APPLICATION NOTE

Quick Start
Processing Scribble Using TCAT C/C++

TCAT C/C++ for Windows is a Test Coverage Analysis Tool that provides
detailed tabular and graphical reports on tests of C and C++ software applica-
tions. It operates on Windows 95 and Windows NT 4.0.

Overview

This application uses Microsoft Visual C++(MSVC) example program
Scribble to demonstrate how to create and view the coverage reports,
calltrees and directed graphs of the trace files that TCAT C/C++ for Win-
dows creates when an instrumented application is tested.

& TCAT C and C++ M=] E3
File Edit “iew Help

¢l 89 =

Cover coverd DiGraph

i 109

e &
fe] Readme WwinlC9

|7 obiect(s] |4.25KE Y

Figure 1 TCAT C/C++ Program Group

TCAT C/C++ for Windows

“t.. Scribble - Microzoft Developer Studio - [Scribble.cpp]

JJ@ File Edit View Insert Project Build Tools Window Help _|5!|5|
Y 2EE C Be|s - I EE | i j“..;gﬁ.f;ﬂ‘
7o F Ol @ i TE J]Scribble = |[win3z Coverage == {fn|
CScribbledpp =] &) class members) Fl|cseribbledpn =|E - |
=l ## Scribble . cpp : Defines the class behaviors for the application.
o =
Workspace ‘Seribble’: 1 project(s) #+ Thi= 1= a part of the Microsoft Foundation Classes C++ library.
E|--- Scribble files S« Copyright (C) 1992-1997 Microsoft Corporation

. 4 <+ All rights ressrwved.

=] a Source Files "

" ¢ Thiz source code i= only intended as a supplement to the
< Microzoft Foundation Classes Reference and related

<« electronic documsntation provided with the library.

<+ See these sources for detailed information regarding the
< Microzoft Foundation Classes product.

#include "stdafz.h"
#include "Scribble. h”

#include "HainFrm h"
#include "ChildFrm. h"
Finclude "IpFrame. h"
#include "ScribDoc. h”
#include "ScribVw h"

#ifdef _DEBUG

] stdafecpp #define new DEBUG_NEW
B[] Header Files #undef THIS FILE
@1--[C7 Resource Files =tatic char THIS FILE[] = _ FILE :
#endif

4] | -l

" LTSS

=acl Jggr. |FF 2w] | _’l_l
—’:I| A+ Build {Debug s, FindinFiles 1 % FindinFiles 2 7 IEN]]

Ready [Ln27 Cal |REC[COL [0R [FEAD 4

Figure 2 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

Application Note

Tool Bar

The options available from the Tool Bar are the frequently used TCAT C/

C++ for Windows features.

Configure Build Instrument Run Instrument SMARTS CAPBAK

/

/i Gl G o BE BT

Cover Digraph Calltree

Figure 3 Tool Bar

Configure TCAT

Build Instrumented App.
Run Instrumented App.
Analyze Cover

Run DiGraph

Run Calltree

Run SMARTS

Run CAPBAK

Selects among modes of instrumentation.
Instruments an application.

Runs the instrumented application.
Analyze the coverage achieved from tests.
Digraph display for the selected object.
CallTree display for the selected object.
Organizes and executes a collection of tests.

Captures and plays back tool.

TCAT C/C++ for Windows

Scribble

Scribble employs many features of Microsoft Foundation Classes (MFC).
There are several versions of Scribble, which become increasingly com-

plex in each chapter. MSVC++ 5.0 has eight chapters; The present exam-

ple uses Chapter 8. MSVC++6.0’s Scribble example is in Chapter 7.

;’} Scribble - 5cribb2 H=] E3
File Edit Pen Wiew “indow Help

D|=(Q| | 22
|S-::rihh1

| Scnibb2

B Sciibb3
1] o
For Help, press F1 l_ MU a4

Figure 4 Scribble, Chapter 8

This demonstration includes the following steps:

1. Preparing the example application, Scribble, for instrumentation.
Instrumenting Scribble.

Building an executable file, Scribble.exe.

Testing Scribble.

Displaying tabular and graphical reports on the test of Scribble.

A A

Application Note

Preparing and Instrumenting Scribble

There are two methods to instrument Scribble by either using options
from the TCAT C/C++ Integrated with MS-Visual C++ v5.0/v6.0
window or by using the TCAT C/C++ Program Group window.

Using the TCAT C/C++ Integrated with MS-Visual C++ v5.0 / v6.0 window

1. Select File] Open Workspace, then select the "Scribble.dsw" file from
the TCAT-CPP\Examples\Example2\Scribble-vc5.0 directory.

Open Workspace
Lockjn: |l SeribblevVT50

_1HIp
131 S cribble. dswi

File name: ISClibble.dsw Open I
Files of lype: IWnrkxpaces [.dzwzmdp] ﬂ Cancel |

Figure 5 Open Workspace Dialog Box

2. From Build pull-down menu select Configurations, then click the
Add button and type in "Coverage" as a new configuration name.

3. Select Project] Settings, then select Win32 Coverage in the box of
Setting For:.

TCAT C/C++ for Windows

4. From Project select Setting.

e Click on the Scribble project name, then click on the General tab
menu, and type in "Coverage" to both the Output files and Inter-
mediate files option.

e Click on the C/C++ tab menu, then select the Precompiled Head-
ers, and select the Not using precompiled headers options.

e Click on the "stdafx.cpp” file form Scribble, then select the Pre-
compiled Headers and select Not using precompiled headers

options.
Project Settings EHE
Settings For. |'wWin3? Release j General | Debug C/C++ Link. | Flemun:é EE
il S cribble o
B3 Source Files i () L v il Hearders ﬂl
[F ek
j Fh||dfrm.cpp & Mot using precompiled headers
E ipframe.cpp))
3 mainfim, cpp € Automatic use of precompiled headers
pendig.cpp Through header: I
- |E drme. bt
3 ;i?ibglee.;pp " Create precompiled header file [pchl
- |#] scribble.hpj Tihrawaty hieader: I
3 zz::zzfﬁrzpp ™ Use precompiled header file [.pch]
3 scribitm.cpp Through header: I
3 seribvw.cpp
srrimac. hpj Project Options:
j sclimac.t | Mnologo D M3 G 02 S0 WINIZ" D ;I
- (%] stdafx.cpp "MOEBUG" /D " WINDOWS" /D " _AF=DLL" /D
-] Header Files ;I " MBCS" /Fo' \Releaze' /Fd" \Release" /FD Ao j
ok I Cancel |
Figure 6 Project Setting Dialog Box

Application Note

5. From Tools pull-down menu select Customize, then click on the
Add-Ins AND Macro Files tab menu, and select SRCov Developer
Studio Add-in option.

Customize EE
Commands | Toolbars | Tools | Keyboard Add-ine and Macra Files |
Add-inz and macio files: Description:

SRCov Develaper Studio Add-in o]
153 saMPLE

Hint: Click on & check bos to enable or dizable an add-in

or macra file. Browse. .. |

Figure 7 Customize Option Dialog Box

6. Click on the Configure TCAT Option button.

e Click on the Instrumentor Options tab menu, then select the C1
and S1 options.

e Click on the Runtime Selection tab menu, then select the
"RUNTMDLL.lib" (located in the Program directory) file.

Instrumenting Scribble
1. Click on the Build Instrumented App button.

The instrumented object files will be placed in the debug (or release direc-
tory if you choose) directory.

Executing the Instrumented Scribble

1. Click on the Run Instrumented App button, then test-drive the
instrumented Scribble to create a trace file.

TCAT C/C++ for Windows

Using the TCAT C/C++ Program Group window
Setup using Microsoft Visual C++

In Microsoft Visual C++ v5.0/ v6.0:

1. Select File] Open Workspace, select Scribble.dsw (located in the
TCAT-CPP\Examples\Example2\Scribble directory) as the project.

2. Select Insert]Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build | Build Scribble.exe.

In Microsoft Visual C++ v4.x:

1. Select File] Open Workspace, select Scribble.mdp (located in the
Samples\Scribble directory) as the project.

2. Select Insert]Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build | Build Scribble.exe.

Instrument Using WinIC9

WinIC9 instruments the application under test in order to produce trace
files of the test.

To instrument the example application:
1. Start up WinlC9.

& winiCa P 3

Directany: [Mone Selected)

Selected Files: [Mone Selected)

Instrument Batch File Optionsz... Cloze

Figure 8 WinIC9 Window

Application Note

2. Select Scribble.cpp using the Select button. Note that more than one
file can be selected and instrumented, and that instrumenting multi-
ple files will result in a more thorough coverage report.

Select File[s]) to instrument

Lookin: | {23 Scribble/C5.0 ~| =
Hip @ b ainfrrn. cpp @ Stdafs.cpp
Pri_Drir @ Pendlg.cpp
Releasze Scri

Fios . R
@ Childfrr.cpp @ Scribitm. cpp
@ Ipframe.cpp @ Scribvw.cpp

File name: I"Sn:ril:u:ln:u:.n:pp" "Scrbble. cpp' Open

Filez of type: II:F'F' Filez [*.cpp] j Cancel

Figure 9 Select File(s) to Instrument

Note: More than one file can be selected and instrumented, and
instrumenting multiple files results in more thorough coverage.

TCAT C/C++ for Windows

3. Select Options button.

Setting Compiler Options for the instrumenter. The TCAT instrumenter
invokes the native compiler after completing its processing steps. To
instrument a program correctly the compiler options need to be set cor-
rectly.

The compiler options very with your application and they can be copied
directly from Visual C++ settings. To find the compiler options you need
select Setting for the project. Then select the appropriate Project Settings.
Select C/C++. The Option that are needed can be found in the field
Project Options.

One example compiler options setting is listed below.
Scribble Debug Version compiler options:

/nologo /MDd /W3 /Gm /GX /Zi /Od /DWIN32 /D_DEBUG /D_WINDOWS /
D_AFXDLL/D_MBCS/Fo”.\Debug/”/Fd./Debug/”/FDIc

Scribble Release Version compiler options:

/nologo /IMD/W3/GX/O2/DWIN32 /INDEBUG/D_WINDOWS/D_AFXDLL/
D_MBCS/Fo” \Release/”’/Fd”./Release/”’/FD/c

4. Select Instrument. A copyright box pops up before the instrumenta-
tion of each file. Click OK to proceed.

5. During instrumentation, a command-line window displays messages
and warnings. When instrumentation of a file is complete, a prompt
appears. Type exit to proceed.

6. Select Exit from the WinlIC9 windowv.

The instrumentor has parsed the application’s source code, looking for
logical branches or segments and inserting markers (function calls).

Instrumenting Scribble will not change its functionality. When compiled,
linked and executed, the instrumented application will behave as it nor-

mally does, except that it will write coverage data to a trace file. For more
information on TCAT C/C++ for Windows’ instrumentor, refer to Chap-
ter 3 of the Users Guide.

10

Application Note

Link Using Microsoft Visual C++

In Microsoft Visual C++:
1. Build Scribble.exe.

Scnbble - Microsoft Developer Studio - [Scnbble_ cpp]

JJ Eile Edit Miew |nsett Project Build Tools Window Help & x|
(e zm@|ize - o DES b H[eseEw
A mE 0 E g H]Scribble =|[win32 Coverage = = ! ﬂ‘Iﬂ|
CSeribbletpp =] 0 class members) Fl|cseribbletpp =M~ |
=] <+ Scribble.cpp : Defines the class behaviors for the application. =
e
Workspace ‘Soribble’: 1 project(s) /' This 1z a part of the Hicrosoft Foundation Classes C++ library.
E|... Scribble files < Copyright (C) 1992-1997 Microsoit Corporation
EEI Saurce Files <+ All rights reserved.
A

_h'ldf'm'CDp <+ Thiz source code i= onlvy intended as a supplement to the
ipframe.cpp <+ Wicrosoft Foundation Classes REeference and related

mainfrm, cpp ¢ electronic documentation provided with the library.
pendlg.cpp ~# See thess sources for detailed information regarding the
¢ Microzoft Foundation Classes product .

readme. bt

sciibble.cpp #include "stdafx. h"
seribble. hpj #include "Scribble h"

seribble. e

¥ i #include "HainFrm . h"

seribdoc.cpp #include "ChildFrn.h"
sc'!b'tm'ch #include "IpFrame. h"
seribwicpp #include "ScribDoc. h”
serimac. hpj #include "Scrib¥w. h"

R e #ifdef _DEBUG
5| SIOEMH.Epp #define new DEBUG_NEW
&-(Z Header Files #undef THIS FIIE
-1 Resource Files =tatic char THIS FILE[] = _ FILE
fendif
1] | |
. B P P P P P R
el L e FTE N P _’l_l
—’:l| [+ Build Debug s, FindinFiles 1 & FindinFiles 2 7 KN I
Ready [Ln27.Col1 ||REC [COL[OVR [READ 4

Figure 10 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

The preceding steps create an instrumented executable file for Scribble,
which when executed will create a trace file.

*\ 11

TCAT C/C++ for Windows

Executing the Instrumented Scribble

1. Execute Scribble from Microsoft Visual C++.
2. Test-drive the instrumented Scribble to create a trace file.

#l+ Scribble - Scribb3 [_ O] x|

File Edit Fen “iew Window Help
D|=|=| [S[2[%

E# scribbi

E# Seribb2

E® scribb3

creating
trace file

m(AJIr\ile drawing |

ForHelp, press F1 LR 4

Figure 11 Testing Scribble

3. Select Exit from the Scribble File menu.

The instrumented test produces a trace file, the trace file created by
this “test,” Trace.trc, resides in the tcat_db directory hierarchy in the
Scribble directory, which in the next step Cover will use to produce
coverage reports.

12 N

Application Note

Viewing Coverage Reports with Cover

To view a coverage report of the trace file created by the execution of the
instrumented version of Scribble:

1. Startup Cover.
2. From the File menu, select Open.

3. Inthe Open dialogue, click on the filename Trace.trc from the
tcat_db\Scribble directory created during instrumentation. The dia-
log box then asks for an archive file; ignore this request by clicking
the Cancel button. A coverage report of the test of Scribble appears.

Cover displays trace and coverage information on your development
project in a treelike list. You can click on a branch of the list to expand it
and show its content, and also to contract it. The several fields in the
report have the following meanings:

Hits The number of times the segment and call pair were executed during
the test.

Count The number of segments and call pairs within the function.
C1 The percentage of branch coverage for each function.

S1 The percentage of call pair coverage for the function.

B COVER e Worabomy raos i

s e iwdos lisp

= @ 7|
Picgect Hara MM Tracs Fils - |C ' Scabble T4 T Da'ics @b\l Hanelbaca ic
ernm-ul Axhwale R
i n'_l.“*d_“ Heir Amcwin Lo lrengms 3 Covwom s
Furndhore: - E aE OR Gan O [Gl O Curs
Fopd Toen 11188 1 1 b1 ua G T

L |

Calps 1 F]
bl iy Goettd mnimgedd aod T ST
furcton Taielr o]] 1 [10LE WD D 1

arymeret | A0
Sl Foflpetisssmela i AP MEGMAE]
Fomamamn Tatali 10d

10 Noh WniE 1
g 1 10 [10E]
e il iy Dol wall echargslh oo LDisial changs |
...... Tash 1 i i 100 S OO K
i &l
o | i |
Cibes il iy Tkt Dot
Furaction Tatal I] 1 | 1M "Oo0 00 1030
s | - |
"y i el g e
Fomion Nag £ £ ;l
Fos b i 1 (M

Figure 12 Coverage Report on Scribble, with One Function Expanded to Show
Segments

13

TCAT C/C++ for Windows

Viewing the Source Code Associated with Cover

You can view the source code associated with any segment numbers, or
callpair numbers of the function in a coverage report by clicking on the
segment numbers or callpair numbers. For example, double-click on a
segment number. The code is displayed in a separate window with the

calling statement highlighted in red.

m COVER for Windows - Scribble_cpp: Segment ID 1

File “iew ‘window Help

= 8| 7

E scribble_only e ==
Froject Mame : Pri_Mame Trace File: |C:ASR Testing\CoveragehT CATAE xampleshS cribble-CH 08Pr_Dirsbe
Update Archive | Archive File: |NA&
. Chrert: (il Hitz Records Counts C1 Coverage % 51 Coverage %
Filez: g 1]

Functions: 8 0 Seg: CPs Segs CPs Cur. Cumn. Cur. Cumn.
Project Tatals : 3305 14 17 17 4706 47.06 8235 8235

Function Tatals : 1] a 1 1 0.00 0.an 0.0 0.a0 ;l
CaboutDlg:GetMessaget ap[CAF_MSGMAP®)

Function Totals : a a 1 a 0.00 0.an 0.0 0.a0
CAboutDlg::_GetBazebeszagehd ap[CaF_MSGMAP*)

Function Totals : a a 1 a 0.00 0.an 0.0 0.a0
CAboutDlg::D oD atak xchangelvoid, CD atak schange)

Function Totals : a a 1 1 0.00 0.00 0.00 0.00
CAbautD lg: CAabautDIg[void)

Function Taotals : a a 1 a 0.00 0.an 0.0 0.a0
CScribbledpp::nitinstancelint)

Function Toatals : 5 14 9 15 5556 BA5E 9333 9333
CScribbledpp::CScribbled pplvoid)

Function Tatals : 1 1 i 10000 10000 100.00 10000
CScribblatpp::Geteszagebd ap[CAF-_MSGMAP]

Function s 1 1 1] 10000 100.00 10000 100.00

Ent 1

CScribbletpp:_GetBaseMessagehd ap[EAFX b SGMAP

Funchion T otals : 1466 a 1 a 10000 10000 100.00 10000

1 I E Scribble.cpp: Segment 1D 1

EEGIN MESSAGE_MAP (CScribbleipp, CWinipp)
A/ {{AFX MSG_MAP (CScribbledpp)
ON_CCMMAND [ID_APP_ABOUT, OnAppabout)

A/} VAFX MSG_MAP

/f Standard file based document commands
ON_COMMAND { ID_FILE NEW, CWinhpp:: OnFilelew)
ON_COMMAND [ID_FILE OFEN, CWinApp:: OnFiledpen)
// standard print setup conmand

1

// NOTE - the ClassWizard will add and remove wapping mac
Iy DO NOT EDIT what you see in these blocks of generat

ON _COMMANDITD FTTE PRTNT SETITP. ClinAnn: :0omFilePrintSetunt

For Help, prezz F1

[[NM[

Figure 13 Source Code Displayed from Coverage Report

Application Note

Viewing Directed Graphs with DiGraph

To view a directed graph (digraph) of the application:
1. Open up DiGraph.
2. Using the File menu, select Open.

3. You are prompted for the name of the directed graph to view. Find
the Scribble.dg file under the d_graph directory.

4. The next prompt asks for the name of the database file. Select the
Scribble.mdf file in the tcat_db\Scribble directory.

Step 1/3 - Open DG File Ell:{

Lookjm | d_graph = =G

File narne: |".dg Open

Filez af twpe: IDigraph Files [*.dg) j Cancel |

Figure 14 WinDiGraph Open Dialog Box

5. A window pops up listing the available functions (Figure 15). For this
example, select CScribbleDoc::DeleteContents[void].

Select a MDF ID]|

CScrbbleDoc:: ~CSenbbleloc]vod,int) ;l
CSeribbleDoc: Ont ewl acument|int)

CScribbleDoc: Senalize[vaoid, Carchived] J
CScribbleDoc: Azsertty alid[wvoid]

CScoribbleDoc:: Dumplvoid C0 umpContestd]
CSerbbleDoc: OnlpenD ocument(ing Cehar®
ICScibbleDoc:: DeleteContent:void]
CSeribbleDoc:: nitD ocument [vaid)

-
| ey I g (U Y 1) PSRN o) N DUV gl) g [T | —I

ak.

Cancel

Figure 15 Select MDF ID Box

e\, 15

TCAT C/C++ for Windows

A directed graph depicting possible program flows of the function
CScribbleDoc::DeleteContents[void] appears.

Digraph for Windows - SCRIEDOC - CScribbleDoc:._. [li=] E3

File %iew Option: ‘Window Help

2| 8| 2| B 2

E‘!SEHIBDDE - CScribbleDoc::DeleteContents{void) [Ei=] E3

3
4
Kl | A
For Help, press F1 [MU o
Figure 16 Directed Graph of Scribble

Application Note

By clicking near the number associated with an edge and selecting the
View Source button, you can call up and view the associated source code.

Digraph for Windows - SCRIBDOC - CScribbleD oc::DeleteContents[void)

File “iew Optionz Window Help

E| 8| 2| B 2

E:ﬂ SCRIBDOC - C5cnibbleDoc::DeleteContents[void]

InitDocument () ; -
return TRUE;

}

vold CScribbleDoc: :DeleteContents ()
{ |
while (lm_strokelist.IsEmpty ()
i
delete m strokelist.RemoveHsad();
1
ColegerverDoc: :DaeleteContents () ;
I

For Help, pre_.s;F'I . . MLk &

Figure 17 Viewing Associated Source Code from Digraph

The source code associated with Segment 2 appears in a new window. In
this figure, the windows showing the digraph and the source code have
been tiled.

17

TCAT C/C++ for Windows

Viewing a Calltree

1. Start up CallTree.
2. Using the File menu, select Open.

3. You are prompted for the name of the calltree to view. Find Scrib-
ble.cg under the c_graph directory.

4. You are prompted for the name of the database file. Find the Scrib-
ble.mdf file under the tcat_db directory.

5. A Select Function list box appears. Select the CScribbleDoc::Delete-
Contents[void] function.

Select a MDF ID =]

‘L5 cnbblel oc::DeleteContentz[void

CScrbbleDoc:: ~CS cribbleD oc(woid,int]

Ok
CScrbbleD oo OnM ewDocumentfint] _I I_I
CScnbbleD oo Senalize[void Chrchivek]

C5eribblaDoc Asserty slid(void) | Cancel |
CScnbblel oc:: Dump(void COumpContest]
CSenbblel oc::On0penD acLment it,E-:har"

CScnbblel oc::InitDocument+oid) lI

[l g s B Ny [o RS) RN o SR PR el pll S R |

Figure 18 Select MDF ID Box

The following calltree depicting the selected function appears.

!l! Calltree for Windows - SCRIBDOC - C5cribbleDoc::DeleteContentz[void) !EIE

File “iew [Option:z Window Help

=] 8| Ale| o] 2

BA SCRIBDOC - CScribbleDoc::DeleteContents{void)

]
- I
CSeribbleDoc:: Deletel J

CScribeeDoc::ElnEd'nl |CT3rpedPtrList::Remc1 |CDIeSer\rerDoc::DeIE|
|GetErnbeddedltem | |CScribee}tem::Cop\,r'|
-
KX SR 1
For Help, prezs F1 MLk 4

Figure 19 Displaying a Calltree

18

Application Note

Viewing the Directed Graph Associated With a Calltree Node

For each node in your calltree, you can easily display an associated
directed graph. Select the Root node of the calltree. Notice that the View
Digraph button on the toolbar now has a red arrow, indicating that it is
available. Click this button. You will see a directed graph of the CScrib-

bleDoc::DeleteContents[void] function.

B Calltriee for Windows - SCRIBDOC - CScribbleD oc::DeleteContents{vo._.. [H[=] E3

File ‘iew Option: Window Help

=] 8| 2le| e 2

ESCHIBDDE - C5cribbleD oc::DeleteContents(void)

ey

ICScribee Doc::DeIetel J
CScribble Do On Edil |CT3rpedPtrIJst::Remu| |CDIe$er\:erDoc::DeIe
|Get Embedded ftem | |l3 Scribble bem:: Copy'|
-
KN R 1

E:ﬂ SCRIBDOC - C5cnibbleDoc::DeleteContents[void]

-

KN | AW

For Help, press F1 MLk A

Figure 20 DiGraph Displayed from Calltree Window

19

TCAT C/C++ for Windows

Viewing the Source Code Associated With a Calltree

You can view the source code associated with any node in a calltree by
clicking on the corresponding edge. For example, click on the edge run-

ning from the root node to the left-most node. Once the edge is selected, it
will be displayed thicker. Notice that the Source Code button on the Tool
Bar has a red arrow. Click on this button to display the associated source
code. The code is displayed in a separate window, with the calling state-

ment highlighted in red.

ﬂ Calltree for Windows - Scrnbdoc.cpp:

File “iew Optionz Window Help

E| 8| Plv]| #F] 2

ESEHIBDDE - CScribbleD oc::DeleteContents[void]

CSenbbleDoc:: Delete)

CScﬁbeeDoc::DnEd'n| |CT3rpedPtrList::Rem4 |CDIeSer\terDoc::DeIe
|GetErnbeddedltem | |CScribee|tern::Cop\,r'|
-
KN o 17
~ Scribdoc.cpp: =] E
vold CScribbleDoc::DeleteContents () ‘I

{
while (lm strokeList.IsEmpty (1)
{

delete m_strokelist.RemoveHsad () o
1
ColeBerverDoc: :DeleteContents () ;
H

vold CScribbleDoc::InitDocument ()
{
m _bThickPen = FALSE:

m nThinWidth = 2; /¢ default thin pen is =
< | 7

For Help, press F1 T LIR A

Figure 21 Source Code Displayed from Calltree

20

Application Note

TCAT C/C++ for Windows: Analysis of Reports

In the following analysis, a coverage report shows that a certain function,
CScribbleDoc::DeleteContents[void], has been tested 75.00%.

COYER for Windows - trace.trc |- (O] =]
Filz “iew ‘Window Help

=| 8| 2|

Bl wace.trc |00

Project Mame : Pri_Name

Update Archive |

Trace File : |I::'\S-:ribble-VC4.2'\F'ri_Dir‘\tcat_db'\Pri_N ame’trace.tic

Archive File : INHA

Current Archive

ibbleDoc: DeleteCo

Furmction Tatals : 7800 7500 10000 10000
Segment 1 7 [7]
Segment 2 17 [17] J
Segment 3 717
Segment 4 0o
Callpair 1 24 [24]
Callpair 2 17 [17]
Callpair 3 77
CSeribblel oc:: Ond penDocurnentfing, Cohar®) LI
For Help, press F1 MLk o

. Hitz Records CoLintg C1 Coverage 51 Coverage %
Files: 42 i}
Functions: 41 a Segs CPs Segz CPs Cur. Curn. Cur. Curn.
Project Totals : 274789 F9993 TR Ed VEOD FROO avhe0 &7A0
CScrbblel oc:: HewStroke[CSoke®) d
Furmction Tatals : 13 26 2 2 50,00 BOOO 70000 710000
Segment 1 13 [13]
Segment 2 0o
Callpair 1 13 [13]
Callpair 2 13 [13]
CSenbbleD oo nitD acument]void)
Furmction Tatals : 3 3 1 1 100.00 10000 10000 100.00
Seqgment 1 33
Callpair 1

ki 43 4 3

Figure 22

CScribbleDoc::DeleteContents[void]

The function consists of one segments and one callpairs. This coverage
report shows that segments 1 and 3 were hit seven times each, segment 2
was hit 17 times, and segment 4 not once. The callpair 1 was exercised 24
times, callpair 2 was exercised 17 times, and callpair 3 was exercised
seven times. The following few pages show graphical views of these

numerical results.

Coverage Report Showing C1 Coverage of 75.00% on the Function

21

TCAT C/C++ for Windows

In Figure 16, TCAT C/C++ for Windows graphs CScribbleDoc::Delete-
Contents[void] and its relations. The calltree shows the callpairs in
CScribbleDoc::DeleteContents[void], and the digraph shows possible
program flows through CScribbleDaoc::DeleteContents[void] divided
into segments.

B4 Calltree for Windows - SCRIBDOC - CScribbleDoc::DeleteContents(... [H[=] E3
Ele View Options Window Help

=] 8| Ale| o] 2

E SCRIBDOC - CScrbbleDoc::DeleteContents[void)

IC $oribbleDoc ::Deletel J

CSeribbleDoc:: OnEdi| C0le ServerDoc:: Delel

| CTypedPrlist:: Rem4

|GetErnbedded frermn | |CScribee hem::Copy'|

Kl I 2

E‘!-SEHIBDI]E - C5cribbleDoc::DeleteContents[void]

TY
-

< o
Faor Help. press F1 MLk A

Figure 23 Calltree and Digraph of CScribbleDoc::DeleteContents[void]

Note that the calltree shows three callpairs. These callpairs are shown in
the coverage report in Figure 21, which have been exercised 24, 17, 7
times respectively. The coverage report shows that the percentage of S1
coverage (coverage of call pairs) was 100% for this function.

Note that the digraph shows three segments. The coverage report in Fig-

ure 21 shows that the test of Scribble hit three of four segments . The cov-
erage report shows that the percentage of C1 coverage (branch coverage)

was 75.00%.

22

Application Note

To look at source code associated with callpairs, highlight the graphic
lines connecting the functions shown in the calltree.

H Calvos Iy wimdews Sombdion cpp

[y T

o s e 1
3
|'-aw-.:~£-.r-u:-:-i S

vold CEoribblabac: ! DalateCoRTancs =

whilla flls_SLrokabLisl. ISEmpty ()
|
delets m_=troksList, RemoyvaHead (]

=]

]
voird CTRocrabblsDoc: :TnitDocumsmt |

a_bThickFen = FALSE:

s_nThinkidth = 3 FFf default Thin pen ia Z pins

m_NThlckMidch = 51 47 dafault Thick pem la 5 plig
LA | v
Fos Fisi. prazz ¥ [T

Figure 24 Calltree and Source Code Associated with One Callpair

23

TCAT C/C++ for Windows

To look more closely at the segments, highlight one of the graphic lines in
the digraph by clicking on it close to the number. Then use the Source

Code button to display the associated source code.

Bs Yes [eors pheies (isp

Ol el s

™

SRR - skl b 8 wisbad_ o i o} e

1

Li|
yold CACrlbblaDoc) ! DeleteConTants (] E

delate n_strokalast, RemoveHsad |

i
ColaferyerDoc: ;DelstasComtants () ; _J

CBeribblalos: i INn1tDscumant o)

Ficaid
o_SThickPsn = FRLOE:
B _nThiedidch = 25 lafoulc chin pan 18 2 |
B nThickRidih = & lafamlt thick pen i3 5
Fealal paaan T e
Figure 25 Digraph and Source Code Associated with One of Its Segments

Closing TCAT C/C++ for Windows

To close TCAT C/C++ for Windows:
Select File|Exit from the menu bar of each open program, or

Double-click on the frame window Close Box of each program.

You have now seen all of TCAT C/C++ for Windows’ main features.

24 ?)-\

