
U S E R ’ S G U I D E

TCAT C/C++ for Windows

Version 2.1

Test Coverage Analysis Tool
For C and C++ on

Windows 95 and Windows NT

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, photocopying, record-
ing or otherwise without prior written consent of Software Research, Inc. While every
precaution has been taken in the preparation of this document, Software Research, Inc.
assumes no responsibility for errors or omissions. This publication and features
described herein are subject to change without notice.

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TCAT for JAVA/Windows, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight,
and Xvirtual are trademarks or registered trademarks of Software Research, Inc.
Other trademarks are owned by their respective companies. METRIC is a
trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC is a
trademark of Software Research, Inc. and Gimpel Software.

Copyright 1997 by Software Research, Inc
(Last Update December 18, 1998)
home/l1/wu/win-tcat/tcat21/tcatwin2.1

625 Third Street

San Francisco, CA 94107-1997

Tel: (415) 957-1441

Toll Free: (800) 942-SOFT

Fax: (415) 957-0730

E-mail: support@soft.com

http://www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface .xi

CHAPTER 1 TCAT C/C++ for Windows Overview. 1
1.1 The QA Problem . .1

1.2 The Solution . .2

1.3 SR's Solution .3

1.4 Testing and TCAT C/C++ for Windows5

1.5 Software Test Methods .6
1.5.1 Manual Analysis .6
1.5.2 Static Analysis .6
1.5.3 Dynamic Analysis .7

1.6 Single- and Multiple-Module Testing8
1.6.1 Buttom-Down .8
1.6.2 Top-Down .8

1.7 TCAT C/C++ for Windows's Cost Benefits9
1.7.1 Improved Error Detection .10
1.7.2 Earlier Error Detection .11
1.7.3 More Efficient Testing .12
1.7.4 Minimal Test Set .13
1.7.5 Assessment of Progress .14

CHAPTER 2 Installation . 15
2.1 System Requirements . 15

2.2 Installation Procedure . 16

2.3 File List . 23

TABLE OF CONTENTS

iv

CHAPTER 3 Quick Start. 25
3.1 Getting Acquainted with TCAT C/C++ for Windows25

3.1.1 Step 1 - Preparing and Instrumenting Scribble. 26
Using the TCAT C/C++ Integrated with MS-VC++ v5.0 Window . 27
Instrumenting Scribble . 30
Executing the Instrumented Scribble . 30
Using the TCAT C/C++ Program Group Window 31
Instrument Using WinIC9 . 32
Link Using Microsoft Visual C++ . 34

3.1.2 Step 2 - Executing the Instrumented Application 36
3.1.3 Step 3 - Viewing Coverage Reports Using Cover. 37
3.1.4 Viewing the Source Code Associated with Cover. 39
3.1.5 Step 4 - Viewing Directed Graphs with DiGraph. 40
3.1.6 Step 5 - Viewing Source Code from a Digraph. 42
3.1.7 Step 6 - Viewing a Calltree . 43
3.1.8 Step 7 - Viewing the Directed Graph Associated With a Calltree Node

45
3.1.9 Step 8 - Viewing the Source Code Associated With a Calltree 46
3.1.10 Step 9 - Closing TCAT C/C++for Windows . 47

3.2 Summary . .48

CHAPTER 4 C/C++ Instrumentor Engine . 49
4.1 Instrumentor Description .49

4.1.1 Files Generated . 50

4.2 WinIC9 Main Window .51

4.3 Instrumenting the Application Under Test56
4.3.1 Options and Parameters . 56
4.3.2 Instrumentation Function Names . 61
4.3.3 Instrumentor Inline Directives . 62

4.4 Database File Formats .63

CHAPTER 5 Cover . 65
5.1 Cover .65

5.2 Trace File and Archive File Formats 66

5.3 Cover Main Window .67
5.3.1 Tool Bar. 68
5.3.2 File Menu . 69
5.3.3 View Menu . 70
5.3.4 Window Menu . 70
5.3.5 Help Menu . 70

TCAT C/C++ User’s Guide

v

5.3.6 Status Bar. .70

5.4 File Menu . 71
5.4.1 Open. .71
5.4.2 Print .72

5.5 Window Menu . 74
5.5.1 Cascade .74
5.5.2 Tile .74
5.5.3 Arrange Icons .74
5.5.4 Window List Box .74

5.6 Create/Update an Archive File 75

5.7 Analysis of Coverage Reports 76

CHAPTER 6 DiGraph. 81
6.1 Purpose and Overview . 81

6.2 Directed Graph File Format 81

6.3 DiGraph Main Window . 83
6.3.1 Tool Bar .85
6.3.2 File Menu .86
6.3.3 Zoom Menu .87
6.3.4 View Menu .88
6.3.5 Options Menu .89
6.3.6 Window Menu. .89
6.3.7 Help Menu .89
6.3.8 Status Bar. .89

6.4 File Menu . 90
6.4.1 Open. .90
6.4.2 Print .91

6.5 View Menu . 93
6.5.1 Viewing Associated Source Code .93

6.6 Options Menu . 94
6.6.1 The Digraph Options Dialog Box .94

6.7 Window Menu . 97
6.7.1 Cascade .97
6.7.2 Tile .98
6.7.3 Arrange Icons .99
6.7.4 Window List Box .99

CHAPTER 7 CallTree . 101
7.1 Calltree Overview . 101

7.2 Generating and Viewing Calltrees 102

TABLE OF CONTENTS

vi

7.3 Calltree File Format . 103

7.4 CallTree Window Overview 103
7.4.1 Tool Bar. 104
7.4.2 File Menu . 105
7.4.3 View Menu . 106
7.4.4 Window Menu . 106
7.4.5 Options Menu . 106
7.4.6 Help Menu . 106
7.4.7 Status Bar . 106

7.5 File Menu . 107
7.5.1 Open. 107
7.5.2 Print Menu . 108

7.6 View Menu . 110
7.6.1 Viewing Associated Source Code. 110
7.6.2 Viewing a Directed Graph. 111

7.7 Window Menu . 112
7.7.1 Cascade . 112
7.7.2 Tile . 113
7.7.3 Arrange Icons . 114
7.7.4 Window List Box . 114

7.8 Options Menu . 115

 APPENDIX A C/C++ Instrumentor Engine Database Files 117

 APPENDIX C cover9 —TCAT C/C++’s Coverage Analyzer. 127

 APPENDIX D Coverage Report Layout . 135

Index . 145

vii

List of Figures

FIGURE 1 TCAT C/C++ for Windows Dependency Chart .4

FIGURE 2 Stages in Software Testing .7

FIGURE 3 Cost Benefit Analysis .10

FIGURE 4 Increase in Cost-to-Fix Throughout Life-cycle .11

FIGURE 5 Program Group for TCAT C/C++ for Windows. .22

FIGURE 6 Files for TCAT C/C++ in Windows 95/NT .23

FIGURE 7 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window27

FIGURE 8 Open Workspace Dialog Box .27

FIGURE 9 Project Setting Dialog Box .28

FIGURE 10 Customize Option Dialog Box .29

FIGURE 11 Tool Bar. .29

FIGURE 12 WinIC9 Window .32

FIGURE 13 Select File(s) to Instrument. .32

FIGURE 14 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window34

FIGURE 15 Testing Scribble .36

FIGURE 16 Coverage Report on Scribble, with One Function Expanded to Show Seg-
ments37

FIGURE 17 Source Code Displayed from Coverage Report .39

FIGURE 18 WinDiGraph Open Dialog Box .40

FIGURE 19 Select MDF ID Box .40

FIGURE 20 Directed Graph of Scribble .41

FIGURE 21 Viewing Associated Source Code from Digraph. .42

FIGURE 22 Select MDF ID Box .43

FIGURE 23 Displaying a Calltree .44

FIGURE 24 Calltree of CScribbleDoc::DeleteContents[void] and Digraph of Its Possible
Program Flows45

LIST OF FIGURES

viii

FIGURE 25 Source Code Window Displayed from Calltree . 46

FIGURE 26 WinIC9 . 51

FIGURE 27 Select File(s) to Instrument . 52

FIGURE 28 Identify Batch File . 53

FIGURE 29 IC9 Options . 54

FIGURE 30 Cover Main Window . 67

FIGURE 31 Tool Bar . 68

FIGURE 32 Cover Open Dialog Box . 71

FIGURE 33 Print Dialog Window in Cover . 72

FIGURE 34 Print Setup Dialog . 73

FIGURE 35 Save Archive File . 75

FIGURE 36 Coverage Report Showing C1 Coverage of 75.00% on the Function CScrib-
bleDoc::DeleteContents[void]76

FIGURE 37 Calltree and Digraph of CScribbleDoc::DeleteContents[void]. 77

FIGURE 38 Calltree and Source Code Associated with One Callpair 78

FIGURE 39 Digraph and Source Code Associated with One of Its Segments 79

FIGURE 40 Program Edges as Represented in a Digraph . 82

FIGURE 41 WinDiGraph Open Dialog Box. 83

FIGURE 42 Select MDF ID Box . 84

FIGURE 43 Directed Graph of Scribble. 84

FIGURE 44 Tool Bar . 85

FIGURE 45 DiGraph Open Dialog Box . 90

FIGURE 46 Print Dialog Box in DiGraph . 91

FIGURE 47 Print Setup Dialog Box . 92

FIGURE 48 View Source Option . 93

FIGURE 49 Digraph Options Dialog Box . 94

FIGURE 50 Cascading Windows in DiGraph . 97

FIGURE 51 Tiled Windows in DiGraph. 98

FIGURE 52 CallTree Main Window . 103

FIGURE 53 Tool Bar . 10 4

FIGURE 54 CallTree Open Dialog Box . 107

FIGURE 55 Print Dialog Box in CallTree . 108

FIGURE 56 Print Setup Dialog Box . 109

FIGURE 57 View Source Option . 110

FIGURE 58 Directed Graph Option. 111

FIGURE 59 Cascading Windows in CallTree . 112

LIST OF FIGURES

ix

FIGURE 60 Tiled Windows in CallTree . 113

FIGURE 61 CallTree Options Dialog Box . 115

FIGURE 62 Coverage Report Analysis (TEST A) . 136

FIGURE 63 Coverage Report Analysis (TEST B) . 139

FIGURE 64 Coverage Report Analysis (TEST A+B) . 140

FIGURE 65 Coverage Report Analysis (TEST C) . 141

FIGURE 66 Coverage Report Analysis (TEST A+B+C) . 142

LIST OF FIGURES

x

xi

Congratulations!

By choosing the TestWorks suite of testing tools, you have taken the first
step in bringing your application to the highest possible level of quality.

Software testing and quality assurance, while increasingly important in
today’s competitive marketplace, can dominate your resources and delay
your product release. By automating the testing process, you can assure
the quality of your product without needlessly depleting your resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TCAT C/C++ for Windows is a quick and easy way to detect weaknesses
in your code. Easily accessible click-and-point reports find the segments
that need further testing. Digraphs and calltrees visualize the location,
allowing you to make immediate improvements to the structure and
performance of your software.

TestWorks is the most complete solution available, and the peace of mind
it provides our customers is our most valued feature.

Thank you for choosing TestWorks.

Audience

This manual is intended for software testers who are using TCAT C/C++
for Windows. You should be familiar with the Microsoft Windows System
and your workstation.

Preface

PREFACE

xii

Typefaces

Typographical conventions that are used throughout this manual:

boldface Introduces or emphasizes a term that refers to
TestWorks’ window, its submenus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for man-
ual, chapter, and book titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with
special meanings can also be set apart with double
quotation marks the first time they are used.

courier Indicates system output such as error messages,
system hints, file output, and CAPBAK/MSW’s
keysave file language.

Boldface Courier

Indicates any command or data input that you are
directed to type. For example, prompts and invoca-
tion commands are in this text. (stw , for instance,
invokes TestWorks.)

1

CHAPTER 1

TCAT C/C++ for Windows
Overview

This chapter is a conceptual introduction to coverage tools, and explains how to use them
most advantageously.

1.1 The QA Problem

It is a sad fact of the software engineering world that on average, without
coverage analysis tools, only around 50% of source code is actually tested
before release. With little more than half of the logic covered, many bugs
go unnoticed until after release. Worse still, the actual percentage of logic
covered is unknown to SQA management, making any informed
decisions impossible.

Questions such as when to stop testing or how much more testing is
required are answered not on the basis of data, but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with
the quality of the released software and to make plans based on
inadequate data.

A related problem is that test case development is done in an inefficient
manner; that is, many test cases are redundant. Test suites become
cluttered with cases that repeatedly test the same logic, to the exclusion of
other cases that would examine previously unexplored logic. Often,
testers are unsure of which direction to take, and can waste SQA time
devising the wrong tests.

CHAPTER 1: TCAT C/C++ for Windows Overview

2

1.2 The Solution

The primary purpose of testing is to ensure the reliability of a software
program before it is released to the end user. The software should be
thoroughly tested with a variety of input to provide statistically verifiable
means of demonstrating reliability. In other words, a suite of test cases
should in some way cover all the possible situations in which the pro-
gram will be used.

It is a worthy goal to imagine every possible use, and to develop and run
corresponding test data. However, achieving this goal is extremely com-
plicated and time-consuming. A more realistic goal is to test every part of
the program. According to industry studies, achieving this goal yields
significant improvement in overall software quality. Coverage analysis
improves the quality of your software beyond conventional levels.

TCAT C/C++ for Windows User’s Guide

3

1.3 SR's Solution

Software Research, Inc. offers a solution: TCAT C/C++ for Windows. This
product ensures tests that are more diverse than those chosen by refer-
ence to functional specification alone or those based on a programmer's
intuition. It ensures that they are as complete as possible by measuring
against a range of high-quality test metrics:

• Coverage at the logical branch (or segment) level and the call-
graph level, employing the C1 metric

You can choose to test a single module, multiple modules, or the
entire program using the C1 metric.

• Coverage at the call-pair level employing the S1 metric

 After individual modules have been tested, you can test all the
interfaces of the system using the S1 metric.

• Dynamic visualization of test attainment during unit testing and
system integration

This visually demonstrates, in real time, such things as segments
and call-pairs hit/not hit.

CHAPTER 1: TCAT C/C++ for Windows Overview

4

 Below is a TCAT C/C++ for Windows flow chart.

FIGURE 1 TCAT C/C++ for Windows Dependency Chart

Source
File

TCAT C/C++
for Windows

User

Reports

Archive File

TCAT C/C++ for Windows User’s Guide

5

1.4 Testing and TCAT C/C++ for Windows

TCAT C/C++ for Windows instruments your program. During instru-
mentation, TCAT C/C++ for Windows inserts function calls (special
markers) at every logical branch (segment) in each program module.
Instrumentation also creates a reference listing file, which is a version of
your program which has logical branch marking comments added to it in
a manner similar to the code added to the instrumented version. Exten-
sive logical branch notation and sequence numbers are also listed.

This instrumented program is then compiled and run. By running it, you
are exercising logical branches in the program. The more tests in your test
suite, the higher the coverage. This test information is then written to a
trace file. From the information stored in the trace file, you can generate
coverage reports. In general, the reports give the following information:

• Reports included in the current iteration
• A summary of past coverage runs
• Current and cumulative coverage statistics
• A list of logical branches that have been hit

Recommended coverage is >85%. If reports indicate that you have less
than this amount, you can identify unexercised logical branches by study-
ing the coverage reports, and looking at the source code associated with
the untested functions. When you identify the troubled areas, you can
then create new test cases and re-execute the program.

TCAT C/C++ for Windows can help you reach your goal of creating the
most extensive test cases possible.

CHAPTER 1: TCAT C/C++ for Windows Overview

6

1.5 Software Test Methods

Coverage analysis as implemented through TCAT C/C++ for Windows is
a powerful testing technique which can save you much money and time,
in addition to greatly improving software quality. It is not the only testing
technique in existence, and we recommend that you use it along with
other techniques.

Testing methods vary from shop to shop, but most successful techniques
fall into a few general categories. The most common ones are described
below in the sequence they usually occur.

1.5.1 Manual Analysis

Programs are manually inspected for conformance to in-house rules of
style, format, and content as well as for correctly producing the antici-
pated output and results. This process is sometimes called “code inspec-
tion,” “structured review,” or “formal inspection.”

1.5.2 Static Analysis

Once a program has passed through manual testing steps, it can be tested
more extensively. Automated tools are used to check the design rules
applied in a program. Static analysis validates the software allegations
about the program's static properties, such as the global properties of its
data structures and the application of variable type rules. Such testing can
remove 20-30% of the latent software defects in your program. Static
analyzers include the following:

• Tools for detecting data element misuse
• Complexity measurement tools, which estimate the difficulty of

testing and help identify hard-to-test modules with a statistic
• Conformance measure tools, which flag confusing or inefficient

code

TCAT C/C++ for Windows User’s Guide

7

1.5.3 Dynamic Analysis

Dynamic analysis tests the dynamic properties of the software under real
or simulated operating conditions. The software is executed under con-
trolled circumstances with specific expected results.In this phase, it is
important to test as many paths and branches in the program as possible.
Doing so ensures that the tests you run have the greatest diversity, hence
the best chance of discovering defects.

To obtain statistics on the application under test can be very difficult.
Dynamic analysis can uncover 85-90% of the potential remaining soft-
ware defects. TCAT C/C++ for Windows produces data on what has
been validated and what has been left out of your testing.

FIGURE 2 Stages in Software Testing

Source
Program

Manual
Analysis

Static
Analysis

Dynamic
Analysis

Supporting
Documents Archived Test

Files

Archived Test
Documents

CHAPTER 1: TCAT C/C++ for Windows Overview

8

1.6 Single- and Multiple-Module Testing

Another consideration in getting the most out of TCAT C/C++ for
Windows involves determining the scope of your tests: whether a single
program module, multiple modules, or even an entire system should be
tested. You can prepare or “instrument” many modules with logical
branch markers and run tests on them as a group. TCAT C/C++ for
Windows keeps track of each module by name.

There are two approaches to multiple-module testing: bottom-up or top-
down. Because TCAT C/C++ for Windows is able to track many modules
simultaneously, it supports either approach. The route you choose
depends on your individual needs and testing style.

1.6.1 Buttom-Down

In the bottom-up approach, testing begins at the lowest level in the
system hierarchy; that is, modules that invoke no other module. Each
bottom-level module is tested individually with special test data. Mod-
ules at each subsequent level of the hierarchy are tested using already-
tested lower-level modules. The process continues until all modules have
been thoroughly exercised. Thus, you can control testing carefully as you
progress up the system hierarchy.

1.6.2 Top-Down

In the top-down approach, testing begins at the highest level in the
system hierarchy. Sometimes module “stubs”' are used to simulate
invoked modules to check the high-level logic of the program. As an
alternative to using module stubs, use a complete program with only a
few selected modules instrumented. TCAT C/C++ for Windows ignores
uninstrumented modules as it traces test coverage through the program.

In top-down analysis, the tester is chiefly concerned with the combination
of modules to form a larger system. TCAT C/C++ for Windows focuses
specifically on function calls within the system, so that the tester can
verify each interconnection.

TCAT C/C++ for Windows User’s Guide

9

1.7 TCAT C/C++ for Windows's Cost Benefits

TCAT C/C++ for Windows will save your organization much time and
effort; the economics of coverage analysis are extremely favorable. Here
are some ways it can save you money. TCAT C/C++ for Windows can
save you money in the following ways.

CHAPTER 1: TCAT C/C++ for Windows Overview

10

1.7.1 Improved Error Detection

TCAT C/C++ for Windows provides increased error detection. Software
Engineering literature indicates that an average error rate is 40 defects per
1,000 lines of code (KLOC). With no coverage analysis, 50% of the code is
exercised, leaving the product with 20 defects per KLOC. Assuming a
uniform distribution of errors throughout the source code, the simple act
of raising the coverage rate can uncover many errors. According to the
experience of SR in advanced industrial projects and reports from
customers, coverage analysis can eliminate another 75% of the errors.

FIGURE 3 Cost Benefit Analysis

The economic value of increased error detection varies from organization
to organization. One estimate of the worth of coverage analysis comes
from what software consulting firms charge to find and remove errors, a
price established in the open market. The software testing industry, sized
at $50 million in 1986 by Fortune magazine, typically charges $1,000 per
error fixed.

Applying this to TCAT C/C++ for Windows, you could save $15,000 or
more per thousand lines of code. In practical terms, this means that a
large project with over 20,000 lines of code might save $300,000.

Without TCAT C/C++
for Windows

With TCAT C/C++ for
Windows

40 defects/KLOC

85-90% Coverage

5 defects/KLOC

40 defects/KLOC

50% Coverage

20 defects/KLOC

TCAT C/C++ for Windows User’s Guide

11

1.7.2 Earlier Error Detection

Not only are more errors detected with TCAT C/C++ for Windows, they
are also discovered earlier. The earlier you catch and fix an error, the
cheaper. Over and over, managers, vendors and gurus have shown us
figures and charts that detail how much less it costs to rectify an early
detected defect. The chart below, by Barry Boehm, illustrates this concept.

FIGURE 4 Increase in Cost-to-Fix Throughout Life-cycle

Your organization can reduce its cost-to-fix ratio by a factor of ten by
using TCAT C/C++ for Windows to find errors before system integration.
In the diagram, it costs $5,000 to $15,000 to fix errors after they have left
the developer. The developer or the Software Quality Engineer (SQE) can
identify and fix problems more inexpensively than the beta site or inde-
pendent testing organization. This is not to say that beta sites or IV&V
(independent verification and validation) are not needed; but instead,
there is a great cost advantage in letting detailed unit-testing find more
errors for less expense.

1000

500

200

100

50

20

10

5

2

1

 Requirements Design Code Dev. Tests Acceptance Tests Operation

Phase in which error was detected and corrected

Larger Software Projects

Smaller Software
Projects

80%
Median (TRW Survey)
20%

CHAPTER 1: TCAT C/C++ for Windows Overview

12

1.7.3 More Efficient Testing

Using TCAT C/C++ for Windows, you can improve test case develop-
ment. In general, the tool can be used to identify previously untested
features. This information can direct the addition of new test cases.

For example, a software test engineer from a super-minicomputer manu-
facturer used TCAT C/C++ for Windows to reduce the time to test by a
factor of eight. As detailed in a technical article available from SR, the
engineer was in charge of testing a C compiler and used TCAT C/C++ for
Windows to identify the features missed by commercially-available test
suites. The engineer specified the language elements that were not tested
to a software engineer, who completed the test suite. Overall, the com-
piler was fully tested in six weeks rather than the expected one year.

TCAT C/C++ for Windows User’s Guide

13

1.7.4 Minimal Test Set

TCAT C/C++ for Windows can be used to develop the minimal covering
test suite for a system. It is useful for a tester to have the smallest test suite
that exercises all the logic of a system, since test sets require much time
and many resources to execute.

We recommend the use of SMARTS, CAPBAK, and CBDIFF (from our
Regression/MSW tool suite) to automate test suite execution, evaluation,
and analysis steps. These tools can significantly reduce the cost of test
suite execution and analysis. TCAT C/C++ for Windows can be used to
identify and eliminate redundant test cases. With the coverage reports
described in this manual, it is possible to determine how much each new
test case adds to the total coverage of a test suite.

If a new test adds less than a specified amount to the overall coverage
(e.g. 5%) it might be reasonable to discard it. Having done so, the tester
ends up with more efficient, easier-to-run test suite.

CHAPTER 1: TCAT C/C++ for Windows Overview

14

1.7.5 Assessment of Progress

Coverage analysis with TCAT C/C++ for Windows can be valuable to
important SQA decisions, such as when to ship a product or how much
further product testing is needed. A coverage value of C1 > 85% has
been the traditional threshold for proper coverage. Generally, one should
stop improving test coverage when the marginal cost of adding a new test
is greater than the cost to visually and rigorously inspect the associated
code passage. Other considerations you can weigh are the added test cost
and the risk of defects.

Coverage analysis data are important for reliability modeling and pre-
dicting error rates. By tracking error rates and number of errors discov-
ered as a function of overall test effort, it is possible to predict eventual
latent defect rates. We encourage SQA managers to keep careful records
of errors found and corresponding coverage values.

15

CHAPTER 2

Installation
This chapter describes the system requirements and the step-by-step installation
procedure for TCAT C/C++

2.1 System Requirements

Your computer system must have the following hardware configuration
to install and run TCAT C/C++.

• Windows 95, or NT4.0.
• 486 microprocessor or better
• 20 MB free disk space.
• 16+ MB RAM recommended

 Microsoft Visual C++ must be installed.

CHAPTER 2: Installation

16

2.2 Installation Procedure

These are instructions for installing TCAT C/C++.
1. Insert the CD Disk in your CDROM drive (these instructions

assume D:).
2. Activate setup.exe. :

In Windows 95/NT:

a. Using either the My Computer icon (on the desktop) or
Windows Explorer (on the Start menu, Programs submenu),
display the contents of the CDROM drive. The TCAT C/C++
setup.exe is in Coverage --> Tcat21 directory.

b. Double-click setup.exe.

setup.exe presents you with a series of dialog boxes, beginning with the
Welcome box shown below. Each box is a step in the installation process,
and when you are satisfied with the options offered in a box you should
click Next to go on to the next step.

3. Click Next in the Welcome box.

The Choose Destination dialog box asks you where you would like to
store the executables and the supporting files for TCAT C/C++.

TCAT C/C++ for Windows User’s Guide

17

4. To select a path, do one of the following:
• Click on Next if you want to use the Path indicated and to con-

tinue the installation.
• Edit the default path to your own path, then click Next to con-

tinue the installation.
• Click Cancel to end the installation.

CHAPTER 2: Installation

18

After selecting Next, the Setup Type dialog box pops up and asks you
what kind of installation you prefer. It is highly recommended that you
select Custom installation, which allows you to install the FrameReader
software that allows you to read the online help that accompanies TCAT
C/C++ for Windows. (Be aware that the FrameReader software will
occupy approximately 9 MB of your computer’s memory.)

5. In the Setup Type dialog box, do one of the following:
• Click Next if the Setup Type is the one you prefer.
• Click a different Setup Type, then click Next to continue the

installation.
• Click Back to review or change previous dialog box queries.
• Click Cancel to end installation.

TCAT C/C++ for Windows User’s Guide

19

After selecting Next, the Select Components dialog box pops up in Win-
dows NT and Windows 3.1x, but not in Windows 95. The dialog box asks
you to choose the program group name where you would like the pro-
gram icons to appear.

6. Select the components that you want copied.

During copying, a bar gauge names the files being copied.

A C:\Program Files\Software Research\Coverage\TCAT directory or
the path you indicated is created. TCAT C/C++ automatically stores
your files to this directory unless you selected otherwise.

CHAPTER 2: Installation

20

7. The installation verifies where MS Visual C++ is installed on your
machine.

Click OK to continue.

TCAT C/C++ for Windows User’s Guide

21

During the installation, installation script will copy the cl.exe file to
your MS DevStudio in the path specify in the window below and
rename its original cl.exe to mscl.exe.

If you had installed our TCAT version 2.1 once before, you will get
the following window.

Click OK to complete the installation.

CHAPTER 2: Installation

22

The installation script also creates a program group where TCAT C/
C++ and its utilities are installed:

FIGURE 5 Program Group for TCAT C/C++ for Windows

8. When the installation is completed, include the Coverage pathname in
your system environment variable.

9. To uninstall, use the following:

In Windows 95 or Windows NT4.0:

a. Double-click the Add/Remove Programs icon in the Control
Panel.

b. Select the TCAT C and C++ for Win32 option.

c. Click the Remove button.

TCAT C/C++ for Windows User’s Guide

23

2.3 File List

The following files are written to your computer during the installation.
The locations for these files are given for installation to a directory called
C:\Program Files\Software Research\Coverage\Tcat\Program.

FIGURE 6 Files for TCAT C/C++ in Windows 95/NT

CHAPTER 2: Installation

24

25

CHAPTER 3

Quick Start
This chapter explains getting started with TCAT C/C++ for Windows using a demonstra-
tion test case. It then describes the main features of the product.

3.1 Getting Acquainted with TCAT C/C++ for Windows

This section will familiarize you with the main activities involved in
using TCAT C/C++, including instrumenting, compiling, linking and
running the target program, and finally, looking at resulting coverage
reports, calltree graphs and digraphs.

The program used to illustrate the operation of TCAT C/C++ in Windows
is Scribble, which you will prepare and instrument as a test application.
You can then exercise various logical branches or segments of Scribble,
creating trace files from which the coverage reports are generated. It is
recommended that you complete the Scribble example before continuing.

If you are using TCAT C++ for the first time, you will benefit most if you
refer to chapters 4 through 7 for in-depth operational instructions and
detailed explanation of functionality. If you are an intermediate user,
you’ll only have to refer to those menu definitions which need further
explanation.

CHAPTER 3: Quick Start

26

3.1.1 Step 1 - Preparing and Instrumenting Scribble

Scribble employs many features of Microsoft Foundation Classes (MFC).
There are several versions of Scribble, which become increasingly com-
plex in each chapter. MVC++ 5.0 has eight chapters; The present example
uses Chapter 8.

This demonstration includes the following steps:
1. Preparing the example application, Scribble, for instrumentation.
2. Instrumenting Scribble.
3. Building an executable file, Scribble.exe.
4. Testing Scribble.
5. Displaying tabular and graphical reports on the test of Scribble.

There are two methods to instrument Scribble by either using options
from the TCAT C/C++ Integrated with MS-Visual C++ v5.0 window or
by using the TCAT C/C++ Program Group window.

TCAT C/C++ for Windows User’s Guide

27

3.1.1.1 Using the TCAT C/C++ Integrated with MS-VC++ v5.0 Window

FIGURE 7 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

1. SelectFile|Open Workspace,then select the “Scribble.dsw” file from the
Samples directory.

FIGURE 8 Open Workspace Dialog Box

CHAPTER 3: Quick Start

28

2. From Build pull-down menu select Configuration, then click the
Add button and type in “Coverage” as a new configuration name.

3. Select Project|Settings, then select Win32 Coverage in the box of
Setting For:.

4. From Project select Setting.

• Click on the Scribble project name, then click on the General tab
menu, and type in "Coverage" to both the Output files and Inter-
mediate files option.

• Click on the C/C++ tab menu, then select the Precompiled Head-
ers, and select the Not using precompiled headers options.

• Click on the "stdafx.cpp" file form Scribble, then select the Pre-
compiled Headers and select Not using precompiled headers
options.

FIGURE 9 Project Setting Dialog Box

TCAT C/C++ for Windows User’s Guide

29

5. From Tools pull-down menu select Customize, then click on the
Add-Ins AND Macro Files tab menu, and select SRCov Developer
Studio Add-in option.

FIGURE 10 Customize Option Dialog Box

The options available from the Tool Bar are the frequently used TCAT C/
C++ for Windows features.

FIGURE 11 Tool Bar

Configure TCAT Selects among modes of instrumentation.

Build Instrumented App. Instruments an application.

Run Instrumented App. Runs the instrumented application.

Analyze Cover Analyze the coverage achieved from tests.

Run DiGraph Digraph display for the selected object.

Run Calltree CallTree display for the selected object.

Run SMARTS Organizes and executes a collection of tests.

Run CAPBAK Captures and plays back tool.

CHAPTER 3: Quick Start

30

6. Click on the Configure TCAT Option button.
• Click on the Instrumentor Options tab menu, then select the C1

and S1 options.
• Click on the Runtime Selection tab menu, then select the

"RUNTMDLL.lib" (located in the Program directory) file.

3.1.1.2 Instrumenting Scribble

Click on the Build Instrumented App button.

The instrumented object files will be placed in the Coverage (debug or
release directory if you choose) directory.

3.1.1.3 Executing the Instrumented Scribble

Click on the Run Instrumented App button, then test-drive the instru-
mented Scribble to create a trace file.

TCAT C/C++ for Windows User’s Guide

31

3.1.1.4 Using the TCAT C/C++ Program Group Window

Setup using Microsoft Visual C++

In Microsoft Visual C++ v5.0:

1. Select File|Open Workspace, select Scribble.dsw (located in the
Samples\Scribble directory) as the project.

2. Select Insert|Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build|Build Scribble.exe.

In Microsoft Visual C++ v4.x:

1. Select File|Open Workspace, select Scribble.mdp (located in the
Samples\Scribble directory) as the project.

2. Select Insert|Files into Project... and add RUNTMDLL.lib (located
in the Program directory) to the project.

3. Select Build|Build Scribble.exe.

CHAPTER 3: Quick Start

32

3.1.1.5 Instrument Using WinIC9

WinIC9 instruments the application under test so that any tests can
produce trace files.

To instrument the example application:
1. Start up WinIC9 from the TCAT C/C++ program group.

FIGURE 12 WinIC9 Window

2. Select Scribble.cpp using the Select button. Note that more than one
file can be selected and instrumented, and that instrumenting multi-
ple files will result in a more thorough coverage report.

FIGURE 13 Select File(s) to Instrument

TCAT C/C++ for Windows User’s Guide

33

Note: More than one file can be selected and instrumented, and
instrumenting multiple files results in more thorough coverage.

3. Select Options button.

Setting Compiler Options for the instrumenter. The TCAT instrumenter
invokes the native compiler after completing its processing steps. To
instrument a program correctly the compiler options need to be set cor-
rectly.

The compiler options very with your application and they can be copied
directly from Visual C++ settings. To find the compiler options you need
select Setting for the project. Then select the appropriate Project Settings.
Select C/C++. The Options that are needed can be found in the field
Project Options.

One example compiler options setting is listed below.

Scribble Debug Version compiler options:

/nologo /MDd /W3 /Gm /GX /Zi /Od /DWIN32 /D_DEBUG /D_WINDOWS /
D_AFXDLL /D_MBCS /Fo”.\Debug/” /Fd”./Debug/” /FD/c

Scribble Release Version compiler options:

/nologo /MD/W3/GX/O2/DWIN32 /NDEBUG/D_WINDOWS/D_AFXDLL/
D_MBCS/Fo”.\Release/”/Fd”./Release/”/FD/c

4. Select Instrument. A copyright box pops up before the instrumenta-
tion of each file. Click OK to proceed.

5. During instrumentation, a command-line window displays messages
and warnings. When instrumentation of a file is complete, a prompt
appears. Type exit to proceed.

6. Select Exit from the WinIC9 window.

The instrumentor has parsed the application’s source code, looking for
logical branches or segments and inserting markers (function calls).

Instrumenting Scribble will not change its functionality. When compiled,
linked and executed, the instrumented application will behave as it nor-
mally does, except that it will write coverage data to a trace file.

CHAPTER 3: Quick Start

34

3.1.1.6 Link Using Microsoft Visual C++

In Microsoft Visual C++:
1. Build Scribble.exe.

FIGURE 14 TCAT C/C++ Integrated with MS-Visual C++ v5.0 Main Window

The preceding steps create an instrumented executable file for Scribble,
which when executed will create a trace file.

TCAT C/C++ for Windows User’s Guide

35

Instrumenting Scribble.cpp produces the following files in the Scribble
directory:

• SCRIBBLE.i — the instrumented version of the source file

This file is updated during the instrumentation process.

• SCRIBBLE.dg — a Directed Graph Listing file

Each instrumented file should have its own .dg file.

• SCRIBBLE.cg — a Calltree Graph Listing file

 Each instrumented file should have its own .cg file.

• SCRIBBLE.mdf — a Module Definition file

This file contains information about segments and callpairs in all
the processed files.

• SCRIBBLE.obj — the instrumented object file

CHAPTER 3: Quick Start

36

3.1.2 Step 2 - Executing the Instrumented Application

1. Execute Scribble from MSVC++.
2. Testdrive Scribble, as shown in Figure 15.
3. To exit Scribble, select Exit from the File menu.

The trace file created by this “test,” Trace.trc, resides in the tcat_db
directory hierarchy in the Scribble directory.

FIGURE 15 Testing Scribble

TCAT C/C++ for Windows User’s Guide

37

3.1.3 Step 3 - Viewing Coverage Reports Using Cover

To view a coverage report of the trace file created by the execution of the
instrumented version of Scribble:
1. Start up Cover.
2. From the File menu, select Open.
3. In the Open dialogue, click on the filename Trace.trc from the

tcat_db\Scribble directory created during instrumentation. The dialog
box then asks for an archive file; ignore this request by clicking the
Cancel button. A coverage report of the test of Scribble appears.

FIGURE 16 Coverage Report on Scribble, with One Function Expanded to Show Segments

CHAPTER 3: Quick Start

38

Cover displays trace and coverage information on your development
project in a treelike list. You can click on a branch of the list to expand it
and show its content, and also to contract it. The several fields in the
report have the following meanings:

Hits The number of times the segment and call pair were executed
during the test

Count The number of segments and call pairs within the function

C1 The percentage of branch coverage for each function

S1 The percentage of call pair coverage for the function

For detailed information about Cover, see Chapter 5.

TCAT C/C++ for Windows User’s Guide

39

3.1.4 Viewing the Source Code Associated with Cover

You can view the source code associated with any segment numbers, or
callpair numbers of the function in a coverage report by clicking on the
segment numbers or callpair numbers. For example, click on a segment
number. The code is displayed in a separate window with the calling
statement highlighted in red.

FIGURE 17 Source Code Displayed from Coverage Report

CHAPTER 3: Quick Start

40

3.1.5 Step 4 - Viewing Directed Graphs with DiGraph

To view a directed graph (digraph) of possible program flows of a
function:
1. Open upDiGraph .

2. Using the File menu, select Open.
3. You are prompted for the name of the directed graph to view. Find

the Scribble.dg file under the d_graph directory.
4. The next prompt asks for the name of the database file. Select the

Scribble.mdf file in the tcat_db\Scribble directory.

FIGURE 18 WinDiGraph Open Dialog Box

5. A window pops up listing the available functions (Figure 19). For this
example, select CScribbleDoc::DeleteContents[void].

FIGURE 19 Select MDF ID Box

TCAT C/C++ for Windows User’s Guide

41

A directed graph depicting possible program flows of the function
CScribbleDoc::DeleteContents[void] appears.

FIGURE 20 Directed Graph of Scribble

The digraph shows the set of conditions and paths that make up a
function. The next step shows how to look at the code that the digraph
displays as numbered segments.

CHAPTER 3: Quick Start

42

3.1.6 Step 5 - Viewing Source Code from a Digraph

To view the source code represented by a particular segment of the
function CScribbleDoc::DeleteContents[void] :

By clicking near the number associated with an edge and selecting the
View Source button, you can call up and view the associated source code.

FIGURE 21 Viewing Associated Source Code from Digraph

The source code associated with Segment 2 appears in a new window. In
this figure, the windows showing the digraph and the source code have
been tiled.

TCAT C/C++ for Windows User’s Guide

43

3.1.7 Step 6 - Viewing a Calltree

To view a calltree of Scribble:
1. Start up CallTree.
2. Using the File menu, select Open.
3. You are prompted for the name of the calltree to view. Find Scribble.cg

under the c_graph directory.
4. You are prompted for the name of the database file. Find the Scrib-

ble.mdf file under the tcat_db directory.
5. A Select Function list box appears. Select the CScribbleDoc::Delete-

Contents[void] function.

FIGURE 22 Select MDF ID Box

CHAPTER 3: Quick Start

44

A calltree depicting the selected function appears.

FIGURE 23 Displaying a Calltree

The calltree shows all of the callpairs associated with the function
CScribbleDoc::DeleteContents[void].

The next step shows how to look at digraphs of the possible program
flows belonging to this function.

TCAT C/C++ for Windows User’s Guide

45

3.1.8 Step 7 - Viewing the Directed Graph Associated With a Calltree Node

To display a directed graph of any callpair shown in the calltree:
1. Select a node by clicking on it.

Notice that the View Digraph button on the toolbar now has a red arrow,
indicating that it is available.
2. To display a directed graph of the selected function, click the View

DiGraph button. You will see a directed graph of the CScribble-
Doc::DeleteContents[void] function.

FIGURE 24 Calltree of CScribbleDoc::DeleteContents[void] and Digraph of Its Possible
Program Flows

CHAPTER 3: Quick Start

46

3.1.9 Step 8 - Viewing the Source Code Associated With a Calltree

You can view the source code associated with any node in a calltree by
clicking on the corresponding edge.

Notice that the Source Code button on the Tool Bar has a red arrow.
1. To display the associated source code, click the Source Code button.

The code is displayed in a separate window with the calling
statement highlighted in red.

FIGURE 25 Source Code Window Displayed from Calltree

TCAT C/C++ for Windows User’s Guide

47

3.1.10 Step 9 - Closing TCAT C/C++for Windows

After looking at the source code, select one of the following options to
complete the session.

To close TCAT C/C++ for Windows:

• Select File|Exit from the menu bar of each open program, or
• Double-click on the frame window Close Box of each program.

 You have now seen all the main features of TCAT C/C++ for Windows.

CHAPTER 3: Quick Start

48

3.2 Summary

If you have completed the proceeding steps successfully, you have seen
and practised the basic skills you need to use TCAT C/C++ productively.
You should have learned how to invoke TCAT C/C++, how to instru-
ment, compile, link and run a program, and how to look at the coverage
reports.

For best learning you may want to:
• Repeat STEPS 1 - 9 without the manuall and experiment by run-

ning the application several times and looking at the amount of
coverage your test input receives.

• Repeat STEPS 1 - 9 with you application
• Review the chapters on system operation where you had difficul-

ties. The table of contents can help you locate the topic you want.

49

CHAPTER 4

C/C++ Instrumentor Engine
This chapter discusses the TCAT C/C++ for Windows integrated “C” and “C++”
instrumentor. This chapter applies to all editions of TCAT C/C++ for Windows.

4.1 Instrumentor Description

WinIC9 instruments the source code of the application under test by
inserting function calls at each logical branch and call pair. The instru-
mentation does not affect the functionality of the program. When com-
piled, linked, and executed, the instrumented program will behave
normally, but writes coverage data to a trace file.

There is some performance overhead related to the data collection
process, but the overhead varies with the choice of the runtime used.
The trace files are processed by several kinds of report generators.

There is a single version of the instrumentor engine for “C” and “C++”
programs.

CHAPTER 4: C/C++ Instrumentor Engine

50

4.1.1 Files Generated

In operation, the IC9 instrumentor parses candidate source code looking
for logical branches and/or call pairs and generates auxiliary files that are
used by other parts of the system. TCAT C/C++ for Windows uses and
produces the following files:

Instrumenting Scribble.cpp produces the following files in the Example
directory:

• SCRIBBLE.i — the instrumented version of the source file

This file is updated during the instrumentation process.

• SCRIBBLE.dg — a Directed Graph Listing file

Each instrumented file should have its own .dg file.

• SCRIBBLE.cg — a Calltree Graph Listing file

Each instrumented file should have its own .cg file.

• SCRIBBLE.mdf — a Module Definition file

This file contains information about segments and callpairs in all
the processed files.

• SCRIBBLE.obj — the instrumented object file

If you are working in a 32-bit environment, this file must be
copied into the Debug directory.

There is also a “C” version of this same information set up as a
“C” structure format so that it can be used in cross-testing and
embedded applications.

• Trace.trc — produced when the instrumented application is
executed

This file contains coverage information for the current test.

TCAT C/C++ for Windows User’s Guide

51

4.2 WinIC9 Main Window

FIGURE 26 WinIC9

WinIC9 drives the instrumentor, IC9, according to selections made by the
user.

Select Click a file to select it for instrumentation, control-
click to select several files, or shift-click to select a
series of files.

Instrument Instruments the selected file(s). During instrumenta-
tion, a command-line box gives informational and
warning messages.

Batch File Click this button to run WinIC9 on the file appearing
in the file selection area.

Options Selects among code languages and modes of instru-
mentation.

Close Exits WinIC9.

CHAPTER 4: C/C++ Instrumentor Engine

52

FIGURE 27 Select File(s) to Instrument

TCAT C/C++ for Windows User’s Guide

53

FIGURE 28 Identify Batch File

This option defers instrumentation. Thus, the batch file can become part
of other time-consuming processes normally done overnight, such as
fetching code or compiling big projects. When a *.bat file is executed, it
checks the interactive option and switches it off.

CHAPTER 4: C/C++ Instrumentor Engine

54

FIGURE 29 IC9 Options

Figure 23 shows the default options for IC9.

On 32 bits, any alterations generated here are written to the Registry key
HKEY_CURRENT_USER\ Software\Software Research\Cover-
age\TCAT\program\WinIC9, from which WinIC9 reads them. The
Defaults button retrieves the contents of Registry key
HKEY_LOCAL_MACHINE\ SOFTWARE\Software Research\Coverage\
TCAT\Program\WinIC9 to this box.

TCAT C/C++ for Windows User’s Guide

55

For the options offered under Code Recognition, the C languages are
optional; C++ is the default, and is recommended for use even with C
files. Some C files contain constructs that might compile in C but not in
C++; but absent these constructs, the C++ default is superior to the C
options.

For the Instrumentation options, the usual assumption is that more cover-
age is better. Note that S0 coverage requires S1 coverage and cannot be
selected unless S1 coverage is also selected.

Selecting the Keep Instrumented File option means that the *.i file created
during instrumentation is retained. Should the instrumentation fail, this
file can be debugged for information, or compiled without using IC9 to
create *.obj files.

Selecting the Instrument Only option prevents IC9 from compiling and
producing an *.obj file.

The Interactive option makes the instrumentation more visible. The inter-
activity means that the IC9 command line window, which is present
during instrumentation, waits for the user to exit from it before closing
down to begin instrumentation of the next file or to return to WinIC9.
This ensures that the user can read the messages and warnings in the
window. This option is automatically switched off for batch processing.

CHAPTER 4: C/C++ Instrumentor Engine

56

4.3 Instrumenting the Application Under Test

4.3.1 Options and Parameters

 The syntax for command line invocation of IC9 is as follows:
IC9 <<option>> file.ext
[-TCAT-A]
[-TCAT-B]
[-TCAT-Cmd driver]
[-TCAT-C1]
[-TCAT-E]
[-TCAT-G]
[-TCAT-H]
[-TCAT-K]
[-TCAT-O file]
[-TCAT-PD name]
[-TCAT-PN name]
[-TCAT-S0]
[-TCAT-S1]
[-Ddefs[=val]
[-Ipath]
[-Uundefs[=val]

These commands instrument submitted “C” and “C++” language file(s).

The directory specified with the -TCAT-PD switch becomes the project
directory for the instrumentation. Within this directory, the tcat_db
directory is automatically created. The directory name specified with the
-TCAT-PN switch is created under the tcat_db directory, and contains the
trace file, the module definition file, and the c_graph and d_graph directo-
ries. These lowest directories contain the *.cg and *.dg files, respectively.

TCAT C/C++ for Windows User’s Guide

57

If you invoke IC9 with the switches -TCAT-PD c:\AAA and -TCAT-PN
XXX on the file example.c , the directory tree created during instru-
mentation is as follows:

The following instrumentor switches may be used to vary the processing
and reports generated by the instrumentor. The instrumentor switches
are listed in alphabetical order.

Note that the commands are prefixed with -TCAT. This is done because
all other switches are passed to the “C” or “C++” compiler. The prefix
indicates that these switches are for TCAT processing.

c:\
AAA

tcat_db
XXX

c_graph
example.cg

d_graph
example.dg

XXX.mdf
trace.trc

CHAPTER 4: C/C++ Instrumentor Engine

58

file.ext Instrumented File Specification(s); File(s) to be
instrumented

 The extension can be c or i or cpp (for “C++”).

If there are multiple files, each one is processed in the
order presented, and they are treated as if they have
been concatenated together.

-TCAT-A ANSI Recognition Switch

 If present, the instrumentor recognizes only the
ANSI version of “C” or “C++”.

-TCAT-B Non-Interactive Instrumentation Switch

Instrumentation does not require any input from test-
ed even if more than one file is being instrumented.

-TCAT-Cmd driver Compiler Driver Command Switch

Default driver is cc. For Microsoft Visual C, use
cl.exe.-TCAT-C1 C1 Instrumentation Switch

If this switch is present, then the instrumentor inserts
a function call in each segment, or logical branch. This
is the preset default.

-TCAT-E Print Error Messages Switch

This switch enables sending error messages to
standard output. If not present, then error messages
are suppressed.

TCAT C/C++ for Windows User’s Guide

59

-TCAT-G Instrumented File Disposition Switch

Normally the instrumentor does not keep the
instrumented file, because it has already been used to
produce the instrumented output. When this switch
is present the instrumented files are retained.

-TCAT-Help Help Message Switch

This switch prints out the set of valid switches.

-TCAT-K K&R C Recognition Switch

If present, the instrumentor recognizes K&R “C”.

-TCAT-i Instrumentation Only Switch

WinIC9 instruments the target application but does
not generate an object file. -TCAT-i overrides the
-TCAT-cmd switch.

-TCAT-O file Output File Specification

The output of the instrumentation process is directed
to the named file (default is file.i).

-TCAT-PD name Project Directory Switch

This switch specifies the location of the “project”
directory.

-TCAT-PN name Project Name Switch

This switch specifies the project name.

CHAPTER 4: C/C++ Instrumentor Engine

60

-TCAT-S0 S0 Instrumentation Switch

If this switch is present, then the instrumentor inserts
a function call in each module. This tells you which
functions are actually called during the invocation of
the program, but it does not indicate the callee func-
tions. To do this, you need to use the -S1 switch.

-TCAT-S1 S1 Instrumentation Switch

If this switch is present, then the instrumentor inserts
a function call in each call pair.

-Ddefs[=val] Establish Definition Switch

This switch establishes a definition that is passed on
to the compiler.

 -Ipath Include File Search Path Specification

This switch specifies the path on which to resolve the
search for #include files.

 -Uunefs[=val] De-Establish (Undefine) Definition Switch

This switch removes a definition that is passed on to
the compiler.

TCAT C/C++ for Windows User’s Guide

61

4.3.2 Instrumentation Function Names

Instrumentation involves inserting function names into the source pro-
gram. The function names for TCAT-instrumented programs are:

SegHit(); For entry segment, switch
segments

CprHit(); For S1 coverage of call pairs

ExpHit(); For C1 coverage if 's, while's and
for 's

Strace(); Start trace operations (this is an
optional call)

Ftrace(); Finish trace operations, flush
buffer, and close trace file

NOTE: For console (non-GUI) applications in Windows 95 and Windows
NT and applications targeted for DOS in Windows 3.1x, trace files cannot
be created correctly if the main function contains a return . This is
because WinIC9 inserts Ftrace(); following any instance of return
in the main function of an instrumented program, which terminates the
program before the trace file can be closed and the buffer flushed. If this
happens, substituting exit for return in the main function averts the
problem.

CHAPTER 4: C/C++ Instrumentor Engine

62

4.3.3 Instrumentor Inline Directives

It is possible to control instrumentation from within the processed “C” or
“C++” file, using the following instrumentor directives to turn off/on all
instrumentation (but keep the segments and call pairs numbered
correctly):

/* TCAT OFF */
/* TCAT ON */

TCAT C/C++ for Windows User’s Guide

63

4.4 Database File Formats

For information on the format of WinIC9 output files, see Appendix A,
“C/C++ Instrumentor Engine Database Files.”

CHAPTER 4: C/C++ Instrumentor Engine

64

65

CHAPTER 5

Cover
This chapter discusses Cover, the TCAT C/C++ for Windows complete TCAT C/C++
analyzer for branch (C1) and callpair (S1) metrics. This chapter applies to all editions of
the product.

5.1 Cover

Cover analyzes the trace files created when an instrumented program is
executed, and generates reports based on the trace file data.These cover-
age reports can be tailored to show a variety of data, including:

• segments hit
• segments not-hit
• past-test and cumulative coverage percentages

Cover makes the following assumptions:
• A [possibly empty] archive file and a current [possibly empty]

trace file exist.
• There is a file containing the names of the files in the project.
• The actual update of trace + archive --> archive is optional at end

of a session.

The package maintains its usual rules for precedence of archive over
trace, and displays warning messages when it finds size differences
between archive and trace file.

CHAPTER 5: Cover

66

5.2 Trace File and Archive File Formats

For information on the format of trace files and archive files, see
Appendix A, “C/C++ Instrumentor Engine Database Files.”

TCAT C/C++for Windows User’s Guide

67

5.3 Cover Main Window

Once you have built an instrumented version of your application and
exercised it, follow these steps to display a coverage report:
1. Click on Cover icon (C1) from the MS-VC Studio toolbar or from

Star -->Programs, then select TCAT C and C++ Program Group.
2. From the File menu, select Open.
3. In the Open dialogue box, click on the filename Trace.trc in the

tcat_db directory. The dialog box then asks for an archive file; ignore
this request by clicking the Cancel button.

A coverage report on the application appears.

FIGURE 30 Cover Main Window

CHAPTER 5: Cover

68

5.3.1 Tool Bar

The options available from the Tool Bar are the frequently used Cover
features.

FIGURE 31 Tool Bar

Open This option brings up the Open dialog box.

Print Button This button brings up the Print dialog box.

Help This button brings up a brief description of Cover.

TCAT C/C++for Windows User’s Guide

69

5.3.2 File Menu

This menu displays the file management and printing options that are
available in Cover.

Open This option brings up the Open dialog box.

Print This option brings up a the Print dialog box.

Print Preview This option displays an image of what prints when
you select the Print option.

Print Setup This option displays a standard Windows printer set-
up dialog box.

Exit To end your Cover session, select the Exit option.

CHAPTER 5: Cover

70

5.3.3 View Menu

This menu provides two options for configuring the Cover display.

Toolbar This toggle allows you to hide the Tool Bar in order to
give your report more vertical display space or to re-
display it.

Status Bar This toggle allows you to hide or re-display the status
bar at the bottom of the Cover window.

5.3.4 Window Menu

This menu allows you to manipulate the Cover windows using the
Cascade, Tile and Arrange Icons options, and the Window list box.

5.3.5 Help Menu

The first help option currently offers a brief description of Cover. The
second option, About, displays the program’s version number and copy-
right information.

5.3.6 Status Bar

This section of the window (appearing at the bottom left) displays
messages regarding the functionality and operation of the Cover options.

TCAT C/C++for Windows User’s Guide

71

5.4 File Menu

This menu is typical of Windows interfaces and provides access to file-
manipulation options.

5.4.1 Open

FIGURE 32 Cover Open Dialog Box

This option brings up a file selection dialog box. Typical of Windows
interfaces, this dialog allows you to browse the directory tree and select
files to open. Since all trace files are usually saved as trace.trc, each project
has only one trace file.

File Name This box lists the files in the current directory that
match the filter.

Directory This box lists the available directories.

When you have found the desired file, click OK, and the coverage report
is displayed. Cancel closes the dialog box without opening a report.

CHAPTER 5: Cover

72

5.4.2 Print

FIGURE 33 Print Dialog Window in Cover

The image you see is printed to a standard print device. Your printer may
have different options. This window allows you to configure it for your
environment. The following options are available in the Print dialog box:

Printer You must name the printer to which the printing of
the document is to be sent.
When a print job has been sent, a message window
saying Print action completed pops up. Click OK to
close this window.

Print Range This option allows you to print the entire document
or a subset thereof.

Print Quality This pull-down menu allows you to select the quality
of the print job.

Copies This option allows you to specify the number of cop-
ies to print. The Collate Copies check-box defaults to
Yes.

There are four buttons available on this dialog box.

OK This button sends your print job to the specified
printer.

Cancel This button closes the dialog box without printing
your document.

TCAT C/C++for Windows User’s Guide

73

Printer Setup The button opens the Printer Setup dialog box, where
you can select a printer and change printing options.

FIGURE 34 Print Setup Dialog

CHAPTER 5: Cover

74

5.5 Window Menu

This menu provides four options to manipulate the Cover windows. By
default the active window entirely overlaps all others.

5.5.1 Cascade

This option arranges your windows in a cascade, with the active window
top-most and highlighted.

5.5.2 Tile

This option arranges the windows so that a portion of each window is
displayed. The active window is highlighted.

5.5.3 Arrange Icons

When you have minimized windows, this option arranges them neatly at
the bottom of the Cover window.

5.5.4 Window List Box

This area of the pull down-menu lists all the windows open in Cover. The
active window is indicated by a check mark. To activate a new window,
especially if the windows are fully overlapping, select it from this list.

TCAT C/C++for Windows User’s Guide

75

5.6 Create/Update an Archive File

If no archive file is loaded, this option creates one by copying the current
*.trc file as an *arh file. Updating combines the information from the
current *.trc file with that of the selected *.arh file.

FIGURE 35 Save Archive File

CHAPTER 5: Cover

76

5.7 Analysis of Coverage Reports

In the following analysis, a coverage report shows that a certain function,
CScribbleDoc::DeleteContents[void], has been tested 75.00%.

FIGURE 36 Coverage Report Showing C1 Coverage of 75.00% on the Function
CScribbleDoc::DeleteContents[void]

The function consists of four segments and three callpairs. This coverage
report shows that segments 1 and 3 were hit 7 times each, segment 2 was
hit 17 times, and segment 4 not once. The callpairs 1 was exerised 24
times, callpair 2 was exercised 17 times, and callpair 3 was exercised 7
times.

The following few pages show graphical views of these numerical results.

TCAT C/C++for Windows User’s Guide

77

In Figure 37, TCAT C/C++ for Windows graphs CScribbleDoc::Delete-
Contents[void] and its relations. The calltree shows the callpairs in
CScribbleDoc::DeleteContents[void], and the digraph shows possible
program flows through CScribbleDoc::DeleteContents[void] divided
into segments.

FIGURE 37 Calltree and Digraph of CScribbleDoc::DeleteContents[void]

Note that the calltree shows three callpairs: these callpairs are shown in
the coverage report in Figure 36, which have been exercised 24, 17, 7
times respectively. The coverage report shows that the percentage of S1
coverage (coverage of call pairs) was 100% for this function.

Note that the digraph shows three segments. The coverage report in Fig-
ure 36 shows that the test of Scribble hit three of four segments. The cov-
erage report shows that the percentage of C1 coverage (branch coverage)
was 75.00%.

CHAPTER 5: Cover

78

To look at source code associated with callpairs, highlight the graphic
lines connecting the functions shown in the calltree.

FIGURE 38 Calltree and Source Code Associated with One Callpair

TCAT C/C++for Windows User’s Guide

79

To look more closely at the segments, highlight one of the graphic lines in
the digraph by clicking on it close to the number. Then use the Source
Code button to display the associated source code.

FIGURE 39 Digraph and Source Code Associated with One of Its Segments

CHAPTER 5: Cover

80

81

CHAPTER 6

DiGraph
This chapter provides details on viewing and using directed graphs in TCAT C/C++ for
Windows.

6.1 Purpose and Overview

Directed graphs (digraphs) graphically display a program’s structure and
flow to help developers isolate flaws and bottlenecks.

TCAT C/C++ for Windows draws digraphs based on archive files that are
created during instrumentation. Digraphs are composed of edges and
nodes. Edges are derived from segments (also known as logical branches)
representing sets of consecutive program statements or a program’s
“actions” (see Figure 40). Nodes are the places or “states” where the
actions occur.

6.2 Directed Graph File Format

For information regarding the format of a directed graph chart file, see
Appendix A, “C/C++ Instrumentor Engine Database Files.”

CHAPTER 6: DiGraph

82

FIGURE 40 Program Edges as Represented in a Digraph

A

B

A

B C

A

C
B

A B C

Succession
Statement:

statement A;

statement B;

Alteration
Statement:

statement A;

if condition then

statement B;

else

statement C;

end if;

Case Statement:

case element is
when value-1--

Statement A;

when value-2---
Statement B;

when value-3---
statement C;

end case;

Iteration
Statement:

statement A;

while condition

statement B;

loop;

statement C;

TCAT C/C++ for Windows User’s Guide

83

6.3 DiGraph Main Window

In order to explore all the options available, open a directed graph of the
example program. In order to do this, you must first instrument the
example application, which is discussed in Sections 4.1, 4.2, and 4.3,
“Using IC9.”

When you have an instrumented executable:
1. Click on the DiGraph icon from the MS-VC Studio toolbar or from

Star -->Programs, then select TCAT C and C++ Program Group.
2. Using the File pull down menu and select Open.

You are prompted for the name of the directed graph to view.
3. Find the SCRIBBLE.dg file under the tcat_db\name\d_graph directory.

You are prompted for the name of the database file.
4. Find the SCRIBBLE.mdf file under the tcat_db\name directory.

FIGURE 41 WinDiGraph Open Dialog Box

CHAPTER 6: DiGraph

84

5. A window pops up listing the available functions (Figure 42). For this
example, select CScribbleDoc::DeleteContents[void].

FIGURE 42 Select MDF ID Box

A directed graph depicting possible program flows of the function
CScribbleDoc::DeleteContents[void] appears.

FIGURE 43 Directed Graph of Scribble

The digraph shows the set of conditions and paths that make up a
function. The next step shows how to look at the code that the digraph
displays as numbered segments.

TCAT C/C++ for Windows User’s Guide

85

6.3.1 Tool Bar

The options available from this Tool Bar are the frequently used DiGraph
features. When available, they appear highlighted.

FIGURE 44 Tool Bar

Open This button brings up the Open dialog box.

Print This button brings up the Print dialog box.

ZoomIn This button Zooms in magnification factors of the
current open window.

ZoomOut This button Zooms out magnification factors of the
current open window.

Source This button brings up a window which contains the
source code for the currently selected edge.

Help This button brings up a brief description of DiGraph.

CHAPTER 6: DiGraph

86

6.3.2 File Menu

This menu displays the file management and printing options that are
available in DiGraph.

Open This option brings up the Open dialog box.

Print This option brings up a the Print dialog box.

Print Preview This option displays an image of what will print
when you select the Print option.

Print Setup This option displays a standard Windows printer set-
up dialog box.

Exit To end your DiGraph session, select the Exit option.

TCAT C/C++ for Windows User’s Guide

87

6.3.3 Zoom Menu

This menu contains two options for scaling the digraph’s display. For
information on setting the zoom scale, see Section 6.6.1, “The Digraph
Options Dialog Box.”

In This option allows you to enlarge a portion of the di-
graph so that you can see it in more detail. There is a
limit to how far you can zoom in, determined by your
computer’s display resolution.

Out This option allows you to see a wider portion of the
digraph at a reduced magnification. Again, limits ap-
ply to how far you can zoom out.

CHAPTER 6: DiGraph

88

6.3.4 View Menu

This menu provides three options for configuring the digraph’s display.

Source This option allows you to display the source code for
the selected function in the current directed graph.

Tool Bar This toggle allows you to hide the Tool Bar in order to
give your digraph more vertical display space or to
re-display it.

Status Bar This toggle allows you to hide or re-display the status
bar at the bottom of the DiGraph window.

TCAT C/C++ for Windows User’s Guide

89

6.3.5 Options Menu

This menu provides access to two dialog boxes where you can set global
display options for DiGraph.

Digraph Options This option displays a dialog box allowing you to
choose the characteristics of the nodes and edges dis-
played in the digraph, as well as the increments for
the Zoom In and Zoom Out options.

6.3.6 Window Menu

This menu allows you to manipulate the DiGraph windows using the
Cascade, Tile, and Arrange Icons options, and the Window list box.

6.3.7 Help Menu

The first help option currently offers a brief description of DiGraph. The
second option, About, displays the program’s version number and copy-
right information.

6.3.8 Status Bar

This section of the window (appearing at the bottom left) displays mes-
sages regarding the functionality and operation of the DiGraph options.

CHAPTER 6: DiGraph

90

6.4 File Menu

This menu is typical of Windows interfaces, and provides access to file-
manipulation options.

6.4.1 Open

FIGURE 45 DiGraph Open Dialog Box

This option brings up a file selection dialog box. Typical of Windows
interfaces, this dialog box allows you to browse the directory tree, and
select files to open.

File Name This box lists the files in the current directory that
match the filter.

Directory This box lists the available directories.

When you have found the desired file, click OK, and the directed graph is
displayed. Cancel closes the dialog box without opening a graph.

TCAT C/C++ for Windows User’s Guide

91

6.4.2 Print

FIGURE 46 Print Dialog Box in DiGraph

The image you see is printed to a standard print device. Your printer may
have different options. The following configuration options are available
in the Print dialog box:

Printer You must name the printer to which the printing of
the document is sent.
When a print job has been sent, a message window
saying Print action completed pops up. Click OK to
close this window.

Print Range This section allows you to print the entire document,
or a subset thereof.

Print Quality This pull down menu allows you to select the quality
of the print job.

Copies This option allows you to specify the number of cop-
ies to print. The Collate Copies check-box defaults to
Yes.

There are four buttons available on this dialog box.

OK This button sends your print job to the specified
printer.

Cancel This button closes the dialog box without printing
your document.

CHAPTER 6: DiGraph

92

Printer Setup This button opens the Printer Setup dialog box where
you can select a printer and change printing options.

FIGURE 47 Print Setup Dialog Box

TCAT C/C++ for Windows User’s Guide

93

6.5 View Menu

The most critical option on this menu is the View Source option.

6.5.1 Viewing Associated Source Code

FIGURE 48 View Source Option

This option displays the source code for the program depicted in the
digraph. If you click on an edge segment number in the digraph’s main
window, and the View Source option, the source code associated with
that edge is displayed.

The arrow (triangle) symbols on the right-hand side (and bottom, when
appropriate) of the window are scroll bars, which you can use to move
vertically (or horizontally) in this window.

CHAPTER 6: DiGraph

94

6.6 Options Menu

The options available from this menu allow you to configure certain
aspects of the DiGraph display.

6.6.1 The Digraph Options Dialog Box

FIGURE 49 Digraph Options Dialog Box

This dialog box allows you to choose the magnification step used for the
Zoom In and Zoom Out commands, the shape and size of the digraph’s
nodes, and the colors of the digraph’s edges.

Zoom Increment This sets the magnification interval for the Zoom In
and Zoom Out options. The default setting is .1
meaning a 10% reduction or enlargement in scale
each time these buttons are used. To change the set-
ting, move the slider left or right. Each 0.1 represents
10%, so if you slide the rule to .3, for example, the re-
duction and enlargement is 30% each time.

Eccentricity This determines the curvature of the generated dis-
play. The default value is .3; bigger values make the
picture wider, and smaller values narrower.

Characteristics

TCAT C/C++ for Windows User’s Guide

95

Node You can choose different sizes and shapes for the di-
graph’s nodes. In this window, you can change the
space between nodes and their height-to-width ratio.

You have four choices for shapes: Circle, Box, Oval or
Outlined (the circle is drawn but not filled). The de-
fault setting is Circle.

• You can choose the size of the circle, box or
oval. The default size is 1.0.

• You can change the amount of space
between nodes. The default setting is 1.0.

• You can change the height-to-width ratio (for
ovals or box shapes only). The default set-
ting is 1.0.

CHAPTER 6: DiGraph

96

Edge This area provides options to change the appearance
of edges on your directed graph.

• There are three choices for Unhighlighted
Edge: Fulltone, Halftone (dashes) or Blank
(no visible lines). The default setting is Full-
tone.

• Default Color is the basic color of the
digraph’s edges and nodes. The default set-
ting is blue.

OK If you click on the OK button, all the current settings
in the Options window are applied to the digraph.

Cancel If you click on the Cancel button, any changes you
have made since opening the Options window are
discarded.

Close If you click on the Close button, you exit the Options
window.

TCAT C/C++ for Windows User’s Guide

97

6.7 Window Menu

This menu provides four options to manipulate the DiGraph windows.
The default arrangement is that the active window entirely overlaps all
others.

6.7.1 Cascade

This option arranges your windows in a cascade, with the active window
top-most and highlighted.

FIGURE 50 Cascading Windows in DiGraph

CHAPTER 6: DiGraph

98

6.7.2 Tile

This option arranges the windows so that a portion of each window is
displayed. The active window is highlighted.

FIGURE 51 Tiled Windows in DiGraph

TCAT C/C++ for Windows User’s Guide

99

6.7.3 Arrange Icons

When you have minimized windows, this option arranges them neatly at
the bottom of the DiGraph window.

6.7.4 Window List Box

This area of the pull down menu lists all the open windows available in
DiGraph. The active window is indicated by a check mark. To activate a
new window, especially if the windows are fully overlapping, select it
from this list.

CHAPTER 6: DiGraph

100

101

CHAPTER 7

CallTree

This chapter provides details about using calltrees in TCAT C/C++ for Windows.

7.1 Calltree Overview

A calltree displays a program’s caller–callee dependency structure. TCAT
C/C++ for Windows generates a calltree graph for each segment of your
executable during instrumentation and stores it in a separate archive file.
Once the instrumented application has been exercised, you can display a
calltree window for a specified program segment by opening the target
application’s *.cg file.

CHAPTER 7: CallTree

102

7.2 Generating and Viewing Calltrees

You generate calltrees for your application by instrumenting your source-
code files, as described in Sections 4.2 and 4.3 .

To Launch CallTree:

1. Click on the CallTree icon from the MS-VC Studio toolbar or from
Star -->Programs, then select TCAT C and C++ Program Group.

To View a calltree of the example program:

1. Pull down theFile menu.

2. Select Open.

You are prompted for the name of the calltree to view.

3. Find the EXAMPLE.cg file under the tcat_db\name\c_graph directory.

You are prompted for the name of the database file.

4. Find the TCAT.mdf file under the tcat_db\name directory.
5. Select a function ID from the presented list.

A calltree depicting the selected function appears. This first node of the
calltree is called the root, as it is never called from within the program.
The second (and lower) tier of nodes are the called functions, as they are
called by nodes above them. The final tier of a calltree consists of called
functions which never call other functions.

TCAT C/C++ for Windows User’s Guide

103

7.3 Calltree File Format

For information on the format of calltree files, see Appendix A, “C/C++
Instrumentor Engine Database Files.”

7.4 CallTree Window Overview

FIGURE 52 CallTree Main Window

This window allows you to view the calltree. This section briefly
describes the menus available from CallTree. Several of the menus are
discussed in more detail in later sections.

CHAPTER 7: CallTree

104

7.4.1 Tool Bar

The options available from this Tool Bar are the frequently-used CallTree
features. When unavailable, they appear grayed out.

FIGURE 53 Tool Bar

Open This button brings up the Open dialog box.

Print This button brings up the Print dialog box.

ZoomIn This button Zooms in magnification factors of the
current open window.

ZoomOut This button Zooms out magnification factors of the
current open window.

Source This button brings up a window which contains the
source code for the currently selected edge.

Digraph This button brings up a digraph of the associated
function.

Help This button brings up a brief description of CallTree.

TCAT C/C++ for Windows User’s Guide

105

7.4.2 File Menu

This menu displays the file management options available for CallTree.

Open This option calls up the Open dialog box.

Close This option closes the currently selected calltree.

Exit If you wish to end your CallTree session, drag the
mouse to Exit.

Print This option brings up a the Print dialog box.

Print Preview This option displays an image of what prints when
you select the Print option.

Print Setup This option displays a standard Windows printer set-
up dialog box.

CHAPTER 7: CallTree

106

7.4.3 View Menu

This menu provides three options (Select Function, Source and Directed
Graph) allowing alternate views of the program segment displayed in the
calltree.

7.4.4 Window Menu

This menu allows you to manipulate any open CallTree windows using
the Cascade, Tile and Arrange Icons options and the Window list box.

7.4.5 Options Menu

In this menu, a dialog box pops up where you can set the size, aspect
ratio, and vertical spacing of the calltree, as well as the increments for the
Zoom In and Zoom Out options.

7.4.6 Help Menu

This menu currently offers only one option, About, which displays the
program’s version number and copyright information.

7.4.7 Status Bar

This section of the window (appearing at the bottom left) displays
messages regarding the functionality and operation of the CallTree.

TCAT C/C++ for Windows User’s Guide

107

7.5 File Menu

The File menu is typical of Windows applications.

7.5.1 Open

FIGURE 54 CallTree Open Dialog Box

This option brings up a file selection dialog box. It allows you to browse
the directory tree and select files to open.

File Name This box lists the files in the current directory that
match the filter.

Directory This box lists the available directories. When you
have found the desired file, click OK, and the calltree
is displayed.

Cancel closes the dialog box without opening a calltree.

CHAPTER 7: CallTree

108

7.5.2 Print Menu

FIGURE 55 Print Dialog Box in CallTree

The image you see is printed to a standard print device. Your printer may
have different options. The following configuration options are available
in the Print dialog box:

Printer You must name the printer to which the printing of
the document is sent.
When a print job has been sent, a message window
saying Print action completed pops up. Click OK to
close this window.

Print Range This section allows you to print the entire document
or a subset thereof.

Print Quality This pull-down menu allows you to select the quality
of the print job.

Copies This option allows you to specify the number of cop-
ies to print. The Collate Copies check-box defaults to
Yes.

There are four buttons available on this dialog box.

OK This button sends your print job to the specified
printer.

Cancel This button closes the dialog box without printing
your document.

TCAT C/C++ for Windows User’s Guide

109

Printer Setup This button opens the Printer Setup dialog box, where
you can select a printer and change printing options.

FIGURE 56 Print Setup Dialog Box

CHAPTER 7: CallTree

110

7.6 View Menu

From CallTree, you can view source code and directed graphs of your
program using the options on this menu.

7.6.1 Viewing Associated Source Code

FIGURE 57 View Source Option

This option displays the source code for the program depicted in the call-
tree. If you click on an edge segment in the calltree’s main window, and
select the View Source option, the source code associated with that edge
is displayed. If no call pair was selected, the display is positioned at the
first call pair in the module. You can also select the Source button on the
Tool Bar.

The arrow (triangle) symbols on the right-hand side and bottom of the
window are scroll bars, which you can use to move vertically or horizon-
tally in this window.

TCAT C/C++ for Windows User’s Guide

111

7.6.2 Viewing a Directed Graph

FIGURE 58 Directed Graph Option

This option allows you to view the detailed structure of a function in the
current calltree. If you click on a node and select the Directed Graph
option, a directed graph depicting that node appears. You can also select
the Directed Graph button on the Tool Bar.

From this new window, you can view the source code in terms of edges
and nodes rather than call pairs. To do so, click on an element of the
directed graph and select View Source either from the View menu or
from the Tool Bar.

CHAPTER 7: CallTree

112

7.7 Window Menu

This menu provides four options used to manipulate the CallTree
windows.The default arrangement is that the active window entirely
overlaps all others.

7.7.1 Cascade

This option arranges your windows in a cascade, with the active window
top-most and highlighted.

FIGURE 59 Cascading Windows in CallTree

TCAT C/C++ for Windows User’s Guide

113

7.7.2 Tile

This option arranges the windows so that a portion of each window is
displayed. The active window is highlighted.

FIGURE 60 Tiled Windows in CallTree

CHAPTER 7: CallTree

114

7.7.3 Arrange Icons

When you have minimized windows, this option arranges them neatly at
the bottom of the CallTree window.

7.7.4 Window List Box

This area of the pull-down menu lists all the open windows available in
CallTree. The active window is indicated by a check mark. To activate a
new window, especially if the windows are fully overlapping, select it
from this list.

TCAT C/C++ for Windows User’s Guide

115

7.8 Options Menu

This menu brings up a dialog box from which several display options are
available.

FIGURE 61 CallTree Options Dialog Box

This dialog box allows you to choose the magnification step used for the
Zoom In and Zoom Out commands, the shape and size of the digraph’s
nodes, and the colors of the digraph’s edges.

Zoom Increment This sets the magnification interval for the Zoom In
and Zoom Out options. The default setting is .1
meaning a 10% reduction or enlargement in scale
each time these buttons are used. To change the set-
ting, move the slider left or right. Each 0.1 represents
10%, so if you slide the rule to .3, for example, the re-
duction and enlargement is 30% each time.

Vertical Spacing This alters the vertical distance between members of
callpairs.

Aspect Ratio This alters the distance between and the width of the
boxes.

OK If you click on the OK button, all the current settings
in the Options window are applied to the calltree.

Cancel If you click on the Cancel button, any changes you
have made since opening the Options window are
discarded.

CHAPTER 7: CallTree

116

117

 APPENDIX A

C/C++ Instrumentor Engine
Database Files

This file lists examples of WinIC9’s output files. This appendix applies to all editions of
Coverage for Windows.

A.1 Instrumentation Database Definitions

This section outlines the files that are used in the instrumentation data-
base stored in the tcat_db directory. This information is used throughout
Coverage for Windows.

APPENDIX A: C/C++ Instrumentor Engine Database Files

118

A.1.1 d_graph Files

The digraphs for each function are put into files which are named with
the same basename as the file from which they originated, with any file-
name suffix stripped off.

The format of each d_graph file is a set of blank delimited (white space
delimited) lines composed as follows:

tail head edge fun_id type filename
lbeg lend byte_beg byte_end string
result [byte1 byte2]

where the fields have the following meanings:

tail The tail node number (string)

head The head node number (string)

edge The ic9 assigned edge number (string), also known as
the seg ID

fun_id The number of the function, whose name is found in
the mdf file

type The type of statement which gave rise to the edge

filename The filename where the original text of the program
was found

lbeg The beginning line number, in the named file, where
the tail node is found

lend The ending line number, in the named file, where the
head node is found

byte_beg The beginning byte number, in the named file, where
the tail node is found

byte_end The ending byte number, in the named file, where the
head node is found

string The text string associated with the logical expression
that headed the segment

result The result corresponding to this edge, e.g. T or F or 36
(for switch outcome)

[byte1 byte2] Currently “0 0”; reserved for expansion

A sample d_graph file is listed in Section A.2.1

TCAT C/C++ for Windows User’s Guide

119

A.1.2 c_graph Files

The calltrees for each processed file are put into files which are named
with the same basename as the file from which they originated, with any
filename suffix stripped off.

The format of each c_graph file is as a set of blank delimited (white space
delimited) lines composed as follows:

file.caller callee callpair_id module_id
source_file line 0 0 Segment_id

where the fields have the following meanings:

file.caller The file name (given as a prefix up to the rightmost
“.” in the token, and the name of the calling function
(the “caller”)

callee The name of the called function

callpair_id The assigned identification number of the call pair

module_id The assigned identification number of the module.
This number points into the mdf file

source_file The name of the source file that gave rise to the call
pair

 line The line number of the source file where the call pair
exists

0 0 These two fields are pre-set to be “0 0”

segment_id (Reserved for future releases)

An example c_graph file is given in Section A.2.2.

APPENDIX A: C/C++ Instrumentor Engine Database Files

120

A.1.3 Module Definition Files (mdf)

The mdf file contains basic information about the location of text frag-
ments for every segment and every call pair in all processed files.

The mdf file has the following format:
project-name #segs #CPs [#rels]
file.name.function_id type #segs #CPs
[#rels]
file.name.function_id type #segs #CPs
[#rels]
file.name.function_id type #segs #CPs
[#rels]
...

where the first line identifies:

project-name This is the name of the “project” from which the data
is taken.

#segs This is the total number of segments in the project.

#CPs This is the total number of call pairs in the project.

The subsequent lines' fields have the following meanings:

file.name This token contains, first, the name of the file in which
the function name was found, and second, after the
rightmost “.”, the name of the function.

function_id This is the unique numeric identifier for that function,
as found in the filename, which prefixes the function
name.

type This is the type of function that was processed ac-
cording to the key: 84 = static function; 111 = member
function. Note: These numbers are implementation
specific. Additional function types and different
codes will be added in the future. At present this
function type information is not used.

#segs This is the number of segments in the function.

#CPs This is the number of call pairs in the function.

An example mdf file is given in Section A.2.3.

TCAT C/C++ for Windows User’s Guide

121

A.1.4 Trace Files and Archive Files

The format described is the Type 3.0 variation that produces trace files
that are “self describing'' and need no other files to be processed correctly.
The assumption is that the assignment of numbers to modules is done by
a runtime lookup of each module's name.

The format for an Archive File is identical except that the records are
arranged in the “natural” order.

The trace file format is universal for all types of runtimes used and for
either trace files or archive files. The record definitions have the following
meanings:

#Format number Trace file Format Type Record

Defines the type of the current trace file. This line
MUST appear as the first line of the trace file:

#Format 3.0

If it does not then this trace file is assumed to be one
using a prior set of definitions.

comment Comment Line Record

The entire line is treated as a comment. Any blank
line in the trace file is ignored. Tabs and extra spaces
are treated as singleton blanks (i.e. as white space).
The trace file line can be any length (subject to system
constraints).

@ date Creation Date Record

This is the time and date stamp for the trace file, out-
put taken from date.

p filename F X The Project

The first argument is project name. The first number
represents the number of functions.

APPENDIX A: C/C++ Instrumentor Engine Database Files

122

n"M N nsegments Module Definition Record. The module name M has
been entered, and it has been assigned run-time iden-
tification number N for the duration of this trace file.
The module has nsegments segments and ncallpairs
call pairs. The function name is listed with the path-
name and file name preceding it.

This line is written out only the first time that the
module was executed in the current test. (Second in-
stances of this record can be ignored by the coverage
analyzer.)

c “N M [ntimes]” Call Pair Hit Record

Call pair M in module N has been hit [ntimes times].
This record is used to support S1 coverage measure-
ments.

In an archive file the ntimes show the total number of
times this call pair was hit. If a call pair was not hit,
the record need not appear for that segment.

s “N M [ntimes]” Logical Segment Hit Record. Segment M in module N
has been hit [ntimes times]. This record is used to sup-
port C1 coverage measurements, and also is used to
support S0 coverage measurements.

In an archive file the ntimes show the total number of
times this segment was hit. If a segment was not hit
the record need not appear for that segment.

A sample trace file is listed in Section A.2.4.

A.2 Example Instrumentation Database Files
Here are some examples of database files:

A.2.1 d_graph File

This is a typical d_graph file:
0 1 1 0 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 31 0 0 0 (1) 0 266240 2307

0 1 1 1 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 51 0 0 0 (1) 0 0 0

0 1 1 2 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 68 0 0 0 (1) 0 0 0

1 2 2 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 69 0 0 0 (!AfxOleInit()) 1 0 0

1 2 3 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 79 0 0 0 (!AfxOleInit()) 0 0 0

2 3 4 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 109 0 0 0 (!pMainFrame->Loa-Frame(2)) 1 0 0

2 3 5 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 110 0 0 0 (!pMainFrame->LoadFrame(2)) 0 0 0

3 4 6 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 118 0 0 0 (RunEmbedded()||RunAutomated()) 1 0 0

3 4 7 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 125 0 0 0 (RunEmbedded()||RunAutomated()) 0 0 0

4 5 8 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 129 0 0 0 (m_lpCmdLine[0]=='\0') 1 0 0

4 5 9 2 1 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 134 0 0 0(m_lpCmdLine[0]=='\0') 0 0 0

0 1 1 3 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 173 0 0 0 (1) 0 0 0

0 1 1 4 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 177 0 0 0 (1) 0 0 0

0 1 1 5 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 182 0 0 0 (1) 0 0 0

0 1 1 6 0 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 191 0 0 0 (1) 0 0 0c_graph File

A.2.2 c_graph File

This is a typical c_graph file:
C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) AfxOleInit(int) 1 2 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE .CPP 68 0 0 1

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) AfxMessageBox(int,Cchar*,Uint,Uint) 2 2 C:\STW\TCAT\SAMPL ES\SCRIBBLE\SCRIBBLE.CPP 70 0 0 2

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) SetDialogBkColor(void,CWinApp&,Ulong,Ulong) 3 2 C:\STW\TC AT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 79 0 0 3

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) LoadStdProfileSettings(void,CWinApp&) 4 2 C:\STW\TCAT\SAM PLES\SCRIBBLE\SCRIBBLE.CPP 80 0 0 3

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) AddDocTemplate(void,CWinApp&,CDocTemplate*) 5 2 C:\STW\TC AT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 93 0 0 3

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) COleTemplateServer::ConnectTemplate(void,CGUID&,CDocTempl ate*,int) 6 2 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 98 0 0 3

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) COleTemplateServer::RegisterAll(int) 7 2 C:\STW\TCAT\SAMP LES\SCRIBBLE\SCRIBBLE.CPP 102 0 0 3

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) EnableShellOpen(void,CWinApp&) 8 2 C:\STW\TCAT\SAMPLES\SC RIBBLE\SCRIBBLE.CPP 113 0 0 5

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) RegisterShellFileTypes(void,CWinApp&) 9 2 C:\STW\TCAT\SAM PLES\SCRIBBLE\SCRIBBLE.CPP 114 0 0 5

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) RunEmbedded(int,CWinApp&) 10 2 C:\STW\TCAT\SAMPLES\SCRIBB LE\SCRIBBLE.CPP 117 0 0 5

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) RunAutomated(int,CWinApp&) 11 2 C:\STW\TCAT\SAMPLES\SCRIB BLE\SCRIBBLE.CPP 117 0 0 5

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) COleTemplateServer::UpdateRegistry (void,OLE_ APPTYPE,Cch ar**,Cchar**) 12 2 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 125 0 0 7

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) OnFileNew(void,CWinApp&) 13 2 C:\STW\TCAT\SAMPLES\SCRIBBL E\SCRIBBLE.CPP 131 0 0 8

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) OpenDocumentFile(CDocument*,CWinApp&,Cchar*) 14 2 C:\STW\ TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 136 0 0 9

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) CWnd::DragAcceptFiles(void,int) 15 2 C:\STW\TCAT\SAMPLES\ SCRIBBLE\SCRIBBLE.CPP 139 0 0 9

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) ShowWindow(int,CHWND__*,int) 16 2 C:\STW\TCAT\SAMPLES\SCR IBBLE\SCRIBBLE.CPP 141 0 0 9

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) UpdateWindow(void,CHWND__*) 17 2 C:\STW\TCAT\SAMPLES\SCRI BBLE\SCRIBBLE.CPP 142 0 0 9

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::DoDataExchange(void,CDataExchange*) CDialog::DoDataExchange(void,CDataExchange *) 1 4 C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CPP 177 0 0 1

A.2.3 mdf File

This is a typical mdf file:
C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::GetMessageMap(AFX_MSGMAP*) 0 100 1 0

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::{(void) 1 100 1 0

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) 2 100 9 17

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::{(void) 3 100 1 0

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::DoDataExchange(void,CDataExchange*) 4 100 1 1

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::GetMessageMap(AFX_MSGMAP*) 5 100 1 0

C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::OnAppAbout(void) 6 100 1 0

A.2.4 Trace File and Archive File

This is a typical trace file or archive file:
#Format 3.0

Profile for project 'SCRIBBLE':

p SCRIBBLE 7 6

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::GetMessageMap(AFX_MSGMAP*) 0 100 1 0

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::{(void) 1 100 1 0

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::InitInstance(int) 2 100 9 17

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::{(void) 3 100 1 0

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::DoDataExchange(void,CDataExchange*) 4 100 1 1

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CAboutDlg::GetMessageMap(AFX_MSGMAP*) 5 100 1 0

n C:\STW\TCAT\SAMPLES\SCRIBBLE\SCRIBBLE.CScribbleApp::OnAppAbout(void) 6 100 1 0

End of profile for project 'SCRIBBLE'.

s 0 1 15458

s 1 1 1

s 2 1 1

s 2 3 1

s 2 5 1

s 2 7 1

s 2 8 1

c 2 1 1

c 2 3 1

c 2 4 1

c 2 5 1

c 2 6 1

c 2 7 1

c 2 8 1

c 2 9 1

c 2 10 1

c 2 11 1

c 2 12 1

c 2 13 1

c 2 15 1

c 2 16 1

c 2 17 1

s 3 1 1

s 4 1 2

c 4 1 2

s 5 1 88

s 6 1 1

127

 APPENDIX C

cover9 —TCAT C/C++’s
Coverage Analyzer

This section explains options for invoking and customizing the “cover9” coverage ana-
lyzer. This section applies to all editions of TCAT C/C++.

These are the options on how to invoke cover9. This command, used inside the
TCAT C/C++ graphical user interface, is used to produce a coverage report which,
optionally, can report results in a Reference Listing. The Reference Listing report allows
you to look up a segment in order to identify the actual unexecuted code, and plan new
test cases.

C.1 Command Line Invocation

The complete syntax for calls to cover9 is listed below. Items enclosed in
[brackets] are to be included zero or more times.

cover9 [tracefile [tracefile]]
[-a old-archive]
[-b file]
[-c]
[-C1]
[-d name [name]]
[-DI deinst-file]
[-DL]
[-f new-archive]
[-h | -h name [name]]
[-html | -html filename]
[-H]
[-N]
[-n]
[-nl namefile]
[-NH]
[-m]
[-l | -l name]
[-p]

APPENDIX C: cover9 —TCAT C/C++’s Coverage Analyzer

128

[-q]
[-r report]
[-S0]
[-S1]
[-s]
[-SU]
[-T [threshold]]
[-w width]]

C.2 Cover9 Switch Definitions

The options may be used to vary the processing and reports generated by
cover9. The options are listed in alphabetical order.

[tracefile [tracefile]] These are the names of the trace files that you wish to
process. If there are no trace files then cover9 looks for
data in the default trace file name Trace.trc.

If there are no names given, and Trace.trc is not
present then an error message is issued.

If there are multiple trace files, each trace file is pro-
cessed in the order presented.

Caution: The list of trace files must be the first set of argu-
ments. The list is ended by the first symbol that appears
with a '-', i.e. by the first optional switch.

-a old-archive Old Archive File Name Switch.You can include data
from an old archive file in your reports. On the stan-
dard cumulative coverage report, this data will be in-
cluded in the “Cumulative Summary” test results,
but not under the column “Test”. To test iteratively,
progressing through a structured series of tests to-
wards higher C1 values, each run of cover should in-
clude the cumulative archive file from the previous
test.

If you do not include an archive file, the “Cumulative
Summary” figures will be the same as those for
“Test”. Alternatively, if no -a option is given, the file
Archive is used by default.

The -a option interacts with the other report options
discussed below.

-b file Banner File Name Switch. This allows you to include
specific text, taken from the first line of the file named
title as a title for your reports. A maximum of 80 char-
acters is allowed for titles.

TCAT C/C++’s Coverage Analyzer

129

 -c Cumulative Report Switch. This option prints the Cu-
mulative report only.

-C1 Branch Coverage Reporting Switch. Turns on reporting
of C1 or branch coverage.

Note: Unless at least one of -C1, -S1, or -S0 is turned on,
no coverage report will be generated.

-d name Module Name Delete Switch. If this switch is present
then the named modules, if found in the current exe-
cution, are deleted from the generated Archive file.
Subsequently, cover9 will never have heard about
these names. This switch is useful in updating an ex-
tensive test record that would otherwise be lost due
to the complexity of editing the Archive file.

-DI deinst-file De-instrument Switch. Allows the user to specify a list
of modules that are to be excluded from coverage re-
porting. Only the list of module names found in the
specified deinst-file is to be excluded from cov-
erage reporting. The module names can be specified
in any format. White space (such as tabs, spaces) is ig-
nored. deinst-file is also the file where new mod-
ules that pass the coverage threshold value (see the -
T switch) will be written.

-DL De-instrument Module List Switch. Allows the user to
see which modules are excluded from coverage re-
porting. This switch is used along with the -DI
switch. The list of excluded modules is printed at the
end of the coverage report

-f new-archive New Archive File Name Switch. Newly accumulated
test coverage data will be placed in this file. If you do
not include a different name with this switch, the ac-
cumulated test data will be placed in the default
name Archive.

Caution: Each time you run cover9, you will write over the contents of
the Archive file unless you use the -f switch to direct the Archive file to
another place. You may wish to remove the filename before starting a
new test sequence.

-h | -h [name] Linear Histogram Report Switch (-h).

-html [filename] HTML Switch. If present, the current coverage report
in html format will be generated. Normally the report

APPENDIX C: cover9 —TCAT C/C++’s Coverage Analyzer

130

is written to the file Coverage.htm (the default name),
but you can rename the file with this switch. CAU-
TION: You will overwrite any file you name with this
switch.

-l | -l [name] Logarithmic Histogram Report Switch (-l).

These two options produce two “histogram” reports
that graph the frequency distribution of the segments
exercised in a single module. The histograms provide
a module-by-module analysis of testing coverage,
combining current trace file data with archive date in-
cluded through the -a option or using the default Ar-
chive file. If the optional name argument is present,
then the corresponding histogram for only the named
module is produced; otherwise, cover9 produces his-
tograms for all modules found. There can be multiple
names in the argument if you want histograms of sev-
eral modules. Also, the names can be mixed between
linear and logarithmic histograms.

 -H Hit Report Switch. Lists the segments that have been
hit one or more times in current or past tests. This re-
port analyzes the cumulative effect of the current
trace file and any archive data included through the
use of the -a option or using the default Archive file.

-m Minimal Output Switch. When present, cover9 sup-
presses banner information, list of current options
and trace file descriptions. The coverage report con-
tains only the reports requested.

-N, -n Not Hit Report Switch. This option produces the “Not
Hit” report which lists segments that have not been
exercised. This report analyzes the cumulative effect
of the current trace file and any archive data included
through the use of the -a option or using the default
Archive file.

-NH Newly Hit Report Switch. Shows the segments by mod-
ule that were hit in the current execution that were
not hit previously. Thus this gives the user an assess-
ment of the value of the most-recently added test(s).
This shows what the current test “gained”. Output is
the complement of the “Newly Missed” report.

 -nl namefile Name List Switch. This switch specifies that only the
list of module names found in the specified namefile
file is to be reported on in the current coverage report.

TCAT C/C++’s Coverage Analyzer

131

Coverage on other module names that may appear in
the archive or supplied trace files are ignored; howev-
er, the data is accumulated in the archive file.

The names used must be specified one name per line.
White space (tabs, spaces, etc.) on the line is ignored.

The following reports are affected by the existence of
a namefile:
•Cumulative Report
•Past Report
•Not Hit Report
•Hit Report
•Newly Hit Report
•Newly Missed Report.

The histogram outputs are not affected. There is a
separate name mechanism that can be used to pro-
duce individual histogram reports.

-NM Newly Missed Report Switch. This option produces the
Newly Missed report. Shows which segments, by
module, hit in any prior test that were not hit in the
current test. This shows what the current test “lost”.
This output is the complement of the Newly Hit re-
port.

 -p Past Report Switch. Print only the Past Test report; this
option should be used in conjunction with the -a op-
tion when you want to analyze the overall perfor-
mance of a set of past tests.

-q Quiet Output Switch. Suppress printout of current ver-
sion and release information (this can be used to facil-
itate running cover9 in batch mode).

 -r report Coverage Report File Name Switch. Normally the report
is written to the file Coverage (the default name), but
you can rename the file with this switch. CAUTION:
You will overwrite any file you name with this
switch.

-S1 Call-Pair Coverage Switch. If present, the report will
show call pair coverage.

-S0 Module Coverage Switch. If present, the report will
show module coverage.

APPENDIX C: cover9 —TCAT C/C++’s Coverage Analyzer

132

NOTE: Unless at least one of -C1, -S1, or -S0 is turned on, no coverage
report will be generated. However, not both -S1 and -S0 can be present; if
they are then only -S1 is assumed.

-s Sort Switch. This option produces output reports with
module names sorted alphabetically.

 -SU Suppress Update Switch. During processing, cover9
will suppress updating of the archive file, either the
default Archive or the file named by the -f switch.
cover9 will read the data in the archive file to form the
basis for the “past test” information.

-T threshold Coverage Threshold Switch. Threshold is a real number
that specifies threshold value. Any module with a
coverage percentage greater than or equal to this
threshold value will be written to the de-instrument-
ed file (see the -DI deinst-file switch). If no
threshold is specified, then the default value of 85
percent is assumed.

-w width Report Width Switch. Normally the reports generated
by cover9 are wide enough to accommodate module
names up to 21 characters in length. The internal limit
on name length is, however, 128 characters. You can
use this switch to force cover9 system to generate re-
ports that are wide enough to accommodate the full
128 character module names.

The width factor is the number of additional charac-
ters to be added to the report. The default value is ze-
ro. Maximum width is 128 - 21 = 107. WARNING:
Reports with high values for the -w option may con-
tain long lines and may not be suitable for printing di-
rectly.

TCAT C/C++’s Coverage Analyzer

133

C.3 Error Processing

In case there is an error, cover9 gives a response line (usage line) indicat-
ing the set of switches and options. This response is the same as the -help
response.

APPENDIX C: cover9 —TCAT C/C++’s Coverage Analyzer

134

135

 APPENDIX D

Coverage Report Layout
This section shows you a great detail of detail about the current test you are analyzing,
and about how the current test relates to the history of all tests you have run for this
project.

The current test data is stored in the Trace File (Figure 62, Point 1), and the summary of all
test data is stored in the Archive File (Figure 62, Point 2).

Typically when you run Cover you supply a Trace File and an Archive File and after
you've analyzed the coverage in your Trace File you have the option to update your test
coverage archive with the new test data.

To do this you press "Update Archive" (see Figure 62, Point 3) to update the Archive file
so that it contains the data reflecting both the past test (in the old Archive File) and the
current tests (in the Trace File).

D.1 Project Data

The basic report also shows the current project name (Figure 62, Point 4)
and a summary of the basic facts that TCAT knows about this project.

As shown at (Figure 62, Point 5) you learn the total number of files
involved in the project, and the total number of functions contained in
those files.

D.2 Total Project Test Coverage Data

The Cover report shows you the total test coverage achived, measured for
both C1 (branch) and S1 (call-pair) coverage.

This is presented for the current test -- from the Trace File -- and for all of
the test data as reflected in the combination of the Trace File data and the
Archive File data.

APPENDIX D: Coverage Report Layout

136

This is shown at (Figure 62, Point 6). The display shows:

FIGURE 62 Coverage Report Analysis (TEST A)

• The total number of segment-hits in the current Trace File
• The total number of call-pair hits in the current Trace File
• The Total number of segments in the project
• The Total number of call-pairs in the project
• The achived branch (C1) percentage coverage in the current test
• The achived branch (C1) percentage coverage in all tests thusfar
• The achived callpair (S1) percentage coverage in the current test
• The achived callpair (S1) percentage coverage in all tests thusfar

These numbers give you a very good assessment of the coverage obtained
for every test known.

8

5

3

4 1 2

6

7

Coverage Report Layout

137

D.3 Per-Function Test Coverage

The lower part of the Cover display is of variable format. If you click on
the name of a file you see the expansion of the test coverage data for
every function that is part of that file.

Click again on the display and the data collapses to show just the sum-
mary for that file.

For each function in the Function Totals line (Figure 62, Point 7):

• The total number of segment-hits for that function in the current Trace
File

• The total number of call-pair hits for that function in the current Trace
File

• The Total number of segments for that function
• The Total number of call-pairs for that function
• The achived branch (C1) percentage coverage for that function in the

current test
• The achived branch (C1) percentage coverage for that function in all

tests thusfar
• The achived callpair (S1) percentage coverage for that function in the

current test
• The achived callpair (S1) percentage coverage for that function in all

tests thusfar

APPENDIX D: Coverage Report Layout

138

D.4 In-Function Detailed Test Coverage

If you click on the Function Totals you will see an expansion that lists for
each functionthe individual statistics for each segment and/or for each
callpair, for as many as there are of these for that particular function.

The data (See Figure 62, Point 8) shows the number of times the particular
segment or callpair was hit in the current test (in the number to the left),
and the total number of times that segment or callpair was hit in all tests
thusfar (the number in the []'s on the right)

Note that if you click on a segment number of on a callpair you are taken
directly to the source listing display and that particular part of the pro-
gram that corresponds to that segment number of callpair number.

D.5 Interpreting Data From Multiple Tests

There is a great deal of data on the Cover display and if you have multip-
letest is sometimes can be hard to understand why things are the way
they are.

For illustration we have shown five snapshots of Cover for the following
set of tests.

Figure 62 shows the results of Test A with no Archive File

(See Figure 62)

Coverage Report Layout

139

Figure 63 shows the results of Test B with no Archive File

FIGURE 63 Coverage Report Analysis (TEST B)

APPENDIX D: Coverage Report Layout

140

Figure 64 shows the results of Test A + B with Test A's results
as the Archive File and Test B's results as the current test.

FIGURE 64 Coverage Report Analysis (TEST A+B)

Coverage Report Layout

141

Figure 65 shows the results of Test C with no Archive File.

FIGURE 65 Coverage Report Analysis (TEST C)

APPENDIX D: Coverage Report Layout

142

Figure 66 shows the results of Test A + B + C using Test C
as the current test and the archive file from Figure 64 (Test A + B)
as the Archive file.

FIGURE 66 Coverage Report Analysis (TEST A+B+C)

It is worthwhile to spend a few minutes studying these results and to con-
firmthese facts about these three tests:

Test B is the best C1 test because it's results "mask" the two other
tests.

You see this because Test A + B's cumulative results are no better
than Test B by itself.

Coverage Report Layout

143

Test B is the also the best S1 test because it's results "mask" the two
other tests.

You see this because Test A + B's cumulative results are no better
than Test B by itself.

Remember when analyzing test coverage data that the C1 and S1 values
for sets of tests grow in different ways, depending on what is done within
the application.

As a result, the cumulative test coverage data values may exhibit some
unusual and non-intuitive fluctuations.

APPENDIX D: Coverage Report Layout

144

145

Symbols

.dg file 50

Numerics

32-bit environment 54

A

Add-Ins 29
application under test 32, 49, 56
Archive File 135
archive file 65, 75

sample 125
archive file format 121

B

bottom-up testing 8
branch (C1) metrics 65
Build Instrumented App 29, 30
buttom-down testing 8

C

c_graph file 119
sample 124

C1 38
C1 coverage 77
C1 metric 3
call pair 49
call tree window 101
called functions 102
callercallee dependency structure 101
calling statement 46

call-pair 49
callpair 3, 44, 50, 76, 77

(S1) metrics 65
viewing associated source code 78

call-pair hits 136
CallTree 101–115

options menu 115
viewing source code 46

Calltree 29
calltree 77
calltrees 44, 77, 78
CAPBAK 13
cl.exe 21
closing TCAT C/C++ 47
code inspection 6
code language selection 51
Compiler Options 33
compiler options 33
compiling & running 5
Configure TCAT 29
Configure TCAT Option 30
console (non-GUI) applications 61
cost benefit analysis 10–14
Count 38
Cover 29, 65

file selection dialog box 71
tool bar 68

cover9 127
Cover9 Command Line 127
Cover9 Switch Definitions 128
cover9, coverage analyzer 127–133

command line syntax 127
invoking 127

Coverage 28, 135
coverage

C1 135, 136
S1 135, 136

coverage analysis 6

Index

INDEX

146

tools 1
Coverage Analyzer 127
coverage data 49
coverage report 5, 37, 65, 67

sample analysis 76–79
Coverage Report Layout 135
coverage threshold 14

D

d_graph file 118
sample 123

data structures 6
database file format 63, 66
dg file 35
DiGraph 29, 40, 81–99

file format 81
file menu 90
options menu 94–96
print dialog box 91
view menu 93
viewing associated source code 93
window menu 97

digraph 77, 79
digraph edges 81
DiGraph Main Window 83
digraph nodes 81
directed graph

viewing from Calltree 45
Directed Graph Listing 35, 50
directed graphs 40, 81
DOS 61
dynamic analysis 7

E

error rate prediction 14
EXDIFF 13

F

font
italics xii
italix xii

font, bold face xii
font, courier xii
function calls 5, 49

H

hardware configuration 15

Hits 38

I

IC9 50, 51, 55
command line invocation 56

iew Digraph 45
Installation Procedure 16
Instrument 33
instrumentation 5, 32, 49, 51

batch files 53
function names 61
instrumenting module(s) 8
interactive option 55
modes 51

Instrumenting Scribble 30
instrumentor directives 62
Instrumentor Options 30
instrumentor switches 56–60

L

logical branch 3, 5, 49, 81

M

manual analysis 6
Microsoft Visual C++ 15, 27, 34
module definition file (mdf) 120

sample 124
MS Visual C++ 20
mscl.exe 21
Multiple Tests 138
multiple-module testing 8

O

online documentation
FrameReader 18

Open Workspace 27

P

percent coverage recommended 5
possible program flow 77
Precompiled Headers 28
Preparing and Instrumenting Scribble 26
Project Settings 33
Project|Settings 28

TCAT C/C++ User’s Guide

147

Q

Quick Start 15–??, 25–47

R

reference listing file 5
reliability modeling 14
Run CAPBAK App 29
Run Instrumented App 29, 30
Run SMARTS App 29
RUNTMDLL.lib 30

S

S0 coverage 55
S1 38
S1 coverage 55, 77
S1 metric 3
Scribble 36
Scribble Debug 33
Scribble Release 33
SCRIBBLE.cg 35, 50
SCRIBBLE.dg 35, 50, 83
Scribble.dg 40
Scribble.exe 26, 34
SCRIBBLE.i 35, 50
SCRIBBLE.mdf 35, 50, 83
Scribble.mdf 40
SCRIBBLE.obj 35, 50
segment 76, 77

viewing associated source code 79
segment-hits 136
segments hit 65
segments not-hit 65
setup.exe 16
SMARTS 13
software reliability 2
source code 50

viewing from DiGraph 42
SQA 1, 14
static analysis 6
static properties (of software) 6

T

TCAT C/C++
closing 47
editing the default path 17
installation 16–21
program group 22

uninstall 22
TCAT.mdf 102
tcat_db directory 36, 56, 83, 102, 117
test cases 5
testing methods 6
text

"double quotation marks" xii
boldface xii
italics xii

text, boldface xii
text, courier xii
text, italix xii
top-down testing 8
trace file 5, 33, 36, 49, 65

format 121
sample 125

Trace.trc 36, 37, 50
tracefile 127
tutorial 15, 25

U

Update Archive 135

V

variable type rules 6
Viewing a Calltree 43
Viewing Source Code 39

W

Win32 Coverag 28
Windows 3.1x 61
Windows 95 16, 22, 61
Windows Explorer 16
Windows NT 61
WinIC9 32, 49, 51, 61, 63

