
1

APPLICATION NOTE

Quick Start

Processing Scribble Using TCAT C/C++

TCAT C/C++ for Windows is a Test Coverage Analysis Tool that provides
detailed tabular and graphical reports on tests of C and C++ software applica-
tions. It operates on Windows 95 and Windows NT 4.0.

Overview

This application uses Microsoft Visual C++(MSVC) example program
Scribble to demonstrate how to create and view the coverage reports,
calltrees and directed graphs of the trace files that TCAT C/C++ for Win-
dows creates when an instrumented application is tested.

Figure 1 TCAT C/C++ Program Group

TCAT C/C++ for Windows

2

Figure 2 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

Application Note

3

Tool Bar

The options available from the Tool Bar are the frequently used TCAT C/
C++ for Windows features.

Figure 3 Tool Bar

Configure TCAT Selects among modes of instrumentation.

Build Instrumented App. Instruments an application.

Run Instrumented App. Runs the instrumented application.

Analyze Cover Analyze the coverage achieved from tests.

Run DiGraph Digraph display for the selected object.

Run Calltree CallTree display for the selected object.

Run SMARTS Organizes and executes a collection of tests.

Run CAPBAK Captures and plays back tool.

Configure Build Instrument Run Instrument

Cover Digraph Calltree

CAPBAKSMARTS

TCAT C/C++ for Windows

4

Scribble

Scribble employs many features of Microsoft Foundation Classes (MFC).
There are several versions of Scribble, which become increasingly com-
plex in each chapter. MSVC++ 5.0 has eight chapters; The present exam-
ple uses Chapter 8. MSVC++6.0’s Scribble example is in Chapter 7.

Figure 4 Scribble, Chapter 8

This demonstration includes the following steps:
1. Preparing the example application, Scribble, for instrumentation.
2. Instrumenting Scribble.
3. Building an executable file, Scribble.exe.
4. Testing Scribble.
5. Displaying tabular and graphical reports on the test of Scribble.

Application Note

5

Preparing and Instrumenting Scribble

There are two methods to instrument Scribble by either using options
from the TCAT C/C++ Integrated with MS-Visual C++ v5.0 / v6.0
window or by using the TCAT C/C++ Program Group window.

Using the TCAT C/C++ Integrated with MS-Visual C++ v5.0 / v6.0 window

1. Select File|Open Workspace, then select the "Scribble.dsw" file from
the TCAT-CPP\Examples\Example2\Scribble-vc5.0 directory.

Figure 5 Open Workspace Dialog Box

2. From Build pull-down menu select Configurations, then click the
Add button and type in "Coverage" as a new configuration name.

3. Select Project|Settings, then select Win32 Coverage in the box of
Setting For:.

TCAT C/C++ for Windows

6

4. From Project select Setting.

• Click on the Scribble project name, then click on the General tab
menu, and type in "Coverage" to both the Output files and Inter-
mediate files option.

• Click on the C/C++ tab menu, then select the Precompiled Head-
ers, and select the Not using precompiled headers options.

• Click on the "stdafx.cpp" file form Scribble, then select the Pre-
compiled Headers and select Not using precompiled headers
options.

Figure 6 Project Setting Dialog Box

Application Note

7

5. From Tools pull-down menu select Customize, then click on the
Add-Ins AND Macro Files tab menu, and select SRCov Developer
Studio Add-in option.

Figure 7 Customize Option Dialog Box

6. Click on the Configure TCAT Option button.
• Click on the Instrumentor Options tab menu, then select the C1

and S1 options.
• Click on the Runtime Selection tab menu, then select the

"RUNTMDLL.lib" (located in the Program directory) file.

Instrumenting Scribble

1. Click on the Build Instrumented App button.

The instrumented object files will be placed in the debug (or release direc-
tory if you choose) directory.

Executing the Instrumented Scribble

1. Click on the Run Instrumented App button, then test-drive the
instrumented Scribble to create a trace file.

TCAT C/C++ for Windows

8

Using the TCAT C/C++ Program Group window

Setup using Microsoft Visual C++

In Microsoft Visual C++ v5.0 / v6.0:

1. Select File|Open Workspace, select Scribble.dsw (located in the
TCAT-CPP\Examples\Example2\Scribble directory) as the project.

2. Select Insert|Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build|Build Scribble.exe.

In Microsoft Visual C++ v4.x:

1. Select File|Open Workspace, select Scribble.mdp (located in the
Samples\Scribble directory) as the project.

2. Select Insert|Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build|Build Scribble.exe.

Instrument Using WinIC9

WinIC9 instruments the application under test in order to produce trace
files of the test.

To instrument the example application:
1. Start up WinIC9.

Figure 8 WinIC9 Window

Application Note

9

2. Select Scribble.cpp using the Select button. Note that more than one
file can be selected and instrumented, and that instrumenting multi-
ple files will result in a more thorough coverage report.

Figure 9 Select File(s) to Instrument

Note: More than one file can be selected and instrumented, and
instrumenting multiple files results in more thorough coverage.

TCAT C/C++ for Windows

10

3. Select Options button.

Setting Compiler Options for the instrumenter. The TCAT instrumenter
invokes the native compiler after completing its processing steps. To
instrument a program correctly the compiler options need to be set cor-
rectly.

The compiler options very with your application and they can be copied
directly from Visual C++ settings. To find the compiler options you need
select Setting for the project. Then select the appropriate Project Settings.
Select C/C++. The Option that are needed can be found in the field
Project Options.

One example compiler options setting is listed below.

Scribble Debug Version compiler options:

/nologo /MDd /W3 /Gm /GX /Zi /Od /DWIN32 /D_DEBUG /D_WINDOWS /
D_AFXDLL /D_MBCS /Fo”.\Debug/” /Fd”./Debug/” /FD/c

Scribble Release Version compiler options:

/nologo /MD/W3/GX/O2/DWIN32 /NDEBUG/D_WINDOWS/D_AFXDLL/
D_MBCS/Fo”.\Release/”/Fd”./Release/”/FD/c

4. Select Instrument. A copyright box pops up before the instrumenta-
tion of each file. Click OK to proceed.

5. During instrumentation, a command-line window displays messages
and warnings. When instrumentation of a file is complete, a prompt
appears. Type exit to proceed.

6. Select Exit from the WinIC9 window.

The instrumentor has parsed the application’s source code, looking for
logical branches or segments and inserting markers (function calls).

Instrumenting Scribble will not change its functionality. When compiled,
linked and executed, the instrumented application will behave as it nor-
mally does, except that it will write coverage data to a trace file. For more
information on TCAT C/C++ for Windows’ instrumentor, refer to Chap-
ter 3 of the Users Guide.

Application Note

11

Link Using Microsoft Visual C++

In Microsoft Visual C++:
1. Build Scribble.exe.

Figure 10 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

The preceding steps create an instrumented executable file for Scribble,
which when executed will create a trace file.

TCAT C/C++ for Windows

12

Executing the Instrumented Scribble

1. Execute Scribble from Microsoft Visual C++.
2. Test-drive the instrumented Scribble to create a trace file.

Figure 11 Testing Scribble

3. Select Exit from the Scribble File menu.
The instrumented test produces a trace file, the trace file created by
this “test,” Trace.trc, resides in the tcat_db directory hierarchy in the
Scribble directory, which in the next step Cover will use to produce
coverage reports.

Application Note

13

Viewing Coverage Reports with Cover

To view a coverage report of the trace file created by the execution of the
instrumented version of Scribble:
1. Start up Cover.
2. From the File menu, select Open.
3. In the Open dialogue, click on the filename Trace.trc from the

tcat_db\Scribble directory created during instrumentation. The dia-
log box then asks for an archive file; ignore this request by clicking
the Cancel button. A coverage report of the test of Scribble appears.

Cover displays trace and coverage information on your development
project in a treelike list. You can click on a branch of the list to expand it
and show its content, and also to contract it. The several fields in the
report have the following meanings:

Hits The number of times the segment and call pair were executed during
the test.

Count The number of segments and call pairs within the function.

C1 The percentage of branch coverage for each function.

S1 The percentage of call pair coverage for the function.

Figure 12 Coverage Report on Scribble, with One Function Expanded to Show
Segments

TCAT C/C++ for Windows

14

Viewing the Source Code Associated with Cover

You can view the source code associated with any segment numbers, or
callpair numbers of the function in a coverage report by clicking on the
segment numbers or callpair numbers. For example, double-click on a
segment number. The code is displayed in a separate window with the
calling statement highlighted in red.

Figure 13 Source Code Displayed from Coverage Report

Application Note

15

Viewing Directed Graphs with DiGraph

To view a directed graph (digraph) of the application:
1. Open up DiGraph.
2. Using the File menu, select Open.
3. You are prompted for the name of the directed graph to view. Find

the Scribble.dg file under the d_graph directory.
4. The next prompt asks for the name of the database file. Select the

Scribble.mdf file in the tcat_db\Scribble directory.

Figure 14 WinDiGraph Open Dialog Box

5. A window pops up listing the available functions (Figure 15). For this
example, select CScribbleDoc::DeleteContents[void].

Figure 15 Select MDF ID Box

TCAT C/C++ for Windows

16

A directed graph depicting possible program flows of the function
CScribbleDoc::DeleteContents[void] appears.

Figure 16 Directed Graph of Scribble

Application Note

17

By clicking near the number associated with an edge and selecting the
View Source button, you can call up and view the associated source code.

Figure 17 Viewing Associated Source Code from Digraph

The source code associated with Segment 2 appears in a new window. In
this figure, the windows showing the digraph and the source code have
been tiled.

TCAT C/C++ for Windows

18

Viewing a Calltree

1. Start up CallTree.
2. Using the File menu, select Open.
3. You are prompted for the name of the calltree to view. Find Scrib-

ble.cg under the c_graph directory.
4. You are prompted for the name of the database file. Find the Scrib-

ble.mdf file under the tcat_db directory.
5. A Select Function list box appears. Select the CScribbleDoc::Delete-

Contents[void] function.

Figure 18 Select MDF ID Box

The following calltree depicting the selected function appears.

Figure 19 Displaying a Calltree

Application Note

19

Viewing the Directed Graph Associated With a Calltree Node

For each node in your calltree, you can easily display an associated
directed graph. Select the Root node of the calltree. Notice that the View
Digraph button on the toolbar now has a red arrow, indicating that it is
available. Click this button. You will see a directed graph of the CScrib-
bleDoc::DeleteContents[void] function.

Figure 20 DiGraph Displayed from Calltree Window

TCAT C/C++ for Windows

20

Viewing the Source Code Associated With a Calltree

You can view the source code associated with any node in a calltree by
clicking on the corresponding edge. For example, click on the edge run-
ning from the root node to the left-most node. Once the edge is selected, it
will be displayed thicker. Notice that the Source Code button on the Tool
Bar has a red arrow. Click on this button to display the associated source
code. The code is displayed in a separate window, with the calling state-
ment highlighted in red.

Figure 21 Source Code Displayed from Calltree

Application Note

21

TCAT C/C++ for Windows: Analysis of Reports

In the following analysis, a coverage report shows that a certain function,
CScribbleDoc::DeleteContents[void], has been tested 75.00%.

Figure 22 Coverage Report Showing C1 Coverage of 75.00% on the Function
CScribbleDoc::DeleteContents[void]

The function consists of one segments and one callpairs. This coverage
report shows that segments 1 and 3 were hit seven times each, segment 2
was hit 17 times, and segment 4 not once. The callpair 1 was exercised 24
times, callpair 2 was exercised 17 times, and callpair 3 was exercised
seven times. The following few pages show graphical views of these
numerical results.

TCAT C/C++ for Windows

22

In Figure 16, TCAT C/C++ for Windows graphs CScribbleDoc::Delete-
Contents[void] and its relations. The calltree shows the callpairs in
CScribbleDoc::DeleteContents[void], and the digraph shows possible
program flows through CScribbleDoc::DeleteContents[void] divided
into segments.

Figure 23 Calltree and Digraph of CScribbleDoc::DeleteContents[void]

Note that the calltree shows three callpairs. These callpairs are shown in
the coverage report in Figure 21, which have been exercised 24, 17, 7
times respectively. The coverage report shows that the percentage of S1
coverage (coverage of call pairs) was 100% for this function.

Note that the digraph shows three segments. The coverage report in Fig-
ure 21 shows that the test of Scribble hit three of four segments . The cov-
erage report shows that the percentage of C1 coverage (branch coverage)
was 75.00%.

Application Note

23

To look at source code associated with callpairs, highlight the graphic
lines connecting the functions shown in the calltree.

Figure 24 Calltree and Source Code Associated with One Callpair

TCAT C/C++ for Windows

24

To look more closely at the segments, highlight one of the graphic lines in
the digraph by clicking on it close to the number. Then use the Source
Code button to display the associated source code.

Figure 25 Digraph and Source Code Associated with One of Its Segments

Closing TCAT C/C++ for Windows

To close TCAT C/C++ for Windows:
• Select File|Exit from the menu bar of each open program, or
• Double-click on the frame window Close Box of each program.

You have now seen all of TCAT C/C++ for Windows’ main features.

