such as test case name, timing
information and return values, is stored in the log file.
(The default name for this file is LOGFILE.) Over a
period of time, the log file can become quite large and
accumulate extensive amounts of disk space.

The Purge Log File button deletes old log file records
and maintains only the most current data on each test
case. If a test, for instance, were executed twenty
times, only the twentieth activation would remain in
the log file after purging.

Purging will not affect the Status and Certification
reports; however, the History report will only have
the most recent data and the Regression report will
be empty until tests are executed again.

Enter Info button The Enter Info button brings up a dialog box for en-
tering text for the header of any of the four reports:

• Tester’s Name:

• Version Number:

• Test Info:

Following is a sample of the information window.

FIGURE 46 Enter Info Window

CHAPTER 3: Understanding the Graphical User Interface

76

Add Report button Automatically enters the currently displayed report
into a previously specified file. The specified file can
be set either using the Main window’s Set Report
File... option (See Section 3.2.1.1 - “File Menu” on
page 52.) or indicating the file name in a resource con-
figuration file. The file can be displayed later using
any text editor.

Help button Invokes a Help window which provides on-line ex-
planation of the Report window.

FIGURE 47 Help Window for the Report Window

Close button Closes the Report window.

SMARTS User’s Guide

77

3.2.4.2 Go Window

When invoked from the Main window, the Go window is displayed:

FIGURE 48 Go Window

Regardless of the current position selected in Main window’s test tree, all
functions necessary to execute all or part of the ATS file are accessible
from this window.

The Go window contains the following features:
• Go option menu.
• <N> text field.
• <group> text field.
• Go button.
• Help button.
• Close button.
• Scroll display.

These features are described on the following pages.

Scroll display

Execution selections

CHAPTER 3: Understanding the Graphical User Interface

78

Go option menu The ATS file is executed from the Go window accord-
ing to one of the following optional commands:

FIGURE 49 Go Option Menu

[no_option] Commands SMARTS to execute from the current position
onward until there are no more tests. In the figure below,
consider A as the current test. When the [no_option] is
specified, tests D, E, F, and G will all be executed. Note,
however, if C is the current test only F and G will be run.

FIGURE 50 Hierarchical Test Tree Structure

A

B C

D F GE

Sub-Group:

Test Case:

Group:

SMARTS User’s Guide

79

auto If an ATS file contains evaluation with user clauses, this option
is recommended to run the ATS file unattended. If the auto option
is not selected for such an ATS file, then a confirmation message box
will pop up every time an evaluation with the user clause is
encountered. The confirmation message box requires the PASS
or FAIL button to be clicked before continuing the test execution
process. Otherwise, cases with the “evaluation with user”
clause is ignored.

fail Based on the existing contents of the log file, commands SMARTS to
execute (from the current position onward) only those test cases that
failed during the previous execution.

on fail <group> Commands SMARTS to execute from the current
position onward until a test fails. Should a test fail, SMARTS then
executes the group specified. When the indicated test group has
completed execution, control returns to the Go window.

NOTE: Prior to activating this option, the <group> text field must be set.
Refer to <group> text field explanation.

limit <N> Commands SMARTS to execute the current group within a time limit
of N seconds per test. If any test is longer than N seconds, the test fails.
The testing
process, however, continues.

Note: Prior to activating this option, the <N> text field must be set. Refer
to <N> text field explanation.

new Commands SMARTS to execute from the current
position onward only those test cases that have not been previously
recorded in the current log file.

pass Commands SMARTS to execute (from the current
position onward) only those test cases that passed during the previous
execution.

repeat <N> Executes the ATS file N times from the current position.

NOTE: Prior to activating this option, the <N> text field must be set. Refer
to <N> text field explanation.

CHAPTER 3: Understanding the Graphical User Interface

80

till fail Commands SMARTS to execute from the current position
onward until the first fail, which terminates test execution.

<N> text field Used in tandem with the limit <N> and
repeat <N> optional Go commands. The Number of seconds
limiting individual test execution is entered in the <N> text
field prior to selecting the limit <N> option. The Number of
times the ATS file will be executed from the current position
onward is entered in the <N> text field before selecting the
repeat <N> option.

<group> text fieldUsed in tandem with the on fail <group> optional
Go command. The group name that is to be executed should a
test fail is entered in the <group> text field prior to selecting
the on fail <group> option. When the indicated test group has
completed execution, control returns to the Go window.

Go button Selected after establishing the current position and type of test
execution with the Go option menu. When activated,
SMARTS will execute the selected test(s) and the Go button
will toggle to the Stop button. When the selected tests have
completed execution, all information is stored in a log file. To
terminate execution at any point, click the Stop button and
the test execution will stop, following the completion of the
currently executing test case.

Help button Displays a Help window which explains the Go window.

FIGURE 51 Help Window for the Go Window

Close button Closes the Go window.

SMARTS User’s Guide

81

3.2.4.3 Edit Window

The Edit window is an xterm-like window. It displays the ATS and
indicates the current position with a cursor. When a current position is
changed with the ATS Test Tree display or with the Current group
sections of the Main window, the Edit window’s cursor moves to the new
current position’s location in the ATS.

Editing is done in respect to the kind of text editor specified in the current
resource configuration file or with Option menu’s Set Edit Command
option in the Main window.

If you make changes to the ATS that you want reflected in the Main
window’s ATS Test Tree display, use the File menu’s Reload Current
ATS File option in the Main window. Please see the section that details
this information (See Section 3.2.1.1 - “File Menu” on page 52.).

FIGURE 52 Edit Window

Current position

CHAPTER 3: Understanding the Graphical User Interface

82

3.2.5 Node Information Display

The Node Information display is located in the lower left corner of the
Main window. The Node Information buttons list various types of statis-
tical file and test information in the scroll display. The scroll display can
be traversed using either a mouse or the vertical and horizontal scroll
bars. Selection of any button activates the display.

Each of the Node Information buttons are examined next.

Node Stats button Lists the hierarchical statistics for the current posi-
tion, displaying the number of levels in the test tree
and the number of test groups or cases in each level.

FIGURE 53 Node Stats Button Example

Time Stats button Lists the individual processing time of each test
executed from the current position, as well as the total
execution time.

As the Time Stats data is derived from the log file, the
Time Stats display will be empty prior to test execu-
tion.

FIGURE 54 Time Stats Button Example

SMARTS User’s Guide

83

List ATS button Lists all test names and sections (source ,
activation , and evaluation clauses) in the ATS
file for each test relative to the current position.

FIGURE 55 List ATS Button Example

Tests button Lists all test case names relative to the current group’s
position. If the current position is an individual test
case, no data will be displayed.

FIGURE 56 Tests Button Example

CHAPTER 3: Understanding the Graphical User Interface

84

Directories button Lists the sub-group directories (match , nomatch ,
and error) relative to the current position. If the
current position is a sub-group directory, then only
the test cases relative to the sub-group directory are
displayed. If the current position is an individual test
case, no data will be displayed.

FIGURE 57 Directories Button Example

Search option menu Displays the search options (Source/Case).

FIGURE 58 Search Option Menu

Search text field Accepts a user entered Source or Case string to be
searched for from the current test tree position on-
ward.

SMARTS User’s Guide

85

Source/Case button In the Node Information scroll window, lists instanc-
es of the string entered by the user in the Search field
for the current test tree position.

That is, when the default Source button is activated,
the entered string is searched for in the ATS source
clause(s) from the current test tree position.
Conversely, when the Case button is activated, the
entered string is searched for in the ATS for the
current test tree position.

FIGURE 59 Source Button Example

FIGURE 60 Case Button Example

CHAPTER 3: Understanding the Graphical User Interface

86

87

4.1 Automated Test Script

After developing test scripts based on a comprehensive test plan, an ATS
is created. The ATS file is a structured description file which references a
test suite. Using the SMARTS Description Language, the hierarchically
organized tests can be supplemented with activation commands, compar-
ison arguments and PASS/FAIL evaluation methods. Creation of the ATS
can be expedited using the SMARTS-provided makeats utility. When
executed, SMARTS performs the pre-stated actions, runs a difference
check on the outputs against the baseline, and accumulates a detailed
record of the test results.

4.2 ATS Structure

A test suite may be organized within the ATS as either a simple list of test
cases (a flat hierarchy), or distinct test groups wherein different categories
of tests are isolated (a tree-like hierarchy). Employing either hierarchical
approach, thousands of tests can be referenced within the ATS file.

If the test suite is organized as a tree-hierarchy, the result resembles a
UNIX directory structure:

CHAPTER 4

Creating an ATS
This chapter explains the Automated Test Script (ATS) language, how to establish an ATS
and how to expedite the process using the makeats utility.

CHAPTER 4: Creating an ATS

88

FIGURE 61 Hierarchical Test Tree Structure

As depicted in the diagram above, the ATS test tree is organized by hier-
archical levels, groups (or directories) and cases.

The ATS file structure has two advantages. First, either part or all of the
test set can be executed according to the user’s needs. Second, as the func-
tions of most programs are organized hierarchically, the ATS file structure
emulates the functionality of the program to be tested.

4.2.1 ATS Structure Description

Using the SMARTS Description Language, the ATS file can reference a
test group. The depicted test group might contain nested test group refer-
ences, which may in turn contain test case references. Conversely, the ATS
file may just reference one test case. Regardless of the number of refer-
enced tests, however, there must be a unique root test group in the test
suite hierarchy.

The SMARTS Description Language which defines each test group or
case is referred to as a section. Following the initial test group or case
declarative statement, each section is enclosed by braces.

When defining groups and test cases use the following syntax:

A

B C

D F GE

Sub-Group:

Test Case:

Group:

SMARTS User’s Guide

89

define group name

The declarative statement precedes the section definition for each test
group. A test group section can contain nested test groups or cases, where
each nested test group or case section definition is enclosed by braces.
You must enclose sub-groups or case definitions with braces ({ }). A ({)
brace tells SMARTS to include any sub-group and test cases under that
group’s hierarchy. A (}) brace tells SMARTS not to include anything else
in that group or sub-group.

For example: define group name
{
.
.
.
}

define case name

The declarative statement which precedes the section definition for each
test case.

define group name
{
.
.
.
}

NOTE: Nested groups and cases are not permitted within a case test
section.

CHAPTER 4: Creating an ATS

90

The ATS also allows for optional comments. Comments are enclosed by
the slash and asterisk characters, beginning with /* and ending with */ .

As previously indicated, tests are organized hierarchically within the ATS
file. The SMARTS product includes a smarts.demo directory containing a
sample ATS file named search.ats. If you followed the tutorial (See CHAP-
TER 2 - Quick Start” on page 15.), you may already be familiar with it.

When creating an ATS, it is recommended that you make reference to this
example.

The search.ats file organizes tests as follows:
• Level 0: A root group called /search .
• Level 1: Three sub-groups (directories) named for expected out-

come: /match , /nomatch , and /error .
• Level 2: Ten test cases designed to thoroughly exercise the sample

search program. (Normally, the limit of manageability is between
50-100 test cases per directory.)

After the ATS file is created, SMARTS automatically generates a test
structure resembling the one shown below for the smarts.ats file:

Root (/search)
match

ln1match.test
ln2match.test
smallstr.test
largestr.test

nomatch
smstring.test
mdstring.test
lgstring.test

error
nofile.test
fewargs.test
manyargs.test

SMARTS User’s Guide

91

4.2.2 Test Case Clauses

The most explicit component of the ATS file hierarchy is the test case
section. It is within the test case section that activation commands,
comparison arguments and PASS/FAIL evaluation methods are specified
for the invoked test(s). A test is any executable file, such as an executable
or script file.

After a test tree hierarchy is established, use the following clauses to
define a test case.

The source, activation and evaluation clauses are required.
environment and termination are optional.

source

The source clause contains comments which may specify the intent and
origin of the test(s) invoked by the test case. SMARTS displays the
source clause comments when an activated test case is evaluated as
FAIL, thereby indicating which files should be inspected.

source
“searchp.c (perfect) and later searchi.c
(imperfect)”;

activation

The activation clause indicates any system commands to be per-
formed during the test case execution. The sequence of system com-
mands may be as numerous as needed and enable redirection of input
and output. For example, in the test case ln1match (see the sample test
case section below), SMARTS issues the operating system command
search This file1 with output redirected to the file ln1match.out .

activation
“search This file1 > ln1match.out”;

evaluation

The evaluation clause specifies the evaluation method by which test
output is determined to PASS or FAIL. There are three possible modes of
evaluation you can use:

• noevaluation — All tests are assumed to PASS.
• evaluation with user — Interactive evaluation by the user

for manual tests.
• evaluation with baseline — Automatic comparison of

pairs of files.

CHAPTER 4: Creating an ATS

92

• evaluation with function — Automatic testing using a
user-designed function.

environment

When included in a test case section, the environment clause defines
local environment variables that can be used in the activation and
evaluation clauses. Once set, these environment variables remain
active until modified. The environment variables are defined in the
same manner as shell variables (i.e., var=val) and are referred to as $var
in the activation and evaluation clauses.

SMARTS User’s Guide

93

Below is a sample of an evaluation with baseline clause:
evaluation with baseline

“ln1match.out” vs. “ln1match.bsl;

termination

Commands defined in a termination clause are executed when a test is
aborted due to an activation clause terminating process.

The sample test section definition for search.ats’ ln1match test case is as
follows:

define case ln1match.test
/* This case tests for a match on line 1,
first character. */
{

source
“searchp.c (perfect) and later

searchi.c (imperfect)”;
activation

“search This file1 >
ln1match.out”;

evaluation with baseline
“ln1match.out” vs.

“ln1match.bsl”;
}

In the sample case test section above, the instruction evaluation with
baseline informs SMARTS to compare the indicated files: if the
ln1match.out output file is identical to the ln1match.bsl baseline file, the test
passes; otherwise, the test fails.

For further information on writing test section clauses, please refer to the
section that details it (See Section 4.3.6 - “Syntax for Test Cases” on page
100.).

CHAPTER 4: Creating an ATS

94

4.3 ATS Description Language

The SMARTS Description Language is free format, meaning that lines,
columns, and blanks are not significant. There are exceptions to this rule;
for example, blanks are significant within strings, and keywords and
identifiers must be separated with white space. Generally, however,
programs may be formatted in any way the user desires.

4.3.1 Character Set

The character set of the SMARTS Description Language contains all
possible characters, including ASCII alphabetic, numeric, control, null,
etc. Unusual characters usually appear in strings or comments. On some
systems, SMARTS may exclude null characters (ASCII value 0).

Character Set All ASCII and non-ASCII characters.

4.3.2 White Space Characters

The following “white space” characters are used to separate token types
in the SMARTS Description Language.
blank tab newline
carriage return form feed

See the following description of token types for further details.

Note: When indenting, use only tabs rather than blank/space.

4.3.3 Token Types

Programs in the SMARTS Description Language are broken up into the
following tokens types:
keyword string number
identifier delimiter comment

NOTE: Keywords and identifiers must be separated by a “white space”
character. It is not necessary, however, to separate keywords and identifi-
ers from other token types. For example:

define case interrupt { ...

may be written as
define case interrupt{ ...

as the left brace ({) is a delimiter. However, the following
definecaseinterrupt{ ...

is unacceptable because keywords and identifiers must be separated.

SMARTS User’s Guide

95

4.3.3.1 Keyword

Token keywords are reserved (may not be used as an identifier) and must
appear in lower case. Within comments and strings, keywords have no
special meaning.

The keywords for the SMARTS Description Language are as follows:
activation evaluation not_exist
baseline group source
case if termination
define include user
empty noevalution vs.
function not_empty while
environment with

The keyword vs. must include a period.

4.3.3.2 Identifiers

Identifiers are used to indicate test group and test case names. Identifiers
must begin with an alphabetic character, and can be followed by zero or
more characters which are neither delimiters nor white space. Identifiers
may be from 1 to 255 characters in length.

Sample Identifiers:
IDENTIFIER VALIDITY
A valid
a2 valid
user.interface valid
communication_protocol valid
X!@#$%^&*()-_=+‘’~\/?.><[]: valid
2 invalid
2xyz invalid
characters{};, invalid

CHAPTER 4: Creating an ATS

96

4.3.3.3 Strings

Strings are character sequences enclosed in quotes (“ ”) in the SMARTS
Description Language. To place a quote character within a string, use two
quotes in sequence, e.g.:

“Plato’s “”Laws”” “

Any character in the SMARTS character class may appear in a string.

There is no limit imposed on the length of strings. However, if a string is
very long, it may be broken up across lines for formatting purposes in the
ATS file. This is accomplished by placing a backslash (\) at the very end
of the line within the string. See the examples below.

“This is a string”
“”
“Four score and \
seven years ago \
our fathers brought \
forth...”

“He said “”Four score and seven years\
ago...”” to them.”

4.3.3.4 Delimiters

Delimiters are as follows:

() { } ; , #

SMARTS User’s Guide

97

4.3.3.5 Numbers

Numbers are sequences of one or more digits. Only integer numbers are
permitted; floating point formats are excluded.

4.3.3.6 Comments

Comments are surrounded by the slash and asterisk characters, as in the
C programming language. A comment is enclosed by a combination of
backslash and asterisk characters: that is, a comment is preceded by /*
and followed by */ . A comment may contain any character in the
SMARTS character set and there is no limit on the length of comments.

Comments may not appear in strings, and may not be nested (a comment
may not appear in a comment).

Sample Comments:

/* This is a comment */
/* Comments may appear in any column */

/*
** Comments may also be
** formatted in this or any
** similar manner.
*/

4.3.4 Conditional Expressions

The use of conditional expressions in evaluating groups and cases allows
you to specify under what environmental conditions a set of groups or
cases should be executed. The conditional statements supported by
SMARTS are if , else and while . These are defined below.

4.3.4.1 if () { } Clauses

Following the if keyword is the system command to be executed
enclosed in parentheses and quoted - e.g., if (“ cat file ”). Next is a
left brace ({) followed by definitions of sub-groups, conditional
expressions and cases. Eventually, a closing right brace (}) ends the if
block. Braces must be balanced within the entire ATS file. If the system
command or program exits with (0), meaning the command executed
without error, the if block is executed.

NOTE: Unlike C, after which the structure of SMARTS conditionals are
patterned, most UNIX commands (such as cat) exit with (0) if termina-
tion is proper, else they return a non-zero error code.

CHAPTER 4: Creating an ATS

98

4.3.4.2 else {} Clauses

Following the else keyword is a left brace ({) followed by definitions of
sub-groups, conditional expressions and test cases. Eventually, a closing
right brace (}) ends the else block.

Just as in C, if the proceeding un-else d if returned false (meaning the
if block was not executed), the else block in the if...else section is
executed. If no else block exists, the next group, sub-group, test case, or
program that follows will be executed.

The form of if and if ... else constructions follows that used in C
language, as the following syntax explanation shows.

if and else Syntax:
if (“syscall”) {
 [define] group <identifier> {
 if (“syscall”) {
 [define] case <identifier> {
 ...

 }
 }

 else {
 if (“syscall”) {

 [define] case <identifier>
{
 ...

 }
 }
 }

 }
 [define] case <identifier> {
 ...
 }
 ...
}

Here a syscall is a string that is given to the underlying operating sys-
tem for execution (a.k.a. system call). The return code for the syscall is
used to determine the future flow of control with SMARTS execution.

SMARTS User’s Guide

99

4.3.4.3 while () { } Clauses

Following the while keyword is the system command to be executed
enclosed in parenthesis and quoted - e.g. , while (“cat file”) . Next
is a left brace ({) followed by definitions of sub-groups, conditional
expressions and cases. Eventually, a closing right brace (}) ends the
while block. If necessary, you can click on the Go window’s inverse Stop
button to exit an infinite while loop if you are using the GUI-version of
SMARTS. So long as the system command or program exits with (0) -
meaning the command was executed with no errors (i.e., true) - the
while block is re-executed. Execution of the block stops when the
returned value is non-zero (i.e. false).

while Syntax:
while (“syscall”) {

 [define] group <identifier> {

 [define] case <identifier> {
 ...
 }
 }

 while (“syscall”) {

 [define] case <identifier> {
 ...
 }
 }
 ...
}

Just as test groups may be nested, conditional expressions and iteration
clauses may also be nested. The depth of nesting is limited by memory
capacity only. However, an automated test script that involves more than
10 levels of nesting of if and while statements is likely to be too com-
plex to be managed reliably.

CHAPTER 4: Creating an ATS

100

4.3.5 #include Statements

Different ATS files may be included together using the #include com-
mand. It helps to organize the tests into separate groups, which may, if
required, be included into a single main ATS file. Often these groups
would be logically distinct, and would be physically organized into sepa-
rate directories. The only physical limit to the size of an ATS file is the
amount of RAM available. This is because SMARTS creates an in-memory
image of the ATS file.

The syntax for the keyword include is similar to that for #include in
the C language. Any text file can be included in any position, provided it
obeys the normal SMARTS syntax rules:

#include <test group/case file>

4.3.6 Syntax for Test Cases

4.3.6.1 The Source Clause

The source clause contains comments generally used to briefly describe
the premise of each case. The multiple clauses are specified as strings sep-
arated by commas; the last string must be followed by a semicolon. There
is no limit on the number of source clause an ATS can contain.

Source clauses are displayed as header/flagging lines when test case
activation is evaluated as a FAIL. This helps mark which files need to be
inspected.

Syntax for Source Clauses:

[define] case identifier {
 source

string,
 ...

string;
 ...
}

SMARTS User’s Guide

101

4.3.6.2 The Environment Clause

Environment variables can be defined with the keyword environment .
It is a sequence of variables and their values. ATS environment variables
are defined in the same way shell variables are defined, i.e. vari-
able=value , where variable is the environment variable name and
value is the corresponding value in that test case.

When defined in the environment clauses, environment variables can
be used as variables in the activation and evaluation clauses. Once
set, these environment variables stay in place until they are changed.

They are referred to as $variable in the activation and
evaluation clauses. The environment clauses are specified as strings
of the form var=val separated by commas. The last string must be
followed by a semicolon.

Syntax for Environment Clauses:

[define] case identifier {
...
environment

string,
...

"var=val";
...

}

4.3.6.3 The Activation Clause

Activation is triggered by the keyword activation and is the sequence
of system commands which perform the test case. The activation
clauses are specified as strings separated by commas. The last string must
be followed by a semicolon. There is no limit on the number of activation
commands.

Syntax for Test Activation:

[define] case identifier {
 ...
 activation

string,
string,

 ...
 string;

 ...
}

CHAPTER 4: Creating an ATS

102

4.3.6.4 The Evaluation Clause

Evaluation is the method by which the test case is determined to PASS/
FAIL. Four methods are available: no evaluation, with user evaluation,
automatic evaluation with baselines and evaluation with defined func-
tions.

In some testing situations, it is desirable to perform actions that serve
merely to set up or manage the testing environment. Bypassing evalua-
tion is appropriate in these circumstances. Using the keyword
noevaluation will let you activate commands without performing or
recording evaluation.

A manually evaluated test is specified with the keywords evaluation
with user . User evaluation is needed for tests which require you to
inspect the test output manually to determine the outcome. After
activation of a manual test, the system will ask you for the test outcome;
you should either click on PASS for PASS or FAIL for FAIL (for the GUI-
version) or enter either p for PASS or f for FAIL for the ASCII menu
version.

Syntax for No Evaluation

[define] case identifier {
 ...
 noevaluation ;
}

Syntax for User Evaluation:

[define] case identifier {
 ...
 evaluation with user;
 ...
}

An automatic test can be specified with the keywords evaluation
with baseline , followed by a sequence of string pairs separated by
commas. The last evaluation must be followed by a semicolon.

The sequence of string pairs denote pairs of files that are to be compared.
Between string pairs the literal keyword is vs. (The period is
important.). The contents of the strings is interpreted as file names.

SMARTS User’s Guide

103

The empty , not empty , and not exist features are used to assess the
status of a file produced by a test case. These three parameters effect eval-
uation in the following manner:

file empty The test will pass if file does not exist or is empty.

file not exist The test will pass if file does not exist.

file not empty The test will pass if file exists and is not empty.

Syntax for Baseline Evaluation:

[define] case identifier {
 ...
 evaluation with baseline

file vs. file ,
file vs. file ,

 ...
file not_exist,

 ...
file not_empty,

 ...
file empty,

}

Note: The default comparison utility is diff. You also set the exdiff com-
mand to difference ASCII and binary files or Xexdiff to difference bitmap
images. The chosen command can be set in the resource configuration file
(See Section 5.4 - “Resource Configuration File Processing” on page 125.),
the Set Difference Utility option in the GUI’s Main window(See Section
3.2.1.2 - “Option Menu” on page 56.), or with newdiff option in the ASCII
menu’s OPTIONS menu.

An automatic test incorporating a user-defined function can be specified
with the keywords evaluation with function followed by one or
more strings which may be any system commands of user programs.

Syntax for Evaluation With Function

[define] case identifier {
 ...
 evaluation with function
 " command string ",
 ...
 " command string ";
}

CHAPTER 4: Creating an ATS

104

4.3.6.5 The Termination Clause

SMARTS also provides for the execution of concurrent processes in order
to test the timing of specific test cases and terminate them if necessary.
Terminating processes are specified by preceding the system command
with “%” within the string — e.g. %sleep 10 . An activation command
may be any valid system command.

Example of Test Activation with Termination:

[define] case <identifier> {
 source
 "example of termination command.";
 activation
 "%sleep 10",
 "test1",
 "%sleep 100",
 "%sleep 20",
 "test2";
 evaluation with baseline
 "ln1match.out" vs. "ln1match.bsl";
 termination
 "cat error.file";
 }

In the previous example, sleep 10 would be executed concurrently
with test1 .

Note that the terminating process sleep 10 should be listed before the
corresponding test1 command in the activation clause.

If sleep 10 finishes before test1 the activation phase will be termi-
nated, the test case will FAIL, the evaluation phase will be skipped and
the termination phase will be executed. If, however, test1 finishes first,
the terminated process will be aborted and processing will continue with
the next activation line, which in this case contains %sleep 100 .

Because terminating commands are executed concurrently, sleep 100 ,
sleep 20 and test2 will be executed concurrently. As with test1 , if
sleep 20 or sleep 100 finish before test2 , the activation clause
will be terminated.

Note: Only re-directions are allowed in system commands.

SMARTS User’s Guide

105

4.4 BNF Description of ATS Language

The BNF description of the SMARTS ATS language is shown below as a
reference.

sourceFile:== def.s
def.s :== def.s def

| null

def :== DEFINE GROUP ID ’{’ def.s ’}’

| DEFINE CASE ID ’{’ item.s ’}’
| CASE ID ’{’ item.s ’}’
| IF ’(’ string.s ’)’ ’{’ def.s ’}’
| WHILE ’(’ string.s ’)’ ’{’ def.s ’}’
| ELSE ’{’ def.s ’}’
| DEFINE CASE ID ’{’ item.s ’}’
| CASE ID ’{’ item.s ’}’

item.s :== sourceItem environment-
Item activateItem

evaluateItem terminateItem
| null

sourceItem:== SOURCE string.s ’;’
| null

environmentItem:== ENVIRONMENT string.s ’;’
| null

activateItem:== ACTIVATION string.s ’;’
| null

string.s:== STRING ’,’ string.s
| STRING

evaluateItem:== EVALUATION WITH USER ’;’
| EVALUATION WITH BASELINE compare.s ’;’
| EVALUATION WITH FUNCTION string.s ’;’
| NOEVALUATION ’;’
| null

terminateItem:== TERMINATION string.s ’;’
| null

compare.s:== compare ’,’ compare.s
| compare

compare :== STRING VS STRING

null :==

CHAPTER 4: Creating an ATS

106

4.5 The makeats Utility Overview

To produce the automated test suite, considerable effort is initially
required to create ATS files. The makeats utility substantially reduces
this effort by producing ATS files from minimal information. It is our
experience that makeats can be used to create most ATS files from very
few details, and much can be assumed. In the lifetime of an ATS file,
detailed changes can easily be edited directly into the ATS file.

4.5.1 Invocation and Use of makeats

makeats is invoked by the command makeats . Optional run-time
parameters may be specified on the command line with a dash, followed
by an option code letter. If no parameters are specified, default values are
assumed. Invalid parameters are ignored.

Below is the required syntax you should use for makeats :
makeats infile outfile [options]

infile outfile These are the names of the input file and the output
file. Pipeline rules are assumed. To read from stan-
dard input, just replace infile with the standard UNIX
“-”. For standard output, replace outfile with “-”. For
example, the command:

makeats - -

will read from standard input (the keyboard) and
write to standard output (the screen).

Following is a description of the command line options.
-F
-help
-K basename number
-s N
-t

-F Fast Generation Switch. The input file
interprets quickly into a set of #include
structures that you can later fill in. Please see
another section for an example (See Section
4.5.1.3 - “Fast Operation Example” on page
112.).

SMARTS User’s Guide

107

-help Help Switch. Generates a full description of
the correct calling parameters for makeats.
This information is also generated whenever
an incorrect calling sequence is used.

-K basename number Special Keysave File Standard Script Genera-
tor. In this case a standard script is generated
that plays back the file basename.ksv and
compares number files named basename.bxx
against basename.rxx, where basename.ksv is a
keysave file from CAPBAK/X, basename.bxx is
a captured baseline file and basename.rxx is
the corresponding response file. Please see
the section that details an example (See Sec-
tion 4.5.1.4 - “Keysave File Operation Exam-
ple” on page 113.). No input file is needed for
this option.

-S N Space Insertion Switch. Inserts N line spaces
between major ATS elements.The default
value is 1.

-t Test Output Switch. Bypasses normal mode
ATS production and displays the hierarchical
SMARTS test structure for the input file that
would be produced if the -t switch were not
present.

CHAPTER 4: Creating an ATS

108

4.5.1.1 makeats Regular Input Description

The makeats input file structure is based on the UNIX make utility. It
generates a hierarchical SMARTS test structure consisting of groups,
sub-groups, and test cases. The number of sub-groups and test cases is
unlimited.

Each input file line should take the form:

group_name: subgroup_name test_cases ...

Each group definition requires a separate line; to continue a line to the
next, end the first line with a backslash (\). A sub-group must appear on
the right side of a group definition; thereafter the sub-group can be
defined anywhere in the input file. Legal punctuation includes the colon
(:), equal sign (=),and quotation mark (“).

File names for test input and output, and for baseline comparison, are
generated from the test case names. To modify these file names or the
source clause description of a group or test case, or to include a file in
the ATS, use one of the following options:

SMARTS User’s Guide

109

$source = string Places source string in the test group on the
input file line following the command. To
modify the source clause, place another com-
mand in the proper input file location. To
turn source off, insert a command with an
empty string.

$evaluation = method

Selects the test evaluation method for evalu-
ation clause. Placement works like a source
command. method is one of the following
three values:

automatic = evaluate with baseline
manual = evaluation with user
noevaluation = noevaluation

The default method is automatic.

$activation = string Changes the test activation command for the
activation clause to the specified string. Place-
ment works like a source command. Default
activation is the test case name. To turn acti-
vation off, insert a command with an empty
string.

$command = string Changes only the activation command in the
activation clause. The default activation
command is the test name (i.e.
“test_name” <test_name.in>
test_name.out). An empty string returns
default.

$include = file_name

Inserts an #include statement before the
test group on the input file line following the
command.

Note: Any non-ambiguous substring of the above options or evaluation
methods will be accepted by makeats. For example:

$eval = auto
$s = source string

CHAPTER 4: Creating an ATS

110

4.5.1.2 Regular Operation Example

Following is a sample input file and sample resulting output file for
makeats.

Sample Input File:

$source = "This is part 1"
$include = "file1"
one: two three four five
three: three1 three2 three3 \
three4

$source = "This is part 2"
$eval = "man"
$activ = "testact"

three2: three2a three2b three2c
two: top bottom
four: intro begin mid end conclusion
three2b: center

SMARTS User’s Guide

111

makeats then produces an ATS which is ready for input into SMARTS:
#include "file1"
define group one {
 define group two {

define case top {
 source

"This is part2";
 activation

"testact";
 evaluation with user;
}
define case bottom {
 source

"This is part2";
 activation

"testact";
 evaluation with user;
}

 }
 define group three {

define case three1 {
 source

"This is part 1";
 activation

"three1 < three1.in > three1.out";
 evaluation with baseline

"three1.out" vs. "three1.bsl";
}
define group three2 {
 define case three2a {

source
 "This is part2";
activation
 "testact";
evaluation with user;

 }
 define group three2b {

define case center {
 source

"This is part2";
 activation

"testact";
 evaluation with user;
} } define case end {

 source
"This is part2";

 activation
"testact";

 evaluation with user;
}
define case conclusion {
 source

"This is part2";
 activation

"testact";
 evaluation with user;
}

 }
 define case five {

source
 "This is part 1";
activation
 "five < five.in > five.out";
evaluation with baseline
 "five.out" vs. "five.bsl";

 }

CHAPTER 4: Creating an ATS

112

4.5.1.3 Fast Operation Example

The alternative ‘‘fast’’ version of makeats works only using a tab-delim-
ited file and produces only a ‘‘top’’ ATS file. The inputs and output are
shown below.

Below is a sample input file and sample resulting output file for makeats.

Sample Input File:
outline

some
with
contents

and
others

with
structure
descriptors

makeats then produces the following ATS file:
group outline {

case some {
#include "some.ats"

}
case with {

#include "with.ats"
}
group contents {

case and {
#include "and.ats"

}
case others {

#include "others.ats"
}

}
}
group with {

case structure {
#include "structure.ats"

}
case descriptors {

#include "descriptors.ats"
}

}

SMARTS User’s Guide

113

4.5.1.4 Keysave File Operation Example

The ‘‘keysave file’’ version of makeats uses the -K switch. It allows you to
produce a basic ATS file that consists of a playback of a keysave file and
comparison of zero or more baseline files with corresponding response
files. It requires no input file.

The next two examples demonstrate the ‘‘keysave file’’ feature.

Example 1:

Command: makeats -K NONE 5

Output:
define group EXAMPLES {
 define case FIVE {
 source
 "Play a keysave file that saves 5 images.";
 activation
 "Xplabak -k FIVE.ksv";
 evaluation with baseline
 "FIVE.r01" vs. "FIVE.b01",
 "FIVE.r02" vs. "FIVE.b02",
 "FIVE.r03" vs. "FIVE.b03",
 "FIVE.r04" vs. "FIVE.b04",
 "FIVE.r05" vs. "FIVE.b05";
 }
}

Example 2:

Command: makeats -K NONE 0

Output:
define group EXAMPLES {
 define case NONE {
 source
 "Play a keysave file that saves 1 images.";
 activation
 "Xplabak -k NONE.ksv";
 noevaluation;
 }
}

CHAPTER 4: Creating an ATS

114

115

5.1 Invoking SMARTS’ GUI

To invoke the graphical user interface (GUI) version of SMARTS from the
working directory, enter the following command:

Xsmarts

The Main window pops up:

FIGURE 62 Invoking the GUI’s Main Window

CHAPTER 5

Invoking SMARTS
This chapter explains how to invoke both the GUI and ASCII versions of SMARTS. It also
explains how to establish a resource configuration file.

CHAPTER 5: Invoking SMARTS

116

If the STW product bundle is available on the current system, SMARTS
can be invoked. Here’s how:
1. In your working directory, type stw .
2. The TestWorks window pops up.
3. Select the Regression button.
4. The STW/Regression window pops up.
5. Select SMARTS.
6. The SMARTS Main window pops up.

FIGURE 63 Invoking SMARTS with STW

SMARTS User’s Guide

117

5.2 Invoking SMARTS’ ASCII Menu Interface

To invoke the graphical user interface (GUI) version of SMARTS from the
working directory, enter the following command:

smarts

smarts will provide header information and initialize the MAIN menu as
shown below:

SMARTS Release 6.1 for SYSV386 (03/17/93) (c) 1991
Software Research, Inc.

Using “smarts.rc” for configuration information.

Using “search.ats” for control script.

Processing 137 line of input from 1 file.

SMARTS:MAIN:

FIGURE 64 Invoking the ASCII Menu’s MAIN Menu

CHAPTER 5: Invoking SMARTS

118

5.3 Command Line Invocation

The SMARTS system is activated by either of the following single
commands:

Xsmarts Invokes the Graphical User Interface (GUI) ver-
sion for the X Window System version.

smarts Invokes the ASCII menu version.

Either command is a single executable file which may reside in any file
system directory, as long as it is included on the execution search path.
However, in the event that the SMARTS description file (ATS file) con-
tains activation and evaluation clauses which refer to the current
system directory or subdirectory, it may be necessary to invoke SMARTS
from a particular directory in the file system.

A configuration file which includes run-time parameters is also invoked
when either the Xsmarts or smarts command is executed. In SMARTS,
this file is referred to as the resource configuration (RC) file and smarts.rc
is the default RC file. If SMARTS is invoked without the RC file, then the
embedded default values for the SMARTS application are used.

Run-time parameters can be set or modified with any of the following
methods:
1. Edited in the RC file prior to invoking SMARTS, as explained in

another section (See Section 5.4 - “Resource Configuration File Pro-
cessing” on page 125.).

2. Indicated during the command line invocation of SMARTS as
described in another section (See Section 5.3.2 - “smarts’ Runtime
Options” on page 122.).

3. Specified from the GUI, as described in another chapter (See CHAP-
TER 3 - Understanding the GUI” on page 43.).

4. Specified from the ASCII menus, as described in another chapter (See
CHAPTER 8 - Using the ASCII Menu Interface” on page 139.).

5.3.1 Xsmarts’ Runtime Options

SMARTS run-time options may be specified on the command line with
the following syntax:

Xsmarts -option parameter

If no parameters are specified, default values are assumed. Invalid
parameters are ignored. The GUI-version of SMARTS can be invoked
using the following run-time options.

SMARTS User’s Guide

119

Xsmarts

- f ats_file
-G go_mode
-l log_file
-N line
-P path_name
-R report_type
-rpt report_file
-S
-T
-X

-f ats_file ATS File Name Specification Switch. The ats_file
is used as the ATS file instead of the file specified
in the current RC file.

-G go_mode Batch Execution Mode Specification Switch. The
go_mode is used to specify the type of test case ex-
ecution. go_mode can any one of the following:
• no_option | null executes until there

are no more tests. This is the default.
• auto runs the ATS file unattended if an ATS

contains evaluation with user clauses. This
option forces all such tests to pass without
user intervention.

• fail runs onlys those test cases that failed
during the previous execution.

• on_fail <group> runs tests until a test fails.
Should a test fail, SMARTS then executes the
test <group> specified.

• limit <N> executes the current goup
within a limit of N seconds per test. If a test
is longer than N seconds, the test fails.

• new executes only those tests that have not
been previously recorded in the current log
file.

• pass executes only those tests that passed
during the previous execution.

• repeat <N> executes the ATS file N times.
• till_fail executes tests until the first test

fails.

CHAPTER 5: Invoking SMARTS

120

Note: The go_mode can be modified with any of the Go option menu’s
options in the Go window. Please see another section for further infor-
mation (See Section 3.2.4.2 - “Go Window” on page 77.).

-l log_file Log File Name Specification Switch. The log_file
is used as the log file instead of the default file
LOGFILE. This option allows unique log files for
different groups of tests to be maintained in the
same directory.

-N line Test Line Number Specification Switch. line is the
test tree hierarchy line number in the ATS Test
Tree display of the Main window. This option
changes to the current position of the test tree
from the topmost group or test cases to the line
number specified.

-P path_name Test Path Execution Specification Switch. path is
the path of the group or test case to selected as the
current position in the ATS Test Tree display of
the Main window. This option changes to the
current position of the test tree from the topmost
group or test cases to the group or test case
specified.

SMARTS User’s Guide

121

-N and -P are mutually exclusive. When used with the -G option,
Xsmarts will run the tests from the current position without popping up
the GUI. In other words, tests are run in the background without user
interaction on the GUI. At the end of the test, the message box below
pops up:

FIGURE 65 Ending Background Test Execution

You can then exit Xsmarts or invoke the Main window. When -N and -P
are used without the -G option, Xsmarts will bring up the Main
window and select the test specified from the command line.

-R report_type Report Type Specification Switch. report_type can
either be

• status
• history
• regression
• certification

to represent the four different kinds of reports
available. This option generates reports from the
current log file. The report is appended to the
report file (if one exists) or to standard output if
no report file is specified. A report file can be
specified with the -rpt command line option (see
below), in the configuration file (See Section 5.4 -
“Resource Configuration File Processing” on
page 125.) or with the GUI’s Set Report File
option (See Section 3.2.1.1 - “File Menu” on page
52.).

-rpt report_file Report File Specification Switch. report_file is the
file to which report information is appended.
report_file can also be specified in the configura-
tion file (See Section 5.4 - “Resource Configura-
tion File Processing” on page 125.) or with the
GUI’s Set Report File option (See Section 3.2.1.1 -
“File Menu” on page 52.).

CHAPTER 5: Invoking SMARTS

122

-S Silent Batch Mode Operation Switch. Stops the
end-of-execution message box from popping up
when the -N or the -P switch is used with the -G
switch. See the previous page for an explanation
on this message box.

-T Test Tree Output Switch. Produces the current
ATS’s test tree hierarchy in standard output.

-X Purge Log File Switch. This switch purges the
current log file.

5.3.2 smarts’ Runtime Options

SMARTS run-time options may be specified on the command line with
the following syntax:

smarts -option parameter

If no parameters are specified, default values are assumed. Invalid
parameters are ignored. The ASCII version of SMARTS can be invoked
using the following run-time options.

smarts

-c
-e
-f ats_file
-i
-l log_file
-r rc_file
-rpt report_file
-s status_file

-c Create/Copy Baselines Switch. Whenever a test fails
which contains an evaluation with baseline
clause, baseline files are created by copying the response
file. That is, for each response-to-baseline comparison in-
dicated in the failed test’s evaluation with base-
line clause, the response file is copied to the
corresponding baseline file.

Copying the response file to the baseline file guarantees
that the next execution of the test will PASS, as the files
will now be identical.

Within the syntax for the evaluation with base-
line clause the response file is indicated first:

SMARTS User’s Guide

123

evaluation with baseline

response_file vs. baseline_file

This switch is only applicable for tests which include the
evaluation with baseline clause.

Baseline files can also be created with the ASCII menu’s
create option (See Section 8.5 - “OPTIONS Menu” on
page 147.).

-e Echo Enablement Switch. Input commands are
echoed to standard output. This is useful for
batch file execution when command input is from
a file redirected with “>“.

-f ats_file ATS File Name Specification Switch. The ats_file
is used as the description file instead of the file
specified in the current RC file.

-i Ignore Resource Configuration File Switch. The
resource configuration file smarts.rc or the RC file
specified with the -r switch. is ignored. When
SMARTS is invoked without an RC file, the
embedded default values for the SMARTS
application are used and an ATS file must be
manually specified.

-l log_file Log File Name Specification Switch. The log_file
is used as the log file instead of the default file
LOGFILE. This option allows unique log files for
different groups of tests to be maintained in the
same directory. The log file can also be specified
in the current configuration file (See Section 5.4 -
“Resource Configuration File Processing” on
page 125.) or with the ASCII menu’s logfile option
(See Section 8.5 - “OPTIONS Menu” on page
147.).

-r rc_file Resource Configuration File Specification
Switch. Parameters are read from rc_file. When
this switch is not present, the default RC file used
is smarts.rc.

-rpt report_file Report File Specification Switch. report_file is the
file to which report information is appended.
report_file can also be specified in the configura-
tion file (See Section 5.4 - “Resource Configura-
tion File Processing” on page 125.) or with the

CHAPTER 5: Invoking SMARTS

124

ASCII menu’s rptfile option (See Section
8.6 - “REPORT Menu” on page 149.).

-S status_file Report File Specification Switch. status_file is the
file where test execution statements are stored.
status_file can also be specified in the configura-
tion file (See Section 5.4 - “Resource Configura-
tion File Processing” on page 125.).

A batch or script file may also be used to run smarts using standard input
and output redirection. This works because smarts is an ASCII menu-
based system.

A batch file can be useful for running controlled test suites from several
different system directories each with separate log files and test scripts. A
sample invocation for such use could be:

smarts -e -f test.ats < test.in > test.out

The command required to run all tests can be entered into a file using a
text editor and should mimic the normal iteration use. Such a file could
look like:

browse
go
report
status
exit
exit
exit
exit

The -e option will echo these commands to standard output.

SMARTS User’s Guide

125

5.4 Resource Configuration File Processing

Prior to command line invocation, run-time parameters for Xsmarts or
smarts may be set from a resource configuration (RC) file. The default RC
file is smarts.rc.

A RC file consists of a series of parameters which are set one per line and
listed in any order. These parameters may be altered and saved from
either the File and Option menus (in the GUI version) or the OPTIONS
menu (in the ASCII version). A new default RC file can also be specified
from either of the previously indicated menus. If no parameters are speci-
fied, then the embedded defaults values for the SMARTS application are
used.

When a file is indicated in the upcoming list of available parameters, the
file is presumed to be located in the directory from which SMARTS is
invoked. If the file is not located in the working directory, the entire path
name should be specified. A sample RC file is listed in another section
(See Section 5.4.1 - “Sample Resource Configuration File” on page 127.).

The following parameters can be set in the RC file:

atsfile = “file” Reads the ATS file. This parameter can be over-
ridden by the command line -f run-time option.
The default is smarts.ats if the -f option is not
used.

diff = “command” Uses command as the comparison utility. The de-
fault comparison utility is diff .

diffsave Saves the difference output for each test case that
fails. The default parameter is nodiffsave .

edit = “command” Use command as the editor when editing the ATS
file from within the interactive menus. The de-
fault editor is xterm -e vi (in the GUI inter-
face) and vi (in the ASCII interface).

filesave After test comparisons are made, maintain all re-
sponse files indicated within a test case’s evalua-
tion with baseline clause. The default parameter
is filesave . See the nofilesave parameter.

help = “helpfile” Use the file when accessing the help file. The de-
fault help file locations are /usr/lib/SR/smarts.hlp.
This parameter only applies to the ASCII menu
version of SMARTS.

CHAPTER 5: Invoking SMARTS

126

logfile = "file" Use file as the log file. The default is LOGFILE.
This parameter can be overridden by the
command line -l command line option.

nodiffsave Does not save the difference output when a test
case fails. This is the default parameter.

nofilesave After test comparisons are made, delete all re-
sponse files indicated within a test case’s
evaluation with baseline clause. This
parameter is used primarily to save disk space.
The default parameter is filesave .

noshowinclude Suppress showing the names of included files
during start-up. The default parameter is
showinclude .

noshowsource Do not display source lines during test execution.
This is the default parameter.

reportfile = “file” Saves reports to file . This can be overridden by
the -S command line option for the ASCII menu
version.

statusfile = “file” Saves execution status messages to file .

showinclude Displays the included files within the test tree
hierarchy. This is the default parameter.

showsource Displays the source clause from the ATS file for
each test case during test execution. The default
parameter is noshowsource .

width = n Sets the width for the Status and History
reports to n characters. The default width is 30
characters.

SMARTS User’s Guide

127

5.4.1 Sample Resource Configuration File

Below is the default RC file smarts.rc:
atsfile = "search.ats"
help = "/usr/lib/SR/smarts.hlp"
logfile = "LOGFILE"
reportfile = ""
statusfile = ""
edit = "xterm -e vi"
diff = "diff"
nofilesave
nodiffsave
noshowsource
showinclude
width = 30

CHAPTER 5: Invoking SMARTS

128

129

6.1 Selecting the Current Position

Prior to executing tests, you must select the current position. The selected
test(s) to be executed are all the test cases that fall under the current
position. If the current position is an individual test case, then only the
selected test case is executed. The current group is identified in the
Current group text field.

To select the current position:
1. Use the mouse to click on the current position in the ATS Test Tree

display of the Main window.
2. Use the options from the Current group section of the Main window.

(See Section 3.2.3 - “Current Group” on page 67.).

CHAPTER 6

Executing Tests
This chapter explains how to select the current position, which test execution is based
upon, and how to execute tests from that point in the Xsmarts application.

CHAPTER 6: Executing Tests

130

6.2 Invoking the Go Window

At this point, the hard work is finished. All that remains is to execute the
tests and view the SMARTS-generated reports. This chapter describes
performing the test execution. Viewing reports is examined in the follow-
ing chapter.

Tests are executed from the Go window. To invoke the Go window, per-
form the following:
1. From the Current group section of the Main window, click on the Go

Window button.
2. The Go window indicated below pops up.

FIGURE 66 Invoking the Go Window

SMARTS User’s Guide

131

6.3 Selecting Execution Options

A log file name must be set. The log file contains all the test execution
information. It can be set in the following ways:

• Using the resource configuration file. Please see another section
for information on creating and editing a resource configuration
file (See Section 5.4 - “Resource Configuration File Processing” on
page 125.).

• Using the command line’s -l log_file option. Please refer to
another section for further information (See Section 5.3.1 -
“Xsmarts’ Runtime Options” on page 118.).

• Using the Main window’s File menu to select the Set Log File
option. Please see another section for further information (See
Section 3.2.1.1 - “File Menu” on page 52.).

• Using the default LOGFILE. Set no option and all test execution
PASS/FAIL information will be written to this file.

The following kinds of options can be set for prior to execution:
• A file where all the execution messages are stored. This file can be

set with the File menu’s Set Status File option in the Main
window or in the resource configuration file. Please refer to other
sections for further information on the Set Status File option (See
Section 3.2.1.1 - “File Menu” on page 52.), and the resource
configuration file (See Section 5.4 - “Resource Configuration File
Processing” on page 125.).

• Various test execution runtime options can be set with the
Option menu’s Toggles’ options and the Set Difference Utility
option and in the resource configuration file. Please refer to other
sections for further information on these GUI options (See Sec-
tion 3.2.1.2 - “Option Menu” on page 56.), the resource configu-
ration file (See Section 5.4 - “Resource Configuration File
Processing” on page 125.).

• The type of execution to be performed can be set with Go win-
dow’s Go menu and the <N> and <group> text field options, or
the command line option’s -G option. Please refer to other
sections for further information on the -G option (See Section
5.3.1 - “Xsmarts’ Runtime Options” on page 118.), and the Go
menu’s options (See Section 3.2.4.2 - “Go Window” on page 77.).

CHAPTER 6: Executing Tests

132

6.4 Executing the Test Cases

After determining the type of test execution processing, execute the
selected ATS test(s) by performing the following:
1. Click on the Go activation button. The Go activation button toggles

to Stop and the activation button’s background/foreground colors
are reversed.

As each test executes, the current test outcome is compared to the
baseline files specified within the test. Clicking on the inverse Stop
button will stop the execution following completion of the currently
executing test case.

The entire process, as well as test outcomes, are scrolled in the dis-
play area of the Go window. A test case which passes is indicated by
the statement:

TEST PASSES (group identifier)

A failed test case is indicated by the statement:

TEST FAILS (group identifier)

As the group identifier is listed in the display area of the Go window,
the location of a failed test is easily determined.

2. When the test session has completed executing, the end-of-test-execu-
tion message box pops up:

3. Click on OK.

Note: This message box can be suppressed by selecting the Suppress
EOT Message option from the Main window’s Toggles cascading menu.

6.5 Exiting the Go Window

The Go window need not be exited following each test session. The
window is exited throughout the user manual for the purpose of practice.

Exit the Go window by clicking on the window’s Close button.

133

7.1 Selecting the Current Position

Prior to executing tests, you must select the current position. The selected
reports display the execution results from the current position. If the
current position is an individual test case, then only the selected test case
is executed. The current group is identified in the Current group text
field.

To select the current position:
1. Use the mouse to click on the current position in the ATS Test Tree

display of the Main window.
2. Use the options from the Current group section of the Main window

(See Section 3.2.3 - “Current Group” on page 67.).

CHAPTER 7

Viewing Execution Tests
This chapter explains how to select and view execution reports relative to the current
position in the Xsmarts application.

CHAPTER 7: Viewing Execution Tests

134

7.2 Invoking the Report Window

When the selected test(s) are executed, SMARTS automatically stores all
the test information in the log file established or the default LOGFILE and
generates various reports based on the log file data.

Reports are displayed in the Report window. To invoke the Report
window, perform the following:
1. From the Current group section of the Main window, click on the

Report Window button.
2. The Report window indicated in the next figure pops up.

FIGURE 67 Invoking the Report Window

SMARTS User’s Guide

135

7.3 Selecting Report Options

Prior to selecting reports, the following options can be set:
• A file where reports can be saved after viewing. The file can be

set in the resource configuration file, with the -rpt command
line option, or with the File menu’s Set Report File option in the
Main window. Please see other sections for setting the file in the
resource configuration file (See Section 5.4 - “Resource Configu-
ration File Processing” on page 125.), and the -rpt option (See
Section 5.3.1 - “Xsmarts’ Runtime Options” on page 118.), or set-
ting the file with the Set Report File option (See Section 3.2.1.1 -
“File Menu” on page 52.).

• The report width of the Status and History reports can be set
with the Option menu’s Set Test Path Width on Report option or
set in the resource configuration file. For further information see
the sections (See Section 3.2.1.2 - “Option Menu” on page 56.),
(See Section 5.4 - “Resource Configuration File Processing” on
page 125.).

CHAPTER 7: Viewing Execution Tests

136

7.4 Selecting Reports

When selecting a report, keep in mind that the information will only
reflect the most recent log file data for each test case. That is, if an entire
test suite has not been executed in a while and an individual test case is
selected for execution, the generated reports will indicate the recently-
executed data for the individual test case. The data provided for the
remaining cases in the test suite, however, will reflect information from
previous test executions.

The Report Window offers the following reports:

Status report Reflects the test outcomes of the most recent test
execution, respective to the selected current
position. Therefore, more information will be
generated if the test was executed from a root or
a group than if only a single test case is executed.

History report Produces a summary report of all test outcomes
maintained in the log file, providing an overview
of test regression throughout the testing process.

Regression report Includes only the most recently executed test cases
whose outcomes have changed from the previous
executions. The Regression report helps to iden-
tify bugs that have been fixed or introduced since
the last time the tests were activated. This report
is recommended for most test executions (except
first runs, of course).

Certification report Lists the total number and percentage of PASS/
FAIL outcomes for the most recently executed
test suite. This report is ideal for an immediate as-
sessment of test outcomes.

You can view samples of these reports in another section (See Section
3.2.4.1 - “Report Window” on page 70.).

To view one of the previously generated reports from the Report window,
click on the radio button for the desired report.

The selected report is automatically loaded into the Report window’s
scroll display. The displayed report can be traversed using either a mouse
or the vertical and horizontal scroll bars.

While a report is being viewed, header information can be added to the
report, and the report saved to a file.

SMARTS User’s Guide

137

To add header information to a report:
1. Click on the Enter Info button. This window appears:

FIGURE 68 Enter Info Window

2. Click on the appropriate text field and begin entering information
when the cursor appears.

3. Click on Insert. If Cancel is clicked on, the information will not be
entered in the report.

To save a report’s output:

The Add Report option is used to append a selected report to a previ-
ously specified file. The file can be set either by using the File menu’s Set
Report File option, by indicating the file name in the resource configura-
tion file, or using the -rpt command line option.
1. Click on the Add Report button. A message box is displayed:

FIGURE 69 Add Report Dialog Box

2. Click on OK. If Cancel is clicked on, the displayed report will not be
appended to the report file.

CHAPTER 7: Viewing Execution Tests

138

7.5 Purging the Log File

Over a period of time, the log file can become very large from the accu-
mulating test information and may require extensive disk space. After
executing a large number of test executions, it is recommended to purge
the log file. Purging will leave only the most recent test execution infor-
mation for each test case.

To purge the log file:
1. From the Report Window, click on the Purge Log File button.

A message box pops up:

FIGURE 70 Purge Log File Message Box

2. Click on OK. If Cancel is clicked on, the log file will not be purged.

If the OK button was clicked, another message box is displayed:

FIGURE 71 Purge Log File Confirmation Message Box

3. Click OK to confirm the process.

7.6 Exiting the Report Window

The Report window need not be exited following each test session. The
window is exited throughout the user manual for the purpose of practice.
Exit the Report window by clicking on the window’s Close button.

139

8.1 Menu Structure

After you have created baseline files and an ATS file (See CHAPTER 4 -
Creating an ATS” on page 87.), you can use the SMARTS interactive menu
interface to run tests. It is based on the following menus:

• MAIN is the root menu which appears when the smarts
command is used.

• BROWSE is the menu from which tests are activated.
• OPTIONS is the menu from which the resource configuration is

selected.
• REPORT is the menu from which reports are selected.

The menu’s options are typed at the keyboard, followed by a carriage
return. Some commands have parameters which must be separated from
the command with blanks or tabs.

It is not necessary to type the complete command name. For example, the
command browse may be entered as br . However, shortened forms of
commands must not be ambiguous; if they can be confused with more
than one command, an error message is issued.

It is not necessary to use only lower case letters for a command. For
example, HELP and HelP work just as well as help .

NOTE: To invoke the menus, please follow the instructions in another
section (See Section 5.3.2 - “smarts’ Runtime Options” on page 122.).

CHAPTER 8

Using the ASCII Menu Interface
This chapter explains how to use SMARTS from the ASCII menu interface. For how to
invoke the menus, (See Section 5.3.2 - “smarts’ Runtime Options” on page 122.).

CHAPTER 8: Using the ASCII Menu Interface

140

8.2 Global Menu Commands

The following options may be used from all four menus:

!cmd Passes the command cmd to the operating system
command interpreter for execution. smarts waits for
execution of the command to complete before regain-
ing control. This feature allows you to run a system
command without terminating smarts.

!! Executes the previously issued system command (if
one exists). This command allows repetition of
system commands without retyping. Caution: The
text of the repeated command is not shown.

DEL key Allows you to abort the test run or system command.

exit Exits the current level, or in the case of the MAIN
menu, exits from smarts.

help Displays a list of commands for which help is avail-
able.

help [opt] Displays help for the any of the menu’s options. opt is
the name of menu option. The help utility searches
the default path for the help file /usr/lib/SR/smarts.hlp/
smarts.hlp.

If this file needs to be moved, the help parameter can
be set for the current resource configuration file.
Please see another section for further information on
help (See Section 5.4 - “Resource Configuration File
Processing” on page 125.).

Otherwise, you will need to specify the help direc-
tory with the OPTION menu’s chnghelp option
whenever smarts is run.

release Commands SMARTS to report the version number
and other implementation details.

settings Displays all the current run-time settings on the
screen.

SMARTS User’s Guide

141

8.3 MAIN Menu

The following menu commands are typed from the MAIN menu, which
appears when smarts is invoked:

SMARTS:MAIN:

Options:
browse --Browse through the test hierarchy.
report -- Report on the test results.
options --Change current runtime options.
settings -- Display current runtime settings.
release -- Show the current release of SMARTS.
help [opt] -- Display HELP text for a command.
exit -- Exit to the system.

browse Calls the BROWSE menu from which you “walk
through” your hierarchy of tests and activate tests
individually or in groups.

exit Stops smarts and returns to the caller, usually the op-
erating system command processor. All SMARTS
files are automatically closed.

options Calls the OPTIONS menu from which you can view
and the resource configuration’s run-time parame-
ters.

report Calls the REPORT menu from which you select sum-
mary reports which are based on log file data from
tests you have run.

You can issue commands by typing the first few letters of each command.
The only requirement is that the letter sequence be unique. SMARTS will
inform you when a command you issue is ambiguous or matches two or
more possible commands.

You can move from the MAIN menu to any other menu at will. SMARTS
remembers the sequence of events in its own internal stack. This means
that when switching from one menu to another, you can return immedi-
ately to the prior menu with the exit command.

CHAPTER 8: Using the ASCII Menu Interface

142

8.4 BROWSE Menu

The following menu commands are typed from the BROWSE menu:
SMARTS:BROWSE:
Options:

tree -- Display the test directory structure.

edit -- Edit ATS file.

stats -- Display number of nodes at each level.

cd <name> -- Change down to a lower sub-group.

ce <pattern> -- Same as cd <name>, but to subgroup w/ ending
pattern.

cn <N> -- Same as cd <name>, but to Nth subgroup.

cu -- Change up to the previous group.

dir -- Display the sub-groups.

tests -- List the test structure and test names.

list_ats -- List the Automated Test Script.

source <string> -- List only test cases with string as the source

source case <string> -- List only those test cases with the name
string

go [opt] -- Execute the tests in the sub-group.

time -- Display the execution time for tests.

totime -- Display only the total execution time for
tests

report -- Report on the test results in logfile.

options -- Change current runtime options.

help [opt] -- Display HELP text for command.

settings -- Display current runtime settings.

exit -- Exit current level.

The BROWSE menu can be selected from any menu and lets you select
and activate tests in the hierarchical test suite, view the hierarchical tree
structure, generate reports, or find out the amount of time a test or group
of tests takes to execute.

There is always a specific test group or test case associated with the
BROWSE menu prompt. This is generally referred to as the current
position.

You can change the current position with either the cd or cu commands.
The name of the current position is displayed at the BROWSE prompt,
prefixed with group or case depending on whether it has been defined as
a group or a test case. Initially, the current position is the first test case or
test group defined in the ATS file, and is the root of the test tree. All the
commands operate relative to the current position, i.e., go will execute the
current position if it is a test case, or all sub-tests if it is a test group.

SMARTS User’s Guide

143

Consider the figure below in the following explanations of BROWSE
menu commands (they are presented in alphabetic order). Note that in
this illustration, Group A is the root of the test tree.

FIGURE 72 Hierarchical Test Tree Structure

case string Lists only those test cases that have string in their case
name. The list is detailed in the manner of list_ats
commands.

cd name Changes the current position to the name specified;
name must be an immediate descendant as given by
the dir command. If A is the current position, C will
become the current position after typing cd C; how-
ever, G is not accessible directly from A. The inverse
operation of cd is cd.. .

ce pattern The same as cd but changes the current position to a
descendant with a substring ending in pattern.
Consider the following list generated by dir :
test.33
test.34
test.35
test.36
test.37

If a dir command listed the above, then ce 35 would change the current
position to test.35 .

A

B C

D F GE

Sub-Group:

Test Case:

Group:

CHAPTER 8: Using the ASCII Menu Interface

144

cn N The same as cd but changes the current position
to the Nth descendant beneath the current posi-
tion listed in a dir command. For example, in the
dir listing on the following page, cn 4 would
change to test.36.

cu; cd .. Changes the current position to the one just
above it. For example, if test case G were the
current position, C would be the current position
after cu. The inverse of cu is cd.

dir Lists the sub-tests and groups under the current
position. Only the immediate descendants will
be listed. If A is the current position, dir would
display:

go Executes the current test if the current position is
a test case, or all sub-tests if it is a group. A go
command with no option will execute until there
are no more test cases. If A is the current
position, tests D, E, F, and G will be run; if C is
current, only F and G will be run.

go auto Executes the current test and/or sub-tests, and
ignores all evaluation with user tests; they
are assumed to PASS.

go fail Begins execution from the current group but will
only execute cases that FAILed according to its
prior status as recorded in the current log file.

go on_fail file Executes tests from the current position until a
test fails. When a test fails, executes the group
file.

SMARTS User’s Guide

145

go limit N Executes the current test, and/or sub-tests, with a
time limit of N seconds per test. If any test takes
longer than N seconds, the test FAILs and an er-
ror message is printed. However, the testing
process will go on to completion.

go new Begins execution from the current group but will
only execute cases that have not been logged in
the current log file.

go pass Begins execution from the current group but will
only execute cases that PASSed according to the
existing contents of the log file.

go repeat N Executes from the current position N times.

go till_fail Begins execution from the current position but will
stop and return to the BROWSE menu on the first test
that fails.

list_ats Displays the actual ATS from the current position.

stats Lists the hierarchical statistics for the current posi-
tion, displaying the number of levels in the test tree
and number of test groups or cases in each level.

Tree structure:
 Number
 Level Tests
 0 5
 1 10
 2 9
 3 199
 TOTAL 223

CHAPTER 8: Using the ASCII Menu Interface

146

source string Lists only those test cases that have string as part of
their source clause.

tests Lists, line by line, all sub-tests in the hierarchy
relative to the current position.

Test case and group names are separated with the
slash (/) separator. If the current position is A, tests
will display the following paths:
/A
/A/B
/A/B/D
/A/B/E
/A/C
/A/C/F
/A/C/G

time Reports the elapsed execution time for the test case or
group based on information in the log file relating to
the current position. If the tests were activated more
than once, the most recent execution time is used,
otherwise a question mark is displayed. If the current
position is a group, then all sub-tests are reported and
the result is accumulated.

totime Reports the total elapsed execution time, without
printing out the intermediate execution times or each
test.

tree Displays the group, sub-group and test hierarchy
starting from the current position.

If the current position is A, tree will display the
following:

(1) A
(2) . B
(3) .. D
(3) .. E
(2) . C
(3) .. F
(3) .. G

SMARTS User’s Guide

147

8.5 OPTIONS Menu

The following menu commands are typed from the OPTIONS menu:
SMARTS:OPTIONS:
Options:

browse -- Browse through the test hierarchy.

report -- Report on the test results.

atsread <file> -- Read in a new ats file <file>.

logfile <file> -- Specify a new logfile <file>.

rcread <file> -- Read in a new rc file <file>.

rcsave <file> -- Save current settings to a rcfile.

rprtfile <file>-- Specify a file to send the reporting
information.

create -- Toggle creation of baseline files on or off.

filesave -- Toggle the savefile mode on or off.

diffsave -- Toggle the saving of the diff output on or
off.

showsource -- Toggle printing of ATS source during
execution.

displayinclude -- Toggle the display of including files on or
off.

newdiff <path> -- Specify a new diff utility specified in path.

newedit <path> -- Specify a new edit utility specified in path.

chnghelp <path>-- Change the directory of the smarts help
files.

width <size> -- Change default status report width.

settings -- Display current runtime settings.

help [opt] -- Display HELP text for a command.

exit -- Exit to the system.

The OPTIONS menu can be called from any menu. From this menu you
can view and change SMARTS’ run-time parameters, which have been set
from either the command line or the configuration file.

Use the OPTIONS menu commands to perform the following functions:

atsread atsfile smarts uses atsfile instead of the file specified in the
current resource configuration file or the file specified
with the -f command line switch.

chnghelp path Changes the path specified in the current resource
configuration file to be searched for the help file
smarts.hlp. The default is /usr/lib/SR.

create Creates baseline files automatically whenever a test
fails which contains an evaluation with

CHAPTER 8: Using the ASCII Menu Interface

148

baseline clause. The -c command line option can
be also used during start-up.

diffsave Toggles to the diffsave and nodiffsave modes set in
the current resource configuration file.

displayinclude Toggles between displayinclude and
nodisplayinclude modes set in the resource
configuration file.

filesave Toggles between filesave and nofilesave modes set
in the current resource configuration file.

logfile file Uses file as the log file instead of the file specified
in the resource configuration file or with the -l
command line option. The default is LOGFILE.

newdiff path Uses the comparison utility found at path instead of
the utility specified in the current resource configura-
tion file. The default comparison utility is diff.

newedit path Uses the ATS edit command found at path instead of
the command in the current resource configuration
file. The default name used is vi.

rcread rcfile Uses rcfile as the resource configuration (RC) file to
be read in instead of the file specified with the -r
command line option.

rcsave rcfile Saves the current run-time parameters set with the
OPTIONS menu to the resource configuration file
rcfile.

rprtfile file Uses file instead of the file specified in the resource
configuration file or with the -rpt command line
option.

showsource Toggles resource configuration file’s noshowsource
to showsource. showsource displays the source
clause for each test executed.

width N Uses the N width for the Status and History reports
instead of the width specified in the current resource
configuration file.

Note: Please refer to other sections for information on the resource config-
uration file’s settings (See Section 5.4 - “Resource Configuration File Pro-
cessing” on page 125.), and the command line options(See Section 5.3.2 -
“smarts’ Runtime Options” on page 122.).

SMARTS User’s Guide

149

8.6 REPORT Menu

The following menu commands are typed from the REPORT menu:
SMARTS:REPORT:Options
browse -- Browse through the test hierarchy

options -- Change current runtime options.

status [width] -- Report on the status of the test results.

history [width]-- Report on all entries for each node (test).

regression ---Report on the test result changes.

certification -- Report on the statistics of test results.

information -- Enter testing information for reporting.

purge -- Delete all test results in the logfile.

help [opt] -- Display HELP text for command.

settings -- Display current runtime settings.

exit -- Exit current level.

The REPORT menu allows you to select and generate reports on tests
previously executed. The reports are generated from the log file that
resides in the current directory.

The REPORT menu can be called from any menu, from the BROWSE
menu, or from the OPTIONS menu. This menu contains commands to
generate four different reports: the Status report, the Regression report,
the Certification report, and the History report. Sample reports are
shown at the end of this chapter. In addition, the purge command can be
used to maintain the log file by deleting old execution records.

REPORT menu commands perform the following functions:

certification Generates a Certification report that summarizes the
total number and percentage of PASS/FAIL
outcomes for current position executed.

history [width] Generates a History report that summarizes all test
outcomes maintained in the log file. The width
variable, if present, gives the width of the report. This
is useful if the path names for tests are particularly
long. The default is set to 30 characters.

CHAPTER 8: Using the ASCII Menu Interface

150

information This allows you to enter information to be used as a
header to any report. The following information can
be entered:

• Tester’s Name
• Test Version
• Test Description

To enter the tester’s name and the test version, just
type in the name followed by the carriage return.
SMARTS then prompts for the test version. For test
description, just enter text followed by a return for
each line. When finished, type control-D (^D).

purge Deletes the old log file records and keeps the most
recent information. The only information remaining
after purging is the very latest. When run on a defec-
tive or damaged log file, purge indicates that it has
found an error and cleans up the file.

regression Generates a Regression report that shows only the
most recently executed test cases whose outcomes
have changes since the previous execution.

status [width] Generates a Status report that reflects the test out-
comes of the most recent test execution.The argument
width may be used to specify the number of columns
to be used for the test name in the NAME field of the
report. The width parameter must be greater than 3
and less than 513.

Note: Examples of SMARTS reports can be found in another section (See
Section 3.2.4.1 - “Report Window” on page 70.).

151

A.1 SMARTS Setup Information

SMARTS’ GUI can be customized by modifying the X Window System
resource or setup files.

Resource, or setup files are text files which can be edited with any
standard UNIX text editor. All the graphical user interface defaults are set
in the SR resource file supplied with the product. The SR file is copied to
the /usr/lib/X11/app-defaults directory during the installation procedure.
For further information on the SR file, please refer to the Installation
Instructions.

To avoid constantly resetting the GUI parameters, the set defaults can be
modified by manually changing the SR file. Here is a list of the GUI
defaults:

smarts*optionSuppressEOTMessage.set: False
smarts*optionCreateBaselineFiles.set: False
smarts*optionSaveResponseFiles.set: True
smarts*optionSaveDifferences.set: False
smarts*optionShowATSSourceDuringExecution.set: False
smarts*optionDisplayIncludedFiles.set: False
smarts*ATSFile.dirMask: *.ats
smarts*RCFile.dirMask: *.rc
smarts*saveAsRCFile.dirMask: *.rc
smarts*logFile.dirMask: *
smarts*reportFile.dirMask: *
smarts*statusFile.dirMask: *

These defaults effect the default settings for options in the Main window
of SMARTS. Each defaults is described on the following pages.

 APPENDIX A

Customizing the GUI
Environment
This appendix explains where the graphical user interface (GUI) setup information is
stored and gives you instructions on how to change it.

APPENDIX A: Customizing the GUI Environment

152

A.2 Default Settings

When opening the GUI-version of SMARTS, the on/off status of options
and default values of options are determined by the default switch setting
in the resource file. Within the resource file, switch settings are indicated
by set , with False interpreted as off .

These defaults determine the on/off status of the Toggles submenu’s
options. False is interpreted as off; True is interpreted as on.

smarts*optionSuppressEOTMessage.set: False —

The Suppress EOT Message option is defaulted to
off. Change False to True to suppresses the Go
window’s end-of-execution message.

smarts*optionCreateBaselineFiles.set: False —

The Create Baseline Files option is defaulted to off.
Change False to True to overwrite baseline files with
response files when test execution fails.

smarts*optionSaveResponseFiles.set: True —

The Save Response Files option is defaulted to on,
thereby saving all response files. Change True to
False to remove the response files after each test
execution.

smarts*optionSaveDifferences.set: False —

The Save Difference Files option is defaulted to off.
Change False to True to save the difference output for
each test case that fails to basename.diff.

smarts*optionShowATSSourceDuringExecution.set: False —

The Show ATS Source During Execution option is
defaulted to off. Change False to True to display the
Automated Test Script’s (ATS) source clause is dis-
played in the Go window during test execution.

smarts*optionDisplayIncludedFiles.set: False —

The Show Included Files option is defaulted to off.
Change False to True to display any included files in
the ATS file in the ATS Test Tree display.

For further information on the options affected by the GUI defaults (See
Section 3.2.1.2 - “Option Menu” on page 56.).

SMARTS User’s Guide

153

A.3 Default Directory and Directory Mask Settings

Most users prefer to name certain types of files with unique extensions,
i.e. naming all ATS files filname.ats and all configuration files
filename.rc . When opening files, SMARTS has default masks to filter
files that match the masks, allowing for easy file location of particular
types of files.

These defaults determine the masks for File menu’s options:

smarts*ATSFile.dirMask: *.ats —

Sets the ATS file directory mask to *.ats for the Open
ATS File option.

smarts*RCFile.dirMask: *.rc —

Sets the configuration file directory mask to *.rc for
the Open RC File option.

smarts*saveAsRCFile.dirMask: *.rc —

Sets the configuration file directory mask to *.rc for
the Save RC File As option.

smarts*logFile.dirMask: * —

Sets the test execution log file mask to * for the Set
Log File option. * will lists all the files in the current
directory listed.

smarts*reportFile.dirMask: * —

Sets the report file mask to * for the Set Report File
option, listing all the files in the current directory.

smarts*statusFile.dirMask: * —

Sets the test execution status file mask to * for the Set
Status File option, listing all the files in the current di-
rectory.

Please refer to other sections for instructions on using directory masks
(See Section 3.1.1 - “File Selection Windows” on page 44.), File menu’s
options (See Section 3.2.1.1 - “File Menu” on page 52.).

APPENDIX A: Customizing the GUI Environment

154

155

B.1 Automated Regression Testing

SMARTS is a powerful and effective tool for use in automated software
testing. It is important to appreciate, however, that even though the
SMARTS application is a comprehensive organization tool, the "engine"
of an effectively automated testing system is test planning and script
writing.

In practice, using SMARTS is only part of automating the regression test-
ing process. Other parts of the process include creating test baseline
(which may involve CAPBAK/X) and employing a variety of comparison
methods.

 APPENDIX B

Recommended Usage
This appendix explains where the setup information is stored and gives you instructions
on how to change it.

APPENDIX B: Recommended Usage

156

B.2 Organizing Tests

Several common sense guidelines to remember when organizing a
regression test suite:

• Organize tests into a hierarchy to facilitate test selection.
• When possible, divide tests into smaller, function-driven test

suites. Should test re-structuring be desired, modular tests will
expedite the re-structuring process.

• Like tests — tests for similar features of a system — should be
grouped together.

• Always try to detemine the most effective way to execute
comparisons between baseline and response files. If the STW/
Regression product bundle is available on the current system, the
EXDIFF utility can be employed. (The EXDIFF utility has both
ASCII and image file comparison capabilities.)

SMARTS User’s Guide

157

B.3 ATS Creation

After developing comprehensive test scripts, the test plan is transformed
into an ATS (Automated Test Script). The ATS file is read by SMARTS to
automate the testing process. Creating an ATS file is the most important
and time-consuming part of using SMARTS. Follow the suggestions
below to lessen the burden.

• In many ways, the ATS file structure should emulate the
recommended organization of test suites. Within the ATS file, a
minimal number of function-driven test groupings should be
hierarchically arranged. This structure facilitates both the debug-
ging and ATS restructuring process. For a first-time user, a large,
detailed ATS file can be overwhelming.

• Use the environment clause to establish internal variables.
Variables can define long path names as abbreviated paths, thus
minimizing the amount of typing to be done in the ATS. Tests can
also become portable from directory to directory by simply defin-
ing path as a variable. Please refer to other sections for further
information (See Section 4.2.2 - “Test Case Clauses” on page 91.),
(See Section 4.3.6.2 - “The Environment Clause” on page 101.).

• Take advantage of the product-supplied makeats utility. This
utility expedites the process of creating an ATS file, especially
when executed with the -F (Fast Generation switch) and the -K
(Keysave File Standard Generation) switch options. Please refer
to other sections for further information on this utility (See Sec-
tion 4.5 - “The makeats Utility Overview” on page 106.), (See Sec-
tion 4.5.1 - “Invocation and Use of makeats” on page 106.).

• Indent each group and test case within the ATS to improve read-
ability. Use tabs only.

For complete information on organizing tests within the ATS file, please
(See CHAPTER 4 - Creating an ATS” on page 87.).

APPENDIX B: Recommended Usage

158

B.4 Executing the Test Suite and Generating Reports

Having created the ATS file, the majority of user-required procedures are
completed. The remaining procedures are to execute the test suite and
view generated reports.

• Execute tests in the background with the -G go_mode option.
• Take advantage of the GUI’s Create Baseline Files option in the

Main window or the ASCII menu’s create option in the
OPTIONS menu. When an evaluation fails, this option over-
writes a baseline file with its corresponding response files. Use
this option the first time tests are executed, bypassing the manual
creation of baseline files.

• To avoid clicking OK every time on the GUI’s end-of-test execu-
tion message,activate the Toggles cascading menu’s Suppress
EOT Message option.

• When a test is executed, all of the resulting information is stored
in a log file. Over time this log file can become very large,
accumulating extensive amounts of disk space. Therefore, use the
Report window’s Purge Log File option in the GUI or the
REPORT menu’s purge option after several executions.

• To immediately determine whether a test has regressed since its
previous execution, display the Regression report.

SMARTS User’s Guide

159

B.5 SMARTS and STW/Regression

SMARTS is designed as the central part of the STW/Regression product
bundle. Using CAPBAK/X, a user session can be captured, and baseline
files created. The user session and baseline files can then be referenced
within the ATS file. The ATS file can command the test session to play
back and compare the captured images.

The following is an example of how to set up a standard SMARTS play-
back script. The ATS file can be manually created or the makeats utility
can be used.

1. To run this script, we modified the default diff command to read
Xexdiff in the smarts.rc file. This modification allows the
evaluation with baseline clause to compare bitmap images
rather than ASCII files. This script runs a standard CAPBAK/X
keysave file that generates five saved bitmap images. Here is the
same script with zero saved images:

define case FIVE
{

source
"Play a keysave file that saves 5 images.";
activation
"Xplabak -k FIVE.ksv";
evaluation with baseline

"FIVE.r01" vs. "FIVE.b01",
"FIVE.r02" vs. "FIVE.b02",
"FIVE.r03" vs. "FIVE.b03",
"FIVE.r04" vs. "FIVE.b04",
"FIVE.r05" vs. "FIVE.b05";

}

define case FIVE includes a comparison of five images; it is assumed
that the indicated images were saved using CAPBAK/X.
2. This script runs a standard CAPBAK/X keysave file that generates NO

saved images.
define case NONE
{

source
"Play a keysave file that does not saves 0 images.";
activation
"Xplabak -k NONE.ksv";
noevaluation

}

define case NONE shows how to playback a keysave file in which no
images were saved. (The results of playing back such a keysave file will
always produce a PASS evaluation.)

APPENDIX B: Recommended Usage

160

B.5.1 Generating Standard Replay Scripts

To automatically generate the previous script passages with the makeats
utility, use the command:

makeats -K basename number

basename The basename of the keysave file.

number The number of images to be compared. For the script
to work, there must be at least as many windows as
are specified here.

The two ATS passages indicated on the previous page could have been
generated using the following command:
1. makeats -K FIVE 5

2. makeats -K NONE 0

161

Symbols
! cmd option 140
!! option 140

A
Action menu 47
activation clause 8, 91, 101

syntax 101
Add Report button 55, 137
ASCII menus 117
ATS 5, 87

#include 100
activation clause 8, 91, 101
BNF description 105
character set 94
comments 90, 97
conditional expressions 97
creation 157
define case name 89
define group name 89
delimiter 96
Description Language 94
directory mask 153
editing 60, 81
environment 92
environment clause 101
evaluate with baseline clause 109
evaluation with baseline clause 147
evaluation clause 8, 102
evaluation with baseline 91, 103
evaluation with baseline clause 11, 123,

159
evaluation with function 11, 92, 103
evaluation with user 11, 91
evaluation with user clause 102, 109, 144
executing 9, 77

group 7
identifiers 95
keywords 95
levels 65, 90
noevaluation 102
noevaluation clause 11, 91, 109
numbers 97
organization 156
source clause 8, 91, 100, 146
strings 96
structure 65, 87, 120
structure description 88
termination 104
test case 7, 89
test tree hierarchy 5
token types 94
white space characters 94

ATS File cascading menu 53
ATS Test Tree display 20, 24, 51, 65, 120,

129, 133
atsread atsfile option 147
auto option 79
Automated Test Script 5, 53, 87

B
batch execution 124
BROWSE menu 142
browse option 141
button

Add Report 55, 76, 137
Cancel 45
Certification 74
Close 30, 76, 80, 132, 138
Directories 84
Edit Window 26
Enter Info 75, 137
Filter 45

Index

INDEX

162

Go 34, 80, 132
Go Window 22, 130
Help 76, 80
History 72
List ATS 83
Node Stats 82
OK 45
Purge Log File 38, 138, 158
Purge Log File button 75
Regression 73, 116
Report Window 23, 134
SMARTS 116
Status 28, 71
Stop 24, 34, 80, 132
Tests 83
Time Stats 82

C
Cancel button 45
CAPBAK/X 3, 7, 159
cascading menu

RC File 54
Toggles 131, 132, 152, 158

Case option 84
case string option 143
cd .. option 144
cd name option 143
ce pattern option 143
Certification button 136
Certification report 13, 136, 149
changing directories 143
character set 94
character

white space 94
chnghelp path option 147
Close button 30, 132, 138
cn N option 144
cn text field 67
command

smarts 117
Xsmarts 20, 115
xterm -e vi 125

comments 90, 97
comparing files

diff 159
Xexdiff 159

comparison utility
diff 11, 59, 148
exdiff 59
setting 59
Xexdiff 11, 59

compilation 19, 32

conditional expression
else 98
if 97
while 99

conditional expressions 97
Create Baseline Files option 152, 158
create option 147, 158
cu option 144
current group

selecting 67
Current group text field 24, 51, 65, 67, 129,

133
current position 129, 133

selecting 9

D
DEL key option 140
delimiters 96
description language 87
diffsave option 148
dir option 144
Directories list box

description 44
directory

smarts.demo 16, 90
display

A 120
ATS Test Tree 20, 24, 51, 65, 120
ATS Test Tree display 129, 133
Node Information 82

displayinclude option 148

E
e OPTIONS me 158
Edit window 26, 53, 81
Edit Window button 26
editing 60
editor, vi 125
else clause 98
end-of-test-executon message box 24
Enter Info button 137
environment clause 63, 91, 101

syntax 101
environment variables 63
evaluation clause 8, 91, 102

syntax 102
evaluation with baseline clause 11, 91, 103,

109, 123, 147
syntax 103

evaluation with function 103
syntax 103

SMARTS User’s Guide

163

evaluation with function clause 11, 92
evaluation with user clause 11, 91, 102, 109,

144
syntax 102

EXDIFF 159
executing tests 129, 133
execution

batch 124
Exit option 21, 55

Help window 47
exit option 140, 141

F
fail option 79
file

ATS 119, 123, 153
basename.bxx 107
basename.diff 58
basename.ksv 107
basename.rxx 107
filename.rc 153
filname.ats 153
including 100
log file 10, 120, 153
LOGFILE 38, 123, 131, 134, 148
RC 16, 62, 118, 153
resource 151, 155
resource configuration 11, 16, 54, 62, 115,

123, 153
search.ats 16, 90
smarts.hlp 147
smarts.rc 11, 118, 159

file comparisons 91
File Menu 52
File menu 21, 81, 125, 131, 135
file selection window 44

components 44
usage 45

Files list box
description 44

filesave option 148
Filter button 45
Filter entry box

description 44
font styles xiv-xv

G
go auto option 144
Go button 24, 34, 132
go fail option 144
go limit N option 145

go new option 145
go on_fail file option 144
go option 144
Go option menu 120
go repeat N option 145
go till_fail option 145
Go window 22, 55, 77, 120, 130
Go Window button 22, 130
GUI

invoking 115

H
Help option 64, 140
Help window 46, 64, 76

description 46
History button 136
History report 13, 126, 136, 148, 149

I
identifiers 95
if clause 97
including files 100
information option 150
invocation 20

ASCII menu interface 117
GUI 115

K
keyword

activation 95
baseline 95
case 95
define 95
empty 95
environment 95
evaluation 95
function 95
group 95
if 95
include 95
noevaluation 95
not_empty 95
not_exist 95
source 95
termination 95
user 95
vs. 95
while 95
with 95

INDEX

164

L
list_ats option 145
log file

directory mask 153
purging 122

logfile file option 148

M
Main window 11, 20, 46, 51, 115, 158
makeats

$activation = string command 109
$command = string 109
$evaluation = method command 109
$include = file_name 109
$source = string command 109
basename 160
-F 106
-help 107
infile 106
input file structure 108
-K basename number 107, 113, 157, 160
number 160
outfile 106
-S N 107
syntax 106
-t 107

makeats utility 5, 87, 106, 157
manual organization XIV
menu

Action 47
ASCII 139
BROWSE 142
File 21, 52, 65, 69, 81, 125, 131, 135, 153
MAIN 141
Option 11, 56, 81, 125, 131, 135, 147, 158
REPORT 149, 158
STW/Regression 116

message box
description 50
end-of-test-execution 24
Help 47

N
new option 79
newdiff path option 148
newedit path option 148
Node Information display 82
noevaluation clause 11, 91, 102, 109

syntax 102
numbers 97

O
OK button 45
Open ATS File option 153
Open RC File option 54, 153
help 140
option

help 140
140, 149, 150, 152
!! 140
!cmd 140
atsread atsfile 147
browse 141
Case 84
case string 143
cd name 143
cd.. 144
ce pattern 143
chnghelp path 147
create 147, 158
Create Baseline Files 57, 152, 158
cu 68, 144
DEL key 140
diffsave 148
dir 144
displayinclude 148
Exit 21
exit 140, 141
fail 79
filesave 148
go 144
go auto 144
go fail 144
go limit N 145
go new 145
go on fail file 144
go pass option 145
go repeat N 145
go till_fail 145
Help 64, 140
information 150
limit 79
list_ats 145
logfile file 148
Main window

Search 47
newdiff path 148
newedit path 148
on fail 79
Open ATS File 53, 153
Open RC File 153
options 141
pass 79

SMARTS User’s Guide

165

purge 150, 158
rcsave file 148
Regression 150
release 140
Reload Current ATS File 53, 81
repeat 79
report 141
rptfile 148
Save Difference Files 58, 152
Save RC File 54
Save RC File As 54, 153
Save Response Files 57, 152
Set Difference Utility 11, 59, 131
Set Edit Command 60, 81
Set Log File 55, 131
Set Log File option 153
Set Report File 55, 121, 135, 153
Set Status File 55, 131, 153
Set Test Path Width on Report 135
settings 140
Show ATS During Execution 152
Show ATS Source During Execution 58
Show Included Files 58, 152
Show Local Environment Variables 63
Show Option Settings 62
showsource 148
Source 84
source string 146
stats 145
Suppress EOT Message 57, 132
tests 146
till fail 80
time 146
totime 146
tree 146
width N 148

Option menu 11, 49, 56, 81, 125, 131, 135
option menu

Go 78, 120
Search 84

OPTIONS menu 125
options option 141
organizing tests 87

P
program

searchi.c 16
searchp.c 16

Pull-Down menus 48
Purge Log File button 38, 138, 158
purge option 150
purging the log file 38, 122, 138

R
rcsave rcfile option 148
Regression button 116, 136
regression option 150
Regression report 13, 36, 136, 150, 158
release option 140
Reload Current ATS File option 81
report

Certification 13, 28, 136, 149
header information 150
History 13, 28, 126, 136, 148, 149
Regression 13, 28, 36, 136, 150, 158
Status 13, 28, 126, 136, 148, 150

REPORT menu 149, 158
report option 141
report viewing 69
Report window 23, 28, 55, 70, 134, 158
Report Window button 23
reports

adding information 75
saving 76
width 61

resource configuration 62
atsfile = "file" 125
diff =

diff = "command" 125
diffsave 125
directory mask 153
edit = "command" 125
filesave 125
help = "helpfile" 125
logfile = "file" 126
nodiffsave 126
nofilesave 126
noshowinclude 126
noshowsource 126
reportfile = "file" 126
showinclude 126
showsource 126
statusfile = "file" 126
width = n 126

resource configuration file 131
rprtfile file option 148

S
s purge opti 158
Save Difference Files option 152
Save RC File As option 153
Save Response Files option 152
saving reports 76
saving response files 58

INDEX

166

Scroll bars 44-45
Search option 47
selecting windows 69
Selection entry box

description 44
Set Difference Utility option 11, 131
Set Edit Command option 81
Set Log File option 131, 153
Set Report File option 55, 76, 121, 135, 153
Set Status File option 131, 153
Set Test Path Width on Report option 61,

135
setting up test baselines 7
settings option 140
Show ATS Source During Execution

option 152
Show Included Files option 152
showsource option 148
smart

-l log_file 148
SMARTS

compiling 19
creating an ATS 7
creating baseline files 57
evaluating 11
executing the ATS 9
invoking 20
setting up test baselines 7

smarts 139
-c 148
-e 123
-f ats_file 123
-i 123
-l log_file 123
-r rc_file 123
-r tc_file option 148
-rpt report_file 148
-s status_file 124
syntax 122

SMARTS button 116
source clause 8, 91, 146

syntax 100
Source option 84
source string option 146
special text XIV
stats option 145
Status button 28, 71, 136
Status report 13, 28, 126, 136, 148, 150
Stop button 24, 34, 80, 132
strings 96
STW/Regression 3
STW/Regression menu 116
Suppress EOT Message 132, 152, 158
syntax

smarts 122
Xrecord 106
Xsmarts 118

T
termination clause 104

syntax 104
test case

activating 10
activation clause 8, 101
clauses 91
defining 89
environment clause 92, 101
evaluation clause 8, 91, 102
evaluation with baseline 103, 109
evaluation with baseline clause 11, 91,

109, 123, 159
evaluation with function 11, 103
evaluation with function clause 92
evaluation with user 11, 102, 109
evaluation with user clause 91, 144
noevaluation 102, 109
noevaluation clause 11, 91
source clause 8, 91, 100, 146
syntax 100
termination 104

test group
defining 89

test tree hierarchy 5, 65, 87
testing

automated 1
executing 67
planning 1
regression 36, 73
script writing 1

tests
batch execution 124
current position 129, 133
executing 129
viewing reports 133

Tests button 83
tests option 146
text

"double quotation marks" XIV
boldface XIV
italics XIV

text field
80, 80, 131, 131

cd 67
ce 68
cn 67
Current group 24, 51, 65, 67, 129, 133

SMARTS User’s Guide

167

Search 84
text style xiv-xv
till fail option 80
time option 146
Time Stats button 82
title bar 51
Toggles cascading menu 131, 152, 158
token types 94
totime option 146
tree option 146

U
utility

makeats 5, 87, 106, 157

W
while clause 99
white space characters 94
history 149
option

history 149
status 150

status 150
width N option 148
window

Edit 26, 53, 81
Go 22, 77, 120, 130
Help 46, 64, 76
Main 11, 20, 46, 51, 115, 158
Report 23, 28, 55, 70, 134, 158

X
Xmsarts

-G auto 119
Xsmarts

-f ats_file 119
-G fail 119
-G go_mode 119, 131, 158
-G limit 119
-G new 119
-G no_option | null 119
-G on_fail 119
-G pass 119
-G repeat 119
-G till_fail 119
-L log_file 120
-l log_file 131
-N line 120
-P path_name 120

-R history 121
-R regression 121
-R report_type 121
-R status 121
-rpt 121
-rpt report_file 123, 135, 137
-S 122
syntax 118
-T 122
-X 122

Xsmarts command 20
Xsmarts -R certification 121

