
U S E R ’ S G U I D E

TestWorks for Windows
Version 3

Software TestWorks Test Tool Suite

SOFTWARE RESEARCH, INC.

ALL RIGHTS RESERVED. No part of this document may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, photocopying, record-
ing or otherwise without prior written consent of Software Research, Inc. While every
precaution has been taken in the preparation of this document, Software Research, Inc.
assumes no responsibility for errors or omissions. This publication and features
described herein are subject to change without notice.

TOOL TRADEMARKS: CAPBAK/MSW, CAPBAK/UNIX, CAPBAK/X,
CBDIFF, EXDIFF, SMARTS, SMARTS/MSW, S-TCAT, STW/Advisor, STW/
Coverage, STW/Coverage for Windows, STW/Regression, STW/Regression for
Windows, STW/Web, TCAT, TCAT C/C++ for Windows, TCAT-PATH, TCAT for
JAVA, TCAT for JAVA/Windows, TDGEN, TestWorks, T-SCOPE, Xdemo, Xflight,
and Xvirtual are trademarks or registered trademarks of Software Research, Inc.
Other trademarks are owned by their respective companies. METRIC is a
trademark of SET Laboratories, Inc. and Software Research, Inc. and STATIC is a
trademark of Software Research, Inc. and Gimpel Software.

Copyright  1995-1999 by Software Research, Inc

(Last Update January 22, 1999)
/home/l1/wu/win-testword/msw-testworks

625 Third Street

San Francisco, CA 94107-1997

Tel: (415) 957-1441

Toll Free: (800) 942-SOFT

Fax: (415) 957-0730

E-mail: support@soft.com

http://www.soft.com

SOFTWARE RESEARCH, INC.

This document property of:

Name:_______________________________

Company:____________________________

Address:_____________________________

Phone________________________________

iii

Table of Contents

Preface . ix

CHAPTER 1 Introduction to TestWorks for Windows 1
1.1 STW/Regression Overview . .1

1.2 TCAT C/C++/Java for Windows Overview 2
1.2.1 The QA Problem. .2
1.2.2 SR’s Solution .2
1.2.3 Testing and TCAT C/C++/Java for Windows. .3

1.3 TestWorks Supported Platforms4

CHAPTER 2 Frequently Asked Questions About Testworks 5
2.1 About Testing .5

2.2 About TestWorks .6

2.3 Regression Testing .8

2.4 Coverage Testing . 10

2.5 Static Testing . 12

2.6 Integration Testing . 13

2.7 About TestWorks Licensing 14

2.8 About TestWorks Internal Architecture 15

2.9 Embedded and Cross-Testing 17

2.10 Technical Support . 18

TABLE OF CONTENTS

iv

CHAPTER 3 Understanding the User Interface 19
3.1 Basic MS-Windows User Interface 19

3.1.1 File Selection Windows. 20
3.1.2 Help Windows. 23
3.1.3 Pull-Down Menus . 24

3.2 The TestWorks Window . .25

CHAPTER 4 Using the TestWorks Window 27
4.1 Invoking the TestWorks Window 27

4.2 Cbmsw .28

4.3 CBDiff . .28

4.4 CBView . .28

4.5 Introduction to TestWorks . .28

4.6 Capbak Help .28

4.7 CBDIFF Help .28

4.8 Smarts .29

4.9 Smarts Users Guide . .29

4.10 Smarts Help .29

4.11 Capbak Users Guide . .29

4.12 Acrobat Reader Setup . .29

4.13 Glossary .29

CHAPTER 5 A Note about the Initialization Files 31
5.1 Locations for Defaults . .31

CHAPTER 6 Glossary . 33

CHAPTER 7 The TestWorks Index . 73
7.1 Abstract .73

7.2 Introduction .74

7.3 Quality Process Assessment Methods75

7.4 Product Methods . .76

7.5 Process/Application Assessments77

TCAT C/C++ User’s Guide

v

7.6 The Methodology . 78
7.6.1 Caveats .79
7.6.2 How It Works .79

7.7 Index Criteria . 81

7.8 Explanation Of Terms . 82

7.9 Examples . 84

7.10 Connecting To Reality . 86

CHAPTER 8 TestWorking Scribble Using TestWorks TM for Windows
89

8.1 Sample Application: Scribble 89

8.2 Overview . 90

8.3 CAPBAK TM for Windows and Scribble 91
8.3.1 Record/Playback Modes. .92
8.3.2 Multiple Synchronization Modes. .93

8.4 The CBDIFF Utility . 96

8.5 SMARTS/MSWTM: Streamlining the Testing Process 97
8.5.1 SMARTSTM Reports. .98

8.6 TCAT C/C++ and Scribble . 100
8.6.1 Instrument Using WinIC9 .101
8.6.2 Viewing Coverage Reports with Cover. .102
8.6.3 Viewing A Calltree .104

TABLE OF CONTENTS

vi

vii

List of Figures

FIGURE 1 File Selection Window for Windows 95/NT 20

FIGURE 2 File Selection Window for Windows 3.1x and NT 3.5 . . 20

FIGURE 3 Help Window . 23

FIGURE 4 Pull-Down Menu. 24

FIGURE 5 TestWorks Window . 25

FIGURE 6 Typical Program Manager with TestWorks icon displayed..
27

FIGURE 7 TestWorks Window . 28

FIGURE 8 Scribble, Chapter 8 . 89

FIGURE 9 Illustrates capture and playback commands recording
Scribble in Truetime mode . 94

FIGURE 10 CAPBACK’S Hotkey Window and Optical Character Recog-
nition (OCR) Technology from Application Under Test
(AUT) . 95

FIGURE 11 CBDIFF illustrates the differences between the two screen
shots, shown in CBView (BO1) and CBView (BO2). 96

FIGURE 12 Run Tests Window. 98

FIGURE 13 SMARTS’ Report Windows: Latest, All, Regression, Sum-
mary, Time, and Failed . 99

FIGURE 14 TCAT C/C++ Program Group . 100

FIGURE 15 WinIC9 Window . 101

FIGURE 16 Coverage Report on Scribble, with One Function Expanded
to Show Segments. . 102

FIGURE 17 Digraph Main Window . 103

FIGURE 18 Displaying a Calltree . 104

LIST OF FIGURES

viii

ix

Congratulations!

By choosing the TestWorks integrated suite of testing tools, you have
taken the first step in bringing your application to the highest possible
level of quality.

 Software testing and quality assurance, while becoming more important
in today’s competitive marketplace, can dominate your resources and
delay your product release. By automating the testing process, you can
assure the quality of your product without needlessly depleting your
resources.

Software Research, Inc. believes strongly in automated software testing. It
is our goal to bring your product as close to flawlessness as possible. Our
leading-edge testing techniques and coverage assurance methods are
designed to give you the greatest insight into your source code.

TestWorks is the most complete solution available, with full-featured
regression testing, coverage analyzers, and metric tools.

Audience

This manual is intended for software testers who are using TestWorks for
Windows. You should be familiar with the Microsoft Windows System and
your workstation.

Preface

PREFACE

x

Contents of Chapters

Chapter 1 INTRODUCTION TO TESTWORKS FOR
WINDOWS introduces the concepts of
automated testing.

Chapter 2 FREQUENTLY ASKED QUESTIONS
answers a wide range of questions about
TestWorks and software testing.

Chapter 3 UNDERSTANDING THE USER INTERFACE
provides a brief overview of the TestWorks
window and its commands.

Chapter 4 USING THE TESTWORKS WINDOW
explains how to use the TestWorks window.

Chapter 5 A NOTE ABOUT THE INITIALIZATION
FILES provides information about the
default settings for TestWorks GUIs.

Chapter 6 GLOSSARY lists terms concerning software
testing that are commonly used in the SQ
community and includes specifics to the
TestWorks tool suite.

Chapter 7 TESTWORKS INDEX provides an approach
to assess the relative quality of a software
system.

Chapter 8 TESTWORKING SCRIBBLE explores the
entire suite of Software Research testing
tools using the sample application Scribble.

.

TestWorks User’s Guide

xi

Typefaces

The following typographical conventions are used throughout this
manual.

boldface Introduces or emphasizes a term that refers to STW’s
window, its sub-menus and its options.

italics Indicates the names of files, directories, pathnames,
variables, and attributes. Italics is also used for
manual, book, and chapter titles.

”Double Quotation Marks”

Indicates chapter titles and sections. Words with
special meanings may also be set apart with double
quotation marks the first time they are used.

courier Indicates system output such as error messages,
system hints, file output, and CAPBAK/MSW’s
keysave file language.

Boldface Courier

Indicates any command or data input that you are
directed to type. For example, prompts and invoca-
tion commands are in this text. (stw , for instance,
invokes STW.)

PREFACE

xii

1

1.1 STW/Regression Overview

STW/Regression™ is designed to overcome the tedious and error-prone
process of manual testing by automating the execution, management and
verification of a suite of tests. Five components are included in STW/
Regression:

❒ CAPBAK™ for automated capture and playback of user sessions.

❒ SMARTS™ for test organization and management.

❒ CBDIFF™ for test verification.

❒ CBVIEWTM for viewing captured images.

CAPBAK records all user activities during the testing process including
keystrokes and mouse movements; it captures bitmap images and ASCII
values. The captured images and characters provide baselines against
which future test runs are compared. CAPBAK’s automatic synchroniza-
tion ensures reliable playback of these test sessions, allowing tests to be
run unsupervised as many times as the tester wants.

SMARTS organizes CAPBAK’s test scripts into a hierarchy for execution
individually or as a part of a test suite, and then evaluates each test
according to the verification method selected.

CBDIFF compares bitmap images, while discarding extraneous discrep-
ancies during the differencing process.

CBVIEW displays images captured during recording and playback ses-
sions.

NOTE: For certain product sets, we have included postscript (.pdf) files
of the user manuals. Check your media to see if these files are available.

CHAPTER 1

Introduction to TestWorks for
Windows

This chapter introduces regression and coverage tools for Windows.

CHAPTER 1: Introduction to TestWorks for Windows

2

1.2 TCAT C/C++/Java for Windows Overview

1.2.1 The QA Problem

It is a sad fact of the software engineering world that on average, without
coverage analysis tools, only around 50% of source code is actually tested
before release. With little more than half of the logic covered, many bugs
go unnoticed until after release. Worse still, the actual percentage of logic
covered is unknown to SQA management, making any informed deci-
sions impossible.

Questions such as when to stop testing or how much more testing is
required are answered not on the basis of data but on ad hoc comments
and sketchy impressions. Software developers are forced to gamble with
the quality of the released software and to make plans based on inade-
quate data.

1.2.2 SR’s Solution

Software Research, Inc. offers a solution: TCAT C/C++/Java for Windows
is a coverage analyzer tool that gives a numerical value to the complete-
ness of a set of tests. It also shows what parts of an application have been
tested, so that effort can be focused on creating test cases that will exercise
the parts that were not previously tested.

This product ensures tests that are more diverse than those chosen by ref-
erence to functional specification alone, or those based on a programmer's
intuition. It ensures that they are as complete as possible by measuring
against a range of high-quality test metrics. TCAT C/C++/Java measures
runtime coverage at the following levels:

• Coverage at the logical branch (or segment) level and the call-
graph level, employing the C1 metric. You can choose to test a
single module, multiple modules, or the entire program using the
C1 metric.

• Coverage at the call-pair level employing the S1 metric. After
individual modules have been tested, you can test all the inter-
faces of the system using the S1 metric.

• Dynamic visualization of test attainment during unit testing and
system integration. This visually demonstrates, in real time, such
things as segments and call-pairs hit/not hit.

TestWork’s User’s Guide

3

1.2.3 Testing and TCAT C/C++/Java for Windows

TCAT C/C++/Java for Windows instruments your program. During
instrumentation, TCAT C/C++/Java for Windows inserts function calls
(special markers) at every logical branch (segment) in each program mod-
ule. Instrumentation also creates a reference listing file, which is a version
of your program which has logical branch marking comments added to it
in a manner similar to the code added to the instrumented version. Exten-
sive logical branch notation and sequence numbers are also listed.

This instrumented program is then compiled and run. By running it, you
are exercising logical branches in the program. The more tests in your test
suite, the higher the coverage. This test information is then written to a
trace file. From the information stored in the trace file, you can generate
coverage reports. In general, the reports give the following information:

• Reports included in the current iteration.
• A summary of past coverage runs.
• Current and cumulative coverage statistics.
• A list of logical branches that have been hit.

Recommended coverage is >85%. If reports indicate that you have less
than this amount, you can identify unexercised logical branches by study-
ing the coverage reports, and looking at the source code associated with
the untested functions. When you identify the troubled areas, you can
then create new test cases and re-execute the program.

TCAT C/C++/Java for Windows can help you reach your goal of creating
the most extensive test cases possible.

CHAPTER 1: Introduction to TestWorks for Windows

4

1.3 TestWorks Supported Platforms

TestWorks products are also available on the following platforms: DEC
Alpha using OSF/1; HP9000/7xx-8xx under HP-UX; IMB RS-6000 under
AIX; NCR 3000 under SVr4; SGI under IRIX; Sun SPARC under SunOS
and Solaris; 80x86 under SCO/ODT, Solaris, MS/Windows 3.1, Windows
NT and MS/Windows 95 MS/Windows 98.

In addition to the most complete line of software testing products on the
market, Software Research, Inc. offers extensive seminars, training, and
high-quality technical support.

TestWorks Supported Platforms

Hardware
Platforms OS

Graphic
Interface

DEC Alpha OSF/1 X11/Motif

HP 9000/700,800 HP-UX X11/Motif

IBM RS/6000 AIX X11/Motif

NCR 3000 SVR4 X11/Motif

Silicon Graphics IRIX X11/Motif

Sun SPARC SunOS, Solaris X11/Motif

X86/Pentium SCO/ODT,Solaris X11/Motif

X86/Pentium MS-DOS, Windows Microsoft Windows
3.1

Windows 95

Windows 98

Windows NT

5

2.1 About Testing

1. Why is it necessary to test software? Shouldn’t software be built so
that it doesn’t have any errors?

• Software testing is essential to building high-quality software
because testing is effective in reducing defects in software
products.

• Testing saves money. Estimates of savings are as much as 100:1
over field-discovered.

• Testing is insurance that high-quality software is built.

2. Why are automated tools needed?

Because the size and complexity of applications have grown so rapidly,
“old style” methods of testing are no longer as effective. In the late 1990s,
the economic choice is automated testing or no testing at all.

3. Why not continue doing manual testing?

Manual testing is difficult, costly, and not terribly reliable or effective.
Complicated programs virtually require some kind of automated testing.
Also, some kinds of analyses, such as code coverage analysis, cannot be
done manually.

CHAPTER 2

Frequently Asked Questions
About Testworks

CHAPTER 2: Frequently Asked Questions About Testworks

6

2.2 About TestWorks

1. What is TestWorks?

TestWorks is a collection of software test tools that supports all of the
major functions of most software test project including the following:

• Static analysis
• Metrics
• Test file generation
• GUI testing
• Test management
• Test validation
• Branch and call-pair coverage analysis

2. Why is TestWorks organized into bundles?

There are two reasons for organizing TestWorks into bundles.
1. Lower license fees can be provided.
2. The use of one tool, like CAPBAK/X, generally leads to the use of a

companion tool, like SMARTS.

3. Why is it important to purchase automated testing tools from
Software Research, the long-established technical leader of the
software testing industry?

Experience is the best teacher, and Software Research has put years of
real-world test experience into TestWorks.

4. How will TestWorks save time and money?

Savings can be as high as 10:1 to 50:1 when a defect is found and repaired
before the product goes to the field. Automated testing does have some
setup cost, but most organizations receive a return on their investment
after two or three months of TestWorks use.

5. How do TestWorks products work together?

Each of the TestWorks products have the same “look and feel,” and they
work well together because they share many common features and
approaches.

TestWork’s User’s Guide

7

6. Do the TestWorks tools work across platforms?

Yes, but you have to be very cautious. No tool works perfectly across
platforms regardless of what everyone thinks.

CHAPTER 2: Frequently Asked Questions About Testworks

8

2.3 Regression Testing

1. What is the benefit of regression testing?

Regression tests confirm that an application under test works on the test
run the same way it worked on the previous run. The lack of confirmation
indicates a problem.

2. Can tests be moved from one platform to another? How much work
is required to accomplish this task?

With careful planning and organization of tests, tests can usually be
moved from one platform to another. It is important that the platforms
are not vastly different.

3. Why is GUI testing important?

GUI testing has two advantages.
• GUI testing is easy for a user to understand.
• GUI testing makes an excellent testbed for running tests that

have a high likelihood of revealing defects.

4. What are the main modes of GUI test capture/playback?

TestWorks’ CAPBAK test capture/playback engine has three main
operating modes:

• TrueTime Mode

In TrueTime Mode, the test is played back exactly the way it was
recorded. TestWorks’ TrueTime Mode includes the powerful Auto-
matic Output Synchronization capability, so tests are very reliable
without much extra work.

• PROS: You keep the user’s real timing the way it was
recorded.

• CONS: Test may be excessively sensitive to changes in the
GUI.

• Character Mode

The recorded test uses the built-in OCR engine to synchronize or to
capture essential test validation data.

• PROS: You can base test on what is written on the screen,
independent of font and type size.

• CONS: There is a bit of local testware that has to be written to
get the most out of the scripts.

TestWork’s User’s Guide

9

• Object Mode

The test is recorded in such a way that playback is less sensitive to the
locations of buttons and other “widgets” on the GUI.

• PROS: Test are insensitive to GUI layouts, other “noncritical”
formatting details.

• CONS: Test may miss out on catching missing or invisible
buttons, and they don’t preserve any actual-user timing
information.

5. How many defects are actually detected by regression testing?

It is estimated that a 5% functionality change in a 1000 suite test will
reveal 5-25 new defects.

6. Is it true that capture/playback tools are dangerously invasive?
Exactly how do these tools work?

Every kind of recording mechanism is to some extent “invasive,” but
most users do not consider this low level of interaction with the underly-
ing operating system software much of a risk.

CAPBAK/X works with X windows on UNIX by using the
XtestExtension1 or Xtrap extension to the X11 server (display driver). The
“xdpyinfo” command on the UNIX machine tells which extension(s) are
available. CAPBAK/X also uses a special version of the Xt toolkit for
ObjectMode recording from X/Motif GUIs.

On Windows machines, CAPBACK/MSW uses built-in features of the
Windows 3.x, Windows '95, Windows ‘98 or Windows NT operating
systems.

CHAPTER 2: Frequently Asked Questions About Testworks

10

2.4 Coverage Testing

1. What is the benefit of coverage testing?

Test coverage indicates whether a test missed something. Good test cov-
erage is necessary for thorough testing.

Manual testing seldom exercises more than one-third of the overall struc-
ture of code. Therefore, unless coverage testing is used, applications can
go to the field with major sections never executed.

2. What is the difference between “BlackBox” testing and “WhiteBox”
testing?

With “BlackBox” testing, the tester cannot see what’s going on inside the
application under test whereas with “WhiteBox” testing, the tester can
see what’s going on.

Most of the time, BlackBox testing means that functional testing is being
executed. WhiteBox testing usually means that coverage analysis is being
executed.

3. What is a segment? What is a [logical] branch?

A segment, sometimes called a [logical] branch, is a piece of code that is
always executed as a unit after some piece of program logic happens. For
example, an “IF” statement has two segments: the “true” and the “false”
outcomes.

4. Why not just use “statement coverage?”

Statement coverage turn out to be 100% identical to branch coverage if
every piece of logic in your program starts on a new line. Obviously, this
never happens, so statement coverage tends to overstate the actual cover-
age by 50% or more. You can 100% statement coverage and only 50%
branch coverage. CAUTION: This overstatement may be dangerous to
the health of your software!

5. Why do we need automated tools at all?

Because the size and complexity of applications have grown so rapidly,
“old style” methods of testing just don’t work anymore.

TestWork’s User’s Guide

11

6. What is a call-pair?

When two functions (programs) call one another, they make a call-pair.

The caller function could call the callee many times, and TestWorks’ view
of coverage analysis holds that all call-pairs must be checked.

7. Do all these coverage measures have names?

Yes, because it helps to keep track of the facts.
• Statement coverage is called C0. (SR does not support C0

because it’s too misleading.
• Segment/branch is called C1.
• Module coverage is called S0.
• Call-pair coverage is called S1.

8. Why not just do module coverage?

You can, and we recommend it as a minimum step. But remember, errors
in interfaces happen most often when the calling sequence doesn’t match
up with the called-function’s definition. Call-pair coverage overcomes
this by requiring every caller-callee pair to be tested at least once.

9. What is a test path?

TestWorks treats test paths as sequences of segments, counted up to a
repetition count for a loop. (See the TCAT-PATH manual for full details.)

10. How many defects are actually detected by coverage testing?

It is estimated that increasing branch coverage from 50% to around 90%
will expose 5-10 defects per 1000 lines of code (KLOC).

11. Can I set up my makefiles to do coverage analysis automatically?

Yes. Make a one or two line modification to the makefile to tell it how to
call the TestWorks’ Instrumentor when you want to “make” an instru-
mented target. Then you make instrumented version rather than
make normal version .

Some users make instrumentation the normal and only take out the
instrumentation prior to shipping.

CHAPTER 2: Frequently Asked Questions About Testworks

12

2.5 Static Testing

1. Why should I do static analysis of my source code?

Using a simple mechanical check that finds an error inexpensively saves
money. The alternative is finding errors from the field, a more costly
method in terms of money and reputation.

2. How many defects are actually detected by advisor/static testing?

It is estimated that static and metric analyses can yield as many as 2-8
defects per 1000 lines of code (KLOC).

3. About how many defects are there in code?

There are approximately 30-50/KLOC (1000 Lines of Code) in new soft-
ware. QA testers aim to get defects down to 1/KLOC; some critical aero-
space applications must get below 0.1/KLOC.

4. Why are software metrics so important?

Experience shows that the most complicated pieces of a software product
often contribute to most of the errors. The best use of resources is know-
ing how to identify the most complex pieces of software and then concen-
trating efforts there.

TestWork’s User’s Guide

13

2.6 Integration Testing

1. What is integration testing and how is it beneficial?

Most of the time, two or more pieces of a large system are put together
after they have been tested separately. Testing two or more parts of a
program together is called integration testing.

Many defects are discovered in integration testing, and TestWorks is
effective by insisting on high levels of call-pair coverage during the
integration test process.

2. What must I do to make TestWorks integrate into my software
process smoothly?

Make sure that your software process runs smoothly in the first place. If it
does, then TestWorks adds to the existing processes quite nicely.

CHAPTER 2: Frequently Asked Questions About Testworks

14

2.7 About TestWorks Licensing

1. What platforms does TestWorks run on?

TestWorks runs on the following:
• UNIX platforms (SUN SPARC Solaris, HP-9000, SGI,

DEC-Alpha, etc.)
• Windows (3.1x, '95, '98 and NT)

2. How is TestWorks licensed?

On UNIX products, Software Research, Inc. offers LAN-based floating
licenses.

On Windows products, Software Research, Inc. offers group licenses,
department licenses, and site licenses.

3. What is the TestWorks warranty agreement?

Software Research, Inc. has a standard 30-day warranty. Check your
license agreement for complete details and limitations.

4. What are the benefits of keeping my software maintenance contract
current?

There are two benefits to keeping your software maintenance contract
current:

• Continuous technical support
• The option of receiving upgraded products at no cost

Once your maintenance contract lapses, it is more expensive to restore it
than it would be to continue the contract. Maintenance contracts lapse 60
days after the end of prior maintenance.

5. What if I have problems with TestWorks after 30 days?

If you are on maintenance, help is guaranteed. However, if you are not on
maintenance, Software Research, Inc. will do its best to help.

TestWork’s User’s Guide

15

2.8 About TestWorks Internal Architecture

1. Why does TestWorks use “C” as its basic command language?

“C” is the language most universally understood by programmers and
testers alike, and it is compact and easy to use.

2. Do I have to be highly skilled in “C” programming to use TestWorks?

No. Most of the time it is not necessary to edit scripts, and if it is, the
syntax rules are very simple to follow.

3. Why are TestWorks license prices so high?

Compared with other testing products, license fees for TestWorks’ prod-
ucts, bundles, and the entire TestWorks Suite are very low on a value per
function basis.

TestWorks is the most cost-effective way to automate testing.

4. Why is there a price difference between UNIX and Windows?

Licensing creates the price difference between UNIX and Windows. A
single floating license on UNIX can serve 2-4 testers, but on Windows,
each tester for each machine needs a license.

5. How difficult is it to install TestWorks

It is easy to install TestWorks.

On UNIX version there is an install.stw that does all the instala-
tion. (If a systems administrator installs TestWorks, “root/superuser”
permission may be required.)

On Windows, products are installed using the supplied hands-off
installation script.

6. How long does it take to install TestWorks?

If the install script is used, installation takes approximately twenty min-
utes or less. There are not guarantees if the install script is not used.

CHAPTER 2: Frequently Asked Questions About Testworks

16

7. How much memory do TestWorks products use?

On UNIX, the distribution tapes can range in size from 20 MB to 75 MB,
but that includes online documentation and several utilities.

The UNIX products take minimum 16 MB of RAM to execute.

The Windows products run from 20 MB to 30 MB depending on the
version. They take at least 8 MB of RAM to execute.

TestWork’s User’s Guide

17

2.9 Embedded and Cross-Testing

1. What does cross-development and cross-testing mean?

Cross-development means that developing is taking place on one
machine (the host) and product runs are taking place on another machine.

Cross-testing is TestWorks’ way of supporting cross-development.

2. Does TestWorks test embedded code?

Yes. For cross-development host/target type development, Software
Research, Inc. has special kits to test embedded code.

3. How many changes to my code do I have to make for TestWorks to
be effective?

None.

The coverage analysis tools work with source code modification, but they
make “throw away” versions of your code, then feed that directly to your
compiler. You never see the intermediate versions.

4. My frequently asked question isn’t answered above. What should I
do?

Send your question to info@soft.com and we’ll answer it immediately.

CHAPTER 2: Frequently Asked Questions About Testworks

18

2.10 Technical Support

1. What kind of technical support can I expect?

We respond to ALL incoming calls, Emails, FAXes, etc., within 24 hours.

2. Is training available on the TestWorks products?

Standard 2-day, 3-day, 4-day, and 4-1/2 day trainings exist for TestWorks.
The length varies with how many products are being learned.

3. Is a demo available?

A “demo disk” is not available, but a trial or evaluation of the fully-
functioning TestWorks products can be arranged.

Contact our sales group to arrange a trial/evaluation.

4. Can we evaluate the software in our own environment?

We strongly advocate in situ trials/evaluations so that you can see
TestWorks working in your environment on your product.

5. What if we are not satisfied after the purchase?

If you are dissatisfied for any reason within the 30-day guarantee period,
you can return the product, no questions asked. For longer periods, con-
tact sales. Our guideline is that we want satisfied customers, and we will
do the best that we can to achieve that goal.

6. Do the TestWorks’ tools work across platforms?

When used with caution, TestWorks’ tools can work across platforms.

19

3.1 Basic MS-Windows User Interface

This section demonstrates using file selection dialog boxes, help menus,
message dialog boxes, option menus, and pull-down menus. If you are
familiar with the basic MS-Windows graphical user interface (GUI) style,
you can go on to Section 3.2 on page 25.

CHAPTER 3

Understanding the User
Interface

This chapter summarizes TestWorks’ windows, menus and commands. Individual
application of commands is describedin detail in the relevant chapters of this guide.

CHAPTER 3: Understanding the User Interface

20

3.1.1 File Selection Windows

File selection windows allow you to select or specify test file names or
select saved image files.

FIGURE 1 File Selection Window for Windows 95/NT

FIGURE 2 File Selection Window for Windows 3.1x and NT 3.5

TestWorks User’s Guide

21

File Name entry box

Selects and enters a file name.

File Name list box Lists files in the path defined in the List Files of Type
area.

List Files of Type Specifies which files are listed in the File Name area.
The current type of file and its extension are
displayed.

Directories list box

Lists directories in path defined in the Filter entry
box. Use it to locate the desired directory.

Drives Selects your system’s current drive.

Scroll bars Move up/down and side/side in the Directories and
File Name list boxes. You use them to search for the
appropriate directory or file.

File Name entry box

Selects and enters a file name.

Use the three buttons at the right of the dialog box to issue commands:

OK Accepts the directory and file in the File Name entry
box as the new file or the file to be opened and then
exits the dialog box.

Help Supplies on-line help.

Cancel Cancels any selections made and then exits the dialog
box. No file is selected as a result.

CHAPTER 3: Understanding the User Interface

22

To use a file selection dialog box:
1. Click the directory name where an existing file is located or where

you want a new file to be placed.
2. Select an already existing file name in the File Name list box or type

in the name of the new file name in the File Name entry box, with no
limit on character length.

3. The convention for naming test files, or keysave files, is basename.ksv,
where ksv represents a keysave file. Captured images take the form of
basename.bxx, basename.sxx, basename.rxx, where b represents a base-
line image, s identifies a image captured for synchronization, r repre-
sents a response file, and xx represents the original sequence in which
the image was captured.

4. To select a keysave file name, do one of these three things:
• Double click on the file in the File Name list box.
• Highlight the file in the File Name list box or type in the file

name in the File Name entry box and click on OK.
• Highlight or type in the file name and press the Enter key.

TestWorks User’s Guide

23

3.1.2 Help Windows

On-line help is available for all the TestWorks/Regression products. Help
automatically brings up the text corresponding to the topic you choose.

Here’s how to use the help.
1. From the main window, click on the Help button, or from any other

window, click on the Help pull-down menu.
2. The Help window pops up with the contents of the help information.
3. Simply click on the topic you want information for and the Help win-

dow automatically displays it.

Help: If this is the first time you’ve used on-line help, you might want to
choose How To Use Help from the Help menu. You can also refer to your
Microsoft Windows User’s Guide for complete information on using Help
menus.

FIGURE 3 Help Window

CHAPTER 3: Understanding the User Interface

24

3.1.3 Pull-Down Menus

Pull-down menus are located within the menu bar of CAPBAK/MSW’s
windows. They often contain several options. To use pull-down menus
and their options, follow these steps:
1. Move the mouse pointer to the menu bar and over the menu contain-

ing the item.
2. Hold the left mouse button down. This displays the items on the

menu.
3. While holding down the left mouse button, slide the mouse pointer to

the menu item you want to select. The menu item is highlighted in
reverse shadow.

An ellipsis (...) following an option indicates that selecting the item will
bring up a pop-up window, such as a file selection window.
4. To choose an item from a selected menu, click the item, or type the

letter that is underlined in the item name, or use the arrow keys until
you reach the item you want to select, and then press the Enter key.

FIGURE 4 Pull-Down Menu

TestWorks User’s Guide

25

3.2 The TestWorks Window

The TestWorks window displays all the commands and menus to oper-
ate TestWorks including verifying installation, invoking various product
lines, using the supplied demos, and viewing the on-line glossary.

FIGURE 5 TestWorks Window

The window is divided into the following parts:
1. The CAPBAK MS-Windows icon brings up the capture/playback

utility.
2. The CBDIFF icon brings up the image differencing utility.
3. The SMARTS icon brings up the test management utility.

(Only if SMARTS is installed)
4. The CBVIEW icon brings up the image-viewing utility.
5. The GLOSSARY icon brings up a list of terms relevant to software

testing in general and the TestWorks product set in particular.

To bring up any of the utilities, double-click on the appropriate icon.

CHAPTER 3: Understanding the User Interface

26

27

CHAPTER 4

Using the TestWorks Window
This chapter explains how to use the TestWorks window, its commands and options.

4.1 Invoking the TestWorks Window

For Windows NT, Windows 95 or Windows 98, go to your program’s
menu from your start button.

FIGURE 6 Typical Program Manager with TestWorks icon displayed.

CHAPTER 4: Using the TestWorks Window

28

The TestWorks window pops up.

FIGURE 7 TestWorks Window

Before you invoke any of the utilities, make sure you are already in
Windows. C:\Program Files\Software Research\Regression or whatever
directory you installed the SR executables in, must be in your DOS $PATH
(see Installation Instructions for further details).

4.2 Cbmsw

The Cbmsw icon brings up the capture/playback utility

4.3 CBDiff

The CBDiff icon brings up the image differencing utility.

4.4 CBView

The CBView icon brings up the image viewing utility.

4.5 Introduction to TestWorks

The Introduction to TestWorks icon brings up an overview of the
TestWorks suite of testing tools.

4.6 Capbak Help

The Capbak Help icon brings up information to help you use the
capture/playback utility.

4.7 CBDIFF Help

The CBDIFF Help icon brings up information to help you use the image
differencing utility.

STW Style Guide

29

4.8 Smarts

The Smarts icon brings up the test management utility

4.9 Smarts Users Guide

The Smarts Users Guide icon brings up a quick start for the Smarts util-
ity.

4.10 Smarts Help

The Smarts Help icon brings up information to help you use the
Smarts utility.

4.11 Capbak Users Guide

The Capbak Users Guide icon brings up a manual for the capture/play-
back utility.

4.12 Acrobat Reader Setup

The Acrobat Reader Setup icon launches the utility to configure the
Acrobat Reader.

4.13 Glossary

The Glossary icon brings up a list of terms relevant to software testing in
general and the STW product set in particular.

CHAPTER 4: Using the TestWorks Window

30

31

5.1 Locations for Defaults

Initialization files hold of all the default settings for STW product GUIs.
For CAPBAK/MSW the initialization file is called cbmsw.ini and for
SMARTS/MSW it is called smarts.ini. These files follow the Microsoft
Windows file format conventions, and should be located in C:\windows.

These are text files and can be amended using any standard text editor.
For complete listings of the cbmsw.ini and smarts.ini files, please refer to
the CAPBAK/MSW and SMARTS/MSW manuals.

CHAPTER 5

A Note about the Initialization
Files

CHAPTER 5: A Note about the Initialization Files

32

33

acceptance tests Formal tests conducted to (1) determine
whether or not a system satisfies its acceptance
criteria and (2) to enable the customer to deter-
mine whether or not to accept a system. This
kind of testing is performed with the STW/
Regression suite of tools. {Regression}

action statement A non-decision statement in a program that
results in executable code. {Coverage}

activation clause A clause in the ATS file, composed of a
sequence of system commands which perform
actions for the test case execution. {SMARTS}

Ada The DoD standard programming language.
Also, Ada9X refers to the 1990's update of this
language. {Regression}

alpha testing Testing of a software product of system con-
ducted at the developer's site by the customer.
[Ref. 1]

ALT-M The CAPBAK/DOS hotkey menu trigger
character. {Regression}

ALT-S The CAPBAK/DOS screen save hotkey
character. {Regression}

ancestor node A node in a directed graph that lies on some
path (i.e., sequence of segments) leading to the
specified node. {TCAT-PATH}

apg All Paths Generator. A TCAT-PATH facility
which generates equivalence classes that
include all program paths from a directed
graph. {TCAT-PATH}

CHAPTER 6

Glossary
This glossary includes terms that are commonly used in the Automated Software Test and
Software Safety and Reliability community, as well as terms which pertain to SR's Soft-
ware TestWorks (STW) system. Definitions given to a term are used in one or more indus-
try-sponsored standard technical vocabularies. When the term is specific to SR, the
product with which it is most closely associated is named in the definition.

CHAPTER 6: Glossary

34

arc In a directed graph, the oriented connection
between two nodes. Also called an edge.
 {Coverage}

archive file A file containing test trace information in
reduced form. {Coverage}

ASCII synchronization The process by which a playback (e.g. from
CAPBAK) holds back execution until a
character string is located.

ATS Automated Test Script. A SMARTS user-
designed description file which references a
test suite. Test cases are referenced in a hierar-
chical structure and can be supplemented with
activation commands, comparison arguments,
PASS/FAIL evaluation criteria, and system
commands. When SMARTS is run on either an
X Window or UNIX system, the ATS is written
in SMARTS' Description Language (which is
similar to C language in syntax). The ATS file
is written in SMARTS C-Interpreter Language
when SMARTS is run on an MS Windows
system.

AUT Application-under-test.

automatic flow control When CAPBAK is being run in terminal
emulation record mode, a record of the manual
flow control is stored in the keysave file and
response file. When CAPBAK is transmitting
keys in playback mode the flow control is
maintained by using the information saved in
these files. See manual flow control.
 {CAPBAK/UNIX}

Automated Test Script See ATS. {SMARTS}

axis A subset of the nodes in a digraph used as a
basis for digraph display. {Coverage}

back-to-back testing For software subject to parallel implementa-
tion, back-to-back testing is the execution of a
test on the software's similar implementations
and a comparison of the results.

TestWorks User’s Guide

35

baseline file A text or image file created during initial test-
ing. Baseline files provide expected program
output for comparison against future test runs.
These kinds of files are created during STW/
Regression testing.

basis paths The set of non-iterative paths. {TCAT-PATH}

beta-testing Testing conducted at one or more customer
sites by the end-user of a delivered software
product or system. This is usually a
“friendly” user and the testing is conducted
before general release for distribution. {Soft-
ware Technology Support Center}

black-box testing See closed-box testing. {Regression}

bottom-up testing Testing starts with lower level units. Each time
a new higher-level unit is added to those
already tested, driver units must be created for
units not yet completed. Again, a set of units
may be added to the software system at that
time, and for enhancements the software
system may be complete before the bottom- up
test starts. The test plan must reflect the
approach, though. {Coverage}

branch See segment.

branch testing A test method satisfying coverage criteria that
requires that for each decision point, each
possible branch be executed at least once.
{Software Technology Support Center}

built-in testing Any hardware or software device which is part
of a piece of equipment, a subsystem or sys-
tem, which is used for the purpose of testing
that equipment, subsystem or system.

byte mask A differencing mask used by EXDIFF that
specifies to disregard differences based on byte
counts.

''C++'' The ''C++'' object-oriented programming
language. The current standard is ANSI C++
and/or AT&T C++. Both are supported by
TCAT/C++. {TCAT/C}

CHAPTER 6: Glossary

36

''C'' The programming language ''C''. ANSI
standard and K&R ''C'' are normally grouped
as one language. Certain extensions supported
by popular ''C'' compilers are also included as
normal ''C''.

C0 coverage C0 is the percentage of the total number of
statements in a module that are exercised,
divided by the total number of statements
present in the module. {Coverage}

C1 coverage The percentage of segments exercised in a test
as compared with the total number of
segments in a program. {Coverage}

call graph The function call tree capability of S-TCAT.
This utility shows the caller-callee relationship
of a program. It helps the user to determine
which function calls need to be further tested.
{Coverage}

call pair A connection between two functions in which
one function "calls" (references) the other
function, in a call tree. {Coverage}

capbak This command invokes CAPBAK/DOS or
CAPBAK/UNIX.

CAPBAK The test Capture and Playback component of
the STW/Regression product set. It has the
capability of capturing keystrokes, mouse
movements, partial screens, windows, or the
whole screen and putting them into a test
script language which can be played back
later.

capbak This CAPBAK/UNIX command allows the
user to capture keystrokes in a keysave file
with or without actually being attached to an
application. No response file is created. This
provides a way to generate keysave files inde-
pendent of the user doing anything.

capset A utility to control CAPBAK/DOS operation
from a command line and from the SMARTS
ATS file.

TestWorks User’s Guide

37

CBDIFF CAPBAK/MSW's image differencing utility.
This utility offers general differencing and
masking capabilities.

CBVIEW CAPBAK/MSW's image viewing utility.

certification report This report summarizes the total number and
percentage of tests that have passed and failed,
providing a brief overview of testing status.
{SMARTS}

character recognition See OCR.

clear-box testing See glass-box testing.

closed-box testing A method where the tester views the program
as a closed box; i.e. the test is completely
unconcerned with the internal behavior and
structure of the program. The tester is only
interested in finding circumstances in which
the program does not behave according to
its specifications. Test data are derived solely
from these specifications, without taking
advantage of knowledge of the internal struc-
ture of the program. Also known as black-box
testing.{Regression}

COBOL The COBOL programming language.

coding rule A rule that specifies a particular way in which
a program is to be expressed.

coding style A general measure of the programming nature
of a system; abstractly, the way the program-
ming language is used in a real system.

collateral metrics Secondary metrics gathered as an unexpected
by-product of the gathering of primary met-
rics. These may not be needed or even useful,
but then again, may prove to be of value later.
Consider saving, even if costly.
{Software Technology Support Center}

collateral testing Collateral testing is that testing coverage
which is achieved indirectly, rather than as the
direct object of a test case generation activity.
{Coverage}

CHAPTER 6: Glossary

38

combinational flow Combinational flow is represented by a
sequence of segments, with the property that
no segment is repeated within the flow.
{Coverage}

command mode This mode allows the user to program the key-
save file for conditional execution based on
system calls. The other mode of execution is
data mode. Command mode is supported by
{CAPBAK, CAPBAK/UNIX}

compilers Compilers are included here as a reminder of
how much static code checking is done by
compilers. These are valuable automatic test
tools. {Software Technology Support Center}
2. A computer program that translates instruc-
tions, other programs, etc. (from)...a high-level
language into a machine language. {Webster's
New World Dictionary}

complexity A relative measurement of the ‘‘degree of
internal complexity" of a software system,
expressed possibly in terms of some algorith-
mic complexity measure. {METRIC}

complexity report This report lists all of a source code program's
encountered procedures and lists Software
Science metrics (which are concerned with the
‘‘size'' of software) and Cyclomatic Complex-
ity measures (which are concerned with the
flow of control within the program's code).
{METRIC}

component A part of a software system smaller than the
entire system but larger than an element.

conditional playback See also playback programming. Certain STW
components incorporate a language that pro-
vides for logical operations to control behavior
during test execution; e.g. a SMARTS test can
involve use of the if or while constructs, as can
a CAPBAK script.

configuration file A file used to declare start-up time parameter
values. Usually suffixed as *.rc.

TestWorks User’s Guide

39

connected digraph A directed graph is connected if there is at least
one path from every entry node to terms of all
the possible sub-trees that can be executed for
that program. A TCAT-PATH component used
to measure Ct coverage against a path file.

ctcover A TCAT-PATH utility used to assess Ct cover-
age.

cumulative coverage The test coverage attained by a set of several
test runs. {Coverage}

cumulative report This report charts branch and/or call-pair
coverage for the current test cumulatively, and
also for each module in the total system.
{Coverage}

current position The current position of the screen's cursor,
expressed in x,y coordinates. NOTE x=0, y=0 is
the upper left corner of the screen. On some
machines this same pixel may be called x=1,
y=1.

cycle A sequence of segments that forms a closed
loop, so that at least one node is repeated.
{Coverage}

cyclomatic number A number which assesses program complexity
according to a program's flow of control. A
program's flow of control is based on the num-
ber and arrangement of decision statements
within the code. The cyclomatic number of a
flowgraph can be calculated as follows:

e - n + 2

where n is the number of nodes in the graph,
and e is the number of edges or lines connect-
ing each node. {METRIC, TCAT, TCAT-PATH}

data flow graph A graph of a variable name's uses along a fixed
path within a module or software system,
expressed in terms of the legal and illegal
transitions within the system for the variable.
{Coverage}

data sensitivity fault A fault that causes a failure in response to
some particular pattern of data. {Software
Technology Support Center}

CHAPTER 6: Glossary

40

data mode In this execution mode for keysave files, text is
interpreted as saved keystrokes, to be played
back along with timing information which is
enclosed in brackets. {CAPBAK, CAPBAK/
UNIX}

DD-path See segment.

de-instrumentation When certain parts of your code have already
been tested, you can use TCAT's and S-TCAT's
de-instrumentations utilities to exclude those
parts from instrumentation. For large pro-
grams, this can save time.

debug After testing has identified a defect, one
''debugs'' the software by making certain
changes that repair the defect.

decision-to-decision path See logical branch.

decisional depth The number of decisions that must take on a
particular value prior to arriving at a speci-
fied logical branch. ‘‘The decisional depth for
this logical branch is...'' {Coverage}

defect A difference between program specifications
and actual program text of any kind, whether
critical or not. What is reported as causing any
kind of software problem.

defect analysis Using defects as data for continuous quality
improvement. {Software Technology Support
Center}

defect density Ratio of the number of defects to program
length (a relative number).
{Software Technology Support Center}

deficiency See defect.

delay multiplier The multiplier used to expand or contract
playback rates.

TestWorks User’s Guide

41

desk checking A form of manual static analysis, usually per-
formed by the originator. Source code, docu-
mentation, etc. is visually checked against
standards. It is cheap, effective, and usually
underestimated and under-applied. (Maybe if
we called it an individual design review, it
would get more respect. This is where pride in
workmanship and individual empowerment
are exhibited.)
{Software Technology Support Center}

development test and evaluation (D T & E)

Testing conducted throughout the acquisition
process to ensure an effective and supportable
system by assisting in design and develop-
ment and verifying specifications, objectives,
and supportability. {Software Technology
Support Center}

digraph Short name for a directed graph, a graph
which displays all of a program’s nodes and
edges and their relationships. The Xdigraph
utility within STW’s TCAT and S-TCAT set of
tools draws digraphs and has options for dis-
playing them in many different ways.

direct metric A metric that represents and defines a software
quality factor and which is valid by definition,
e.g. mean time to software failure for the factor
reliability. {Software Technology Support
Center}

dump A display of some aspect of a computer's exe-
cution state, usually the contents of memory,
registers, etc. Is used as a diagnostic aid. Some
examples are a postmortem dump (taken after
a failure), and a snapshot dump (taken during
execution).
 {Software Technology Support Center}

dynamic analysis A process of demonstrating a program's prop-
erties dynamically, by a series of constructed
executions. {Coverage}

CHAPTER 6: Glossary

42

dynamic call-tree display An organic diagram showing modules and
their call-pair structure, where the call-pairs
are ''animated'' based on behavior of the
instrumented program being tested.
{Coverage}

dynamic digraph display An organic diagram showing the connection
between segments in a program, where the
segments are ''animated'' based on behavior of
the instrumented program being tested. {Cov-
erage}

edge In a directed graph, the oriented connection
between two nodes. {Coverage}

emulator From Webster's, emulate, 'to strive or equal or
excel.' Therefore, a machine that strives to
equal or exceed the performance characteris-
tics of another, very often through software.
Similar to a simulator. Example: Software in a
PC that causes it to emulate a data terminal.
{Software Technology Support Center}

end-to-end testing Test activity aimed at proving the correct
implementation of a required function at a
level where the entire hardware/software
chain involved in the execution of the function
is available.

entry node In a program-directed graph, a node which has
more than one outway and zero inways. An
entry node has an in-degree of zero and a non-
zero out-degree. {Coverage}

entry segment An entry segment, or logical branch is one
which has no predecessors, a situation which
can occur only at the entrance (i.e., invocation
point) of a module. {Coverage}

environment clause A clause in the ATS file that defines local
environment variables that can be used as
variables in the activation and evaluation
clauses. {SMARTS}

equivalence classes partitioning This involves identifying a finite set of repre-
sentative input values that help to minimize
the number of necessary test cases. {Software
Technology Support Center}

TestWorks User’s Guide

43

error A difference between program behavior and
specification that renders the program results
unacceptable. See defect.

error-based testing Testing where information about program-
ming style, error-prone language constructs,
and other programming knowledge is applied
to select test data capable of detecting faults,
either a specified class of faults or all possible
faults. {Software Technology Support Center}

error model A model used to estimate the number of
remaining errors, time to find these errors and
similar characteristics of a program. {Software
Technology Support Center}

error tolerance See robustness. {STSC}

essential complexity A measure of the level of 'structuredness' of a
program.
{Software Technology Support Center}

essential edges The set of paths that first includes each of the
edges only on one of the original set of paths.
{TCAT-PATH}

essential logical branch A logical branch of a program that exists only
on one path. Hence, execution of an essential
logical branch is required to obtain complete
segment (branch) coverage.

essential paths The set of paths that include one essential
edge; that is, an edge that lies on no other path.
{TCAT-PATH}

essential segment A segment of a program that exists on only one
path. Hence, execution of an essential segment
is required to obtain complete segment
(branch) coverage.

evaluation clause A clause in the ATS file that specifies how to
assess the correctness of a test. {SMARTS}

evaluation The process of examining a system or system
component to determine the extent to which
specified properties are present. {Software
Technology Support Center}

CHAPTER 6: Glossary

44

exception report A METRIC report which identifies source code
procedures that exceed a user-defined metric
threshold.

EXDIFF The Extended Differencing System, a compo-
nent of STW/Regression. EXDIFF compares
two files and reports the difference between
them, and it ignores differences that lie within
a user-defined masked area.

executable statement A statement in a module which is executable in
the sense that it produces object code instruc-
tions. A non-executable statement is not the
opposite; it may be a declaration. Only com-
ments can be left out without affecting pro-
gram behavior.

execution history report This report shows how many times individual
test cases have been run after they have been
passed. This shows if test cases are being run
needlessly. Identifies "spinning of the
wheels."
{Software Technology Support Center}

execution verifier A system to analyze the execution-time behav-
ior of a test object in terms of the level of test-
ing coverage attained.

exit logical branch An exit logical branch is one for which there
are no successor logical branches. This occurs
only when the consequence of the logical
branch is an exit from the module. {Coverage}

exit node In a directed graph, a node which has more
than one inway, but has zero outways. An exit
node has an out-degree of zero and a non-zero
in-degree. {Coverage}

exit structure The exit structure of a program-directed graph
is the set of segments which, if executed, lead
unalterably to termination of program flow
without involving subsequent repetition of
any logical branches. {Regression}

TestWorks User’s Guide

45

explicit predicate A program predicate whose formula is dis-
played explicitly in the program text. For
example, a single conditional always involves
an explicit program predicate.

A predicate is implicit when it is not visible in
the source code of the program. An example is
a program exception, which can occur at any
time.

failure The inability of a system or component to
perform its required functions within specified
performance requirements. A failure may
result when a fault is encountered.
{Software Technology Support Center}

faithful time recording The capability of CAPBAK to record complete
timing information about the CAPBAK session
in such a way that it can be played back at
identically the same rate it was recorded.

fault An incorrect step, process, or data definition in
a computer program.
{Software Technology Support Center}

fault-based testing Testing that employs a test data selection strat-
egy designed to generate test data capable of
demonstrating the absence of the pre-specified
set of faults; typically, frequently-occurring
faults. {Software Technology Support Center}

fault dictionary A list of the faults that have occurred in a
system and the tests that will detect them.
{Software Technology Support Center}

fault masking A condition in which one fault prevents the
detection of another.
{Software Technology Support Center}

fault tolerance See robustness.

fault tree analysis A form of "safety analysis" that assesses
system safety to provide failure statistics and
sensitivity analyses that indicate the possible
effect of critical failures.
{Software Technology Support Center}

CHAPTER 6: Glossary

46

feasible path A sequence of logical branches is logically
possible if there is a setting for the input space
relative to the first logical branch in the
sequence, which permits the sequence to
execute. {TCAT-PATH}

flow control When a terminal emulation program estab-
lishes communications with a mainframe
application, it establishes flow control to
prevent characters being lost. In some cases
the mainframe application (or cluster control-
ler) locks out the keyboard. This prevents the
user from typing ahead; however, when CAP-
BAK is being used to record terminal sessions,
the user is expected to wait for a response from
the mainframe. The user thus imposes manual
flow control to prevent data from being lost in
cases where the keyboard is not locked.

When CAPBAK is being run in terminal
emulation mode, a record of the manual flow
control is stored in the keysave and
response files. When CAPBAK is transmitting
keys in playback, flow control is maintained
by using this item.
{Software Technology Support Center}

full report A METRIC report which indicates a set of
metrics for each of the modules in a given
source file.

function call A reference by one program to another
through the use of an independent procedure-
call or functional-call method. Each function
call is the “tail'' of a caller-callee callpair.

TestWorks User’s Guide

47

hotkey window When recording or playing back a test session,
you can issue commands via function keys (i.e.
your F1 to F10 keyboard functionkeys).
During a recording session, you can use the
function keys to bring up the hotkey window;
mark the keysave file; select an image or
window to synchronize during playback; save
a partial image or window; save the root; and
pause, resume or terminate the session.

During playback the function keys allow you
to slow or to quicken the speed of playback;
insert or append new keysave records into a
keysave file; pause, resume or terminate a
playback session. {CAPBAK}

function points A measure of software size. Most appropriate
for MIS applications. A product of five defined
data components (inputs, outputs, inquiries,
files, external interfaces) and 14 weighted
environmental characteristics (data comm,
performance, reusability, etc.).

Example from Computer World, March 8, 1993:
A 1,000-line Cobol program would typically
have about 10 function points, while a 1,000-
line C program would have about eight.
{Software Technology Support Center}

functional test cases A set of test case data sets for software which
are derived from structural test cases.

functional specifications A set of behavioral and performance require-
ments which, in aggregate, determine the
functional properties of a software system.

glass-box testing A test method where the tester views the inter-
nal behavior and structure of the program. In
using this strategy, the tester derives test data
from an examination of the program's logic
without neglecting the requirements in the
specification. The goal of this method is to
achieve a high test coverage examination of as
many of the statements, branches, and paths.

CHAPTER 6: Glossary

48

grammar-based test A testing method that generates test cases from
a formal specification of a system or system
component. {Software Technology Support
Center}

Halstead metric A measure of the complexity of computer soft-
ware that is computed as n * log n where n is
the product of the number of operators and the
number of operands in a program. {METRIC}

history report This SMARTS report shows a summary of all
the test history entries stored in the designed
test-log file. The display is always relative to a
given node (group or test case). {SMARTS}

hit report This report is used by TCAT, S-TCAT, and
TCAT-PATH to identify all of the segments or
call-pairs which were exercised in present and
past tests. It analyzes both the trace file and
archive file. {Coverage}

homogenous redundancy In fault tolerance, realization of the same func-
tion with identical means; for example, use of
two identical processors.
{Software Technology Support Center}

hotkey window When recording a session, this window pops
up when the hotkey function key is pressed
(defaulted to F1). It allows you to issue
commands, including inserting comments,
command, or conditional statements into the
keysave file, to save an image for synchroniza-
tion, save a partial image, mouse window, or
the root window, to resume or end a recording
session. {CAPBAK}

ICCM Inter-Client Communications Conventions
used by X-Windows.

image synchronization The process by which a playback (e.g. from
CAPBAK) is forced to wait until an image is
completed.

in-degree In a directed graph, the number of inways for a
node. {Coverage}

incompatible segment Two segments in one program are said to be
incompatible if there is no logically feasible
execution of the program which will permit

TestWorks User’s Guide

49

both to be executed in the same test. See also
essential logical branch.

incremental analysis The partial analysis of an incomplete product
to allow early feedback on the development of
that product.
{Software Technology Support Center}

independent logical branch pair A pair of logical branches is (sequentially)
independent when there are no assignment
actions along the first branch. This changes
any of the variables used in the predicate of
the second statement. {Coverage}

independent verification and validation

Verification and validation performed by an
individual or organization that is technically,
managerially, and financially independent of
the development organization.
{Software Technology Support Center}

infeasible path 1. A logical branch sequence is logically impos-
sible if there is no collection of input data rela-
tive to the first branch in the sequence, which
permits the sequence to execute. {Coverage}

 2. A sequence of program statements that can
never be executed.
{Software Technology Support Center}

inherited error An error that has been carried forward from a
previous step in a sequential process.
{Software Technology Support Center}

inspection/review A process of systematically studying and
inspecting programs in order to identify
certain types of errors, usually accomplished
by human rather than mechanical means.

instrumentation The first step in analyzing test coverage is to
instrument the source code. Instrumentation
modifies the source code so that special mark-
ers are positioned at every logical branch or
call-pair or path. Later, during program execu-
tion of the instrumented source code, these
markers will be tracked and counted to pro-
vide data for coverage reports. {Coverage}

CHAPTER 6: Glossary

50

Integration Testing Exposes faults during the process of integra-
tion of software components or software units
and it is specifically aimed at exposing faults
in their interactions.

The integration approach could be either
bottom-up (using drivers), top-down (using
stubs) or a mixture of the two. The bottom-
up is the recommended approach. {Coverage}

interface The informational boundary between two soft-
ware systems, software system components,
elements, or modules.

interface testing Testing conducted to evaluate whether sys-
tems or components pass data and control
correctly to one another. {Software Technology
Support Center}

invocation point The invocation point of a module is normally
the first statement in the module.

invocation structure The tree-like hierarchy that contains a link for
invocation of one module by another within a
software system.

ISO (International Organization for Standardization) 9126

ISO 9126 defines a set of six quality characteris-
tics (functionality, reliability, usability, effi-
ciency, maintainability, and portability) and
provides a framework for software quality
assessments. ISO 9126 is a product of the ISO/
International Electrotechnical Committee/
Joint Technical Committee No. 1 Subcommit-
tee on Software Engineering.
{Software Technology Support Center}

iteration level The level of iteration relative to the invocation
of a module. A zero-level iteration character-
izes flows with no iteration. A one-level
iteration characterizes program flow which
involves repetition of a zero-level flow.

junction node A junction node within a program-directed
graph is a node which has an in-degree of two
or greater and an out-degree of exactly one.
{Coverage}

TestWorks User’s Guide

51

keycvt A utility program for keystroke editing. keycvt
transforms a keysave file into an editable
ASCII version.
{CAPBAK/UNIX, CAPBAK/DOS}

keypla This command is used to read a keysave file
and emit the characters to the screen.
{CAPBAK/UNIX}

keysave file See ksv {CAPBAK}.

keysave mode The mode that enables the user to save every
keystroke, and the time spent before each is
typed in. {CAPBAK/DOS}

Kiviat chart Kiviat charts provide a graphical means to
view the impact of multiple metrics on a
source code file or multiple files. In its sum-
mary report, each metric is represented by an
axis and results are plotted with reference to
user-definable upper and lower bounds. The
Kiviat chart quickly identifies the metrics to
focus on for a particular program. {METRIC}

ksv A test script file automatically generated dur-
ing the CAPBAK's recording session. A key-
save file contains a sequence of event
statements (including keystrokes, mouse
movements and screen captures), which repre-
sent user input directed to the AUT.
 {CAPBAK, CAPBAK/UNIX, CAPBAK/DOS,
and CAPBAK/MSW}

When a test is played back, the event state-
ments in the keysave file are regenerated and
the AUT executes the previously-recorded
statements exactly as before.

length Maurice Halstead defined the length of a
program to be

N = N1 + N2

where N1 is the total number of operators and
N2 is the total number of operands. This
measure is used with METRIC to identify
error-prone modules. {METRIC}

CHAPTER 6: Glossary

52

lifecycle The period that starts when a software product
is conceived and ends when the product is no
longer available for use. Test development,
execution, and analysis involve the entire life-
cycle. {Software Technology Support Center}

line mask An EXDIFF statement that permits masking a
line or group of lines.

linear histogram A dynamically-updated linear-style histogram
showing accumulating C1 or S1 coverage for a
selected module. {Coverage}

logarithmic histogram A dynamically-updated logarithmic-style
histogram showing each logical branch or call-
pair hit in logarithmic form. {Coverage}

log file 1. A file used by SMARTS to record test history
information.

 2. An established or default SMARTS file
where all test information is automatically
accumulated.

logical block See segment.

logical trace An execution trace that records only branch or
jump instructions.
{Software Technology Support Center}

logical units A logical unit is a concept used for synchroni-
zation when differencing two files with the
EXDIFF system. A logical unit may be a line of
text, a page of text, a CAPBAK screen dump,
or the keys (or responses) between marker
records in a keysave file. {Regression}

loop A sequence of segments in a program that
repeats at least one node. See cycle.

loopback testing Testing in which signals or data from a test
device are output to a system or component,
and results are returned to the test device
unaltered for measurement or comparison.
{Software Technology Support Center}

TestWorks User’s Guide

53

(M,N)-cycle An M-entry, N-exit cycle in a flowgraph. A
program is perfectly structured ("pure-
structured") if it is composed of loops that
involve only (1,1)-cycles. Most real-world
programs contain many multiexit cycles, how-
ever. Some studies show that over 99% of pro-
grams are non-pure-structured. {TCAT-PATH}

make file Most often, TCAT, S-TCAT and TCAT-PATH
will be used to develop test suites for systems
that are created with make files. make files cut
the time of constructing systems, by automat-
ing the various steps necessary to build sys-
tems, including preprocessing, instrumenting,
compiling and linking. All these steps can be
written in a make file. {Coverage}

makeats A SMARTS utility which, based on minimal
information, generates the initial hierarchical
test structure for an ATS file, as well as basic
source, activation, and evaluation clauses.

manual analysis The process of analyzing a program for
conformance to in-house rules of style, format,
and content as well as for correctly producing
the anticipated output and results. This
process is sometimes called code inspection,
structured review, or formal inspection.

marker text When CAPBAK/UNIX creates a marker
record, it prompts the user for text to place in
the marker record. This text is intended to be
used for terminal emulator data flow synchro-
nization and special differencing evaluation.

marker trigger key When CAPBAK/UNIX is activated in marker
trigger mode, it reads in a set of special keys
from the marker trigger file, determining
which keys should be used to impose flow
control. Flow control is maintained by creating
the marker records in the keysave and
response files.

marker trigger mode When CAPBAK/UNIX is activated in this
mode, each time a marker trigger key is
pressed, a marker record is recorded in the
keysave and response files.

CHAPTER 6: Glossary

54

McCabe metric See cyclomatic number.

measure To ascertain or appraise by comparing to a
standard; to apply a metric.
{Software Technology Support Center}

menu trigger character Alt-M is typed to invoke the CAPBAK/DOS
menu at any time.

metric A quantitative measure of the degree to which
a system, component, or process possesses a
given attribute (Maybe we should think of
metrics as the clues to the scene of a crime.
Gather them now or lose them forever, and
who knows what clues will crack the case?).
{Software Technology Support Center}

METRIC The Software Metrics Processor/Generator
component of STW/Advisor. METRIC
computes several software measures to help
you determine the complexity properties of
your software.

metric validation The act or process of ensuring that a metric
correctly predicts or assesses a quality factor.
{Software Technology Support Center}

mkarchive The TCAT utility creates null archive files.

mksarchive The S-TCAT utility creates null archive files.
These utilities ensure that the coverage utility
reports on all modules on your system
whether or not they have been executed.
Sometimes, when testing a subsystem, the
initial tests do not touch every module in the
program. When this occurs, the C1 of S1
measure will start at an artificially high level
and, as the tests touch more modules, the C1
or S1 value will decrease. Although no logical
branches or call-pairs are being hit, more
modules are included in the percentage calcu-
lation, so the result value is lower. {Coverage}

module A module is a separately invocable element of
a software system. Similar terms are
procedure, function, or program.

TestWorks User’s Guide

55

mouse save file The file of mouse movements (and associated
timing information) captured during a
CAPBAK/DOS session.

multi-unit test A multi-unit test consists of a unit test of a sin-
gle module in the presence of other modules.
It includes (1) a collection of settings for the
input space of the module and all the other
modules invoked by it and (2) precisely one
invocation of the module under test.

mutation testing A method whereby errors are purposely
inserted into a program under test to verify
that the test can detect the error. Also known
as "error seeding."
{Software Technology Support Center}

newly hit report This report is used for TCAT and S-TCAT and
identifies all the segments or call-pairs that are
hit in the present test and which were not hit in
any prior test.

newly missed report This report is used for TCAT and S-TCAT and
identifies what the current test "lost".

node 1. A position in a program assigned to repre-
sent a particular state in the execution space of
that program. {Coverage}

2. Group or test case in a test tree. {SMARTS}

node number A unique node number assigned at various
critical places within each module. The node
number is used to describe potential and/or
actual program flow. {Coverage}

non-executable statement A declaration or directive within a module
which does not produce (during compilation)
object code instructions directly.

not hit report A TCAT or S-TCAT report giving the names of
logical branches or call-pairs "not hit" yet by
any test.

object under test See test object.

CHAPTER 6: Glossary

56

operational test and evaluation The field test, under realistic conditions, of an
item or component

(OT&E) to determine effectiveness and suitability, and
the evaluation of the results of the tests.
 {Software Technology Support Center}

operator interface analysis 1. A form of interface analysis that examines
the usage of operators applied to data
structures.

2. An analysis of the machine-human
(operator) interface.
{Software Technology Support Center}

out-degree In a directed graph, the number of outways of
a node. {Coverage}

output synchronization The process by which a playback (e.g. from
CAPBAK) is forced to wait until an expected
window opening is completed.

outway In a directed graph, an arc (edge) leaving a
node. {Coverage}

P1 Coverage Paragraph coverage, measured by TCAT/
COBOL.

partition analysis A program testing-and-verification technique
that employs symbolic evaluation to provide
common representations of a program's
specification and implementation.
{Software Technology Support Center}

partition analysis verification The verification process used in partition anal-
ysis that attempts to determine the consistency
properties that hold between a program speci-
fication and its implementation.
{Software Technology Support Center}

Pascal The ISO and/or ANSI standard Pascal pro-
gramming language.

TestWorks User’s Guide

57

past test report This report lists information from the stored
archive file for TCAT and S-TCAT. It summa-
rizes the percentage of logical branches/call-
pairs hit in each module listed, giving the C1/
S1 value for each module and the program as a
whole. {Coverage}

path, path class An ordered sequence of logical branches
representing one or more categories of
program flow. {Coverage}

path predicate The predicate that describes the legal condition
under which a particular sequence of logical
branches will be executed. {Coverage}

path testing A test method satisfying coverage criteria that
each logical path through the program be
tested. Often paths through the program are
grouped into a finite set of classes; one path
from each class is tested.
{Software Technology Support Center}

pathcon A TCAT-PATH utility which generates a path's
conditions.

pattern mask A pattern mask specifies one or more rectangu-
lar areas which are to be excluded from file
comparison. (EXDIFF)

perturbation testing A test path adequacy measurement technique
that proposes using the reduction of the space
of undetectable faults as a criterion for test
path selection and is intended to reveal faults
in arithmetic expressions.
{Software Technology Support Center}

playback counter The time interval between two keystrokes
recorded or played back by CAPBAK.

playback delay Minimum interval between keystrokes at play-
back time with CAPBAK.

playback mode The CAPBAK mode that enables the user to
play back a file that contains all the keystrokes.

CHAPTER 6: Glossary

58

playback programming A technique in which playback behavior is
controlled by the use of various system calls
placed in the keysave file. This provides an
easy way for a user to playback a keysave file
as a script that modifies behavior on the basis
of system and environmental factors.
{CAPBAK, CAPBAK/UNIX}

predecessor logical branches One of many logical branches that precede a
specified logical branch in normal (structur-
ally-implied) program flow. {Coverage}

predicate A logical formula involving variables/
constants known to a module.

predicted length Maurice Halstead theorizes that a well-written
program with n1 unique operators and n2
unique operands should have a length of

N^ = [n1 x log2(n1)] + [n2 x log2(n2)]

{METRIC}

preview A CAPBAK utility which simulates keysave
file activity. The simulation shows the record-
ing session's mouse movements, button and
keyboard activities, and captured images.

program See module.

program digraph See digraph.

program predicate See predicate.

program-sensitive fault A fault that occurs when a particular sequence
of instructions is executed. {Software Technol-
ogy Support Center}

proof checker A program that checks formal proofs of
program properties for logical correctness.
{Software Technology Support Center}

pseudocode A form of software design in which program-
ming actions are described in a program-like
structure; not necessarily executable, but
generally held to be humanly readable.

TestWorks User’s Guide

59

purity ratio Maurice Halstead suggested that programs
which are not the same length as predicted by
N^ (see predicted length) are victims of impu-
rities. The purity ratio is the ratio of N^ to N
(predicted length/length). This measurement
is used by METRIC to determine error-prone
parts of code. {METRIC}

qualification The process ensuring that a given software
component, at the end of its development, is
compliant with the requirements. The qualifi-
cation shall be performed with appropriate
and defined software components and sub-
software systems, before integrating the soft-
ware to the next-higher level. The techniques
for qualification are testing, inspection and
reviewing.

quality assurance A planned and systematic use of metrics to
provide adequate confidence that an item or
product conforms to established requirements.
{Software Technology Support Center}

quick check mode The CAPBAK and CAPBAK/MSW playback
mode that replays a test in order to generate a
new set of AUT responses. The new responses,
the actual results, are compared with earlier
results; that is, the expected results of the test.

This mode verifies an application's behavior
by automatically comparing any currently-
captured actual images, windows or ASCII
characters with the image, window or charac-
ters that were captured and stored as the
expected results.

record This command is a program that records key-
strokes being entered at a terminal and saves
them in a keysave file format. It records and
displays the responses from the remote
machine, and saves them in a baseline file
which can be used to synchronize playback.
{CAPBAK/UNIX}

CHAPTER 6: Glossary

60

reference analysis A form of static-error analysis that can detect
reference anomalies; for example, when a vari-
able is referenced along a program path before
it is assigned a value along that path. {Software
Technology Support Center}

reference listing report A report produced by TCAT and S-TCAT
which shows the coverage level achieved for
all modules that are named in the specified
reference listing.

regression report This report shows only those tests whose out-
comes have changed, thereby identifying bugs
which have been fixed or introduced since the
last time the test cases were activated. It lists
test name, outcome, and activation date.
{SMARTS}

regression testing Testing which is performed after making a
functional improvement or repair of the soft-
ware. Its purpose is to determine if the change
has regressed other aspects of the software.

As a general principle, software unit tests are
fully repeated if a module is modified, and
additional tests which expose the removed
fault are added to the test set. The software
unit will then be re-integrated and integration
testing repeated.

resource file For X Windows applications only, a file that
contains a set of pre-determined values for
parameters.

response file CAPBAK captures images from the server and
stores them in a response file. This file can be
compared against the baseline file.
{Regression}

return variable A return variable is an actual or formal param-
eter for a module, which is modified within
the module.

TestWorks User’s Guide

61

review A planned activity during which a work prod-
uct (strategy, budgets, requirements, design,
code, test, support, training, etc.) is reviewed
by the author and others involved in an
attempt to gain an objective, varied, and com-
plete perspective of the product.

Review is commonly referred to as code
review, technical review, walk-through,
inspection, etc. Walk-throughs are generally
less formal and led by the author, while
inspections are more formal and led by a more
independent party.
{Software Technology Support Center}

robustness 1. The degree to which a system or component
can still function in the presence of partial fail-
ures or other adverse, invalid, or abnormal
conditions.

2. This is a characteristic of a product that
enables it to more than meet minimum
requirements. Customers really expect more
than just minimum requirements, and
although “satisfied” with minimum require-
ments, will look elsewhere next time if not
“delighted” by the product.This is more a
function of product design than design pro-
cess. {Software Technology Support Center}

S-TCAT The System Test Coverage Analysis Tool of the
STW/Coverage tool group. S-TCAT measures
the structural completeness of a test suite by
reporting on the percentage of function call-
pairs exercised.

S0 coverage The percentage of modules that are invoked at
least once during a test or during a set of tests.
Measured by S-TCAT.

S1 coverage The percentage of call-pairs exercised in a test
as compared with the total number of call-
pairs known in a program. This metric is calcu-
lated by S-TCAT. By definition the S1 value for
a module which has no call pairs is 100% if the
module has been called at least once, and 0%
otherwise.

CHAPTER 6: Glossary

62

scover An S-TCAT utility used to assess the value of
S1 coverage.

screensave file The file of screen images saved each time a
trigger keystroke was hit during a CAPBAK/
DOS session.

screensave mode The CAPBAK/DOS mode that enables the
user to save screens exactly as they appear
immediately before a trigger key is pressed.

screensave trigger character(s) Characters that invoke CAPBAK/DOS to save
a screen of data, starting from the time the last
keystroke was typed prior to when the current
trigger was typed.

screensave trigger mode When screensave trigger mode is on, any time
a trigger character is pressed the system
records a copy of the current screen contents.

segment A [logical branch] segment or decision-to-
decision path is the set of statements in a
module which are executed as a result of the
evaluation of some predicate (conditional)
within the module. The segment should be
thought of as including the outcome of a
conditional operation and the subsequent
statement execution (up to and including the
computation of the value of the next predicate,
but not including its evaluation in determining
program flow). {Coverage}

segment instrumentation The process which results in an altered version
of a module, logically equivalent to the
unmodified module but containing calls to a
special data collection subroutine. This sub-
routine accepts information as to the specific
segment sequence incurred in an invocation of
the module. {Coverage}

semantic error An error resulting from a misunderstanding of
the relationship of symbols or groups of sym-
bols to their meanings in a given language.
{Software Technology Support Center}

TestWorks User’s Guide

63

sensitivity analysis In safety analysis, analysis that assesses the
potential impact of a potentially-critical failure
on the ability of the system to perform its mis-
sion. {Software Technology Support Center}

Shift-PrtSc This key terminates playback (abnormally)
during playback mode, before the end of the
session. {CAPBAK/DOS}

simulator From Webster's, simulate 'to create the effect or
appearance of.' Therefore, a machine that
creates the effect or appearance of another.
Similar to an emulator. Examples peripheral or
network simulators.
{Software Technology Support Center}

smarts This command invokes the ASCII version of
SMARTS for UNIX and MS-DOS.

SMARTS The Software Maintenance and Regression Test
System of the STW/Regression tool set.
SMARTS reads a user-designed test descrip-
tion file to find out what actions to take for
each test or group of tests. This description file,
called the Automated Test Script (ATS), is writ-
ten in SMARTS' description language (similar
to C language in syntax). In this file, the user
can specify test commands to dispatch and test
outcome evaluation methods.

At the user's command, SMARTS performs the
pre-stated actions, runs a difference check on
the outputs against the baseline, and accumu-
lates a detailed record of the test results.

software subsystem A part of a software system, but one which
includes many modules. Intermediate between
module and system.

software system A collection of modules, possibly organized
into components and sub-systems, which
solves some problem or performs some task.

CHAPTER 6: Glossary

64

source clause A clause in the ATS file that contains com-
ments which may give some explanation to the
origin of the test(s) invoked in each particular
case. Most commonly the source clause is used
to specify the purpose of a test.

The comments in a source clause are displayed
by SMARTS when a test case activation is eval-
uated as a test failure this allows you to note
which files need to be inspected. {SMARTS}

spaghetti code A program whose control structure is so entan-
gled by a surfeit of GOTO's that its flowgraph
resembles a bowl of spaghetti.

statement complexity A complexity value assigned to each statement
which is based on (1) the statement type, and
(2) the total length of postfix representations of
expressions within the statement (if any). The
statement complexity values are intended to
represent an approximation to potential execu-
tion time.

statement testing Testing designed to execute each statement of a
computer program. See test coverage. {Soft-
ware Technology Support Center}

static analysis The process of analyzing a program without
executing it. This may involve a wide range of
analyses. The STW/Advisor suite of tools per-
forms static analyses. {STATIC}

static frequency Forced constant CAPBAK playback rate.

STATIC The Static Analyzer for C reports on source
code errors and inconsistencies that otherwise
may go undetected. STATIC does a more
detailed check than your compiler, including
locating nonportable constructs. It also looks
across multiple modules for bugs and so
enjoys a perspective that your compiler does
not have.

status report The report presents the most recent informa-
tion about executed tests. It contains test case
name, outcome (pass/fail), activation date,
execution time (seconds), and error number.
{SMARTS}

TestWorks User’s Guide

65

stress testing Testing conducted to evaluate a system or
component near, at, or beyond the limits of its
specified requirements.
{Software Technology Support Center}

strong typing Strong typing refers to typedef-based type
checking for STATIC. {STATIC}

stw The command that invokes the GUI for STW.

subtest A part of a test that occurs between passing
control to the test object and the return of
control to the test environment.

successor logical branch One or more logical branches that (structur-
ally) follow a given logical branch.

successor segment One or more segments that (structurally)
follow a given segment. {Coverage}

Summary report This report is an accumulated account of the
complexity measures for the entire program.
{METRIC}

symbolic evaluation A technique of analyzing program behavior
without executing the program. This generally
results in the generation of a series of formulas
that describe the input/output relationships in
a software system.

symbolic testing A method of examining the path computation
and path condition to ascertain the correctness
of a program path. {Software Technology Sup-
port Center}

synchronization Synchronization is the process of maintaining
coherence between a recording and the result-
ing system-under-test's responses. During
playback of a test script, e.g. with CAPBAK, it
is possible, due to many factors, for the play-
back process to "de-synchronize" with the
synthetic input being reproduced by CAP-
BAK. Synchronization schemes are used to
control the playback so that synchronization is
not lost. CAPBAK has several ways to prevent
loss of synchronization, among them "auto-
matic output synchronization" and "image
synchronization".

CHAPTER 6: Glossary

66

syntax error A violation of the structural rules defined for a
language.
{Software Technology Support Center}

system testing Verifies that the total software system satisfies
all of its functional, quality attribute and oper-
ational requirements in simulated or real hard-
ware environment.

It primarily demonstrates that the software
system does fulfill requirements specified in
the requirements specification during expo-
sure to the anticipated environmental condi-
tions. All testing objectives relevant to specific
requirements should be included during the
software system testing. Software system test-
ing is mainly based on covered-box methods.
{Coverage}

TCAT-PATH The Path Test Coverage Analysis Tool of the
STW/Coverage tool group. TCAT- PATH
measures the thoroughness of your test case
coverage by reporting on the paths exercised.

TCAT The Test Coverage Analysis Tool of the STW/
Coverage tool group. TCAT measures the thor-
oughness of your test case coverage by report-
ing on the percentage of logical branches
exercised.

TDGEN The Test Data Generator System which is a
component of the STW/Advisor product line.
TDGEN produces test data files in a user-
designed format by replacing variable fields in
a template file with random or sequential data
values from a values file.

template file A user-designed TDGEN file which indicates
where selected values are to be placed within
an existing test file. A template file provides a
format for the generation of additional tests.

termination clause A clause in the ATS file that allows for execu-
tion of concurrent processes in order to test the
timing of specific test cases and terminate
them if necessary. It is executed when a special
termination command fails to complete
normally. {SMARTS}

TestWorks User’s Guide

67

test A [unit] test of a single module consists of (1) a
collection of settings for the inputs of the
module, and (2) exactly one invocation of the
module. A unit test may or may not include
the effect of other modules which are invoked
by the current testing. The intent of a test is to
find faults in the module.

test case Information about observable states, condi-
tions, events, and data: all the causes (stimuli,
inputs) that compel or allow software under
test to perform one separately definable and
measurable function. It should be possible to
identify and track individual test cases. See
test failure report. {Software Technology
Support Center}

test coverage measure 1. A measure of the testing coverage achieved
as the result of one unit test, usually expressed
as a percentage of the number of segments
within a module traversed in the test.
{Coverage}

2. The degree to which a given test or set of
tests addresses all specified requirements for a
given system or component. Components are
depth of coverage and breadth of coverage.
Test coverage can also refer to code coverage,
such as branch and statement test coverage,
the results of which will be realized as a
metric. {Software Technology Support Center}

test data set A specific set of values for variables in the
communication space of a module which are
used in a test.

CHAPTER 6: Glossary

68

test development The development of anything required to
conduct testing. This may include test require-
ments, strategies, processes, plans, hardware,
software, procedures, cases, documentation,
and maintenance strategies (essentially, the
same or similar efforts as that of any product
development, except that usually, but not
always, the test products are used by internal
customers rather than external. The people
involved in the test development effort should
use a lifecycle approach; essentially, the same
as in the product development effort, and the
test products should be treated as assets to be
managed rather than expenses to be pared).
{Software Technology Support Center}

test failure report A report containing a unique identifier (ID) for
each failure, an ID of the software under test,
an ID of the test case, the date and time of the
failure, symptoms of the failure, and a classifi-
cation of the failure (criticality, priority, etc.).
{Software Technology Support Center}

test harness A tool that supports automated testing of a
module or small group of modules.

test object The central object on which testing attention is
focused. Also known as object under test.

test path A test path is a specific (sequence) set of
segments which is traversed as the result of a
unit test operation on a set of testcase data. A
module can have many test paths. {Coverage}

test procedure The formal or informal procedure that will be
followed to execute the test in question. This is
usually a written document that will allow
others to carry out the test with a minimum of
training and confusion. There will be a sepa-
rate test procedure for each case, which will be
noted in the test plan. {Software Technology
Support Center}

test purpose The free-text description of the purpose of a
test, normally included in the source clause of
an ATS file that is processed by SMARTS.

TestWorks User’s Guide

69

test readiness review In Technical Review and Audits For Systems,
Equipments, and Computer Software, the test
readiness review comes after the critical design
review and before the functional configuration
audit. By default, one test readiness review is
conducted for each CSCI. This is to verify that
the item is ready for formal testing and
approval. {Software Technology Support
Center}

test status report Shows metrics for work products and work
processes. Shows quantity for information at a
glance; e.g. total test cases, total run, total
passed. Generally, shows little or nothing
about quality of tests.
{Software Technology Support Center}

test stub A test stub is a module simulating the opera-
tions of another module invoked within a test.
The test stub can replace the real module for
testing purposes.

test target The current module (system testing) or the cur-
rent segment (unit testing) upon which testing
effort is focused.

test target selector A function which identifies a recommended
next testing target.

testing techniques Can be used in order to obtain a structured and
efficient testing which covers the testing
objectives during the different phases in the
software life cycle.

testability A design characteristic which allows the status
(operable, inoperable, or degrade) of a system
or any of its subsystems to be confidently
determined in a timely fashion. Testability
attempts to qualify those attributes of
system design which facilitate detection and
isolation of faults affecting system perfor-
mance.

CHAPTER 6: Glossary

70

top-down testing The testing starts with the main program,
which becomes the test harness. The subordi-
nated units are added as they are completed,
and testing continues. Stubs must be created
for units not yet completed.

This strategy results in re-testing of higher
level units when more lower level units are
added. The adding of new units one by one
should not be taken too literally. Sometimes a
collection of units will be included simulta-
neously, and the whole set will serve as test
harness for each unit test. Each unit is tested
according to a unit test plan, with a top-down
strategy.

trace file A file containing the most recent test run of
trace coverage information. {Coverage}

trigger key These are user-defined keys that CAPBAK/
DOS uses to record screens or to write marker
records to the keysave file.

true-time recording The capability of CAPBAK to record complete
timing information about the CAPBAK session
in such a way that it can be played back at the
same rate it was recorded.

T-SCOPE The Test Data Observation and Analysis Sys-
tem provides dynamic visualization of test
attainment during unit testing and system
integration. It is a companion tool for TCAT,
S-TCAT and TCAT-PATH.

unconstrained paths The set of edges that will imply execution of
other edges in the program. {TCAT-PATH}

unit test See test.

TestWorks User’s Guide

71

Unit Testing This procedure is meant to expose faults in
each software unit as soon as the unit is avail-
able, regardless of its interaction with other
units. The unit is exercised against its detailed
design, and by ensuring that a defined logic
coverage is performed.

 Informal tests on module level which will be
done by the software development team are
necessary to check that the coded software
modules reflect the requirements and design
for that module. Clear-box (glass-box) oriented
testing, in combination with at least one
closed-box method, is used.

unreachability A statement (or segment) is unreachable if
there is no logically obtainable set of input-
space settings which can cause the statement
(or segment) to be traversed.

validation The evaluation at the end of the development
process to ensure compliance with software
requirements. The techniques for validation
are testing, inspection and reviewing.

values file A user-designed TDGEN file which indicates
the actual test values, test value ranges or test
value generation rules for the creation of addi-
tional test files.

verification The process of determining whether or not the
products of a given phase of the software
development cycle meet the implementation
steps, and can be traced to the objectives estab-
lished during the previous phase. The tech-
niques for verification are testing, inspection
and reviewing.

vertex See node.

white-box testing See glass-box testing.

Xcalltree An S-TCAT utility displaying a software sys-
tem's caller-callee dependence structure (may
be called Xcgpic in older versions of STW).

Xcapbak Command to invoke the GUI version of
CAPBAK/X. See also Xrecord, Xplabak, and
Xdemo.

CHAPTER 6: Glossary

72

Xdemo A variation of Xplabak that does not require
access to licensing, but does check to assure
that the keysave file played back has been
processed by Xdemo.key.

Xdemo.key A command that is part of the CAPBAK/X
package that authorizes a keysave file for play-
back by Xdemo.

Xdigraph A TCAT or TCAT-PATH utility used to create
a picture of a directed graph (may be called
Xdigpic in older versions of STW.)

 Xexdiff The EXDIFF command to perform a pixel-by-
pixel comparison of two saved images.

 Xkiviat The command to invoke the Kiviat chart
generator supplied with the METRIC product.

 Xmask The EXDIFF command to mask out regions.
This is useful whenever there are differences
between two files that are inconsequential,
such as a date, header, footer, or path name.

 Xplabak A CAPBAK/X command which reads a key-
save file and plays back the captured key-
strokes, mouse movements and images.

 Xrecord A CAPBAK/X command which allows you to
record keystrokes, screen captures, and mouse
movements and save them to a keysave file.

 Xsmarts The command to invoke the GUI version of
SMARTS.

 Xstatic The command to invoke the STATIC compo-
nent of the STW system.

 Xtcat The command to invoke the GUI version of
Xtcat.

 Xtcatpath The command to invoke the GUI version of
TCAT-PATH.

 Xtdgen The command to invoke the TDGEN system
within the STW package.

 Xtscope The command invoking the GUI for T-SCOPE.

73

CHAPTER 7

The TestWorks Index
A Quantitative Quality Index for Your
Application

7.1 Abstract

Assessing the relative quality of a software system is a complex but
important matter in software engineering. To make rational decisions
about complex software requires an approach that combines analysis of
product properties with analysis of the underlying software construction
process. A weighted figure of merit software quality index — The
TestWorks Index — offers an attractive approach because it takes into
account software quality metrics, process assessments, and practical
considerations.

CHAPTER 7: The TestWorks Index

74

7.2 Introduction

This paper attacks a common problem in software development: How
good is the quality of a specific software application? How do I know it?
How can I make decisions about it? (For example, should it be released
yet?) How can I estimate what to do next on my product based on where
I am now?

The approach to this problem is to assess the quality of a particular appli-
cation by weighing the answers to questions that address BOTH the
properties of the application itself and the characteristics of the process
used to produce it.

TestWorks User’s Guide

75

7.3 Quality Process Assessment Methods

The SEI CMM and the ISO-9000 type quality process models are based on
examining the process that produces the product. This approach is based
on the well-documented fact that a better industrial process tends to
produce a better product, and that continual incremental improvements
to that process tend to lead to continual incremental improvements in its
product. This simple method can account for spectacular quality — and
consumer acceptance — gains.

While this technique is clearly valid in general terms, sometimes good
processes produce bad products and bad processes produce good
products. This happens annoyingly often in software products, perhaps
because some of the intermediate elements of the process can be very
difficult to measure.

So Quality Process Models accept such exceptions, focusing on the main
point: Improving the process improves the product. And the exceptions
are anomalies.

CHAPTER 7: The TestWorks Index

76

7.4 Product Methods

The Product Analysis approach, often called the metrics approach or the
static analysis approach, takes the opposite tack: look at the final product
only, and base decisions about its quality on what is actually there,
regardless of how it got there. After all, the final source code itself com-
pletely determines what an application can do. Regardless of how it was
produced, regardless of the methodology or tools or process used to
make it, the actual quality of a software product is determined directly by
its own internal, intrinsic properties.

So, even if it is junky, spaghetti code hacked together by rank amateurs, if
it works well then it works well. Who needs a fancy software process,
anyway?

Simply put, quality is determined in the contest of the marketplace.

Of course, given that quality is implicit in the as-built product, we still
have to find a way to measure it if we want some measure of control over
the result. To measure the quality of an application by its structural prop-
erties or content, we use software metrics (e.g., cyclomatic complexity,
size metrics — there are hundreds of possible metrics).

Yet we know from experience that sometimes applications with very poor
software quality metrics, e.g., with E(n) in the 100’s and Halstead weights
in the 1,000,000’s, are perfectly good, perfectly reliable code and don’t
have any field problems. At the same time, some products that are high-
scoring by every metric one can find are complete disasters.

Automated static analysis attempts to mechanize code inspection meth-
ods, but most implementations tend to find far too many things wrong.
Long lists of product features that are “dangerous” but not “fatal” sug-
gest not that a product will fail in the field, but that the builders don’t
mind living on the edge.

For example, if you always fixed everything that /bin/lint said ought to
be fixed, assuming you could afford to do that, your software quality
would be sure to go up, but there would be no guarantee that your deliv-
ered functionality would change for the better. It might change for the
worse! You could be spending money to improve the product and chang-
ing it for the worse.

The paradox is that just having measurable high-quality code that meets
small-scale and large-scale quality guidelines is no more a measure of
field product success than having a perfect manufacturing process that is
building a “Monday Morning Car.”

TestWorks User’s Guide

77

7.5 Process/Application Assessments

A combined process/application assessment is a way out of this mess. A
software manager needs to take into account the following factors: HOW
a product was built; WHAT its characteristics are; and WHY better qual-
ity is important; and what the producers and their management — the
team — FEEL about how good the team/product combination is.

A multi-faceted assessment method can be fooled too, of course, but its
strength is that it focuses on perceived quality-key aspects of both process
assessment and product assessment.

• HOW a product was built is addressed by questioning whether
certain basic quality-oriented processes are used in its construc-
tion. For example: Was coverage analysis done? What coverage
metrics, and how thoroughly? (How well was it tested?) Was
automated regression done? How thoroughly? (How well was it
tested?)

• WHAT its characteristics are is addressed by identifying certain
basic metrics that pertain to its actual functional content. For
example: What is the average E(n) for functions? (How complex
is the code?) What is the calltree aspect ratio? (How is the code
shaped?)

• WHY better quality is important is, simply put, an assessment of
how critical the product is to the producers. If product quality
isn’t important, then quality shouldn’t be of any concern. But if a
product is intended for a life-critical application, and therefore
has to have very high quality, then the need for quality has to be
taken into account.

• HOW the team FEELS about the product they’ve built affects a
lot of things — and will be controversial to measure. The very
best software development efforts have often been fielded by
dedicated, talented, teams who believe in their work.

CHAPTER 7: The TestWorks Index

78

7.6 The Methodology

The TestWorks Index is a balanced, weighted, experience-determined
estimate of selected factors and uses a combination of estimates, measure-
ments, and process-characterizations to come up with a quality figure
that can be used — within a single organization — to compare products.
The TestWorks Index is the average score obtained on a simple ques-
tion list, where specific quantitative responses based on current engineer-
ing experience assign “points”. The more points scored, the better the
product. The average point count (the total points scored divided by
number of questions) is the TestWorks Index.

In engineering this has been called a “Figure of Merit (FOM)” and the
notion of using FOMs has a long tradition of use in comparing complex
things. From assessing competitive proposals (which are scored accord-
ing to weighted averages), to determining plant efficiency, engineers take
the practical approach even when it is known there is no theoretical
solution.

Some benefits the TestWorks Index offers in assessing your products
are:

• You can compare two products from your production shop in a
quantitative way.

• You can adjust the point values, if you like, to match your own
experience. Or you can add quality-related factors if you like (but
you can’t take them away or you may destroy the integrity of the
index).

• You can use the evidence internally for your own purposes. You
don’t have to expose yourself to SEI or ISO-9000 audit processes.

• You CAN have or seek a high SEI rating or obtain ISO-9000
approval. The TestWorks Index assesses product/producer/
process quality in a way that combines many of the features of
these two important quality-related standards.

• You can use The TestWorks Index now, with data that you
probably already have available, to come up with meaningful
comparative estimates.

• By adopting The TestWorks Index you create an internal cul-
ture in which achieving practical goals for a software product
becomes a common goal. You might even say that the product
had been “TestWorked” to a certain level in your advertising.

TestWorks User’s Guide

79

7.6.1 Caveats

If you read this, you may get the impression that this is a foil to encourage
users to buy the TestWorks product line. True, you may want to use
some TestWorks products in your software production line to make
sure you obtain a better TestWorks Index score. But you could use our
competitors’ products as well. The TestWorks Index is NOT tied use of
TestWorks products.

7.6.2 How It Works

The TestWorks Index works as shown on the following chart. The factors
on the chart are metrics that you can measure, or are assessments you can
make, in a straightforward way. Detailed explanations of the terms follow
the chart.

As you read the explanations, think of a specific project that you’re work-
ing on, and try to calculate its The TestWorks Index score as you go
along.

TestWorks Index

80

TestWorksTM PRODUCT QUALITY INDEX TM — DEFINITION AND
EXPLANATION

This table shows how to compute the TestWorks Product Quality IndexTM — the “TestWorks Index.” The index gives an
organization the chance to assess how well their internal software quality process is actually used on a particular product
level and to compare their indicated product quality against current likely industry standards.
Each factor in the TestWorks Index is evaluated so that a simple point — scored between 0 and 100 — can be assigned
depending on the answers. The overall TestWorks Index is the arithmetic average of the individual scores on each factor
(you add them up and divide by the number of factors used).

WORKSHEET
TestWorks Index TM

EVALUATION FACTOR

50
Points

60
Points

70
Points

80
Points

90
Points

100
Points

My
Score

F1 Cumulative C1 (Branch Coverage) Value for All Tests >25% >40% >60% >85% >90% >95%

F2 Cumulative S1 (Callpair Coverage) Value for All Tests >50% >65% >80% 90% 95% 98%

F3 Percent of Functions with E(n) < 20 <25% >25% >50% >75% >90% >95%

F4 Percent of Functions with Clean Static Analysis <20% >20% >30% >40% >50% >60%

F5 Last PASS / FAIL Percentage >25% <25% >50% >75% >90% >95%

F6 Total Number of Test Cases / KLOC >10 <10 >15 >20 >30 >40

F7 Calling Tree Aspect Ratio (Width/Height) >1.0 <1.25 <1.5 <1.75 <2.0 >2.0

F8 Current Number of OPEN Defects / KLOC >5 <5 <3 <2 <1 <0.5

F9 Path Coverage Performed for % of Functions <1% >2% >5% >10% >15% >25%

F10 Cost Impact / Defect: >$100K >$50K >$25K >$10K >$1K <$1K

Total Points —> —> —> —> —> —>

TestWorks User’s Guide

81

7.7 Index Criteria

Not just any list of scored questions should quality as a valid comparative
index. To qualify as an effective indicator some constraints have to be put
on The TestWorks Index or its home-brewed derivatives to make sure
that it isn’t manipulated to favor a particular process or product feature
or quality assurance approach. The constraints that make sense are the
following:

• There can be no more than 10 (ten) factors. This keeps the arith-
metic simple (managers need this, technical people think).

• At least half of the criteria must be completely quantitative,
objective, measurable, repeatable; i.e. not subject to any kind of
judgment [Q].

• At least three of them have to deal with something about the
static (non-dynamic) characteristics of the product [S].

• At least three of the criteria have to somehow involve actual tests
of (experiments on, examinations of, executions of) the as-built
software product — you can’t design quality into a product with-
out some kind of checking, and you can’t score high on the index
without something that works and does something [T].

• At least three of the factors have to deal with something about the
dynamic behavior of the product, how it actually works when
you run it [B].

• At least one of them have to deal with something about how the
product was put together, i.e., about the process used in con-
structing it [P].

• At least one of the factors has to deal with a measure of the
quality “need” imposed from some outside force, e.g. the cost of
repairing a defect in the field or the life-criticality of the
application [$].

• Some of the factors can address several of these criteria: they
don’t have to be unique to each area.

• No more than one of the qualifying factors can be a “wild card”
and need not meet any of the above criteria (The error will be still
no worse than 10%).

• At least eight of the ten factors have to have some non-zero value.
(You can leave out two if you have to!).

CHAPTER 7: The TestWorks Index

82

7.8 Explanation Of Terms

Here are short explanations of the above indicated measures. (The keys
[B, S, T, P, $] are explained on the preceding page.)

F1 Cumulative C1 (Branch Coverage) Value for All Tests [B, S, Q]

This is the total C1 value achieved for this product on all tests. E.g. as
measured by TCAT. Note that statement coverage is NOT usable because
it understands results by half or more. Statement coverage is accepted as
inadequate.

F2 Cumulative S1 (Callpair Coverage) Value for All Tests [B, S, Q]

This is the total C1 value achieved for this product on all tests. E.g. as
measured by TCAT. Note that we are counting the connects between
caller and callee, not just whether a function was ever called (which is
called module testing). Module testing is accepted as inadequate.

F3 Percent of Functions with [E(n) < 20 [S, Q]

This measures the structural complexity for all functions or modules or
methods in the current application. Experience shows that the cyclomatic
complexity E(n) = E - N + 2 > 20 implies a “complex function” — not nec-
essarily bad, but a potentially troublesome problem if a high percentage
of the individual functions has this value. Though not necessarily harm-
ful too high a percentage of “too complex” functions can be a serious
warning sign of trouble ahead.

F4 Percent of Functions with Clean Static Analysis [S, Q]

Static analysis finds a broad class of defects that may cause trouble in the
future. Many errors found by static analysis are non-critical, but too many
static analysis detections is an indicator of poor quality. The measurement
made here requires that a certain percentage of functions be subjected to
some form of static analysis.

F5 Last PASS / FAIL Percentage [B, P, Q]

This is the total number of tests that PASS vs. the total number of tests
available, as would be measured by the test controller, e.g. SMARTS. Tests
PASS if they run as expected, and produce output close enough (as deter-
mined by the programmable differencer) to the baseline to be acceptable.

F6 Total Number of Test Cases / KLOC [T, Q]

This is a measure of the degree to which you have thoroughly tested the
software relative to its size measured in 1000’s of lines of code (KLOC).
Most software is very poorly tested, so it may not take a great many tests
to score high on this measure.

TestWorks User’s Guide

83

F7 Call Tree Aspect Ratio [S, Q]

This is a measure of the “verticalness” of the call-tree of the package, with
packages that have a less vertical structure (and thus more independently
testable) viewed as superior. The vertical height is the maximum depth
calling tree (this is shown in Xcalltree/WINcalltree), and the horizontal
width is the largest number of functions on any level in the tree. If the tree
has multiple roots (as it will likely have in most modern applications)
then the average values for all possible roots is taken.

F8 Current Number of OPEN Defects / KLOC [T, J]

No software product/project is perfect; this metric indicates how many
defects per KLOC are open that are critical. An open defect typically
means it is reported, reproduced, but unresolved with no work-around
available to the user.

F9 Path Coverage Performed for% of Functions [P, J]

For almost all packages some critical functions or modules require full
path coverage, but not all. This measures the percentage of all functions
for which some form of path coverage has been performed. Remember,
path coverage is NOT the same as branch coverage; path coverage would
be measured by something like TCAT-PATH.

F10 Cost Impact / Defect [$, J]

This is an indication of how critical a serious software defect might be,
expressed in monetary terms, i.e. in terms of the direct cost of any defect.
Note that the scale used tends to take points away for the most-critical
kinds of projects; this is done so that the more critical projects receive the
greatest attention. Any product which is “life critical” gets 0 points.

CHAPTER 7: The TestWorks Index

84

7.9 Examples

Here’s how the The TestWorks Index works when applied to some
(admittedly, 100% fictitious) example projects.

Quick-And-Dirty Order Tracker

This project was done by one programmer and involved putting together
an order tracking system for his company. Done in C and using an ASCII
interface to a standard library of C++ functions...

Here’s a summary of the scores that resulted:
Cumulative C1 (Branch Coverage) Value for All Tests 25
Cumulative S1 (Callpair Coverage) Value for All Tests 70
Percent of Functions with E(n) < 20 50
Percent of Functions with Clean Static Analysis 50
Last PASS / FAIL Percentage 80
Total Number of Test Cases / KLOC 50
Calling Tree Aspect Ratio (Width/Height) 60
Current Number of OPEN Defects / KLOC 50
Path Coverage Performed for % of Functions 50
Cost Impact / Defect: 100

TOTAL POINTS SCORED 535

TestWorks Quality Index 53.5

Test Tool Vendor’s Coverage Analyzer

This coverage analyzer, a very popular one, is a sophisticated compiler-
based product...

Cumulative C1 (Branch Coverage) Value for All Tests 70
Cumulative S1 (Callpair Coverage) Value for All Tests 85
Percent of Functions with E(n) < 20 80
Percent of Functions with Clean Static Analysis 60
Last PASS / FAIL Percentage 50
Total Number of Test Cases / KLOC 80
Calling Tree Aspect Ratio (Width/Height) 60
Current Number of OPEN Defects / KLOC 95
Path Coverage Performed for % of Functions 50
Cost Impact / Defect: 80

TOTAL POINTS SCORED 710

TestWorks Quality Index 71

TestWorks User’s Guide

85

Bedside Cardiac Monitor

Think of this as a life-critical application...
Cumulative C1 (Branch Coverage) Value for All Tests 100
Cumulative S1 (Callpair Coverage) Value for All Tests 100
Percent of Functions with E(n) < 20 80
Percent of Functions with Clean Static Analysis 80
Last PASS / FAIL Percentage 90
Total Number of Test Cases / KLOC 85
Calling Tree Aspect Ratio (Width/Height) 60
Current Number of OPEN Defects / KLOC 95
Path Coverage Performed for % of Functions 60
Cost Impact / Defect: 50

TOTAL POINTS SCORED 800

TestWorks Quality Index 80

CHAPTER 7: The TestWorks Index

86

7.10 Connecting To Reality

The hard part comes when trying to connect with reality. The main
question everyone asks is, ``How reliable will my application be in the
field?''

As students of software quality know very well, this is a very deep
question to which there are few definitive or even suggestive answers.
Instead, about the best we can do is associate a particular process's
TestWorks Index score with a likely estimate of reliability based on
judgment and experience.

An initial experimental estimate of this is done in the attached chart.

Time will tell whether the numbers are too high or too low. Time will tell
if the reliability values correspond to the SEI/CMM levels, or if the
achieved reliability is too low or too high. And, time will tell whether that
application of relatively simple quality filters will achieve, or won't
achieve, the expected effect often enough to be relied upon.

But in any case, making the attempt to tie these essential ingredients
together is totally essential.

TestWorks User’s Guide

87

TestWorksTM — PRODUCT APPLICATION PROFILE
This table shows the components of TestWorks and how they are applied in an increasingly sophisticated
sequence of quality processes, all calibrated with the TestWorks IndexTM minimum value. For comparison, the
corresponding CMM value is shown as a range (because of uncertainties in the CMM definitions).

PROCESS LEVEL ADVISOR PLANNING REGRESSION COVERAGE
PROBABLE
DETECTION
EFFICIENCY

Introductory Process

TestWorks Index: > 40

(CMM Level 0-1)

CAPBAK/Lite TCAT/Lite 10%-40%, 2 filters

Basic Process

TestWorks Index: > 50

(CMM Level 1)

Manual CAPBAK/Standard TCAT/Lite 25%-50%, 2.5 filters

Standard Process

TestWorks Index: > 60

(CMM Level 1-2)

METRIC SMARTS CAPBAK/Standard TCAT/Standard 50%-90%, 3+ filters

Advanced Process

TestWorks Index: > 70

(CMM Level 2-3)

METRIC Informal CAPBAK/Professional TCAT/Professional 75%-90%, 4 filters

Critical Process

TestWorks Index: > 80

(CMM Level 3-4)

STW/Advisor
Semi-Formal

Specification-based
STW/Regression STW/Coverage 80%-95%, 5 filters

Life-Critical Process

TestWorks Index: > 90

(CMM Level 4-5)

STW/Advisor
Formal

Specification-Based
STW/Regression STW/Coverage 90%95%, 5 filters

CHAPTER 7: The TestWorks Index

88

89

CHAPTER 8

TestWorking Scribble Using
TestWorksTM for Windows

This comprehensive application note explores how the entire suite of Software Research’s
testing tools interacts with the sample application Scribble.

8.1 Sample Application: Scribble

Scribble employs many features of Microsoft Foundation Classes (MFC).
There are several versions of Scribble, which become increasingly com-
plex in each chapter. MSVC++ 5.0 has eight chapters; The present exam-
ple uses Chapter 8. MSVC++6.0’s Scribble example is in Chapter 7.

FIGURE 8 Scribble, Chapter 8

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

90

8.2 Overview

This Application Note shows results from TestWorks for Windows’ com-
prehensive treatment of Scribble:
• CAPBAK/MSWTM, TestWorks’ capture/playback tool for MS

Windows, records all user activities during a test of Scribble,
including keystrokes and mouse movements and capturing
baseline images for comparison (against future tests).

• CBDIFFTM, TestWorks’ extended file differencing system for MS
Windows, performs graphical file comparisons while discard-
ing extraneous discrepancies during the differencing process.

• CBVIEWTM displays images captured during recording of
Scribble and playback sessions.

• SMARTS/MSWTM, TestWorks’ software maintenance and
regression test system, runs a hierarchy of tests of Scribble and
displaying current and cumulative results.

• TCATTM, TestWorks’ test coverage analysis tool, displays its
analysis of test coverage of Scribble in graphical displays,
including the following:

• Call-trees that show the caller-callee structure of the
program

• Directed graphs that show the control-flow structure of
program modules

• Coverage charts that display numerical results of the
amount of coverage provided by a given test

TestWorks User’s Guide

91

8.3 CAPBAK TM for Windows and Scribble

CAPBAKTM helps you to design and develop tests that automate the test-
ing process. It captures bitmap images and ASCII values, as well as all
user activities during the testing process including keystrokes, mouse
movements, and verification information into a “C” language script that
is easily understood. The captured images provide baselines against
which future reruns of the tests are compared. Future tests then entail the
playing back of these test sessions. CAPBAK’s automatic synchronization
ensures reliable playback of these test sessions, allowing tests to be run
unsupervised as many times as the tester wants.

When a test is played back, the same input statements are regenerated
and sent to your program, the application under test (AUT). The AUT
executes the previously recorded statements, exactly as before. Therefore,
all keystrokes and mouse movements corresponding to the recorded
input are played back. CAPBAK/MSWTM ensures reliable playback
because it has a built-in synchronization feature, and it permits user-
defined synchronization points.

For comparing the behavior of two AUT versions, CAPBAK/MSWTM

recaptures the same images during playback as you captured during the
recording session. You can look at these corresponding images and auto-
matically or manually compare them to determine if there are any dis-
crepancies during the two sessions.

Optical Character Recognition capabilities are also available for use in
text comparisons.

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

92

8.3.1 Record/Playback Modes

CAPBAKTM uses multiple modes for capture/playback: TrueTime Object
and Character Recognition.

With TrueTime, the keyboard and mouse inputs are replayed exactly as
recorded by the tester. Playback timing is duplicated from the server’s
own timing mechanism, allowing tests to be run as if executed by a real
user. The results of the tests indicate any variances from the baseline
cases, permitting the tester to determine the implication of those differ-
ences. Therefore, if a button were moved to a different location in the
window, it would be flagged as change. This TrueTime user-level testing
has been augmented with the inclusion of Optical Character Recognition
Mode (OCR Mode).

Character recognition allows the test to search for items that may have
moved or changed fonts since testing a previous version of the applica-
tion. Test activities reflect the contents of the screen as processed through
a built-in OCR engine.

The character recognition software also allows for pixel images to be con-
verted to ASCII character for later analysis to determine the success of a
particular test. By using the OCR technology, the same technology used
for document scanners, CAPBAKTM now has the ability to recognize any
font without special training regardless of size or other characteristics.

TestWorks User’s Guide

93

8.3.2 Multiple Synchronization Modes

Software Research has licensed OCR technology from Xerox Imaging Sys-
tems (XIS) to provide generalized character recognition capabilities. CAP-
BAKTM offers more synchronization modes than any other capture/
playback tool.

OCR implementation with CAPBAK/MSWTM allows the user to do the
following:
• Automatic Event Synchronization automatically synchronizes

on event-sensitive environment differences, such as new win-
dows popping up in varying locations.

• Image and Window Synchronization waits for the contents of a
screen fragment or window to update and match the baseline
image.

• Timing Synchronization Playback adjusts timing to different
values, allowing overall playback to be slowed down or
adjusted after events such as mouse clicks and carriage returns.

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

94

FIGURE 9 Illustrates capture and playback commands recording Scribble in Truetime mode

CAPBAK’s multiple synchronization modes ensure a reliable playback,
so tests can be run unattended. Response images corresponding to base-
line images are automatically captured. Comparison of the baseline and
response images is done automatically and results are written to a log file.
This log file allows the tester to quickly identify where tests have failed.

The user has complete control over the tests. Both recording and playback
sessions can be sped up, slowed down, paused, or aborted so that the
user can process other commands.

TestWorks User’s Guide

95

The following components complement CAPBAK’s recording features:

SMARTSTM organizes CAPBAK’s test scripts into a hierarchy for execu-
tion individually or as a part of a test suite, and then evaluates each test
according to the verification method selected.

CBDIFFTM compares bitmap images, while discarding extraneous dis-
crepancies during the differencing process.

CBVIEWTM displays images captured during recording and playback
sessions.

To verify that tests have successfully played back, CAPBAK’s
CBVIEWTM utility displays captured images of test sessions. Tests are
further verified with the CBDIFFTM utility, which compares baseline and
response file images for differences. CBDIFF’s masking capability disre-
gards those areas of images that are not necessary for comparison, such as
time or date changes.

FIGURE 10 CAPBACK’S Hotkey Window and Optical Character Recognition (OCR)
Technology from Application Under Test (AUT)

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

96

8.4 The CBDIFF Utility

CBDIFFTM, TestWorks’ extended file differencing system, is a test evalua-
tion facility that extends commonly available file differencing facilities.
CBDIFFTM provides masking options that allow the user to specify areas
within ASCII or image files to be ignored during the differencing process.

CBDIFFTM, an advanced differencing utility, has the following capabili-
ties:
• Pixel-by-pixel comparison of image files
• Detection of color differences
• Line and byte comparisons for ASCII files
• Advanced masking capabilities
• Combines with EXDIFFTM utility for differencing ASCII files

You can display and then compare the differences between expected AUT
images that were captured during a recording session to the actual
images that were captured during playback with the CBDIFFTM utility.
Differences such as changed dates, times, and file list differences can be
masked out. Likewise, comparisons between text files can also be con-
ducted.

FIGURE 11 CBDIFF illustrates the differences between the two screen shots, shown in
CBView (BO1) and CBView (BO2).

TestWorks User’s Guide

97

8.5 SMARTS/MSWTM: Streamlining the Testing Process

SMARTS/MSWTM automatically executes tests, thereby saving time. It
automates the testing process by reading a user-designed test description
file, referred to as an Automated Test Script (ATS). The ATS is written in
SMARTS/MSWTM code, which is a subset of the C programming lan-
guage.

SMARTSTM organizes and manages an extensive number of test scripts
into an efficient hierarchy for the purpose of automating the testing pro-
cess. The test script “test tree hierarchy” emulates the modularity and
functionality of the tested application. It allows test cases to be supple-
mented with activation commands, comparison arguments, system calls,
evaluation methods, and control structures (for , while , if, break ,
return , expressions, and compound statements).

SMARTSTM allows the user to create a hierarchical tree of test cases and
to execute those tests individually or in groups. SMARTS also captures
results from the tests and allows reports to be created based on the most
current run of tests, historical reports of all test runs, or summary infor-
mation on overall test success/fail rates.

SMARTSTM has the flexibility to perform setup and cleanup activities
prior to each test and to call any application or script to perform the veri-
fication in order to determine pass/fail results.

All SMARTSTM commands are context sensitive. Test execution and
reporting are based on the selection, either of an individual test or group
of tests, from the displayed test script “test free hierarchy”. When exe-
cuted, SMARTSTM

• Performs the prestated actions.
• Runs a difference check on the application outputs against the

baseline.
• Accumulates a detailed record of the test results.

Using the STW/Regression comparison utility CBDIFFTM, differencing
capabilities can be extended to ignore specified character strings and text
differences in ASCII files and masked areas in image files.

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

98

8.5.1 SMARTSTM Reports

SMARTSTM saves a detailed record of test outcomes and timing statistics
to a default log file and generates the following comprehensive reports:
• Latest reports
• All reports
• Regression reports
• Summary reports
• Time reports
• Failed reports

FIGURE 12 Run Tests Window

TestWorks User’s Guide

99

FIGURE 13 SMARTS’ Report Windows: Latest, All, Regression, Summary, Time, and Failed

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

100

8.6 TCAT C/C++ and Scribble

TestWork’s test coverage analysis tool (TCAT C/C++TM) measures the
completeness of test cases and identifies unexcised code. It ensures tests
that are more diverse than those chosen by reference to functional specifi-
cation alone or those based on a programmer’s intuition.TCAT C/C++TM

allows the user to create and view the coverage reports, calltrees, and
directed graphs of the trace files that TCAT C/C++TM for Windows cre-
ates when an instrumented application is tested. It ensures that they are
as complete as possible by measuring them against a range of high qual-
ity test metrics such as the following:
• Coverage at the logical branch (or segment) level and the call-

graph level, employing the C1 metric
You can choose to test a single module, multiple modules, or
the entire program using C1 metric.

• Coverage at the call-pair level employing the S1 metric
 After individual modules have been tested, you can test all the
interfaces of the system using the S1 metric.

• Dynamic visualization of test attainment during unit testing
and system integration
This test visually demonstrates, in realtime, such things as seg-
ments and call-pairs hit/not hit.

FIGURE 14 TCAT C/C++ Program Group

TestWorks User’s Guide

101

8.6.1 Instrument Using WinIC9

WinIC9 instruments the application under test in order to produce trace
files of the test.

During instrumentation, TCAT C/C++TM for Windows inserts function
cells (special markers) at every logical branch (segment) in each program
module. Instrumentation also creates a reference listing file, which is a
version of your program that has logical branch-marking comments
added to it in a manner similar to the code added to the instrumented
version. Extensive logical branch notation and sequence numbers are also
added.

FIGURE 15 WinIC9 Window

Instrumenting Scribble will not change its functionality. When compiled,
linked, and executed, the instrumented application will behave as it nor-
mally does, except that it will write coverage data to a trace file.

By runningWinIC9, you are exercising logical branches in the program.
The more tests in your test suite, the higher the coverage. This test infor-
mation is then written to a trace file. From the information stored in the
trace file, you can generate coverage reports. In general, the reports give
the following information:
• Reports included in the current iteration
• A summary of past coverage runs
• Current and cumulative coverage statistics
• A list of logical branches that have been hit

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

102

8.6.2 Viewing Coverage Reports with Cover

Cover displays trace and coverage information on your development
project in a treelike list. TCAT C/C++TM does the following:
• Measures the completeness of test cases
• Improves quality by focusing the creation of additional tests
• Saves time by not creating tests for code already exercised
• Improves process by providing metrics measurements

You can click on a branch of the list to expand it, show its content, and
contract it. The several fields in the report have the following meanings:
• Hits: the number of times the segment and call pair were exe-

cuted during the test
• Count: the number of segments and call pairs within the func-

tion
• C1: the percentage of branch coverage for each function
• S1: the percentage of call pair coverage for the function

FIGURE 16 Coverage Report on Scribble, with One Function Expanded to Show Segments.

TCAT C/C++ for Windows draws digraphs based on archive files that are
created during instrumentation.

TestWorks User’s Guide

103

FIGURE 17 Digraph Main Window

CHAPTER 8: TestWorking Scribble Using TestWorksTM for Windows

104

8.6.3 Viewing A Calltree

TCAT C/C++TM for Windows generates a calltree graph for each segment
of your executable during instrumentation and stores it in a separate
archive file. Once the instrumented application has been exercised, you
can display a calltree window for a specified program segment.

FIGURE 18 Displaying a Calltree

For each node in your calltree, you can easily display an associated
directed graph.

TCAT C/C++TM for Windows allows quick navigation from graphs to
source code.

105

B
baseline image 1

C
C1 metric 2
callpair 2
CAPBAK 1
compiling & running 3
coverage analysis

tools 2
coverage report 3

D
Directories list bo 21
Directories list box 21
DOS $PATH 28
Drives area 21

E
EXDIFF 1
executables 28

F
file

basename.bnn 22
basename.ksv 22
basename.rnn 22
basename.snn 22

File Name entry box 21, 22
File Name list box 21, 22
file selection windows, using 22
font

italics xi
italix xi

font, bold face xi
font, courier xi
function calls 3

G
Glossary 33

H
Help menu 23
Help window 23

I
instrumentation 3

L
List Files of Type area 21
logical branch 2, 3

M
menu

Help 23

P
percent coverage recommended 3

R
reference listing file 3

Index

INDEX

106

response image 1

S
S1 metric 2
scroll bars 21
SMARTS 1
special text xi
SQA 2
SR executables 28
STW/Regression 1

T
test cases 3
TestWorks window 25
text

"double quotation marks" xi
boldface xi
italics xi

text, boldface xi
text, courier xi
text, italix xi
trace file 3

W
window

TestWorks 25

